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Abstract

The theory of (random) dynamical systems is a framework for the analysis of large time
behaviour of time-evolving systems (driven by noise). These notes contain an elementary
introduction to the theory of both dynamical and random dynamical systems. The subject
matter is made accessible by means of very simple examples and highlights relationships
between the deterministic and the random theories. )

Throughout the notes both continuous and discrete time are considered. Continu-
ous time problems are primarily ordinary and stochastic differential equations, whilst
approximating numerical schemes are used to illustrate discrete time. The central role’
of Lyapunov functions is highlighted, both in inferring the existence of attractors in the
deterministic case, and in the construction of invariant measures and random attractors
in the random case. The importance of approximations which inherit Lyapunov functions
is emphasised.

1 Deterministic dynamical systems

1.1 Differential equations
Let f : R — R? be a continuous function. Consider the following ordinary differential
equation (ODE)

X = f@), =(0) =z (1.1.1)

Here the problem is to find z € C(R*,R?) which satisfies (1.1.1). We will often write & for
dz/dt. We use the notation RT = [0,00) and we will later need Z* = {0,1,2,3,... }.
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212 A. R. Humphries and A. M. Stuart

Equation (1.1.1) can also be written as an integral equation:

t
#(t) =55 +/ f(z(s))ds, z(0) = zo. (1.1.2)
0
This formulation will be useful when we introduce stochastic differential equations.

1.1.1 Example (i) A scalar linear problem:
=Xz, z(0)=z9€R (1.1.3)
This has exact solution z(t) = e*zq. Note that z(t) — 0 as ¢t — oo if A < 0. Since we know

the exact solution this is a useful test problem for numerical algorithms.
(ii) A scalar nonlinear equation:
i=f(z) =z —2° x(0) = =o. (1.1.4)
This has the exact solution
To

&(t) = P =17 (1.1.5)

Phase Space
Dormand-Prince 5(4) applied to Lorenz

é \_/ =1

Figure 1: (i) Graph of f(z) = z — 2% against z with the dynamics of (1.1.4) indicated on the
x-axis. (ii) A numerically computed trajectory of the Lorenz equations (1.1.6).

From the graph of f(z) (see Fig. 1), or the exact solution, it is easy to infer that for any
zo > 0, z(t) - 1 as t — oo, similarly z(t) - —1 as t = oo if zg < 0, and if zg = 0 then
z(t) =0for all t € R

(iii) The Lorenz equations in R3:

t=o(y—z), z(0)=m

y=rz—y—zz, y(0)=yo (1.1.6)
z=gy—>bz, 2z(0)==z.
These equations have no general closed form solution.
In Fig. 1 a numerical approximation to a trajectory over a very long time period is plotted.

Since the classical error bound for the numerical approximation grows exponentially in time
it is important to question the relationship of this figure to the true dynamics.



Deterministic and random dynamical systems: theory and numerics 213

Lyapunov functions

It is often of importance to understand how functions of z(t) change with time. By using the
generator L:

N
LV =) fizg— = (f(@), YV (a)), (1.1.7)
=il 5
we may achieve this. If z(t) solves (1.1.1) and V € C?(R%,R) then

%{V(w(t))} = LV (a(2). (1.1.8)

Note that LV (z(t)) = (£, VV(z)), and often for deterministic dynamical systems %V(:z:(t))
is calculated directly, without recourse to £. We introduce £ here in the deterministic case
because of the central role of its generalisation in the stochastic case.

Also important is the adjoint operator £*, defined by (f, Lg) = (L*f,g) with (-,-) the
standard inner product on R¢, so that in this case

858
L*V:—;—a?i(f,v).

This leads us to the Liouville equation for propagation of probability densities:

1.1.2 Lemma If 2o is a random variable with density po(z) then z(t) is a random wvariable

which, under appropriate differentiability conditions on f and pg, has density p(z,t) which is
a classical solution of the equation

%—? =L, (z,t) e R x (0,T],

p(z,0) = po(z), z€R:

Numerical methods

We consider numerical methods for the ODE (1.1.1) which, given At > 0, define approxima-
tions z, to z(t,) at the equally spaced time intervals ¢, = nAt € [0, 7.

Initially we introduce two numerical methods for the ODE (1.1.1). The first is the forward
Euler method, sometimes called the ezplicit Euler method, and is defined as -

Bt =T+ (3, (1.1.9)

There are many derivations of this method. From (1.1.2) we have

i
B(tns1) = 2(tn) + / f(z(s)) ds,

so letting z, = z(¢,) and approximating the integral

Eesitig tnt1
/ f(a(s)) ds = / F(@(ta)) ds = Atf (zn)
ta tn
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we obtain the forward Euler method.
The second method considered is the backward Fuler method defined as

Fpil = T+ B (En11)- (1.1.10)

This method is sometimes called the implicit Fuler method. Since z,4, appears twice in
(1.1.10) in general we have to solve a nonlinear equation to find z,4 at each step. This
can make the method much more computationally expensive to implement than the forward
Euler method; nevertheless there are situations where the extra work is justified and we will
illustrate some of these in these notes.

The backward Euler method can be derived in a similar fashion to the forward Euler
method. Many other simple numerical methods such as the trapezoidal rule or implicit
midpoint rule can also be derived by applying the corresponding numerical integration formula
to the integral in (1.1.2). These methods are all examples of Runge-Kutta methods.

Also of interest are so-called split step or partitioned methods. Suppose f(z) = fi(z) +
fa(z), then we can define the split-step Euler method by

By =T + At f1(2,), }

ILE L
Tpad = Bs + Bifs{zn 1) ( )

Such splitting methods are important in the solution of Hamiltonian systems and stochastic
problems, and we will see examples of both.

1.1.3 Example (i) Applying the forward Euler method to the linear test problem (1.1.3)
we obtain

Tyl = Tp 4 Bt f{Be) = B + Dbz, = {1 + Al )y
Since this is true for arbitrary n we obtain the general solution
T = (1 + AtX)"zy.
(i1) Applying the forward Euler method to (1.1.4) we obtain
Tnt+l = Tn + Atz, (1l — :c,zl)

In this case, as in general for nonlinear problems, there is no simple formula linking z,, directly
to zp.

(iii) Applying the backward Euler method to equation (1.1.4) we obtain
Tptl = Ty + At$n+1(1 = :L'?H__l).

Thus we need to solve a cubic equation to find z,41, given z,,.
(iv) Consider the separable Hamiltonian system
. AW . - af
p = 8q b] q = ap )

where p, ¢ € R? are generalised position and momenta, and H (p, q) = T'(p)+V (q) is preserved.
We can apply the forward or backward Euler method directly to these problems. Alternatively

write & (z) : (_%:g_g) _ (%?) % <_%_;1) = fi(z) + fa(z).
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Now apply the split-step Euler method (1.1.11) which, after a little calculation, leads to

Dn+1 = Pn + At%(‘]n) }

(1.1.12)
dn+1 = qn — At%’g(pn+1)'

In this context the method is known as the symplectic Euler method. It essentially preserves
the Hamiltonian structure of the dynamical system and has much better approximation
properties for this type of problem than forward or backward Euler. Moreover, note that
although the general formulation (1.1.11) is implicit, the symplectic Euler method (1.1.12) is
explicit for this separable Hamiltonian problem [21].

In general when applying the backward Euler method, or any other implicit method, there
are nonlinear equations to solve at each step. We will briefly consider how these equations
can be solved in practice by considering the backward Euler method in one dimension:

Tnt1 = Tn + Atf(ZTny1), Tn €R (1.1.13)
We could try to solve this by the simple iteration
xﬁi% = gy Atf(.’l:fH,l), 559;+1 = Zn,

and let z,49 = limg zﬁ 41 (if the limit exists). Of course, in practice we cannot iterate to
infinity so we stop iterating if |z¥ 41 -—a:flllﬂ < 7 for some small tolerance 7 > 0. However, this
iteration has the drawback that limy o, z¥ 41 need not exist if At is too large. Indeed ensuring
that this iteration is convergent often imposes quite seyere restrictions on the step-size At.
Thus it is often preferable to use the more sophisticated Newton iteration. For g €
C(R,R), Newton’s method for solving g(z) = 0 is given by iterating for £ =0,1,2,...,

k+1 _ ok _ g(z*)
9'(zk)

x

So to solve (1.1.13) we let

9(z) =z — z, — Atf(z),
so that finding z,; is equivalent to solving g(z) = 0 which by Newton’s method we can do
by iterating

k k
B N o e Atf(zn,)

Thus when applying an implicit method we have to perform an inner iteration in k£ at
each step of the outer iteration in n. ]
One way to avoid this is to set 23, = z, and take k = 1, to obtain the linearised Euler
method
f(zn)

Tn+1 = Tp =t Atﬂm

These ideas generalise to arbitrary dimension.

Bibliographical remark Throughout the following we minimise the size of the bibliogra-
phy by often referring to [24]. Although it is often not the original source of the material we
reference, it has a comprehensive bibliography and pointers to the relevant literature at the
end of every chapter.
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1.2 Dynamical systems

There are several definitions of “dynamical system” in use. In the context of the ODE (1.1.1),
many definitions require both a unique solution for all ¢ € R and all initial conditions zo € R?,
and also that for any fixed ¢ € R the solution is continuous with respect to the initial data zy.
However, many interesting problems such as (1.1.4) and the Lorenz equations, which possess
bounded solutions in the limit as ¢ — 0o, have solutions which become unbounded in finite
negative time, and so by such definitions would not be dynamical systems.

1.2.1 Example Consider (1.1.4) with |zo| > 1. Then using the exact solution (1.1.5) we see
that |z(t)] = co as t — 3 1In(1 — zlg) < 0.

Thus this definition is too restrictive, and we will work with a weaker concept. The
differential equation (1.1.1) is said to define a semi-dynamical system if it has a unique
solution for all ¢ > 0 and all initial conditions z; € R%. We will work with semi-dynamical
systems throughout, but for brevity will omit the “semi” and refer to them as dynamical
systems. Note that we make no reference to continuity with respect to initial data, though
for (1.1.1) with continuous f uniqueness of solutions implies continuity with respect to initial
data [7]. _

Dynamical systems defined by ODEs are characterised by having a continuous time vari-
able. We can also have dynamical systems with a discrete time variable. The continuous
map g : R? — R? defines a discrete dynamical system via the iteration

Fpiq = §2)- (1.2.1)

Since numerical methods are iterated in this way they are good candidates to be considered
as discrete dynamical systems.

