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SUMMARY

We consider estimation of scalar functions that determine the dynamics of diffusion processes.
It has been recently shown that nonparametric maximum likelihood estimation is ill-posed in this
context. We adopt a probabilistic approach to regularize the problem by the adoption of a prior
distribution for the unknown functional. A Gaussian prior measure is chosen in the function
space by specifying its precision operator as an appropriate differential operator. We establish
that a Bayesian–Gaussian conjugate analysis for the drift of one-dimensional nonlinear diffu-
sions is feasible using high-frequency data, by expressing the loglikelihood as a quadratic func-
tion of the drift, with sufficient statistics given by the local time process and the end points of the
observed path. Computationally efficient posterior inference is carried out using a finite element
method. We embed this technology in partially observed situations and adopt a data augmentation
approach whereby we iteratively generate missing data paths and draws from the unknown func-
tional. Our methodology is applied to estimate the drift of models used in molecular dynamics
and financial econometrics using high- and low-frequency observations. We discuss extensions
to other partially observed schemes and connections to other types of nonparametric inference.

Some key words: Finite element method; Gaussian measure; Inverse problem; Local time; Markov chain Monte Carlo;
Markov process.
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2 O. PAPASPILIOPOULOS, Y. POKERN, G. O. ROBERTS AND A. M. STUART

1. INTRODUCTION

Stochastic differential equations provide a rich framework for time series analysis and they
are now used as statistical models throughout science. A typical specification is

dVs = ξ(Vs) ds + σ(Vs) dBs (s ∈ [0, T ]), (1)

where B is a standard Brownian motion. The weakly unique solution of (1), known as a dif-
fusion process, is a strong Markov process. Whereas the mathematical theory underpinning
stochastic differential equations is rich and developed, their likelihood-based estimation from
data began only relatively recently. The estimation methodology has benefited from signifi-
cant advances in the understanding of the low-frequency dynamics of diffusion processes, such
as the analytic approximations in Aı̈t-Sahalia (2002), and novel Monte Carlo data augmenta-
tion methods in Roberts & Stramer (2001), Durham & Gallant (2002), Beskos et al. (2006), and
Golightly & Wilkinson (2008). These articles deal with parametric inference, where ξ and σ
in (1) are specified parametrically, for partially observed diffusions, in the sense that (1) is
observed only at discrete time-points and there might be latent components of V .

This article develops statistical and computational methodology for probabilistic nonparamet-
ric inference for partially observed diffusions. We first address a simpler problem: the nonpara-
metric inference of α from a fully observed one-dimensional diffusion path X whose dynamics
is given by

dXs = α(Xs) ds + dBs (s ∈ [0, T ]). (2)

The assumption of continuous-time data practically means that the frequency of observation can
be arbitrarily high, see § 6·1 for such an application. Even in this simple set-up, nonparametric
maximum likelihood is ill-posed. The details are given in § 2, but the following is a brief descrip-
tion of the problem. The loglikelihood can be expressed as a quadratic function of the drift, with
sufficient statistics given by the so-called local time process and the endpoints, X0 and XT . How-
ever, this quadratic representation is valid only in a weak sense, where α is sufficiently smooth.
Statistically, this means that although the maximization problem is ill-posed, a Bayesian analysis
that imposes enough smoothness on α using a prior distribution is well defined. Indeed, we show
that a conjugate Bayesian analysis based on a Gaussian process prior for α is feasible.

Using differential operators, we construct Gaussian Markov priors, which lead to a mathemat-
ically tractable and computationally efficient posterior inference. The priors can be understood
as the limit of Gaussian–Markov random fields (Rue & Held, 2005) and are close in spirit to the
more recent work in Lindgren et al. (2011). We provide a finite element method for numerical
calculation of the posterior moments, and for simulation from the posterior. Whilst any given
finite element approximation may be viewed as parametric, we emphasize that the entire family
of finite element approximations at different levels of resolution provides a framework for the
approximation of the fully nonparametric posterior distribution to any desired degree of accuracy.
This is one of the primary motivations for our approach.

The relationship between Gaussian process priors, differential operators and splines forms
the basis for the regularized least squares approach to nonparametric estimation and its link to
Bayesian statistics, as described by Wahba (1990). Our approach to drift estimation is a natural
generalization of this approach but, because of the very different likelihood, the resulting poste-
rior inference is considerably more complex than for nonparametric regression. Additionally, we
note that estimation of α in (2) constitutes a qualitatively different version of the classical white
noise model, described for example in Zhao (2000) and Wasserman (2006, Ch. 7). In § 7·1, we
discuss the alternative nonparametric inference in the white noise model that involves expanding
α in a given basis and estimating the coefficients.
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Nonparametric estimation of diffusions 3

We extend our methodology to inference on unknown drift functionals in partially observed
models following a data augmentation approach. We concentrate on the estimation of ξ in (1) for
discretely observed diffusions, assuming a parametric model for σ . We extend the existing data
augmentation and Markov chain Monte Carlo algorithms for parametric diffusion models to this
semiparametric framework. We apply our methods to previously analysed datasets in molecular
dynamics and interest rates, where we demonstrate the efficiency of the proposed algorithms and
the success of the model in uncovering the diffusion dynamics.

The probabilistic approach that we undertake, when coupled with data augmentation, allows
nonparametric Bayesian estimation of the drift of latent diffusions that are involved in complex
hierarchical models involving other stochastic processes. Our methods also extend to semipara-
metric modelling, where the drift of (2) is of the form f (x)+ g(x)α(x) for known f and g and
unknown α.

2. THE LIKELIHOOD FUNCTION

We consider the estimation of α in (2). We assume that the derivative α′ exists, and that α satis-
fies regularity conditions such that the following claims hold. We require that (2) admits a unique
weak solution X on [0, T ]. Let Pα be the law of X on the space of real-valued continuous paths
on [0, T ] and W the corresponding Wiener measure. We assume that Pα is absolutely continuous
with respect to W with Radon–Nikodym derivative dPα/dW = exp{−I (α)}; a weak condition is
that the diffusion does not explode (Elworthy, 1982, Theorem 11A). Our prior distributions on
α will ensure non-explosion. Then, the negative log-density I between the two measures is

I (α)= 1

2

∫ T

0
|α(Xs)|2 ds −

∫ T

0
α(Xs) dXs, (3)

which gives the negative loglikelihood for α in the context of diffusion processes. When α is
specified in terms of a finite-dimensional parameter vector θ , (3) can be minimized to yield the
maximum likelihood estimator for θ , see for example Prakasa Rao (1999). In a nonparametric
framework, one might be tempted to minimize this functional over α; this turns out to be an
ill-posed minimization problem, as we discuss below.

