
Scaling Up
Supervised Learning in Function Space

Andrew Stuart

California Institute of Technology

AFOSR, ARO, DoD, NSF, ONR

Slides: http://stuart.caltech.edu/talks/index.html

Collaborators

Covered In This Talk
▶ w/Cotter, Roberts, White [4] (MCMC for functions)

▶ w/Hairer, Vollmer [8] (Spectral gaps for MCMC for functions)

▶ w/Bhattacharya, Hosseini, Kovachki [1] (PCA-Net)

▶ w/Nelsen [17] (RFM: Random features – using FFT)

▶ w/Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Anandkumar [14, 11] (FNO)

▶ Kovachki [12] (Machine learning and scientific computing)

▶ w/De Hoop, Huang, Qian [5] (Cost-Accuracy trade-off)

Adjacent To This Talk

▶ w/De Hoop, Kovachki, Nelsen [6] (Learn linear operators)

▶ w/Bhattacharya, Liu, Trautner [2] (RNO)

Overview

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

Talk Outline

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

Pixellated Images Versus Functions

Thanks to Dima Burov

Finite Dimensional Vectors Versus Functions

Thanks to Edo Calvello

Don’t

Do

Talk Outline

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

The Problem

Target Measure

Consider probability measures π, π0 supported on U and Φ : U → R+:

π0 = N (0,C),

π(u) ∝ exp
(
−Φ(u)

)
π0(u).

Goal: to draw approximate samples from π on vector space RN approximating U .

MCMC
Construct Markov chain with kernel p so that

un+1 ∼ p(un, ·),
Law(un) → π, as n → ∞.

Randon Walk Metropolis (RWM) Algorithm

Metropolis et al 1953 [16]

Applies to any π.

Proposal

For some δ ∈ (0,∞):

u⋆n+1 = un +
√
2δξn,

ξn ∼ N (0,C).

Accept-Reject

a(u, v) = min
{π(v)
π(u)

, 1
}
,

un+1 = u⋆n+1, with probability a(un, u
⋆
n+1),

un+1 = un, otherwise.

The pCN Algorithm

Cotter et al 2013 [4]

Applies to π ∝ exp
(
−Φ(u)

)
N (0, C).

Proposal

For some δ ∈ (0, 1
2
]:

u⋆n+1 = (1− 2δ)
1
2 un +

√
2δξn,

ξn ∼ N (0,C).

Accept-Reject

a(u, v) = min
{
exp

(
Φ(u)− Φ(v)

)
, 1

}
,

un+1 = u⋆n+1, with probability a(un,u
⋆
n+1),

un+1 = un, otherwise.

Comparison of RWM (Don’t) and pCN (Do)

Applies to π ∝ exp
(
−Φ(u)

)
N (0, C).

Theorem (RWM) Hairer et al ’14 [8]

For optimal step-size choice δ = Θ(N− 1
2) spectral gap sg satisfies

1− sg ≤ O(N− 1
2).

Thus Ω(N
1
2) steps are required to sample.

Theorem (pCN) Hairer et al ’14 [8]

For all δ ∈ (0, 1
2
] spectral gap sg satisfies

sg = Θ(1).

Thus Θ(1) steps are required to sample.

Talk Outline

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

Do

Operator Learning

Supervised Learning

Determine Ψ† : U → V from samples

{un,Ψ†(un)}Nn=1, un ∼ µ.

Probability measure µ supported on U .

In standard supervised learning U = Rdx and V = Rdy (regression) or V = {1, · · ·K} (classification).

Supervised Learning Of Operators

Separable Banach spaces U ,V of vector-valued functions:

U = {u : Dx → Rdi }, Dx ⊆ Rdx

V = {v : Dy → Rdo }, Dy ⊆ Rdy .

Operator Learning

Training

Consider a family of parameterized functions from U into V :

Ψ : U ×Θ 7→ V.

Here Θ ⊆ Rp denotes the parameter space.

θ∗ = argminθ R∞(θ), R∞(θ) := Eu∼µ∥Ψ†(u)−Ψ(u; θ)∥2V .