We will be interested in both dynamical systems defined by ODEs and in discrete dynam-
ical systems. Our discrete dynamical systems will arise from numerical solutions of ODEs.
We will analyse the behaviour of numerical methods by using dynamical systems techniques
to compare the dynamical systems defined by an ODE and its numerical solution.

Evolution operator

To be able to analyse both continuous and discrete time dynamical systems together, we now
set up general notation for a dynamical system evolving in a state space X, which will usually
be R?, and time space T, where usually T = R+ for the continuous time case, and T = Z*
in the discrete time case; the choices T = R and T = Z will also occur occasionally. Our

primary motivation here is the study of (1.1.1) and its discrete time counterparts (1.1.9) and
(1.1.10).

1.2.2 Definition A dynamical system on a space X with time T is a mapping
p:TxX=2X, (tzo)+— o(t,zo), (123}
where the mapping ¢ satisfies the semi-group property that ¢(0,z) = z for all z € X and

(p(t * S,II?()) == (P(t, 90(313;0)) Vs,teT, zeX
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It will sometimes be helpful to write

o(t,z) = p'x,

and we write ¢ for ¢'. In this notation the semi-group property reads ¢° = idx and

(pt—f-s e (Pt o (ps.

For a set B C X we write ¢(t, B) for

p(t,B) = U o(t, z).

z€B

The mapping ¢ is known as the evolution operator. For the ODE (1.1.1) we have ¢(t,z¢) =
wtzg = z(t), the solution at time ¢ with initial condition z(0) = zo. For the map (1.2.1) we
have p(n,zo) = ¢"z¢ = z,, the solution after n iterates of the map with initial condition zq.

Examples
1.2.3 Example For (1.1.3) we have X =R and T = R with

@(t, o) = p'zg = eMzy = z(t).

1.2.4 Example From Example 1.1.3(i), applying the forward Euler method to (1.1.3), we
have X =R and T = Z with

w(n, o) = "z = (1 + AtA)"zo = .

1.2.5 Example For (1.1.4) we have X = R and T = R* with

o
= z(t).
e 2t + 53(1 — e—2t)]1/2 =(t)

(p(t’ fEO) = ‘Ptmo = [

1.2.6 Example For the forward Euler method applied to (1.1.4) we have X =Rand T = Z%
with

o(1,z,) = ‘len = @Tn = Tp + Atf(zn) = Tp + At(zy — -7:?1) = Tn+1-

1.2.7 Example For the backward Euler method applied to (1.1.4) we have X = R and
T = Z* with

(P(]-,-Tn) = (len = pTp =ZTp + Atf((pfzn) = Zn + At(‘P-Tn - (‘Pxn)s) = Tn41-

It is not immediately apparent whether ¢ is well-defined in this case. We discuss this issue
below.
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Existence and uniqueness

In defining dynamical systems via the mapping (1.2.2) we are implicitly assuming existence
and uniqueness of solutions. In practice, existence and uniqueness of solutions will need to
be verified in different scenarios.

1.2.8 Example Considér the ODE

=22, z(0)=1,

which has exact solution :

1 / o — t.

Thus z(t) — oo as t — 1/zg for g > 0, so this differential equation does not define a
dynamical system.

z(t) =

1.2.9 Definition A function f : X — X is Lipschitz on B C X with Lipschitz constant Lpg
if

If(z) — FW)Il < Lellz —yll, Vz,y € B.

If f is Lipschitz on X then f is globally Lipschitz. If f is Lipschitz on every bounded subset
of X, then f is locally Lipschitz.

Clearly globally Lipschitz implies locally Lipschitz. Note also that if f is differentiable on
X, then f must be locally Lipschitz. The following lemmas will be useful.

1.2.10 Lemma (Continuous Gronwall Lemma) Let z(t) satisfy
z2<az+b, 2(0)=z,

for constants a # 0 and b € R. Then
z(t) < ez + g(eat —1).

Proof Integrate the differential inequality, see for example [24]. O

1.2.11 Lemma (Discrete Gronwall Lemma) Let C € (0,1) and D, € R and suppose
Zn € R satisfies

Boii € CEa+ D, V30

Then e
Zn < ZoC™+ ) C™ID; .
j=1
If D, = D 1s constant then
D n n
anl_c(l—C)—i—ZoC. (1.2.3)

Proof By induction, see [24] for example. O
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1.2.12 Theorem If f is globally Lipschitz on R® then the ODE (1.1.1) has a unique solution
for all t € R and any z¢ € RY. Thus ¢! is well defined for all t € R, and (1.1.1) defines a
dynamical system on X = R?, with T =R or Rt. Moreover,

e " lzo — yoll < ll¢*zo — 'yl < €¥*llzo0 — woll- (1.24)
Proof Uses Picard iteration, see for example [24]. The final bound follows from

L2100 I = (@) — Fw)z =)

and .
~Lllz =yl < (f(2) ~ f(y),z — y) < Lllz -yl
using the Continuous Gronwall Lemma 1.2.10. a

Note that (1.2.4) bounds the rate of both convergence and divergence of trajectories. In
particular it means that trajectories cannot cross or merge as, if zg # yo, then z(t) # y(t)
forallt € R

Unfortunately this theorem is of limited application as few f encountered in practice
are globally Lipschitz, though many are locally Lipschitz. For example, both (1.1.4) and
the Lorenz equations (1.1.6) have differentiable and hence locally Lipschitz f, but f is not
globally Lipschitz.

However, if f is locally Lipschitz it can be shown that solutions are unique whilst they
exist, and a solution z(¢) can only fail to exist if it blows up in finite time, i.e. ||z(¢)|| = oo
as t — T < oo. Often it is possible to prevent such blow up. The generator (1.1.7) will be
useful for this purpose.

1.2.13 Assumption (Generator Assumption) There is a function V € C(X,R) with
limyjz|—c0 V (2) = 00, and real numbers a,b,d € (0,00), ¢ € R such that V(0) < d/a and

L{V (2)} < bzl [d - aV (3], (1.25)
where L is the generator for (1.1.1) given by (1.1.7).
1.2.14 Theorem If f is locally Lipschitz and satisfies Assumption 1.2.13 then the ODE

(1.1.1) has a unique solution for all t > 0, and any zo € R%. Thus ©* is well defined for all
t € R, and (1.1.1) defines a dynamical system on X = R? with T = R*.

Proof p
1V (@)} =LV (2(2)) < bllz(®)[|[d — aV ((2))]-
Hence V < 0 when V(z(t)) > d/a. It follows that
lim sup V(z(t)) < max {V(x(O)), i} = M.

t—o00 a

But since limjz|00 V(7) = oo there exists R > 0 such that V(z) > M for all z such that

llz|| > R. Thus limsup,_,, ||z(t)|| < R, and solutions cannot blow up. The rest of the proof
mimics the globally Lipschitz case. O

We will also consider f under the following assumption.
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1.2.15 Assumption (One-Sided Lipschitz Condition) There exists ¢ > 0 such that
(f(u) — f(v),u —v) < cfju—|? (1.2.6)

for all u,v € R%.

1.2.16 Example Let f(z) = £ — 2% as in (1.1.4). Then f is differentiable and hence locally
Lipschitz, but is not globally Lipschitz. Now

(f(w) = f(v),u—v) = (u—v)(u—v’~v+0°
= (u—v)? (1 - %uZ = %(u—{—v)? - %v2>
< (U'——U)2>

so this function does satisfy a one-sided Lipschitz condition.

1.2.17 Theorem If f is locally Lipschitz and satisfies Assumption 1.2.15, then (1.1.1) de-
fines a dynamical system on X = R? with T = R, and ¢ satisfies

lo*zo — @'yoll < e|lzo — woll-
Proof Note that the final bound follows from

= Zlztt) ~ v = (7 (@) ~ 1),z — ) < el — ol

using the Continuous Gronwall Lemma 1.2.10. O

The situation for maps defined by explicit numerical methods is quite different. Given
f : R* - R? the forward Euler method has ¢z = z + Atf(z) for any = € R? and hence the
map can be iterated infinitely many times, so defines a dynamical system.

However, for implicit numerical methods such as the backward Euler method we need to
verify existence and uniqueness of solutions.

1.2.18 Theorem Suppose f is globally Lipschitz with Lipschitz constant L and LAt < 1,
then the backward Euler method applied to (1.1.1) defines a dynamical system on X = R?
with T=7Z or Z*.

Proof Let g(z) = z, + Atf(z). Then g(zn+1) = ZTni1, and so we are required to show that
for any z, € R? the function g(z) has a unique fixed point. Now

lg(z) — g()ll = Atllf (=) — FW)Il < LAtz -yl

and since LAt < 1, g is a contraction mapping of R? into itself, and so has a unique fixed
point. Backward in time existence and uniqueness follow because z, is given explicitly from
Tn+1- o

As already noted, not many f are globally Lipschitz. Hence the following is important.
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1.2.19 Lemma Suppose [ satisfies a one-sided Lipschitz condition (1.2.6) and cAt < 1,
then the equation

a— Atf(a) =b, (1.2.7)

has a unique solution a € R? for any b € R?.

Proof Let g(z) =z —b— Atf(z). Then

(9(z) — 9(y),z — ) = (& —y = At(f(z) — f(¥)),z — ) > (1 - cAt)||lz — y]|*.

Now since 1 — cAt > 0 we can apply the uniform monotonicity theorem to determine the
existence of a unique solution. See [24] for details. O

1.2.20 Corollary Suppose f satisfies a one-sided Lipschitz condition (1.2.6) and cAt < 1,
then the backward Euler method applied to (1.1.1) defines a dynamical system with X = R%,
T ="

1.2.21 Example Corollary 1.2.20 combined with Example 1.2.16 implies that the evolution
operator ¢ defined in Example 1.2.7 for the backward Euler method applied to (1.1.4) is
well-defined on R provided At < 1.

In some situations it is only possible to prove existence, and not uniqueness, of a numerical
solution. See Lemma 1.4.13 for example.

1.3 Invariant sets

Consider two dynamical systems defined by mappings ¢, pa: (where ¢ is the evolution
operator for an ODE of the form (1.1.1) and ¢a; is the evolution operator for its numerical
approximation). To compare these dynamical systems we compare their dynamic properties.
(This contrasts with the traditional numerical analysis approach of comparing errors between
trajectories: ||¢"zo — @A,%oll.) The simplest features of dynamical systems to compare are
invariant sets, and the simplest invariant sets are fixed points.