We will express the right-hand side of (3) as a quadratic functional ofα. Let A(x)= ∫ x
α(u) du Q2

be an antiderivative of α. Then, applying Itô’s formula to A, we get that

dA(Xs)= α(Xs) dXs + 1
2α

′(Xs) ds

and rewrite (3) as a Riemann integral:

I (α)= 1

2

∫ T

0
{|α(Xs)|2 + α′(Xs)} ds − A(XT )+ A(X0).

A key point of the development is the change from time to space integration. This is achieved by
the introduction of the so-called local time process, and it yields a generalization of the change
of variables formula. It is known that for any Borel measurable and locally integrable function f
on R we have for each t , Pα-almost surely:

∫ t

0
f (Xs) ds =

∫ ∞

−∞
Lt (u) f (u) du
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4 O. PAPASPILIOPOULOS, Y. POKERN, G. O. ROBERTS AND A. M. STUART

where Lt (x) is known as the local time process defined as

Lt (x)= lim
ε→0

1

2ε

∫ t

0
1{Xs ∈ (u − ε, u + ε)} ds,

where the limit is both almost surely and in L2, see for example Chung & Williams (1990,
Corollary 7.4) and Kutoyants (2004, § 1.1.3). Note that LT (x)= 0 for all x < X∗(T ) and x >
X∗(T ), where X∗(T )= min{Xs : s ∈ [0, T ]} and X∗(T )= max{Xs : s ∈ [0, T ]}. It is known that
Lt (x) is continuous in (t, x) but it is not differentiable; in particular, LT (·) has the same regularity
as Brownian motion, see Chung & Williams (1990, Ch. 7). Additionally, we define

χ(u)=
⎧⎨
⎩

1, X0 < u < XT ,

−1, XT < u < X0,

0, otherwise,

and we obtain

I (α)= 1

2

∫ ∞

−∞
{|α(u)|2LT (u)− 2χ(u)α(u)+ α′(u)LT (u)} du

where we emphasize that the integrand is zero for u < X∗(T ) and u > X∗(T ).
What makes the drift estimation problem nonstandard is the regularity of LT . Consider the

simplified functional

Ĩ (α)= 1

2

∫ ∞

−∞
{|α(u)|2w(u)+ α′(u)w(u)} du

and note that if w is differentiable and has compact support, we can use integration by parts to
write Ĩ (α) as a quadratic function of α, which is uniquely minimized by α =w′/2w. Pokern et al.
(2009) study the minimization problem when w is a Brownian bridge, which is only Hölder
continuous with exponent 1/2, and thus has the same regularity as Brownian motion and the
local time process of a diffusion. They show that in that case Ĩ is unbounded from below.

In this paper we introduce a prior distribution supported only on sufficiently regular drift
functions that can incorporate further knowledge or constraints about the unknown functional.
The family of prior distributions we consider is motivated by the following formal calculation.
Formal is understood as systematic but without a rigorous justification, a terminology which is
standard in various areas of mathematics. We manipulate I (α) further, pretending that LT (·) is
differentiable. Using integration by parts, and the fact that LT has compact support, we obtain
that I (α) can be rewritten as

1

2

∫ ∞

−∞
[|α(u)|2LT (u)− 2α(u){χ(u)+ L ′

T (u)/2}] du (4)

which is quadratic in α. This calculation suggests that the family of Gaussian process priors is
conjugate to this likelihood function. It can be taken a step further by completing the square to
identify the posterior mean m1 and precision, i.e., inverse covariance, Q1 in terms of the prior
mean m0 and prior precision Q0. We obtain the formulae

(Q0 + LT )m1 =Q0m0 + χ + 1

2
L ′

T , Q1 =Q0 + LT . (5)
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Nonparametric estimation of diffusions 5

If Q0 is a differential operator, then this formulation of the Bayesian inverse problem leads to a
powerful computational approach within which it is possible to perform nonparametric inference
with precise control over the level of error arising from finite representation of nonparametric
estimators, using ideas from numerical analysis. Furthermore, the formulae (5) that character-
ize the posterior measure in terms of its precision operator can be justified using the theory
of weak solutions of differential equations together with properties of Gaussian measures; see
Theorem 1.

3. GAUSSIAN MEASURES ON FUNCTION SPACES VIA DIFFERENTIAL OPERATORS

3·1. Approaches in the literature

When working with infinite-dimensional spaces, e.g., unknown regression functions or spa-
tial fields, it is common to specify a Gaussian distribution by means of its covariance operator or
the corresponding covariance function. This is typically done in geostatistics (Diggle & Ribeiro,
2007) or in machine learning (Bishop, 2006, Ch. 6). On the other hand, it is standard to specify
a finite-dimensional Gaussian distribution via its precision matrix, e.g., for stochastic processes
on a graph. This approach is based on the key result that the elements of the precision matrix
of a multivariate Gaussian distribution relate to the conditional correlation of the corresponding
pair of variables given the rest. A convenient assumption from a modelling and computational
point of view is that of a Markov dependence. The Markov property implies conditional inde-
pendence, which translates into sparse precision matrices. The connection between the sparsity
of the precision matrix and conditional independence is the key idea behind Gaussian graphical
models. Computationally efficient inference is possible using sparse linear algebra methods, e.g.,
the Kalman filter; see for example Rue & Held (2005, Chs 2 and 3). A third approach, which is
dominant in Bayesian nonparametric regression, is to express the unknown function in terms of
an orthonormal basis and assign a Gaussian distribution on the coefficients in the expansion.