Testing

error = Eu∼µ
(∥Ψ†(u)−Ψ(u; θ⋆)∥V

∥Ψ†(u)∥V

)
.

Finding Latent Structure

In A Picture

Example (Fluid Flow in a Porous Medium)

Darcy Law

Mass conservation −∇ · (a∇v) = f , z ∈ D

Boundary condition v = 0, z ∈ ∂D

Operator Of Interest

Parametric Dependence Ψ† : a 7→ v

Example (Fluid Flow in a Porous Medium)

Input-Output

Input: a ∈ L∞(D) (Left),

Output: v ∈ H1(D). (Right),

Example: Don’t

Zhu and Zabaras 2018 [19]

Example: Do

Bhattacharya et al 2021 [1]

Theoretical Justification – PCA-NET

Theorem Bhattacharya, Hosseini, Kovachki and AMS ’19 [1]

Let Ψ† ∈ Lpµ(U ;V). For any ϵ > 0, there are latent dimensions, data volume and
network size such that ΨPCA = GV ◦ φ ◦ FU satisfies

Edata∥Ψ† −ΨPCA∥Lpµ(U ;V) ≤ ϵ.

Talk Outline

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

RFM Random Features Method (Rahimi and Recht [18]) Extended to Operators

Architecture Nelsen and AMS ’21 [17]

ΨRFM(u; θ)(y) :=
m∑
j=1

θjψ(u; γj)(y) ∀u ∈ U y ∈ Dy ; γj i.i.d. .

Fourier Space Random Features

▶ F denotes Fourier transform.

▶ γ a Gaussian random field.

▶ χ Fourier space reshuffle.

▶ σ an activation function.

▶ ψ(u; γ) = σ
(
F−1(χFγFu)

)
.

Practical Matters
▶ Quadratic optimization for θ.

▶ Monte Carlo approximation of GP/Kernel methods.

Example: Don’t

Zhu and Zabaras 2018 [19]

Example: Do

Nelsen and S 2021 [17]

FNO DNN (Goodfellow et al [7]) Extended to Operators

Architecture Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, AMS and Anandkumar et al ’20 [14, 11]

ΨFNO(u; θ) = Q ◦ LL ◦ · · · L2 ◦ L1 ◦ R(u), ∀u ∈ U ,
Ll (v)(x ; θ) = σ

(
Wlv(x) + bl +K(v)(x ; γl)

)
.

Details
▶ Q,R pointwise NNs or linear transformations.

▶ (Wl , bl) define pointwise affine transformations.

▶ K convolutional integral operator (FFT on kmax modes, parameterized by γ).

▶ θ collects parameters from previous three bullets.

▶ Nonlinear Approximation.

Kovachki, Lanthaler and Mishra ’21 [10] (beating curse of dimensionality, FNO),
Lanthaler, Mishra and Karniadakis ’21 [13] (beating curse of dimensionality, DeepONet),
Kovachki ’22 [12] (general neural operator framework)

Universal Approximation

Theorem Kovacvhki ’22 [12, 11]

▶ U , V Banach spaces with the approximation property (AP).

▶ Ψ† : U → V continuous.

For any K ⊂ U compact and ϵ > 0 there exist bounded linear maps FU : U → RdU ,
GV : RdV → V, and a continuous map φ ∈ C(RdU ;RdV) such that

sup
x∈K

∥Ψ†(x)− (GV ◦ φ ◦ FU)(x)∥V ≤ ϵ.

Theorem Kovacvhki ’22 [12, 11]

▶ U Banach space with AP, V separable Hilbert space.

▶ µ probability measure on U .

▶ Ψ† ∈ Lpµ(U ;V) for 1 ≤ p <∞.

Then
∥Ψ† − GV ◦ φ ◦ FU∥Lpµ(U ;V) ≤ ϵ.

Lanthaler, Mishra and Karniadakis ’21 [13] (DeepONet)

Talk Outline

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

Bayesian Inverse Problem

Figure: Posterior mean: using MCMC with Ψ.

For this problem, state-of-the-art MCMC requires 3× 104

evaluations of the forward operator Ψ†/Ψ. This takes 12 hours
with the pseudo-spectral solver; under 2 minutes using FNO.