1.3.1 Definition A point @ € X is a fized point of ¢ : T x X — X if pta = (¢, 1) = @ for
allt € T.

1.3.2 Example (i) Consider (1.1.3), with A # 0. Then it follows from Example 1.2.3 that
% = 0 is the unique fixed point.

(ii) Consider the forward Euler method applied (1.1.3), with A # 0. Again @ = 0 is the
unique fixed point.

It is clear from (1.1.1) that @ € R? is a fixed point of the differential equation if and only
if f(a) = 0. Also from (1.1.9) and (1.1.10) we see that @ is a fixed point for the forward
Euler or backward Euler methods if and only if f(Z) = 0. So in the case of numerical
approximation by forward or backward Euler the fixed points of ¢ and ¢a; agree. This is
not true for all numerical methods: many methods admit so-called spurious fized points s
with @k, ia¢ = ¢ for all n € Z but f(@as) # 0.

We now consider more general invariant sets.
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1.3.3 Definition A bounded set B C X is positively invariant if ¢! B C B for all t € T, such
that ¢ > 0 and invariant if also B C !B for all t € T such that ¢ > 0.

Note that a set B is thus invariant if !B = B for all t € T. If B is an invariant set
then for any ug € B there exists v : T — X such that for any 0 < ¢ € T and 0 > s € T,
u(t) = pug, ~5u(s) = up and p'u(s) = u(s +t). The set {u(t) : t € T} is called a complete
orbit of ug. Indeed the complete orbit of any point ug € X is itself an invariant set, and a set
B € X is invariant if and only if every point z € B is on a complete orbit which is contained
in B; see for example [24].

1.3.4 Example Consider (1.1.4). The fixed points are {—1}, {0}, {1}. Additionally (—1,0)
and (0,1) are both invariant sets, as is the union of any combination of these five invariant
sets.

1.3.5 Example Consider

F=r(l~r?), r>0, } (1.3.1)

6=1, 6 € [0, 2n].

Figure 2: Trajectories of (1.3.1).

Here the bounded invariant sets include {(r,6) : r =1}, {(r,0) : 0 <r <1}, {(r,0) : v <

1}, and the complete orbit through any point on the unit disc. There are thus uncountably
many bounded invariant sets in this case.

The set {(r,0) : 7 = 1} in the previous example is a periodic orbit. Other invariant sets
include invariant tori and strange attractors. Often invariant sets which are “stable” are of
more interest than unstable invariant sets and this leads us to the concept of attractors.

1.4 Attractors

An attractor is defined as an invariant set A such that ¢'B approaches A as t — oo for all
bounded B C X.
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1.4.1 Definition For sets A, B C X the Hausdorff semi-distance dist(A, B) is defined by

dist(A, B) = sup inf ||a — b].
ist(4, B) 2‘;3523”“ l

Note that Definition 1.4.1 only gives a semi-distance: dist(A, B) will be small if every
point a € A is close to some point b € B; but there may be points b € B which are not close
to A. In particular, if A C B then dist(A4, B) = 0 but dist(B, A) may be large.

1.4.2 Example Let A = {0}, and B = [0,1]. Then dist(4, B) = 0, but dist(B, 4) = 1.

1.4.3 Definition The set A C X is a global attractor if,

e A is a compact set;
o o' A= Afor all t >0 (invariance);

e for all bounded B
lim dist(¢'B,.A) = 0.
t—c0

1.4.4 Definition K is an absorbing set if, for all bounded B C X, there exists t* = t*(B) >
0:
W'BCK Vt>t.

The following theorem (see [6, 28, 24]) is valid in both discrete and continuous time, with
t,TeT.
1.4.5 Theorem If a dynamical system has a compact absorbing set K, then
A= ﬂ 'K
>0
15 a global attractor.

Note that in this case

A=K = ¢TK = AK),

>0 0T >t

where A(K) is the w-limit set of K. Thus the global attractor is the w-limit set of the
absorbing set. Note that the form of the w-limit set A(K) simplifies, because the absorbing
set maps the dynamics into itself.

Finding invariant sets directly is usually very hard, especially in the chaotic case. However,
Theorem 1.4.5 allows us to infer the existence of an attractor whenever we have an absorbing
set.

1.4.6 Example For Example 1.2.3 with A < 0 we have ¢!B = e B, and it is easy to verify
that any interval B = [—a, a] is an absorbing set. Hence

A=A(B)=()¢'B=)e*-a,a = {0},

>0 >0

and thus the global attractor is the (unique) fixed point.
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1.4.7 Example For Example 1.2.4 with A < 0 and |1+At)| < 1 we have p"B = (1+At\)"B,
and again any interval B = [—a,a] is an absorbing set. Hence

B)=()¢"B =)+ At\)"[-a,d] = {0},

n2>0 n>0

and thus the global attractor is the (unique) fixed point. Notice that the condition for the
numerical solution to have the same attractor as in the previous example is that At < —2/A.

1.4.8 Example For Example 1.2.5 with B = [a, b] we have

g — a b
PP e T a2 — e )2 [ 2 1+ b2(1 — e-2)]12 )’

and provided a < —1 and b > 1, B = [a, b] is an absorbing set. Hence

t b
A=AB)=(1¢'B=) [[e—2t+a2 1— e 2172’ [‘2t+b2(1—e‘2t)]1/2]

t>0 t>0
= [_']-a 1]7

and thus the global attractor is the interval [—1,1].

1.4.9 Example For Example 1.3.5 the global attractor is the disc {r < 1}.

Now we study the ODE (1.1.1), together with the backward Euler approximation of it.
Recall the Generator Assumption 1.2.13.

1.4.10 Theorem Let f be locally Lipschitz and satisfy Assumption 1.2.13. Then the ODE
(1.1.1) defines a dynamical system on R® and has a global attractor.

Proof By Theorem 1.2.14 the ODE (1.1.1) defines a dynamical system on R?, and it remains
to prove that it has an absorbing set to establish that it has a global attractor.

Since V(0) < d/a, there exists R > 0 such that V(z) < d/a for all z such that ||z|| < R.
Now let Y (t) = V(z(t)) and suppose Y (¢) > d/a. Then

Y (t) < bllallld — aY (8)] < bRV[d — aY (1))
This implies that B, = {z € R? : V(z) < d/a + €} is forward invariant for any € > 0. To

establish the existence of an absorbing set, and hence a global attractor, it remains to show
that trajectories enter such a set in finite time.

Let B be a bounded set and let zo € B with V(zg) > d/a. Then, whilst z(t) € B,
Y + abR°Y (t) < bdR°,

and integrating from [0, ¢]
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A simple calculation shows that if
i 1 d
In{-|Y(0) — -
~ GbR® n(e [ © a])’

{s:vie) < Sue}

then Y (¢) < d/a + €, hence

a

is an absorbing set for any ¢ > 0. Finally note that the attractor A C {z : V(z) < d/a}
(since if not we get a contradiction by choosing ¢ sufficiently small.) a

Note that Y (t) enters B, exponentially fast. The random analogue of this fact will give
exponential convergence to invariant measures. See Section 2.3.
We will also employ the following assumption which implies Assumption 1.2.13.

1.4.11 Assumption (Dissipativity Condition) There exists o, § > 0 and p > 1 such
that
(z, f(z)) < a—Bllz||*?, VzeR:.

1.4.12 Theorem Let f be locally Lipschitz and satisfy Assumption 1.4.11. Then the ODE
(1.1.1) defines a dynamical system on R? and has a global attractor contained in {z : ||z||? <

a/B}-
Proof Let V(z) = ||z||* = (Zle z2)P. Then 8V /8z; = 2p||z||*?~2z;, and

LV (z) = (f(z), VV(2)) = 2p||zlI*P~%(f (z), z) < 2p||z]|*P~?[a — BV (2)].
Thus Assumption 1.2.13 holds and the result follows by Theorem 1.4.10. O

We now move on to consider the backward Euler method (1.1.10). One complication
we will encounter here is that, whilst a solution is guaranteed to exist for all time-steps
positive, it is no longer unique. To be precise we need to extend the concept of dynamical
system to allow set-valued sequences, which we refer to as generalised dynamical systems [24],
generalizing Definition 1.2.2 in a fairly straightforward way. The following lemma underpins
this existence theory.

1.4.13 Lemma Let Assumption 1.4.11 hold, and let b € R® be given. Then the equation
a— Atf(a) = b,
has at least one solution a € RY.
Proof Let g(z) =z —b— Atf(z). Then
(9(z),2) = llz* — (b, z) — At(f(z), ),
> AtBlle|®? + ||z — [lblll|z]| — eAt.

Thus for R > 0 sufficiently large (g(z),z) > 0 for all z such that ||z|| = R and the result
follows on applying the Brouwer fixed-point theorem. See [24] for details. a

The definitions of global attractors and related concepts for generalised dynamical systems
are analogous to those for dynamical systems and similar properties hold [24].
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1.4.14 Theorem Let Assumption 1.4.11 hold, then the backward Euler method (1.1.10) de-
fines a generalised dynamical system on R? and has a global attractor Aa.

Proof The existence of a generalised dynamical system follows from Lemma 1.4.13. To
deduce the existence of an attractor, consider

Tnt1 — Atf(ZTny1) = Zn
hence

Hx'n+1”2 = ”5571“2 + 2At($n+1a f($n+1)> - A752”.f($n+1)“2
< llzall? + 2At(a — Bllzn4a|IP).

Now given any € > 0, assume there exists zop € R? such that ||z,||* > a/B + ¢ for all n > 0.
Then
IZns1ll® = lznll® < —2AtBe,

hence
lznll® < llzoll® — 2nA¢Be,

which supplies a contraction for n sufficiently large. Thus
{z: l2* < e/B + ¢},

is an absorbing set for any € > 0 and there is a global attractor Aa; C {z : ||z||*? < a/B}. O

An important point to note in the previous theorem is that the backward Euler method
has preserved the Lyapunov function of the continuous problem. More can be said about the
attractor from Theorem 1.4.14:

1.4.15 Theorem Let Assumptions 1.4.11 hold and let A be the global attractor of the dy-
namical system defined by (1.1.1) and Aa; the global attractor for the backward Euler method
applied to (1.1.1) then

lim diSt(.AAt,.A) =10

At—0

Proof See for example [24]. O

Recall that in general the backward Euler method only defines a generalised dynamical
system for this problem. However, for At sufficiently small we can show that it defines a
dynamical system on a neighbourhood of the attractor. ’

1.4.16 Theorem Let Assumption 1.4.11 hold and let L be the Lipschitz constant for f on
K = {z : ||z||** < o/B}. If LAt < 1 then the backward Euler method applied to (1.1.1)
defines a dynamical system on K, with T = Z*, and for zg, yo € K

(1 = LA™ 20 — yoll < llon — vall < (1+ LAY |20 — yo- (L.4.1)

The inequalities (1.4.1) are a discrete analogue of (1.2.4) and bound the rate of conver-
gence/divergence of trajectories, and prevent trajectories from merging or crossing in K.