Our approach lies in the intersection of the first two paradigms, but it also has links with the
third. We specify Gaussian measures on function spaces, but work directly with the precision
operator. This is specified as a differential operator, which yields the continuous state-space
analogue of the Markov property. The main motivation is to obtain a tractable and computable
solution to (5) in a setting in which it is possible to rigorously establish the validity of the proposed
prior-posterior update. The following subsections provide the necessary background and intu-
ition to motivate this choice and draw connections to more familiar results for finite-dimensional
Gaussian measures.

3·2. Gaussian measures

This section provides the required background on Gaussian measures in Hilbert space; details
can be found for example in Da Prato & Zabczyk (1992). A random variable α on a separable
Hilbert space H with inner product 〈·, ·〉 is said to be Gaussian if the law of 〈φ, α〉 is Gaussian for
all φ ∈H. Gaussian random variables are determined by their mean, m0 = E(α) ∈H, and their
covariance operator C : H→H, such that

〈φ, Cψ〉 = E(〈φ, α − m0〉〈α − m0, ψ〉) (φ, ψ ∈H).

The variable is called nondegenerate if 〈φ, Cφ〉> 0 for all φ ∈H\{0}. Then C is strictly positive,
self-adjoint, and trace class, and we can define Q to be its inverse which, because C is compact,
will be densely defined on H. We will refer to Q as the precision operator.
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6 O. PAPASPILIOPOULOS, Y. POKERN, G. O. ROBERTS AND A. M. STUART

More structure is afforded when H= L2([q, r ],Rd), in which case we can identify α with a
random function/stochastic process {α(u) : u ∈ [q, r ]}. This will be the setting in this article with
d = 1. Then, specializing the notation to d = 1, the covariance operator has a kernel C : [q, r ]2 →
R, such that

(Cφ)(u)=
∫ r

q
C(u, v)φ(v) dv,

where C(u, v)= E[{α(u)− α0(u)}{α(v)− α0(v)}] is the covariance function defined for
α0(u)= E{α(u)}.

3·3. Connection with differential equations

In this article we consider precision operators Q that are real-valued linear differential oper-
ators on the interval u ∈ [q, r ]. In this case C(u, v) is the Green’s function of Q, i.e., for each
fixed v the solution to

QC(u, v)= δ(u − v), u ∈ (q, r), (6)

subject to the boundary conditions at u = q and u = r , where δ denotes the Dirac delta func-
tion. Throughout this article the differential operator Q will have highest order term of the form
(−η)kd2k/du2k for some real η > 0 and integer k > 0. Hence, the domain of Q will be taken
to be the Sobolev space H2k , which consists of functions possessing 2k square integrable weak
derivatives (Lieb & Loss, 2001, Ch. 7) intersected with spaces that impose the boundary condi-
tions. Throughout we will work with weak solutions to differential equations, see § 4·1 for further
discussion on this notion.

Equation (6) is solved by letting QC(u, v)= 0 for u |= v, imposing the boundary conditions
at u = q and u = r , imposing continuity of the first 2k − 2 derivatives of C(u, v) with respect to
u at u = v, and imposing a jump of (−η)−k in the (2k − 1)st derivative of C(u, v) with respect
to u, as u increases through v. In order to connect this perspective on Gaussian measures with
the more standard Gaussian process viewpoint, we study some familiar examples.

Example 1. Consider standard Brownian motion on [0, 1]. This has covariance function
C(u, v)= u ∧ v, with ∧ denoting the minimum, whereby it follows that −d2/du2 with bound-
ary conditions c(0)= 0 and c′(1)= 0 admits C as its Green’s function, and hence is the preci-
sion operator of the Wiener measure. Similarly, for standard Brownian bridge on [0, 1], we get
C(u, v)= u ∧ v − uv, which is the Green’s function for the same differential operator with the
different boundary conditions, c(0)= c(1)= 0.

Example 2. Consider the stationary Ornstein–Uhlenbeck process

dαu = −λ1/2
0 αu du + η−1/2 dBu, α0 ∼ N (0, 2−1η−1λ

−1/2
0 ).

This process has covariance function C(u, v)= (2ηλ1/2
0 )−1 exp(−λ1/2

0 |u − v|), for λ0 � 0, η >

0, which is the Green’s function of −η d2/du2 + ηλ0 with boundary conditions c′(0)= λ
1/2
0 c(0)

and c′(1)= −λ1/2
0 c(1).

The above examples give rise to second-order differential operators and it is the case that
whenever the Gaussian process arises from a conditioned stochastic differential equation with
invertible diffusion matrix the precision operator is a second-order differential operator. This
is demonstrated in Hairer et al. (2005) where various types of conditioning are discussed. On
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Nonparametric estimation of diffusions 7

the other hand, when the diffusion matrix is degenerate, as arises for example when considering
integrated Brownian motion, higher order differential operators can arise.

Example 3. Consider an integrated Ornstein–Uhlenbeck process:

dαu = βu dt, m dβu = −βu dt + dBu, α0 = 0, β0 ∼ N {0, (2m)−1}, (m > 0).

This process conditioned on α1 = 0 has a Gaussian law with precision operator −m d4/du4 +
d2/du2, subject to the boundary conditions c(0)= c(1)= 0, mc′′(0)= c′(0), and mc′′(0)=
−c′(0). The proof of this is more involved than the previous examples, and may be found
as Lemma 17 in Hairer et al. (2011).

Given any conditioned diffusion process, there is a prescription for calculating the precision
operator. This is to adopt the physicists’ convention that Brownian motion on [q, r ] has Lebesgue
density proportional to exp{−(1/2) ∫ r

q |B ′(u)|2 du} and express B ′(u) in terms of the process
α(u). Adding further conditioning and then writing the resulting density as the exponential of a
quadratic form enables a formal identification of Q. The result may then be rigorously verified
by means of the Green’s function approach; see Hairer et al. (2011) for details. However, our view
is that, for the inverse problems arising in this paper, the natural way to specify Gaussian priors is
directly through the precision operator. The link to conditioned stochastic processes is insightful,
but not necessary in order to justify and implement statistical inference. We note, however, that the
postulation of a precision operator given by a differential operator is a continuous-time analogue
of the conditional Markov property for discrete random fields and is hence a natural choice of
prior for nonparametric inference.