Test Error vs. Network Size

16 128 256 512
Network width w

10 3

10 2

10 1

Te
st

 e
rro

r

PCA-Net

16 128 256 512
Network width w

DeepONet

16 128 256 512
Network width w

PARA-Net

2 4 8 16 32
Lifting dimension df

FNO
N = 2500 N = 5000 N = 10000 N = 20000

Figure: Test error vs. network size.

Test Error vs. Cost

106 108 1010

Evaluation cost

10 3

10 2

10 1

Te
st

 e
rro

r

N = 2500

106 108 1010

Evaluation cost

N = 5000

106 108 1010

Evaluation cost

N = 10000

106 108 1010

Evaluation cost

N = 20000
PCA-Net DeepONet PARA-Net FNO

Figure: Test error vs. cost.

Test Error vs. Training Data

312 1250 5000 20000
Training data N

0.01

0.1

1.0

10.0

Te
st

 e
rro

r

1/ N

w = 16 / df = 2

312 1250 5000 20000
Training data N

1/ N

w = 64 / df = 4

312 1250 5000 20000
Training data N

1/ N

w = 128 / df = 8

312 1250 5000 20000
Training data N

1/ N

w = 256 / df = 16
PCA-Net DeepONet PARA-Net FNO

Figure: Test error vs. training data amount N.

Talk Outline

The Idea

MCMC For Functions

Supervised Learning For Functions

Neural Operators

Numerical Results

Closing

Closing

Conclusions

▶ Conceptualize in the N = ∞ limit:
▶ task;
▶ algorithm.

▶ Has led to new MCMC for sampling.

▶ Has led to new neural networks for operator learning.

▶ Comparison with standard numerical methods is lacking.
▶ More approximation theory needed; interaction between:

▶ Data volume;
▶ Richness/design of parameterization;
▶ Finite dimensional discretization;
▶ Optimization.

▶ Other N = ∞ limits are important to understand:
▶ Autoencoders;
▶ Triangular maps;
▶ Normalizing flows;
▶ Score-based transport;
▶ · · · .

Recruiting Postdocs

astuart@caltech.edu

References I

[1] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart.
Model reduction and neural networks for parametric pdes.
The SMAI journal of computational mathematics, 7:121–157, 2021.

[2] K. Bhattacharya, B. Liu, A. Stuart, and M. Trautner.
Learning markovian homogenized models in viscoelasticity.
arXiv preprint arXiv:2205.14139, 2022.

[3] G. J. Chandler and R. R. Kerswell.
Invariant recurrent solutions embedded in a turbulent two-dimensional
kolmogorov flow.
Journal of Fluid Mechanics, 722:554–595, 2013.

[4] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White.
Mcmc methods for functions: modifying old algorithms to make them faster.
Statistical Science, 28(3):424–446, 2013.

[5] M. De Hoop, D. Z. Huang, E. Qian, and A. M. Stuart.
The cost-accuracy trade-off in operator learning with neural networks.
arXiv preprint arXiv:2203.13181, 2022.

[6] M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart.
Convergence rates for learning linear operators from noisy data.
arXiv preprint arXiv:2108.12515, 2021.

References II

[7] I. Goodfellow, Y. Bengio, and A. Courville.
Deep learning.
MIT press, 2016.

[8] M. Hairer, A. M. Stuart, and S. J. Vollmer.
Spectral gaps for a metropolis–hastings algorithm in infinite dimensions.
The Annals of Applied Probability, 24(6):2455–2490, 2014.

[9] B. T. Knapik, A. W. Van Der Vaart, and J. H. van Zanten.
Bayesian inverse problems with gaussian priors.
The Annals of Statistics, 39(5):2626–2657, 2011.

[10] N. Kovachki, S. Lanthaler, and S. Mishra.
On universal approximation and error bounds for fourier neural operators.
arXiv preprint arXiv:2107.07562, 2021.

[11] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and
A. Anandkumar.
Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

[12] N. Kovacvhki.
Machine Learning and Scientific Computing.
PhD thesis, California Institute of Technology, 2022.