Note that other conditions, for example the one-sided Lipschitz condition, can be used to
infer that the backward Euler method defines a dynamical system on R?.
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1.4.17 Example Consider the backward Euler method applied to (1.1.4). We showed in
Example 1.2.21 that for At < 1, the map ¢ is well-defined, so that this defines a dynamical
system on R. Note that

1 1 L E R |

(f@),a) =% —at = 5 = S(1-2)? = 2ot < (1 - 5t)

and so Assumption 1.4.11 is satisfied, and hence Theorem 1.4.14 implies the existence of an
attractor Aa;. Now Theorem 1.4.15 implies that

Alir—I}o dlst(AAt, A) = 0.
as At — 0. In fact, a little algebra shows that Ax; = A = [—1,1] for any At < 1.

The behaviour of the forward Euler method applied to the same ODE is very different as
the following example shows.

1.4.18 Example Consider the forward Euler method applied to (1.1.4). Then
Tl = Tn + At(z, — 23) = [1 + At — Atal)z,,.

Thus if z2 > 1 + 2/At, then [1 + At — Atz2] < —1 and |zp41| > |zn|. It follows that given

any At > 0 for all o with
2

AL
then lim, , ||zn|| = oco. Thus in this case there is no absorbing set and hence no global
attractor.

In contrast if 73 € (1,1 +2/At) then |1 + At — Atz2| < 1, then limsup,,_, ||za| < 1, so
that these trajectories do converge to the attractor A = [—1,1] of (1.1.4). A general theory
of local convergence for attractors has been developed, but we will not pursue it here; see
[24] for details. We will see that when we add noise, all trajectories for the forward Euler
method can escape to infinity no matter how small At is.

xg>1-|-

The previous example is a specific case of the forward Euler method applied to an equation
satisfying Assumption 1.4.11. The behaviour seen, namely that some trajectories escape to
infinity, happens for any f satisfying the same assumption.

1.5 Case study 1: The Langevin equation

Let F : R® — R, and consider the following ODE for ¢,p € R? the position and momenta of
a particle of unit mass, namely

g=p, (1.5.1)
p=—yp— VF(q). (1.5.2)
The Langevin SDE, which we will consider later, is a generalisation of this ODE, which

includes noise.

For (1.5.1), (1.5.2) setting v = 0 gives a conservative Hamiltonian system, and the choice
v > 0 gives a damped Hamiltonian. To see this, note that, if we set

1
H(q,p) = 5||10H2 + F(qg),
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then

H = LH(q,p) = —|p|* (1.5.3)

A generalisation of the Lyapunov function H will be useful in the following, and for this
we require that F(g) > 0 for all ¢ € R¢, and that there exists § € (0,1) and a > 0 such that

%(VF(Q), q) > BF(q) + 722((1 ; llgll* - e (1.5.4)
For example, if
Flg) = 301~ lal?)%, o s

then F(q) > 0 and, moreover, since

VF(q) = —(1 - llgl*)q,

we have

(VF(g),9) = (llall® - Dllall?, (1.5.6)

and so the right and left hand sides of (1.5.4) are both quartics in ||g|| and for any 3 € (0,1)
and sufficiently large @ > 0 the inequality (1.5.4) holds.

Although H is non-increasing in time for v > 0, its rate of change is zero whenever p = 0.
In order to find a function whose rate of decrease is bounded from below outside a bounded
set in phase space we introduce

V(g,p) = 7lpll + 5l + el + F(@). - s
Then
¥ =Ly,
= %(p,ﬁ) + —;-(p +74,p+79) +(VF(q),4d)
= _%(p, vp + VF(q)) — %(VF(q), p+7q) + (VF(q),p)
S lpl ~ 3(VF(9),q),

and using (1.5.4) gives

v <=7 |50l + 6F(@) + oL 1al?| + 70

But, for 8 € (0,1), straightforward calculation shows

B2 - B)

1, 02 2 2 :[_3 2
2II:DII +7° 81— )IIqII IlpII + 4Ilp+'rqll ;
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Hence
V < y(a—BV). (1.5.8)
Thus applying the continuous Gronwall Lemma 1.2.10 we see that we approach any open

neighbourhood of {z : V(z) < a/f} exponentially fast, and

limsup V' (¢(t),p(t)) < -

t—o0 K ,3

Thus by (1.5.7),
limsup|lp(¢)” < —, and limsup|lp(¢) + vq()[I* < —-
t—o0 ,8 t—o0 ,3

Using |lvqll < |lp + 74l + ||pl|, we deduce further that

16
7B

But we can say more. Because H(q(t),p(t)) is bounded below and monotonically decreas-
ing, lim;_,, H exists and

limsup [|g(8)[|* <
t—oo

= tliglo 2 tl—l>nolop(t) i tl—lglo q(),

using (1.5.3) and (1.5.1). It follows further that lim; ,o, p(¢) = 0 and thus all solutions
(p(t), q(t)) tend to the set of fixed points in the limit as ¢ — oo and, moreover, by (1.5.1)—
(1.5.2) these fixed points satisfy

p=10, VF(q) =0.

This problem is an example of a generalised gradient system, in the sense defined in [6]. The
Lyapunov structure (1.5.8) is preserved by the backward Euler method—see [16]. In the next
chapter we will study the effect of noise on this system.

1.6 Case study 2: particles in a velocity field

Consider the following model for particles moving in a two-dimensional velocity field:
78 = wg) — % (1.6.1)

Here z € T? (in this section T? denotes the two-dimensional unit torus) denotes.the particle
position and € R? its velocity; we assume 7 > 0. The force on the particle is proportional
to the difference between the fluid velocity at the particle site, v(z), and the particle velocity,
@. The velocity field is given by v = V14, where 1 is a stream-function, V+ denotes skew-
gradient and hence V - v = 0. Thus z denotes the position of a particle moving according
to Stokes’ law in a two-dimensional incompressible velocity field v. Later on we will consider
time-dependent random velocity fields v(z, t).

Letting y = = € R?, we can write this as a system @ = f(u) withu = (z,y) € X = T? xR?:

z =y,

i = () - )
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We assume that v is Lipschitz on T?. Then f is globally Lipschitz on T? x R?, and (1.6.1)
defines a dynamical system.

We show that this dynamical system possesses a global attractor. The choice of X =
T? x R? implies that ||z(¢)|| < 1 for all £ € R, and so it only remains to show that ||y(t)| is
ultimately bounded independently of initial data to get an absorbing set. Now
S 2yl = 7y,5)

= (v(2),y) — llyll?

1 1
< 5@+ Syl — llyll?
2 2
.
2

T

N
1
. 2

< 5% = 3llP.
Here ¢, = maxgcr2 ||[v(z)| < oo, since a continuous function on a compact set achieves it
supremum. Thus it follows that limsup, , ||y(¢)]| < ¢, and so the system possesses an
absorbing set and hence an attractor. On the attractor the particle velocity does not exceed
the maximum fluid velocity in T?.

A prototypical example of a velocity field is given by the Taylor-Green explicit solution
of the forced Navier-Stokes equations namely, for z = (z1, z2), :

P(z) = sin(2nz,) sin(27z3).

Fig. 3 shows the direction field and streamlines induced by this velocity field; notice the four
vortices. In the case 7 = 0, where particles follow fluid stream-lines, all solutions are periodic
(except for a Lebesgue measure zero set of initial data lying on heteroclinic orbits connecting
fixed points at ¢ = +o00) and there is no global attractor. For 7 > 0, however, there is z
global attractor. Empirically we observe this to be made up of a finite number of periodic
orbits, a finite number of fixed points, and orbits connecting them. This is illustrated in
Fig. 4 which shows the distribution of 5000 particles, after sufficient time has elapsed for
transient behaviour to disappear; what is seen is hence a visualisation of the global attracton
in position space, excluding a number of heteroclinic orbits connecting pairs of periodic orbits
and/or fixed points at ¢ = +oo0.
The calculations are performed using the split-step Euler method

G S A
At
Yn+l = Yn + T ('U(xn+1) =5 y'n+1)-
This gives
At At
I+ Y1 — T’U(-’En+1) = Yn,

and so

At\? At At Ai?
(1+55) w252 (14 25) onssso(omsad) + S5 lotons)I? = lonl,

implying

At\? At At o
(1455) Mol < Il + 25 (14 25) Uy + olansn) ) = S5 Iotomi)l,
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Figure 4: Global attractor for (1.6.1).

so that o g
(1 i o —> lyns1ll® < llynll? + — 2.
T 77
Thus, applying the discrete Gronwall Lemma 1.2.3, we obtain

1

o3 2 2
”yﬂ” SCt (1 +At/7‘)" [”y(]” C‘u]a

and the existence of an absorbing set and global attractor follows. As for the exact solution,
on the attractor the particle velocity does not exceed the maximum fluid velocity in T?2.

2 Random dynamical systems

Here we take many of the ideas developed for dynamical systems and generalise them to
situations where noise is present. This leads to the subject of random dynamical systems,
recently given firm foundations in the book [1]. The subject can be rather technical upon
first encounter. We aim to give an accessible introduction to some of it, in particular to those
parts of relevance in numerical analysis. By being accessible we will miss out on many of the
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subtleties of the subject and the reader is encouraged to study [1], and the references therein,
for a thorough treatment.

2.1 Stochastic differential equations

Let W(t) denote m-dimensional Brownian motion (see the discussion at the end of the sec-
tion), f : R — R? a smooth function and & € R¥*™ a fixed matrix. Consider the following
integral equation for z € C([0, T], R?):

i
2(t) = (0) +/0 f(z(s)) ds + TW(H), (0) = X. (2.1.1)

Underlying Brownian motion is Wiener measure, under which W (¢) is, with probability
1, in the space C([0,T],R?) for any T > 0. However, also with probability 1, Brownian
motion is nowhere differentiable. Thus it is not possible to differentiate (2.1.1) and find a
non-autonomous differential equation in the usual sense. Nonetheless the equation is often
written formally as the stochastic differential equation (SDE)

dz = f(z)dt + 2dW, =z(0)=X. (2.1.2)

If ¥ depends upon ¢, explicitly and /or through z(t), then it is necessary to introduce a notion
of stochastic integral to interpret the term (¢, z(t))dW (t) since, with probability 1, W (t) is
not of bounded variation. However, for the purpose of these notes we will consider the case
of additive noise with ¥ constant. The precise interpretation of (2.1.2) is then simply the
integral equation (2.1.1).