3·4. Prior specification

The Gaussian prior needs to comprise four key elements: a mean function that encodes any
prior knowledge about the shape of the drift function to be inferred; a scale parameter determin-
ing the size of the variance about this mean; a specification of the almost sure smoothness of
functions drawn from this prior; and a computationally efficient prior-posterior update, through
equations (5), with controllable accuracy. These four elements can be achieved by working with
a Gaussian prior μ0 = N (m0, C0) in which the covariance is specified via a precision operator

Q0 = η

{
(−1)k

d2k

du2k
+ λ0

}
(η > 0, λ0 � 0, k ∈ N); (7)

for simplicity we write λ= ηλ0 in what follows.
The domain of Q0 is a subset of the Sobolev space H2k , i.e., the space of functions on

(q, r) with 2k square integrable weak derivatives specified by different boundary conditions.
The squared Sobolev norm, ‖ · ‖2

H2k , is simply the sum of the squares of the L2 norms of the
weak derivatives (Evans, 1998, Ch. 5). Periodic boundary conditions, according to which the
value of the function and its 2k derivatives agree on endpoints q and r , are convenient from a
mathematical perspective since they simplify considerably the proofs of § 4. Such conditions are
standard in the theoretical analysis of partial differential equations, but they are also frequently
assumed in nonparametric statistics, as for example in Zhao (2000). They are also the appropri-
ate choice in certain applications, as for example the molecular dynamics application of § 6·1.
We denote the Sobolev space with periodic boundary conditions by H2k

per. On the other hand, in
different applications, other boundary conditions are more appropriate; see § § 3·5 and 4·3.
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The prior μ0 satisfies the four criteria above: the mean m0 encodes known properties of the
shape of the drift function to be inferred; the parameters η > 0 and λ0 � 0 set a scale for the prior
variance about this mean function; k can be used to control regularity of draws from the prior as
shown in Proposition 1; and efficient computations with controllable accuracy can be carried out,
as will be demonstrated in § 4·2. In addition to controlling the scale of the prior variance, the two
parameters η, λ0 also control correlation lengths in the prior. Example 2, for k = 1, shows that λ0
controls the speed of mean reversion to the prior mean, whereas the expected squared distance
from the prior mean at any point in the domain is given by the stationary variance of the process,
2−1η−1λ

−1/2
0 . Similar properties arise for other values of k: when one keeps ηλ1−1/(2k)

0 constant
while increasing λ0, draws from the prior will revert to the mean more quickly, thus decreasing
the correlation length, whilst keeping the total expected L2 norm of the deviation from the mean
constant. This follows from the following fact, which is based on the Karhunen–Loève expansion
of Q0, see Proposition 1 and § 7·1. Under the prior, the total expected L2 norm of the deviation
from the prior mean is given by

Q5

1

η

∞∑
j=1

1

j2k + λ0
≈ 1

ηλ
1−1/2k
0

∫ ∞

0

1

y2k + 1
dy.

PROPOSITION 1. Assume that m0 ∈ Hk
per. Then the prior measure μ0 is equivalent to the

centred Gaussian N (0, C0) and draws from μ0 almost surely lie in the space Hs
per for any

s < k − 1/2.

Proof. The first statement is simply the Cameron–Martin theorem, which appears as
Proposition 2.24 in Da Prato & Zabczyk (1992). The second statement follows directly from the
asymptotic growth of the nth eigenvalue of Q0, which is proportional to n2k , and use of the
Karhunen–Loève expansion, as in Stuart (2010, Lemma 6.27). �

3·5. Nonperiodic boundary conditions

We have specified periodic boundary conditions for simplicity of exposition and will remain
in this setting for the statement of the main theorems that underpin our approach. However, other
choices of local boundary conditions specified at the endpoints u = q and u = r do not generally
change the theory or practical implementation. The examples in § 3·3 show a variety of different
boundary conditions, which typically lead to Dirichlet, Neumann, or various mixed boundary
conditions, all of which can be handled by modifications of the periodic setting.

We describe one particular choice that we will deploy in the interest rate application in § 6·2.
We will study a prior that corresponds to an integrated Brownian motion, with variance η−1/2,
and subject to the conditioning that the process has a Gaussian distribution at the endpoint with
zero mean with variance σ 2. This gives rise to the prior precision operator (7) with k = 2, λ0 = 0,
and boundary conditions

c′′(q)= 0, ηc′′′(q)= −σ−2c(q), c′′(r)= 0, ηc′′′(r)= σ−2c(r).

Bayesian inference using the family of Gaussian measures on L2[q, r ] defined in (7) can be
related to a penalized likelihood approach in which the unknown drift is penalized according
to its Sobolev norm. This connection is established by using the physicists’ convention already
mentioned, according to which we can formally write a prior Lebesgue density −2 log p0(α)=∫ r

q αQ0α du which we combine with (4) to obtain a penalized maximum likelihood estimator
of the drift. For the type of differential precision operators we consider the penalty becomes the
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Nonparametric estimation of diffusions 9

square of the L2 norm of the kth derivative of the drift. Such connections are established, for
example, in Wahba (1990).

4. GAUSSIAN POSTERIOR INFERENCE

4·1. Derivation of the posterior distribution

We consider the situation where we observe a diffusion path {X (s) : s ∈ [0, T ]} that is con-
tained within a bounded interval [q, r ], and we aim to recover the drift α in (2). A Gaussian
prior μ0 on L2

per has been chosen for the unknown drift in terms of a precision operator (7) with

domain H2k
per. In this setting, equations (5) become

Q1m1 =
{
η(−1)k

d2k

du2k
+ λ

}
m0 + χ + 1

2
L ′

T , (8)

= η(−1)k
d2k

du2k
+ λ+ LT , Q1, H2k

per (9)

A natural formulation of (8) is through the weak form as this provides a framework for its
analysis and approximation. This is constructed as follows. Let V = Hk

per and define the bilinear
form a : V × V → R

a(x, y)=
∫ r

q

{
η

dk x

duk
(u)

dk y

duk
(u)+ λx(u)y(u)+ LT (u)x(u)y(u)

}
du

and the linear form r : V → R by

r(y)=
∫ r

q

{
dkm0

duk
(u)

dk y

duk
(u)+ λm0(u)y(u)− 1

2
LT (u)y

′(u)+ χ(u; X)y(u)

}
du.