References III

[13] S. Lanthaler, S. Mishra, and G. E. Karniadakis.
Error estimates for deeponets: A deep learning framework in infinite dimensions.
arXiv preprint arXiv:2102.09618, 2021.

[14] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar.
Fourier neural operator for parametric partial differential equations.
ICLR 2021; arXiv:2010.08895, 2020.

[15] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis.
Learning nonlinear operators via deeponet based on the universal approximation
theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

[16] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[17] N. H. Nelsen and A. M. Stuart.
The random feature model for input-output maps between banach spaces.
SIAM Journal on Scientific Computing, 43(5):A3212–A3243, 2021.

[18] A. Rahimi, B. Recht, et al.
Random features for large-scale kernel machines.
In NIPS, volume 3, page 5. Citeseer, 2007.

References IV

[19] Y. Zhu and N. Zabaras.
Bayesian deep convolutional encoder–decoder networks for surrogate modeling
and uncertainty quantification.
Journal of Computational Physics, 366:415–447, 2018.

Linear Operators

Setting

Input-Output Spaces: U ⊆ V = (H, ⟨·, ·⟩, ∥ · ∥)

Target Linear Operator: L† : D(L†) ⊆ H → H

Π(du, dv) : v = L†u + η, u ⊥⊥ η

u ∼ µ = N (0, C1), η ∼ N (0, γ2 Id),

Data: {un, vn}Nn=1
iid∼ Π, N ∈ N

Approach

Bayesian Formulation: posterior π on L given {un, vn}Nn=1

Linear Operators: Convergence Theory

Recall: xjn ∼ N (0, j−2α) (data), ℓj ∼ N (0, j−2β) (prior), ℓ† ∈ Hs (truth)

Theorem (Bayesian Consistency)

E{un,vn}Eπ∥L− L†∥2
L2µ(H;H)

= O
(
N

−
(

α+β−1/2
α+β

))
+ o

(
N

−
(

α+s
α+β

))
(N → ∞)

Remarks
▶ Similar lower bounds, with matching rates, in some regimes.

▶ Similar results with high probability over {un}Nn=1
iid∼ µ

▶ Extensions to error in posterior mean.

▶ Extensions to test measures µ′ ̸≡ µ.

Analysis builds on Knapik, Van Der Vaart and van Zanten ’11 [9]

PCA-NET

Architecture Bhattacharya, Hosseini, Kovachki and AMS ’19 [1]

ΨPCA(u; θ)(y) =
m∑
j=1

αj (Lu; θ)ψj (y), ∀u ∈ U y ∈ Dy .

Details
▶ {ϕj} are PCA basis functions under µ.

▶ Lu = {
〈
ϕj , u

〉
}j maps to PCA coefficients under µ.

▶ {ψj} are PCA basis functions under (Ψ†)♯µ.

▶ {αj} are finite dimensional neural networks.

DEEPONET

Architecture Lu, Jin, Pang, Zhang, and Karniadakis’19 [15]

ΨDEEP(u; θ)(y) =
m∑
j=1

αj (Lu; θα)ψj (y ; θψ), ∀u ∈ U y ∈ Dy .

Details
▶ Lu maps to PCA coefficients under µ.

▶ Lu comprising pointwise observations {u(xℓ)} is also possible.

▶ {αj , ψj} are finite dimensional neural networks.

▶ θ = (θα, θψ).

RNO (Recurrent Neural Operator) D = (0,T)

Architecture Bhattacharya, Liu, AMS, Trautner ’22 [2]

ΨRNO(e; θ)(t) = F
(
e(t),

de

dt
(t), r(t); θ

)
, ∀e ∈ U t ∈ [0,T],

dr

dt
= G(r , e; θ), ∀e ∈ U t ∈ (0,T], r(0) = 0.

Details
▶ Finite dimensional neural networks F ,G ;

▶ Two-layer used in this talk.

2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = f ′,

−∆ψ = ω,

∫
ψ(x , t)dx = 0,

v =
(∂ψ
∂x2

,−
∂ψ

∂x1

)
.

Operator

Learn the map between ω|t=0 and ω|t=τ

Ψ† : ω|t=0 → ω|t=τ .

Choose ω|t=0 ∼ µ := N
(
0, (−∆+ τ2)−δ

)
. τ = 3, δ = 2.