Since W (t) is, with probability 1, in C([0,T],R?), it follows, under suitable conditions
on fl, that the solution z(t) is itself a random function which is, with probability 1, in
C([0,T],R?). The objective of solving (2.1.2) is to find the properties of this random function,
given the properties of Brownian motion. We denote Wiener measure by P and expectation
under it by E. The book [19] is a suitable introduction to the theory of SDEs; the books
[8, 15] provide further useful development of the subject in the dynamical context of interest
here.

It6 formula
In the following we assume that ¥ is constant and either
(1) f is globally Lipschitz; or

(2) f is locally Lipschitz and satisfies a structural assumption inducing boundedness of
solutions.

This is exactly what we did for ODEs. It is often of importance to understand how functions
of z(¢t) change with time. By using the generator:

d
1 82V
v=%"f 8 A B
Zf QZ: R v (2.1.3)

we may achieve this through the It6 formula [19]:

!The simplest being that f is globally Lipschitz; see [15] for generalisations.
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2.1.1 Lemma Let z(t) solve (2.1.2) and let V € C%(R%,R). Then the process Y (t) = V (z(t))
satisfies
AV (@(t)} = LV (5(H)dt + (VV (a(2), ZaW), ¥(0) = g(X).

To interpret this result we would need to introduce It stochastic integrals in order to
make sense of the last term. However, for our purposes the following consequence is all we
will need:

2.1.2 Lemma Let z(t) solve (2.1.2) and let V € C2(R%,R) (C? functions with compact
support). Then for 0 < s <t < oo we have that Y (t) = V(z(t)) satisfies

i
EY (t) = EY (s) + E / EVE ) dr.

By means of Dynkin’s formula [19] this result can be extended to V € C? which are not
compactly supported, provided sufficient boundedness of the solutions z(t) is established.
We do not provide details here, but freely apply Lemma 2.1.2 to non-compactly supported
V when the necessary boundedness conditions on z(t) hold.

A second (indirect) consequence of Lemma 2.1.2 is the Fokker-Planck equation for prop-
agation of densities. For this we need the adjoint £*:

g8 WERE ”
LV = _; a5 V) + 5”2;1 az,-azj{[zz 1V}

2.1.3 Lemma Assume that the law of z(t), P{z(t) € A}, has a density p(z,t) € C>1(R? x
(0, T),R"). Then p satisfies the Fokker-Planck equation

o _
ot
p(z,0) = 6(z — zg), =z € RY.

L*p, (z,t) € R? x (0,T),

Numerical methods

We introduce three numerical methods for the SDE (2.1.2). The first, called the Euler-
Maruyama method [11], is simply an SDE analogue of the forward Euler method (1.1.9) for
deterministic systems. Given ¢, = nAt, and defining

AWp =W (tn41) — W (tn),
the approximation z, to z(t,) satisfies:
Tntl = Tn + Atf(z,) + TAW,,. (2.1.4)
This may be derived, as in the deterministic case, by approximating the integral in (1.1.2).
The second method considered we call the stochastic backward Euler method and is defined

by

Tpt1 = Tp + Atf(zTpy1) + TAW,,. (2.1.5)



234 A. R. Humphries and A. M. Stuart

The final method, called the split-step stochastic backward Euler method, is defined by

Ty = Ty + BEf(24)

(2.1.6)
Tpa1 = Tx EEAW,,.

The idea of this method is similar to that underlying (1.1.11) with noise playing the role of
fo. For all three methods we choose g = X from (2.1.2).

Note that the Euler-Maruyama method is explicit, whereas the remaining two methods
considered are implicit, requiring solution of a nonlinear equation for z,41, given z, and
AW,,. Here AW, is an m-dimensional Gaussian random variable with mean 0 and covariance
matrix Atl; we denote this N (0, AtI).

Brownian motion

Brownian motion is a continuous time analogue of the random walk. It is a process {W (t) }:>0,
with W (0) = 0, and satisfying three basic properties:

(1) time-homogeneity: W (t) and W (t + s) — W (s) have the same distribution Vs, > 0

(2) independent increments: {W(t;) — W (s;)}i>1 are independent random variables when-
ever the intervals (t;, s;] are disjoint;

(3) Gaussian increments: W (t) ~ N(0,02t).

Standard Brownian motion denotes the choice 0 = 1. Standard Brownian motion in R™
is a function W : R* — R™ with each component W;(t) being an independent standard
Brownian motion.

It is possible to construct an underlying probability space in which such random functions
live, and then to study the regularity of such functions under the resulting Wiener measure.
See [9, 10] for details. Such analysis shows that, with probability 1, Brownian paths are a-
Holder continuous for any a € [0,1/2). This (lack of) regularity makes rates of convergence
of approximations a more subtle issue than for ODEs.

Bibliographical remark The numerical analysis of SDEs is a subject in its infancy, though
several books on the subject are now available, for example [2, 11]. Numerical analysis of
SDEs in the context of random dynamical systems has not yet been developed in a systematic
fashion and this fact will be manifest in our presentation. We will concentrate on two impor-
tant dynamical concepts: (i) ergodicity and invariant measures and (ii) random attractors.
Foundational work on the numerical analysis of SDEs according to their ability to reproduce
ergodic properties is due to Talay [25, 26, 27]; see also [22, 16]. The study of random at-
tractors, and the effect of discretisation, is being developed by Kloeden and co-workers (see
[3, 12] for example), with recent extension to numerical approximation of SDEs by Robinson

[20].
2.2 Random dynamical systems

We now generalise the concept of dynamical systems to allow for non-autonomous problems
where the evolution in the space X depends upon time. Such time-dependence can be given
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a variety of differing structures. Here we study random dynamical systems where the time-
dependence is introduced through a stationary driving noise; by this we mean that the finite
dimensional distributions of the random process are unaffected by translation in time. Our
primary motivation is the study of the SDE (2.1.2) and its time-discrete counterparts, the
forward and backward Euler methods (2.1.4), (2.1.5), (2.1.6). We start by giving the structure
of the underlying noise model, and then show how to incorporate this into the definition of
a random dynamical system. Our presentation is a curtailed version of [1, Chapter 1], which
the reader should consult for greater depth and precision.

Noise model

A family (8%)¢cT of mappings of a measurable space (2, F) into itself is called a measurable
dynamical system with time T if it satisfies the following conditions:

(1) (w,t) € (2,T) — O'w € Q is measurable;
(2) 6° =idg;
(3) 65Tt =0°0 6! Vs,t € T.

We will only consider the choices T = R, Z, R",Z™ for the time variable.

We now introduce a probability measure on the space (2, ) and consider the probability
space (Q,F,P). We assume that 0'P = P V¢t € T: that is, P{(6")"1(4)} = P{A} for all
(t,A) € (T,F). The measure PP is then said to be invariant with respect to . We have a
measure preserving or metric dynamical system, which we denote by (Q,F,P,6"). This is
the underlying noise model used in the theory of random dynamical systems. The noise is
stationary, because of the invariance of IP under 6.

Evolution driven by noise

In the following, B(T) denotes the Borel sets in T.

2.2.1 Definition A measurable random dynamical system on a measurable space (X, V') over
a metric dynamical system (€, F, P, #%) with time T is a mapping

p:TxXxQ-=X (¢z,w) — ot z,w),

where the mapping ¢ is B(T) ® V ® F measurable and satisfies the co-cycle property that
¢(0,z,w) =z for all (z,w) € (X,Q) and, forallt,se€ T, z€ X, w € Q,

Pt +s,z,w) = p(t, ¢(s,z,w), 0’ w).
It will sometimes be helpful to write
p(t,7,0) = ¢ ()2

as we will be interested in mapping sets in X. In this notation the co-cycle property reads
¢°(w) = idx and
P (W) = ' (B°w) 0 ¢° (W)



236 A. R. Humphries and A. M. Stuart

¢ is a generalisation of the evolution operator, now acting on noise as well as X x T. We
may think of such a process as a skew-product over the noise-process. A skew-product is a
dynamical system such that

(1,2) = (¥, 2),
y— f(y),
z— g(y, 2).

The mapping f over Y is called the base transformation, and the mapping g over Z the fibre
transformation.

In the case of random dynamical systems, the noise-process is the base, driving the evo-
lution of real interest taking place in the fibre. We have (Y, Z) = (©2,X) and define the
measurable dynamical system ©% on (2 x X, F ® V) by

0l (z,w) = (¢ (w)z, b'w).

What distinguishes the random dynamical systems set-up from an arbitrary skew-product
is the structure induced by P. Without the stationarity assumption on the noise the frame-
work would be too large to admit useful mathematical development; at the same time many
problems arising in applications fit into the framework developed here. Together these two
reasons suggest that developing the subject of random dynamical systems is a worthwhile
enterprise.

Examples

We illustrate some of the concepts above by means of a number of simple examples. We will
frequently invoke the Markov property [10]. Roughly, a random sequence or function {u; }ze7
is Markovian if the statistics of u¢, ¢ > s given u; are independent of knowledge of u, for
7 < s. We will also frequently use the fact that a Gaussian measure is specified by its mean
and covariance [10].

2.2.2 Example Consider a linearly damped map driven by white noise: i

Tnil = ATy + N,

where |A| < 1 and the 7, form an independent identically distributed (i.i.d.) sequence of
random variables with ng ~ N(0,0?).

Inthiscase T=2", X =R Q={w e RZ" : w = (m0,m1,---)} and ¢ is the shift or
such sequences defined by 0'w = (11,72,...). Then P is the measure induced on such i.i.d
sequences by assuming 19 ~ N(0,02). The fact that the dynamical system for the noise is
measure preserving follows since the 7; are i.i.d. The process {z,} is known as a discrete
Ornstein-Uhlenbeck (OU) process.