Weak solutions of (8) are functions x ∈ V that satisfy a(x, y)= r(y) for all y ∈ V , see Evans
(1998, § 6.1.2). Using this weak form as the basis for analysis of (8), the formal calculations
leading to the expression for the posterior mean can be justified, as summarized in the following
theorems.

THEOREM 1. Consider a prior Gaussian measure μ0 = N (m0, C0) with mean m0 ∈ H τ
per with

τ � k and precision operatorQ0 specified as in (7) with domain H2k
per. Then the posterior measure

for α ∈ L2([q, r ]), given a sample path X, is a Gaussian measure μ1 = N (m1, C1). The mean
m1 is the unique weak solution of (8) where the precision operator given by (9) has domain H2k

per;
the mean itself is an element of Hs

per for s = min{τ, 2k − 1/2 − ε} for any ε > 0. Furthermore,
μ1 and μ0 are equivalent.

THEOREM 2. Consider the prior μ0 and posterior μ1 under the conditions of Theorem 1.
Assume that the sample path {X (t)}t∈[0,T ] is generated by (2) with drift α in Hk

per. Then, for any

ε > 0, T 1−1/2k−ε‖m1 − α‖2
L2 → 0 in probability.

The proofs of these theorems are technical and require novel theory. Theorems 1 and 2 may be
found together with their proofs as Theorems 3.2 and 5.2 respectively, in an as yet unpublished
paper by Y. Pokern, A. M. Stuart and J. H. van Zanten.
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10 O. PAPASPILIOPOULOS, Y. POKERN, G. O. ROBERTS AND A. M. STUART

4·2. Finite element method for posterior inference

The weak formulation of § 4·1 naturally lends itself to a Galerkin approximation. We introduce
a finite-dimensional subspace V h ⊂ V and seek to solve the following problem for xh ∈ V h :
a(xh, y)= r(y), for all y ∈ V h . We will employ finite element methods in which the finite-
dimensional space V h is spanned by functions with local support. This will lead to linear systems
where the matrices to be inverted are banded, with the exception of top-right and bottom-left
blocks enforcing the periodicity. The sparse structure of these matrices reflects two main char-
acteristics of the underlying inference problem and one of the types of approximation employed:
the operator Q0 is local due to the conditionally Markov structure of the prior; the operator Q1
is also local since the information from the data, summarized through LT , also sees only local
pointwise information; and the resulting matrices in the approximation are sparse since finite
element bases, which have local support, are tuned to the local structure of the operator being
inverted. It is primarily for this reason that we favour the use of finite elements in our numeri-
cal implementation of the Galerkin approximation, rather than spectral methods, which employ
globally defined basis elements for V h , see § 7·1.

A key aspect of the Galerkin approximation, and finite element methods in particular, is
that they allow the development of error estimates controlling the approximation of an infinite-
dimensional object. This theory allows us to tune the accuracy with which we represent the fully
nonparametric posterior mean, which is described by equations (8) and (9), and the samples from
the Gaussian posterior distribution. To illustrate the power of this theory, we explain in some detail
the finite element theory covering the case k = 2.

The interval [q, r ] is decomposed into N intervals (u j , u j+1) and we denote the mesh size by
h = max j (u j+1 − u j ). We aim to approximate the posterior mean in the subspace V h = H2,h

per by
functions of the form

xh(u)=
N−1∑
j=0

3∑
i=0

1[u j ,u j+1)(u)x
h
j,i�i

(
u − u j

u j+1 − u j

)
. (10)

Here the �i are finite element basis functions, which are third-order polynomials defined on
[0, 1] such that�i (0)= δi,0,�′

i (0)= δi,1,�i (1)= δi,2,�′
i (1)= δi,3, where δ·,· is the Kronecker

delta, i.e., δi,k = 1 if i = k and 0 otherwise. These are the Hermite basis functions displayed in
Fig. 1. Also, we impose the conditions xh

j,i+2 = xh
( j+1)|N ,i for i ∈ {0, 1} and j ∈ {0, 1, . . . , N − Q3

1}, where j | N denotes the modulus of j under division by N . These ensure that xh(u) defined
by (10) is continuous with a continuous derivative across element boundaries, leading to so-called
conforming finite elements. Substitution into the weak form, a(xh, y)= r(y), leads to a linear
system of equations for the finite set of real numbers defining the function xh : the coefficients in
the expansion (10). This system of linear equations has a banded structure and may be inverted
in O(N ) operations. Furthermore, Céa’s lemma, which we now state, establishes that the finite

Q4

element error is bounded by a constant times the best possible approximation in the chosen finite-
dimensional space (Braess, 1997, § II.4).

LEMMA 1. There exists a constant C, independent of h, such that

‖x − xh‖H2
per

� C inf
yh∈H2,h

per

‖x − yh‖H2
per
.

The power of this lemma is that it shows that, up to constants of proportionality, the error
incurred by the finite element method can be found simply by looking at the error incurred
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Fig. 1. Finite element basis functions �0, . . . , �3.

through interpolation of the true solution in the finite element basis V h . This is because the
infimum on the right-hand side appearing in Lemma 1 is bounded by making this particular
choice of yh . To bound the interpolation error, one can analyse the error element by element,
and use a scaling argument and the Bramble–Hilbert lemma (Reddy, 1984, p. 277) to obtain the
following bound on the finite element error.

THEOREM 3. There exists a constant C depending only on h, q, r , and k such that

‖x − xh‖H2
per

� Ch‖x‖H3
per
.

Theorem 1 states that the solution m1 of (8) does indeed have regularity x ∈ H3
per, provided the

prior mean is smooth enough, so that the approximation result in Theorem 3 gives quantitative
bounds on the approximation of the fully nonparametric posterior. Thus, at increasing compu-
tational cost, it is possible to approximate the fully nonparametric solution to (8) to any desired
precision. This error is in the H2 norm and faster rates of convergence are obtained in weaker
norms, such as L2. For more details on the analysis underlying these finite element results, see
the Supplementary Material.