Forward Problem

Figure: Ψ†/Ψ : ω|t=0 → ω|t=τ .

The FNO prediction Ψ matches the true solution operator Ψ†.

2D Incompressible Navier Stokes Equation

Formulation Chandler and Kerswell [3]

∂ω

∂t
+ (v · ∇)ω − ν∆ω = f ′,

−∆ψ = ω,

∫
ψ(x , t)dx = 0,

v =
(∂ψ
∂x2

,−
∂ψ

∂x1

)
.

Operator

Learn the map between forcing f ′ and the vorticity at time T :

Ψ† : f ′ → ω|t=T .

Choose f ′ ∼ µ := N
(
0, (−∆+ τ2)−δ

)
. τ = 3, δ = 4.

Navier Stokes Equation

f′

PCA-Net DeepONet PARA-Net FNO

Tr
ue

(T

)
Pr

ed
ict

ed

(T
)

(T
) e

rro
r

0.02

0.00

0.02

0.2

0.1

0.0

0.1

0.2

10 9
10 7
10 5
10 3
10 1

Figure: Learned model predictions for inputs resulting in median test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.

Navier Stokes Equation

f′

PCA-Net DeepONet PARA-Net FNO

Tr
ue

(T

)
Pr

ed
ict

ed

(T
)

(T
) e

rro
r

0.02

0.00

0.02

0.2

0.1

0.0

0.1

0.2

10 9
10 7
10 5
10 3
10 1

Figure: Learned model predictions for inputs resulting in worst test errors
for networks of size w = 128 / df = 16 trained on N = 10000 data.

Navier-Stokes Equation Output Space

−0.02

0.00

0.02

Leading PCA basis functions

0.0

0.1

0.2

0.3

Trained DeepONet trunk functions

−0.050

−0.025

0.000

0.025

0.050
Leading PCA modes of trained DeepONet trunk functions

Figure: Comparison of output space bases: PCA-Net and DeepONet.

Advection Equation

Formulation

∂u

∂t
+
∂u

∂x
= 0 x ∈ [0, 1),

u(0) = u0

Operator

Learn the map between the initial condition u0 and the solution at time 0.5, u|t=0.5 :

Ψ† : u0 → u|t=0.5

where u0 = −1 + 21{ũ0≥0} and ũ0 ∼ N (0, (−∆+ τ2)−d).

Advection Equation

1

0

1

u 0

PCA-Net DeepONet PARA-Net FNO

1

0

1

Tr
ue

 u
(T

)

0.0 0.5 1.0
x

1

0

1

Pr
ed

ict
ed

 u
(T

)

0.0 0.5 1.0
x

0.0 0.5 1.0
x

0.0 0.5 1.0
x

Figure: Learned solution predictions for inputs resulting in median test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.

Advection Equation

1

0

1

u 0

PCA-Net DeepONet PARA-Net FNO

1

0

1

Tr
ue

 u
(T

)

0.0 0.5 1.0
x

1

0

1

Pr
ed

ict
ed

 u
(T

)

0.0 0.5 1.0
x

0.0 0.5 1.0
x

0.0 0.5 1.0
x

Figure: Learned solution predictions for inputs resulting in worst test
errors for networks of size w = 128 / df = 16 trained on N = 10000 data.

Test Error vs. Cost

106 108

Evaluation cost

0.2

0.3

Te
st

 e
rro

r

N = 2500

106 108

Evaluation cost

N = 5000

106 108

Evaluation cost

N = 10000

106 108

Evaluation cost

N = 20000
PCA-Net
DeepONet
PARA-Net
FNO

Figure: Test error vs. cost.

Advection Equation Output Space

−0.1

0.0

0.1

Leading PCA basis functions

0.0

0.1

0.2

Trained DeepONet trunk functions

0.0 0.5 1.0

−0.2

0.0

0.2

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Leading PCA modes of trained DeepONet trunk functions

Figure: Comparison of output space bases: PCA-Net and DeepONet.

	The Idea
	MCMC For Functions
	Supervised Learning For Functions
	Neural Operators
	Numerical Results
	Closing