2.2.3 Example We generalise the previous example to a linearly damped map driven by =
coloured noise, namely the discrete-time OU process {7, }:

Tnt1 = ATn + 7n,
Nnt1 = Y + &n,
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where ||, |v| < 1 and &, forms an i.i.d. sequence with { ~ N(0,1). Again T =Z%, X =R,
Q={we RZ" : w = (n9,m,...)} and 6" is the shift map on sequences from the previous
example. To ensure stationarity of the noise w we choose 7y independently of the ii.d.
sequence {{;} and set

1le ~ N(0702))

where 02 = (1 —4%)~L. Then
En} = v’Eng +1 = Eng.

By the Markov property the sequence w is then stationary. To see the measure P explicitly
we employ the formula
n—1
Bo=T 00+ ) Pl
=0

The sequence {7;} is then seen to be Gaussian (since it is a linear combination of Gaussians)
with mean zero and covariance
2, |m—1
Ennm = o2ym.
This completely specifies the invariant measure P. Here we are using the fact that the mean
and covariance define a Gaussian measure.

The preceding examples can be extended to T = Z with bi-infinite noise sequences w € RZ.
This extension will be necessary and relevant when studying random attractors.

2.2.4 Example Consider the SDE (2.1.2), together with the assumption that the drift f is
a locally Lipschitz vector field satisfying

3a>0,8>0: (f(z),z) < a—Glz|? (2.2.1)

Here T = R* and X = R?%. The set  comprises Brownian paths with invariant measure
induced by the property of independent increments.? .

Under our assumptions on f and ¥ the solution of (2.1.2) exists for all ¢ > 0 (essen-
tially because the Lyapunov condition Assumption 2.3.6 holds for V(z) = ||z||?, see [8] or
Theorem 36 in Chapter 2 of [15] for a precise statement of this result).

The preceding example can be extended to T = R by considering Brownian motions with
t € R. However, to do this requires choice of random initial data for z(0) which'is dependent
on {W(t),t < 0} [1]. The construction generalises the fact that, for deterministic dynamical
systems, complete bounded orbits exist for all points on the global attractor [6, 24].

2.2.5 Example Consider the Euler-Maruyama method (2.1.4) for the approximation of
(2.1.2). This can be formulated as a random dynamical system with T = Rt, X = R?
and Q = {w € {R™}2" : w = (AW, AW, ...)}. Recall that {AW;} forms an i.i.d. sequence
so that, with 6 being the shift defined in Example 2.2.2, we have the underlying measure
preserving dynamical system representing the noise.

*More precisely, we work with equivalence classes of paths of the form {a + W (t),a € R™}, where W (t) is
standard Brownian motion. See [1, Appendix A2] for details.
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2.2.6 Example To pose the implicit methods (2.1.5), (2.1.6) as random dynamical systems
it is necessary to prove existence and uniqueness for the implicit equations. This cannot be
done in general, but can be achieved for certain natural structural assumptions, such as the
one-sided Lipschitz condition Assumption 1.2.15. See [16] for details. Once this is done the
formal set-up is similar to that of the previous example.

2.3 Invariant measures

The simplest way to introduce the concept of invariant measure is through the skew-product’
picture. Define mq : X X @ — Q by mq(z,w) = w. Notice that the structure of the skew-
product means that

T 90 = 0° omq.

If 4 is invariant for ©, so that ©'y = p, then we see that
mgop=mgo@ opu=20"0(rqopu)),

so that mqu is 6(-) invariant. Recalling that PP is invariant for 6, these considerations motivate
the following definition:

2.3.1 Definition Given a measurable random dynamical system ¢, a probability measure
pon (X x Q,V x F) is an invariant measure for ¢ if

e Olu=p VteT,
o mou=1P.

The measure p will not be a product measure in general. However, the disintegration

i) = /A o (dr) P ()

is often useful. If p,(dz) is independent of w then the measure is product.

In all the examples we study here, the noise and the variable of interest which it drives
will, together, form a Markov chain (discrete time) or Markov process (continuous time). We
denote this Markov chain/process by (z:,7:) with n; € Y being the noise and z; € X being the
noise driven process. Notice that w is the complete path {n; }icT € Q2. The preceding definition
of invariant measure applies in the space X x Q. However, by virtue of the Markovian nature
of our problems, it will be natural to seek invariant measures in X X Y—to find a measure v
so that, if (zg,79) ~ v then (z¢,m:) ~ v for all ¢ € T. Having found such a measure, additional
statistics relating z¢ to {7 }+eT are required to obtain the invariant measure p in X x Q. For
the first examples we will carry out this step of going from X x Y to X x Q. For the general
theory of SDEs we will omit it. Indeed for such problems the measure v is itself product
measure in X x Y, with the measure in Y being Gaussian measure on Brownian increments.
So it is only necessary to look for an invariant measure in X, and this is the viewpoint we
take when looking at the general theory of ergodicity for SDEs.?

3Here we are implicitly assuming that T = R*. In the case T = R the invariant measure at t = 0 is
correlated to the noise path for ¢ < 0 [4].
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2.3.2 Example Consider Example 2.2.2. We first find the invariant measure in XX Y where,
here X =Y = R In fact the invariant measure in X x Y is product since the {n,} are i.i.d.
To compute the invariant measure in the X coordinate, observe that {z,} is a Markov chain
with Gaussian invariant measure A/(0,02/(1 — A?)). To see this we seek a Gaussian invariant
measure in X with mean 0. Note that 7y is independent of zg so that

Elz;|* = AE|zo |* + Elno [*.

Equating E|z; |? and E|z¢|? gives the variance of the invariant measure in X. The invariant
measure in Y is independent Gaussian N(0,0?).
We now lift this Gaussian invariant measure from X x Y to X x 2, seeking a Gaussian
measure in
{zo, {mo,m,m2,...}} €eX x Q.

We find that Exq = En; = 0, and

E’B2_ 02 EZ_Q

Ezon; =0 Vi, Enin; =0 Vi#j.
We have verified the variance of zg, the n; are i.i.d. with the stated variance, and are therefore
uncorrelated, whilst the condition on Ezgn; follows provided zg is chosen independently of

w = (1o, M1, - .. ). Because of this independence it follows that the disintegration yields product
measure: 4, (dz) is independent of w.

2.3.3 Example Now we generalise this approach to finding the invariant measure to Exam-
ple 2.2.3. Again we start in X x Y = R x R. The pairs {(zn,7n,)} form a Markov chain and
its invariant measure is Gaussian with mean 0 and covariance matrix calculated as follows.
We seek o, p and o '

Mg = N(0702)7 Zo ~ N(01#2)7 IE’1"'0"70 =G
Note that
En} = "Erp +1

Ezim = MyEzono + vEna
Ex? = A?Ex? + 2)Ezono + En2.

Invoking invariance (equating En? with EnZ and so forth) gives

1 . 2 o
e Ak Yo 9  2)a+o

; v arese T IRIRE Rl T
1-7?) 1= (1-2%)
Eliminating « from the expression for u gives

s (14+92)0®
- -2y

Thus we have an invariant measure on X x Y. We now lift this to X x .
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In the previous example z¢ was not correlated with w = (n9,71,...). In this example
there is correlation and we must calculate this in order to completely specify the Gaussian
invariant measure on X x ) for the skew-product. If we let a; = Ezq7;, then straightforward
calculation shows that

Ez1nj41 = E[Azo + no]n;+1
= AEzon;j+1 + Enonj4a-

Invoking invariance we see that
a; = Aajy1 + oZyitl,

In order to obtain a probability measure we need a bounded solution (as 7 — oo) and, since
|A| < 1, the only bounded solution of this recursion is
2d+1
2
gy —Begn; = —————.
’ T A=)

In summary we have now found a Gaussian measure for

{1’-07{7707771,7727 .. }} = X x 0
which is specified by Ezq = En; = 0 and

Ezg = u? ]En?— =o?
Ezon; = a; Vi, Enin; = ool Vi j.
For this problem the disintegration is not that of product measure, due to the correlation of
zo with w = (19,71, - - . ), manifest in non-zero a;.

In both of these examples we have calculated the invariant measure by finding the invariant
measure of a Markov chain on X x Y, and then finding additional correlations between the
solution in the fibre and the noise in the base space; this then gives the invariant measure on
X x . This approach can also be used for studying SDEs, and their time discretisations, using
a Markov process in the case of the SDE. Because the calculation of correlations between the
fibre and base solutions is straightforward, but tedious, we will omit it in the developments
which follow Assumption 2.3.6. The essence of the calculation is to find the invariant measure
for the underlying Markov process itself in X x Y, and we concentrate on this in our examples
of SDEs.

For SDEs we note that Lemma 2.1.3 holds the key to understanding the existence of
invariant measures. We are interested in finding conditions under which there is a unique
solution p(z) of

L*p=19, / plz)dz =1 (2.3.1)
R4

and that p converges to p in the weak-* topology (identifying p with the measure it induces).
This means that for a suitable class of functions g,

/ oo 0)g(z)dz = | p(z)g(z)de
Rd R4
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as t — oo or, in more abstract notation,

Eg(z(t)) = n(9),

where 7 is the measure with density p.

2.3.4 Example We generalise Example 2.3.2 to continuous time by studying the Ornstein-
Uhlenbeck (OU) process

dx = —zdt + odW, z(0)= zp. (2.3.2)

Thus X = R, T = R". A straightforward calculation, using the representation of the solution
as an It0 stochastic integral, shows that

I(t) i N(e_tyo, 02[1 - e—2t}/2)a

indicating convergence to the Gaussian invariant measure N(0,02/2) as t — oo in X. The
invariant measure in Y (where the driving Brownian motion lies) is independent of that in X
and we do not discuss it explicitly.

It is readily verified that the density associated with the Gaussian measure for z(t) is a
steady state solution of the Fokker-Planck equation of Lemma 2.1.3 which reduces to

dp O a2 d%p -
Fris %(—l‘f’) = 5 52’ p(z,0) = é(z).

2.3.5 Example Now we generalise the Example 2.3.3 to continuous time. Consider the
equations

dz = [—az + n|dt, z(0) =z
dn = —ndt + adW, n(0) = no.

We assume a > 0. Here X =Y =R, T = Rt. We are viewing 1 as the driving noise, not W.
The Fokker-Planck equation takes the form

8o 3 3 % &p
5 T 5z {l-az + o} + %{—Up} = 2o

The previous example shows that 7 has Gaussian distribution and converges to a Gaussian
invariant measure. Since

t
z(t) = e"%z(0) +/0 e~ t=%)n(s) ds

and 7 is Gaussian we deduce that z too is Gaussian. Note, however, that it is correlated to
7, unlike the previous example.