The preceding analysis assumes that the local time LT is known exactly, and that integrals of
the local time against the finite element basis function can be computed exactly. In practice LT

is not known exactly, and integrals against it must be approximated. This is done by replacing
local time by a piecewise constant function, corresponding to the use of a histogram approxi-
mation, see the Supplementary Material. In computational practice we aim to balance the error
from approximation of the local time with that arising from the finite element approximation.
More sophisticated approximation of the local time is also possible, for example, by using kernel
density estimates. For low-frequency observations, where the missing paths can be filled in to an
arbitrary frequency, the histogram approximation is natural.

4·3. Nonperiodic boundary conditions

It is straightforward to generalize away from the periodic setting without affecting the high-
level structure of what has already been presented. However, the assumption of periodicity does
have idiosyncracies and it is instructive to consider a nonperiodic case in some detail; we revisit
the example of § 3·5, which is also used in the interest rate application of § 6·2. For simplicity we
also assume that the prior mean is the zero function: m0 = 0. The posterior mean is then given
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12 O. PAPASPILIOPOULOS, Y. POKERN, G. O. ROBERTS AND A. M. STUART

by the solution to Q1m1 = χ + L ′
T /2 with the boundary conditions

m′′
1(q)= 0, ηm′′′

1 (q)= −σ−2m1(q), m′′
1(r)= 0, ηm′′′

1 (r)= σ−2m1(r),

where Q1 = η(−1)kd2k/du2k + λ+ LT . The primary changes that are needed to incorporate
these nonperiodic boundary conditions into the weak formulation of the problem for the posterior
mean are as follows. We now seek x ∈ Hk[q, r ] such that

a(x, y)+ abdy(x, y)= r(y)+ rbdy(y), y ∈ Hk[q, r ],

where to enforce our chosen boundary conditions we take

abdy(x, y)= 1

σ 2
x(q)y(q)+ 1

σ 2
x(r)y(r), rbdy(y)= LT (r)y(r)− LT (q)y(q).

With these modifications the theory for the existence and regularity of the posterior mean, as
well as the practice and theory of the finite element method, proceed as in the periodic case.

5. NONPARAMETRIC INFERENCE FOR DISCRETELY OBSERVED DIFFUSIONS

5·1. Modelling

In this section, we study drift and diffusion inference from (1) in the case of low-frequency
data. We assume that we are given n + 1 discrete-time observations {Vj }, where Vj = Vt j , t0 =
0< t1 < · · ·< tn = T , from the diffusion process V in (1). Unlike in the estimation framework
of § 4, here we do not assume that the data are available at arbitrarily high frequency. Solely for
simplicity we treat V0 as fixed by design and model the rest of the observations conditionally on it.

Our approach consists of modelling parametrically the diffusion coefficient, σ(v)= σ(v; θ),
and semiparametrically the drift ξ(v). Inference for this model can be partially collapsed to infer-
ence for (2) by noting that if

η(v; θ)=
∫ v

0

1

σ(u; θ)du (11)

and η−1 is the inverse transformation, then by direct application of Itô’s formula the process
X = η(V ; θ) solves a stochastic differential equation of the form (2) where

α(x)= ξ{η−1(x; θ)}
σ {η−1(x; θ); θ} − 1

2
σ ′{η−1(x; θ); θ}. (12)

Hence, we will treat (θ, α) as the unknown parameters that are assigned independent prior distri-
butions: α is assigned a Gaussian prior measure as described in § 3·4 and θ a prior density p0(θ).
The drift of (1) is obtained by inverting (12):

ξ(v; θ, α)= α{η(v; θ)}σ(v; θ)+ 1
2σ

′(v; θ)σ (v; θ).

Section 7·2 discusses interesting alternatives for semiparametric modelling, especially with a
view to the type of application considered in § 6·2.

The transformation of (1) to (2) via (11) is central to many Monte Carlo methods for diffusions
and it considerably reduces the Monte Carlo variance; see for example Roberts & Stramer (2001),
Durham & Gallant (2002), and Beskos et al. (2006).
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Nonparametric estimation of diffusions 13

5·2. Markov chain Monte Carlo on path space

The primary aim is inference for (θ, α) conditionally on the observed data {Vj } by means of
the posterior distribution. However, as in parametric models for diffusions, the posterior distri-
bution is intractable due to the unavailability of continuous-time observations. The Monte Carlo
approach to this problem is to resort to data augmentation methods. The Gibbs sampler with
Metropolis–Hastings steps that we propose is a direct extension of that in Roberts & Stramer
(2001) to the case where α is infinite dimensional. Below, we describe a theoretical algorithm
describing this Gibbs loop for the sampling of infinite-dimensional missing paths and parameters.
The Appendix contains expressions for the required conditional densities and the Supplementary
Material includes details.

We would like to augment the parameter space with the latent process X = {Xs : s ∈ [0, T ]},
since inference for α given X follows directly from § 4. Nevertheless, θ and X are deterministi-
cally linked via the data constraints Vj = η−1(Xt j ; θ), so a Gibbs sampler that iteratively samples
α, θ , and X from their conditional distributions would be reducible and not converge. The solu-
tion to this problem, which is common in inference for stochastic processes based on incomplete
data, is given by noncentred reparameterizations (Papaspiliopoulos et al., 2007) that are aimed
at removing strong prior dependence between parameters and auxiliary data. In this context, we
take Z = g(X), where

Zs = Xs − t j − s

�t j−1
Xt j−1 − s − t j−1

�t j−1
Xt j (t j−1 � s � t j ; j = 1, . . . , n), (13)

which has the effect that Zt j = 0 for all j . Note that X can be reconstructed from Z , θ and {Vj },
by first obtaining X j = Xt j = η(Vj ; θ) and then the interpolating paths by inverting (13); let
X = h(Z; θ, {Vj }) denote this transformation.

We can sample from the augmented posterior distribution P(θ, α, Z | {Vj }) by the following
algorithm, which after initialization iteratively simulates each of the three components according
to its conditional distribution:

Step 1. Simulate θ from P(θ | Z , α, {Vj }); set X = h(Z; θ, {Vj }).

Step 2. Simulate α from P(α | Z , θ, {Vj })= P(α | X).

Step 3. Simulate X from P(X | α, θ, {Vj })= P(X | α, {X j }); set Z = g(X).

This type of implementation, which involves alternating between the X and Z variables,
is typical of Markov chain Monte Carlo algorithms based on noncentred parameterizations
(Papaspiliopoulos et al., 2007). The distribution in Step 2 is the infinite-dimensional Gaussian
law that we identified, and demonstrated how to approximate, in § 4. The density in Step 1 is
given in the Appendix and typically it will not be possible to sample from it directly. Instead, a
local Metropolis–Hastings step is used. A considerable reduction in complexity is achieved in
Step 3, noting that, due to the Markov property, the diffusion bridges X ( j) = {Xs : s ∈ [t j−1, t j ]}
are conditionally independent given the endpoints, {X j }, and α. Each bridge is sampled using an
independence Metropolis–Hastings step with Brownian bridge proposals, see Roberts & Stramer
(2001), Papaspiliopoulos & Roberts (2012), the Appendix and Supplementary Material for
details.
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14 O. PAPASPILIOPOULOS, Y. POKERN, G. O. ROBERTS AND A. M. STUART

5·3. Nonperiodic boundary conditions

For nonperiodic boundary conditions, we fix a compact interval of interest, [q, r ] ⊂ R, and we
perform inference for the drift typically by adopting the prior model with nonperiodic boundary
conditions outlined in § 3·5. This leads to the posterior distribution, its weak formulation, and
finite element approximation on that interval, as outlined in § 4·3. It may happen during impu-
tation of segments of the diffusion, i.e., in step 3 of the algorithm in § 5·2, that Xs /∈ [q, r ] for
some s ∈ [0, T ]. In this case, it becomes necessary to extend the drift function α beyond [q, r ].
We extend α by a constant such that α(x)= α(q) for all x � q and α(x)= α(r) for all x � r .
Extension by constants means one only has to keep track of how much time the path X spends
in (−∞, q] and [r,∞), respectively, to keep the procedure consistent.

6. NUMERICAL ILLUSTRATIONS

6·1. Molecular dynamics

In computational chemistry, molecular dynamics is often simulated using thermostatted
Hamiltonian dynamical systems. The Cartesian positions of m ∈ N atoms, Qt ∈ R

3m evolve
according to Newtonian mechanics in a force field F(Qt ), which is typically fitted empirically
to match the observed behaviour of the molecules under study, and possibly subject to damp-
ing/driving to thermostat the system. This gives a dynamical system of dimension 6m. For an
accessible overview, see Schlick (2002) and, for the particular force field that we use here, see
Brooks et al. (1983). We consider a single butane molecule, which is built around the positions
of four carbon atoms, and is subjected to a Langevin thermostat. We study the dihedral angle
Xt =ω(Qt ) subtended by the planes spanned by the first three carbon atoms and the last three
carbon atoms; see Fig. 2(c). The available data cover a total time of T = 4 ns = 4 × 10−9 s in
time steps of �t = 1 fs = 10−15 s; see Fig. 2. The path ω(Qt ) is more regular than the fitted
process at very short time scales, so we subsample at a time scale where the apparent diffusiv-
ity does not depend too sensitively on the subsampling chosen and change to a new time unit
1 u = 3·549 ps = 3·549 × 10−12 s such that the apparent diffusivity is 1 rad2/u, see the Supple-
mentary Material for details of choice of time scale.

The unknown drift naturally lives on [0, 2π ] and given that the data are available at very
high frequency we estimate it nonparametrically using the periodic methods of § 4. We adopt a
Gaussian prior in the form (7) with k = 2 and hyperparameters η and λ fixed at η= 0·02 u2 rad
≈ 0·2519 ps2 rad and λ= 0 ps/rad3, and take N = 50 elements for the approximation. The result-
ing one standard deviation posterior credible region is displayed in Fig. 2(d). As can be seen, the
data are quite informative in this example, and the posterior variance around the mean is quite
small. However, the variance is larger away from the centre of the interval [0, 2π ]; this is to be
expected since, as the histogram of the data shows, there is more information at the centre of the
interval.

6·2. Interest rates

The second example deals with nonconstant diffusivity and low-frequency data and the model
is estimated using the methods of § 5. In particular, we analyse the well-known Eurodollar dataset,
which consists of 5505 daily Eurodollar rates between 1973 and 1995 shown in Fig. 3, and has
been analysed among others by Aı̈t-Sahalia (1996), Roberts & Stramer (2001), and Beskos et al.
(2006).

An off-the-shelf parametric model for this dataset is the Cox–Ingersoll–Ross model, which
takes the form (1) with σ(v; θ)= θv1/2 and ξ(v; a, b)= a + bv. On the other hand, the analysis
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Fig. 2. Molecular dynamics example. (a) Time series of butane dihedral angle. (b) Histogram of the
dihedral angle time series. (c) The dihedral angle of the molecule. (d) Posterior mean drift (solid black

line) and one standard deviation posterior credible region (shaded in grey).

of Aı̈t-Sahalia (1996) suggests a stronger restoring effect near zero than can be fitted using a
linear drift and the need for a more flexible drift function. Hence, we also consider a semi-
parametric model with the same diffusion coefficient as the Cox–Ingersoll–Ross model but a
nonparametric drift; see also § 7·2.

The parametric model is estimated using the Roberts & Stramer (2001) algorithm, albeit
with a slightly different parameterization. After the transformation (11), the drift becomes
α(x; θ)= [{(2a/θ2)− 1/2}]x−1 + bx/2. We choose a time unit 1 u = 50·7d ≈ 4·38 × 106 s
such that the mean-field maximum likelihood estimate of θ is 1 (%/u)1/2 with details given in
the Supplementary Material. We choose independent Gaussian priors for γ1 = 2a/θ2 − 1/2 and
γ2 = b/2 with means 0 and 0 u−1 and variances 500 and 500 u−2, respectively, and an inverse
Gamma prior for θ with parameters {2, 1(%/u)1/2}. While this prior gives positive probability to
drifts that render the process transient, this is of no concern as the data are informative enough
to rule out these parameter combinations.