These considerations suggest that we seek a steady solution of the Fokker-Planck equation
in the form

p(z,n) < exp{—az® + Bzn — yn*}.



242 A. R. Humphries and A. M. Stuart

(The constant of proportionality should be chosen so that 5 integrates to 1 on R%.) Substi-
tution shows that
a(a+ 1)? 2a(a + 1) (a+1)

o= —————— ———— =
P B A U | =

and the Gaussian invariant measure for (z,7) € X x Y is found; note that z and 7 are
correlated as B # 0.

To find the invariant measure for the skew-product {zg, {1(¢) }ser+} € XxQ = Rx RR" it
is necessary to calculate how zg correlates with the entire path {n(t)};cr+. A straightforward,
but tedious, calculation shows that

Ez()n(t + &) = 2(1"—+a) et Vi ¢eRT.

We now describe an abstract theory which is useful for finding ergodic invariant measures
for SDEs where explicit solutions of the Fokker-Planck equation are not known. We look
only for invariance in X, viewing the Brownian motion evolving in Y, with complete path in
), as the noise.

The following two assumptions encode two basic properties needed for ergodicity: tight-
ness to ensure that probability does not leak out to infinity, and reachability showing that
neighbourhoods of every point in phase space can be reached by appropriate choice of noise.
There are two versions of the Lyapunov condition, one for continuous time T = R or R*, and
one for discrete time T = Z or Z*.

2.3.6 Assumption (Lyapunov Condition—Continuous Time) There is a function V :
X — [1, 00), with limjz||c V (7) = 00, and real numbers a € (0,00), d € (0,00) such that

L{V(z)} < —a{V(z)} + 4, (2.3.3)
where L is the generator for (2.1.2) given by (2.1.3).

Let F,, denote the sub o-algebra of all events up to time n (see [15]).

2.3.7 Assumption (Lyapunov Condition—Discrete Time) There is a function V :
X — [1, 00), with limj4||c V(#) = 00, and real numbers o € (0,1), and 3 € [0, 00) such that

]E[V(wn+1)lfn] < aV(:L‘n) + .

2.3.8 Assumption The Markov chain or process {z;}, ¢t € T, with transition kernel P;(z, A)
satisfies, for some fixed compact set C € B(X), the following:

(1) (reachability) for some y* € int(C) and for any § > 0, there is a t; = ¢1(§) € T such
that

P, (z,B(y*,a)) >0 VzeC;
(2) (smoothness) for t € T the transition kernel possesses a density p;(z,y), precisely
Pie,4) = [ nl@y)dy VoeC, AeBX)NB(C),

and p¢(z,y) is jointly continuous in (z,y) € C x C.
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In what follows, we will use the shorthand notation ||f|| < V to mean ||f(z)| < V(z) for
all z € X, and define

G = {measurable g : X —» R with ||g|| < V}.

The following ergodic theorem, which follows from a straightforward development of ideas
in [8, 18], will give invariant measures for a variety of SDEs and their discretisations.

2.3.9 Theorem Let z(t) denote the solution of the SDE (2.1.2) (resp. a discrete time Markov
chain) with transition kernel Pi(z, A). Assume that there is a T > 0 for which the following
holds: the Markov process (resp. chain) satisfies Assumptions 2.3.6 (resp. 2.3.7) and 2.3.8

with C given by
C:{:I::V(:B)< 2 }
Y-«

for some v € (al/z, 1). Then there exists a unique invariant measure w. Furthermore, there

is pu(y) € (0,1) and () € (0,00) such that for all measurable g € G
[E® g((t)) — m(g)| < ke #V (o).

Proof See [16]. O

2.3.10 Example Consider Example 2.2.4 which generates a random dynamical system on
X =R If V(z) = 3||lz||? + 1 then (2.2.1) shows that

LV(z)=-28V(z)+a+ L+ %0’2,

where 02 = ||Z||% and || - ||p denotes the Frobenius norm. Thus Assumption 2.3.6 holds.
Assumption 2.3.8 may also be established easily if m > d, and we assume this here. By
Theorem 2.3.9 the SDE then has a unique exponentially attracting invariant measure on R%
[16]; this can be lifted to an invariant measure for the skew-product on R? x 2 but we omit
the details.

The harder case m < d is also studied in [16]. It is harder because the Fokker-Planck
equation of Lemma 2.1.3 is no longer uniformly parabolic—there is diffusion only in m di-
rections for a PDE in d space dimensions. This makes both smoothness and reachability
impossible to establish in general: it is necessary to study the interaction of the deterministic
flow (manifest in the hyperbolic part of the Fokker-Planck equation) with the noise (manifest
in the directions in which parabolic behaviour is found) to find when they hold. See [16] for
examples where this can be done, and for references to the literature.

2.3.11 Example Consider the SDE
dz = —z’dt + dW, z(0) = X.

This equation satisfies (2.2.1) and is hence geometrically ergodic. In particular, for all poly-
nomials V,

E*V(z(t)) — n(g),
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exponentially fast in time. In fact m is explicitly known and has density proportional
to exp(—z*/2), as can be verified from the Fokker-Planck equation. However, the Euler-
Maruyama scheme (2.1.4) is not ergodic for any At > 0, however small. In particular, for
any At > 0 there is zg such that E|z,|?> — co as n — co. Furthermore, P{limsup,,_,, |Zn| =
o0} > 0 for any At > 0 and any zo € R?. (See [16] and references to related results contained
therein).

This is the random analogue of our observations in Example 1.4.18. The situation here
is much more severe, however, since for any At > 0, zg € R? there is positive probability of
blow-up. For the deterministic case blow-up is avoided for fixed z¢ by reduction of At.

2.3.12 Example To overcome the difficulties of the previous example, consider the split-
step backward Euler method (2.1.6) applied to (2.1.2) under (2.2.1) which implies Assump-
tion 1.4.11 with p = 1. Since

T, — O f(z,) = 2

it follows that

lz<l? = llzal® + 288z, f(24)) — AL||f ()1
< llzall? + 2At(a — Bl %)

Rearranging we have that

lll” < 5 iitzltﬁ *iE ;Atﬂ lall®,
and hence that
lenssl < gy + Tgag 1onll? + 2on BAW.) + AW
Now the AW,, are i.i.d. random variables with
E|ZAW,||? = o2At.
Thus :
Bllan s |P1F2) € gz lonl + Togrs + %At

This follows since z, is independent of AW,, so that
E((z., ZAW,)|Fn) = 0.

We have established that Assumption 2.3.7 (the Lyapunov condition) holds for this numerical
method. If m = d then, as for the SDE itself, reachability and smoothness are straightforward.
Hence by Theorem 2.3.9, the numerical method is ergodic. Problems with m < d can be
studied similarly. For details see [16].
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2.4 Random attractors

In the previous sections we generalised deterministic invariant sets to consider invariant mea-
sures for random dynamical systems. Attractors can also be usefully generalised to random
dynamical systems. To do this it is important to observe that (¢, *w)zy denotes the so-
lution at time 0 starting from zg at time —¢. A random attractor is defined as a set A such
that ¢(t,0 'w)B approaches A as t — oo for all bounded B. It has the interpretation as
the set in which all solutions will lie at time ¢ = 0 when the initial data at time ¢t = —o0 is
in a bounded set. This kind of convergence, involving initial data at time —oo, is known as
pull-back convergence. Because of this, it is necessary in this section to consider T = R or Z
(and not R™ or ZT). In the deterministic case, where ¢ = ¢(t) only, the definition of random
attractor coincides with the deterministic definition (Definition 1.4.3) of an attractor.

A random closed (compact) set is a mapping A : Q@ — V', where A(w) is closed (compact)
for all w € Q and the mapping w > dist(z, A(w)) is measurable for each z € X. The mapping
U:Q — V isa random open set if U¢: 2 — V is a random closed set.

2.4.1 Definition A random set K is a random absorbing set if, for all bounded B C X and
with probability one, there exists t* = ¢*(B,w) > 0 such that

(t,0)B C K(w) Vi>t.
2.4.2 Definition The set A(w) C X is a random global attractor if, with probability one,
e A(w) is a random compact set;
o o(t,w)A(w) = A(f'w) Vt > 0 (invariance);
e for bounded non-random B

lim dist(¢(t,0 'w)B, A(w)) =0,

t—o0

where dist is defined in Definition 1.4.1.

The following theorem from [1] is valid in both discrete and continuous time, with ¢,7" € T.

2.4.3 Theorem [4] If a random dynamical system has a random absorbing set, then

Aw) == | AB,w)
BCX

15 a random global attractor, where the union is over all bounded B C X, and

A(B,w) = ﬂ U (t, 0 tw)B

T>0t>T
18 the w-limit set of B.

The notion of attractor based on data at time —oo is not always what is needed in
application. Hence the following is of interest:
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2.4.4 Theorem [4] If A is a random global attractor, then
dist(¢p(t,w)B, A(f'w)) — 0
in probability.

2.4.5 Example For both the Examples 2.2.2, 2.2.3 we have

m—1

Tipm = AT + Z )‘Jnl+m—1—j-
7=0

For both these examples the random attractor is a (random) point. To see the pull-back

convergence, set [ +m = 0 and z; = y to obtain

m—1

9= A"y + Z Ajn—l—j-
=0

Letting m — oo gives a natural guess for the random attractor, namely
e .
A(w) == Z AJ"7—1—]'7
3=0

and this infinite sum can be shown to converge, with probability one, for both examples.
Furthermore, convergence of zg to A(w) with probability one can also be shown. Thus the
random attractor is a point for each w € €.

To illustrate the forward convergence we set [ = 0, zp = y to obtain

m—1 )
=X Y M ;e

=0
Now

m .

A(™w) = Nnmo1j.

=0

Hence

oo
I-’Em = -A(Omw)l =] |)‘my & Z /\J"Tm—l—jl

j=m
m -
="y + D ¥ " 14
j=m
= A"y + A(w)|

—0

as m — oo with probability 1. Thus, in this particular case, the forward convergence to
the random attractor is almost sure; this is stronger than the convergence in probability
guaranteed by Theorem 2.4.4 and is a consequence of the simple (point) structure of the
random attractor here.
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Now we study the SDE (2.1.2), together with the two implicit backward Euler approxi-
mations of it. We employ Dissipativity Assumption 1.4.11. It is straightforward to see that,
for continuous f, this implies that there exist ag, 8o, v0,m0 > 0 and p > 1 such that

(z,f(2)) < a0 - Bollz|® Vz e R,
£ @)l < no +plle|?! vz e R
Note that the first of these expressions implies that there are ay, 81 > 0 such that
1l
(2, f(@) < 01 = Bzl - SBollz|* V€ R (2.4.1)
A central lemma for both the continuous and discrete time cases is:
2.4.6 Lemma Under Assumption 1.4.11 there exists C > 0 such that
I'=(f(v+2)+pi(v+2),v) <C[1+ || + Hz||2p].
Proof From Assumptions 1.4.11 (and the implied equation (2.4.1))
I=(flv+2)+pBi(v+2),v+2z)—(f(v+2)+Bi(v+2),2)

o — %ﬂollv + 2+ [1F (0 + )l 12l + Bullo + 2]l |12l

1 - p16° B
< a1 = 3follo + 2% +nollzll +20llo + 2P|l + Eo o + 212 + Lol
By the Young inequality, for all € > 0,
2p—1 2
I+ 2l el < ello-+ 21 + s 2l
and so, by choosing € and then § sufficiently small, the result follows. a

2.4.7 Example We now outline how to prove the existence of a random global attractor for
the SDE; the method will be mimicked for the backward Euler methods. First let z(¢),z € R
be the stationary solution of the continuous time OU process

dz + P1zdt = ZdW (2.4.2)

whose solution we studied in Example 2.3.4 in the case d = 1.
An important observation in what follows is that z has growth which is at most logarithmic
in t — +oo [15]: with probability one there are constants A, B > 0 such that

Iz(#)]|1> < A+ Blog[l + [¢]]. ' (2.4.3)

This generalises the law of the iterated logarithm from Brownian motion to the OU process.
It is proved using the exponential Martingale inequality (see [15, Chapter 1, Theorem 7.4]).
If we define v := z — z then

% +p=Ffv+2z)+pBi(v+2) (2.44)

We will show that v, and hence z, has a random absorbing set, leading to the existence of
the random global attractor. The motivation for introducing v is that it satisfies a standard
ODE with random right hand side, rather than an SDE. It is hence easier to directly obtain
uniform in ¢ bounds for v than for z. ‘



248 A. R. Humphries and A. M. Stuart

2.4.8 Theorem Let the Dissipativity Assumption 1.4.11 hold. Then z solving (2.1.2) gen-
erates a random dynamical system on R? with T = R and has a random global attractor.

Proof The existence and uniqueness of solutions follows by application a Theorem 3.6 in
Chapter 2 of [15], after noting that (2.4.1) implies that

(z,f(z)) < u — Bulz]® Vz e RL (2.4.5)
By Lemma 2.4.6 we have, from (2.4.4),
1. d
5 P17 + Bullol® < G+ (12 + |121*)
Thus
0
[0(0)|12 — e~ lo(—1)|1% < / Ce®Pr*[1 + |l2(s)|? + |l2(s)]1*] ds
—t
0
< / CEPL + |12(5)|2 + [12(s) I?7] ds
= R(w).
Now

< 2[lp(0)1? + 2/12(0) I
< 47 |lz(—0)|1? + ll2(=)I”] + 2R(w) + 2/|2(0) I

Note that, by (2.4.3), almost surely

(OIS

R(w) < oo.

Thus if ||z(—%)||> < p then, almost surely, there exists t*(p,w) > 0 such that ||z(0)||? <
r(w) < oo, where
r(w) == 2R(w) +2||2(0)|I* + €

for any € > 0. By Theorem 2.4.3 the proof is complete. ) a

2.4.9 Example We now move on to consider the approximation schemes (2.1.5) and (2.1.6).
In addition to the Dissipativity Assumption 1.4.11, we also assume the one-sided Lipschitz
condition (1.2.6). This enables us to prove existence and uniqueness of the random dynamical
system generated by these two methods, for all At sufficiently small.

2.4.10 Theorem Let Assumptions 1.4.11 and 1.2.15 hold. Then both the backward Euler
method (2.1.5) and the split-step backward Euler method (2.1.6) define random dynamical
systems on R™ with T = Z and have a random global attractor.

Proof The existence of a random dynamical system follows from Lemma 1.2.19 for both
methods. For the backward Euler method we have

(1+ Atf) g1 = Zn + At[f(Zn41) + PrZns1] + TAW,,.
Define Z,, to be the discrete OU process

(1 a5 Atﬂl)Z,H.l = Zn + AW,
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and V,, := z,, — Z,. Then

(14 AtS1)Vay1 = Vo + At[f (zny1) + BiZng1],

and hence, using Lemma 2.4.6,

(1 + AtB)||Vata | €

<

=

Vo, Vag1) + CL + |1 Zoa II” + | Zpsa || 7]

1
IVall® + S 1Vasal® + ClL+ 1 Znsa|? + | Znaa 7).

N | =

Re-arranging gives
(1 +28800)[Varal® < IVall® + 2011 + | Znsa | + (| Zna|*7].

Using the discrete Gronwall Lemma 1.2.11 gives the desired absorbing set, and hence attrac-
tor, after using a discrete time analogue of (2.4.3); this can be drived by use of the exponential
Martingale inequality (see [15, Theorem 7.4, Chapter 1]).

For the split-step backward Euler method (2.1.6),

(14 Atf1)zw = zpn + At[f(z4) + P174]
Tn+1 = Tx Eis ZAWTL

Define Z,, by

(1 b Atﬁl)z* = Zn
1 = Zy + SAW,.

TV, = w,— %, and V, =z, — 4, then
(1 + AtB)Vs = Vo + AUF (Vi + Z) + Bu(Va + Z2)].

But Vi = V, 41 and so the analysis now proceeds as for the backward Euler method, replacing
Zn+1 by Zy = (1 + Atﬁl)_lzn- o

2.5 Case study 1: the Langevin equation

The Langevin equation plays a central role in statistical physics. It describes how a mechanical
system, with Hamiltonian ||p||®> + F(q), behaves when it is placed in contact with a heat
bath: a larger Hamiltonian system. The overall coupled system is assumed Hamiltonian and
then a variety of arguments, most using the large relative size of the heat bath, lead to an
equation for p, ¢ which includes the effect of energy exchange with the heat bath. This energy
exchange is in the form of damping, from (p,q) to the bath, and noise which adds energy
from the bath to (p,q), in mean square. The paper [5] gives a derivation of the equation
from a simple mechanical system. Other derivations are less precise [29], invoking empirical
assumptions about the effect of coupling, but have led to a model which is useful in many
contexts.
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Let W (t) be standard d-dimensional Brownian motion, F : R? — R, o € R¥*4 and p; € R?
be the 7th column of o; we assume that the p; are linearly independent so that o is invertible.
The Langevin SDE for ¢,p € R?, the position and momenta of a particle of unit mass, is then

dg—=pdt, (2:5.1)
dp = —ypdt — VF(q)dt + o dW. (2.5.2)

Here v > 0 to ensure a damped-driven Hamiltonian. In the case d = 1 and o = V2, for
example, there is a known invariant measure with density '

2
o) exp { v [2 4 7@ }.
We assume that (1.5.4) holds with (1.5.5) being a prototypical example. This problem may
be viewed as an analogue of Example 2.2.2 in that the noise process dW/dt is white—
uncorrelated in time.

The Langevin equation (2.5.1), (2.5.2) is ergodic: the assumptions of Theorem 2.3.9 can
be established, using the Lyapunov function (1.5.7) and the random analogue of (1.5.8) to
establish Assumption 2.3.6. Because noise is only present in the momentum equation (2.5.2)
it is not immediate that the smoothness and reachability (Assumption 2.3.8) follow, and
certain vector field commutators need to be checked. See [16] for details.

A simple calculation, indicating why ergodicity might hold, is as follows. By Lemma 2.1.2

2

t
EH(g(0),5(0) = EH((0),0) +E | | T = ~lp(e)I?] as.

and so

o2

it t
limsup—/ E|p(s)||* ds < —.
too t Jo 2y

This shows that the Césaro average of E||p(s)||? is uniformly bounded in time. In fact

0,2

E 2
o)1 — &

by ergodicity [16]. The split-step backward Euler method is also ergodic because it preserves
Lyapunov structure; see [16].

2.6 Case study 2: particles in a random velocity field

Random velocity fields are frequently used in turbulence modelling to give analytically
tractable caricatures of complex flows. In particular they can be fitted to predictions about
energy spectra. The idea was pioneered by Kraichnan [13] and a useful overview of the sub-
ject is given in Section 6 of [14]. We describe a model for the motion of particles in a random
two-dimensional incompressible velocity field.

Let z € T? (in this section T? denotes the two-dimensional unit torus) denote the particle
position and % € R? its velocity. We assume that

% = v(z, 1) — %, (2.6.1)
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where v = V1), Here 1) is the stream-function, V' denotes skew-gradient and hence V-v = 0.
Thus = denotes the position of a particle moving according to Stokes’ law in a two-dimensional
incompressible velocity field v. We assume that

3= Z yx cos(k - z) + z sin(k - z),
kex

where
K = {2n(ki,k2),ki € {1,...,M}}

and

dyr = —axyg dt + \/Xk de,
dzp = —ogzE dt + \/Xk de

Here the families {B}}rex, {Bf}rex are mutually independent families of i.i.d. standard
Brownian motions. We assume that

o = krgiré{ak} > 0.

The stream-function 1 may be viewed as the solution of a stochastic PDE of Ornstein-
Uhlenbeck type, leading to the equation

dp + A dt = dW,

where A = —A subject to periodic boundary conditions on T2, and W is a Wiener process in
L?(T?) with covariance operator Q. With this notation the oy are the eigenvalues of A whilst
the \r are the eigenvalues of ). We have taken M finite but infinite M can be handled.

We view 1) as the noise process in C(R,C?(T?)), driving the random dynamical system
for particle motions in T? x R%. In this sense the problem is an analogue of Example 2.2.3
since the driving noise is coloured—correlated in time. See [23] for details of conditions on
Q leading to sufficient regularity of 4 to obtain existence and uniqueness for (2.6.1).

Fig. 5 shows a typical velocity field at a fixed instant of time. (This should be compared
with Fig. 3 shown earlier.) Fig. 6 shows the distribution of particles at time ¢ = 1, starting
from an initial configuration in which the particles are at rest and uniformly distributed on
a grid.

This problem has a random attractor (see [23]), and the absorbing set calculation is very
similar to that presented in the deterministic case, where v(z,t) = v(z). The problem is also
ergodic; again Theorem 2.3.9 can be used to establish this (see [17]).
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Figure 6: Particle distribution for (2.6.1).
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