For the nonparametric model, we employ the same prior for the diffusivity and impose a
Gaussian prior on the drift α(·) in (12). The Gaussian prior is taken to have the form (7) with prior
mean m0 ≡ 0 u−1/2 and k = 2 with hyperparameters η and λ fixed at η= 0·5 u5/2 and λ= 0 u−1/2.
We use the nonperiodic boundary conditions discussed in § 4·3 with mean-zero on both sides and
variance σ 2 = 100 u−1.

We use N = 100 Hermite finite elements where the basis functions are piecewise third-order
polynomials setting boundaries q = (2 mini Vi )

1/2 and r = 2(2 maxi Vi )
1/2. We run 2500 itera-

tions of the deterministic scan Gibbs sampler where the first 10 iterations have been discarded
as burn-in; trace plots and histograms are given in Fig. 3. The Markov chain mixes well and the
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Fig. 3. Interest Rate Example. (a) Time series of annualized Eurodollar rates. (b) Histogram of draws
from the posterior distribution of θ . (c) Trace plot for θ . (d) Trace plot for α(5·876 u1/2). (e) Posterior
mean of α(x) and one posterior standard deviation credible region by dotted lines. (f) Posterior mean
of ξ(v) for the parametric and semiparametric models with one posterior standard deviation credible
regions superimposed by dotted lines; shaded areas indicate the region unsupported by direct observation

but resolved by the finite element representation.

posterior drift contracts in the region where observations are available. Furthermore, towards low
interest rates, the posterior drift ξ(v) can credibly be extrapolated to rule out the simple linear
drift model, thus confirming the observation in Aı̈t-Sahalia (1996).

A diffusion might not be an appropriate model for this dataset for various reasons. One appar-
ent feature is the presence of sharp changes in the rate. For example, Beskos et al. (2006) sub-
sampled the dataset every 10th observation to obtain a better fit. A more systematic way to deal
with this issue is to introduce the observation error. Doing so is a natural generalization that can
be handled within the present framework.
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7. DISCUSSION

7·1. The white noise model and the spectral method

Recall the so-called white noise model, which is given by (2) but where α is a function only
of the independent variable s, and the Brownian noise is scaled by n−1/2:

dXs = αs ds + n−1/2 dBs, s ∈ [0, 1]. (14)

Asymptotic arguments are in terms of the no-noise limit n → ∞ and this is closely related to a
large T limit in (2); see Zhao (2000), Wasserman (2006, Ch. 7) and references therein.

For simplicity, we relabel the distribution-valued processes dXs/ds and dBs/ds by ys and ηs

and write (14) as
y = α + n−1/2η.

This equation defines the data likelihood, and its dependence on α. The white noise η is a mean
zero process with covariance the identity I (Da Prato & Zabczyk, 1992). A formal argument,
similar to that given in § 2, suggests that a Gaussian N (m0, C0) prior on α, with precision Q0 =
C−1

0 , leads to a Gaussian posterior with mean m1 and precision Q1 given by

(Q0 + nI )m1 =Q0m0 + ny, Q1 =Q0 + nI.

Making these expressions rigorous requires care, but can be achieved using arguments similar to
those in the proof of Theorem 1, when Q0 is defined as in (7) with domain H2k

per. However, for
the purposes of our discussion, this level of rigour is not needed.

We note the structural similarities with equations (5) that arise in our inverse problem. How-
ever, there are significant differences, the understanding of which can provide insight into the
details of the approach we adopt in this paper. For the white noise model, the posterior precision
Q1 and prior precision Q0 are diagonalizable in the Fourier basis. Working in this basis gives rise
to an infinite set of independent scalar Bayesian linear Gaussian estimation problems of the form

yi = αi + n−1/2ηi

where the yi , αi , ηi are the expansion coefficients of y, α, η, respectively, in the orthonormal
Fourier basis {ϕ j }. By main properties of the white noise process, it follows that the coefficients
ηi are independent standard Gaussian variates. Additionally, the Gaussian prior measure on α
with precision operator (7) implies that a priori the coefficients αi are independent zero-mean
Gaussian random variables with standard deviations λ j decaying like j−k . This property can
be checked using the Karhunen–Loève representation of draws from a Gaussian measure
(Da Prato & Zabczyk, 1992, Equation 2.30), since the λ2

j are determined by the eigenvalue

problem C0ϕ j = λ2
jϕ j ; hence, they are the inverse of the eigenvalues of the differential operator

(7), subject to periodic boundary conditions.
In contrast, our problem gives rise to a posterior precision Q1 that is not diagonalizable in

the Fourier basis that diagonalizes the prior precision Q0. Statistically this means that if the
prior is specified through independent Gaussian variates, the posterior will involve correlations:
it is not possible to decouple into an infinite set of scalar estimation problems. The best we
can do is to choose a basis in which the solution is banded and this is exactly what our finite
element approach achieves. Furthermore, this banded structure is an explicit manifestation of
the conditional independence structure in the prior and posterior distributions.

We could instead use a Fourier basis for the finite dimensional approximation of the posterior
distribution identified in § 4; in the context of a numerical solution of differential equations, this
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would correspond to the spectral method (Boyd, 2001). However, such a method would lead
to full matrices and the conditional independence structure would not be explicit. Furthermore,
the usual motivation for using Fourier-based methods is their exponential rate of convergence
for smooth functions. However, as we now demonstrate, neither the white noise problem nor
our diffusion estimation problem has smooth solutions. In both the posterior draws will lie in the
space Hs

per for any s < k − 1/2 and, provided the prior mean is in H τ for some τ � k, the posterior
mean will lie in Hs

per with s = min{τ, 2k − 1/2 − ε}. This gap between the regularity of the
posterior mean and that of draws from the prior is to be expected in conjugate Gaussian–Bayesian
analyses because the Cameron–Martin space has measure zero. If the posterior is absolutely
continuous with respect to the prior, which is often how Bayes’ theorem is formulated in the
infinite-dimensional setting, then the posterior mean must lie in the Cameron–Martin space of
the posterior, and this will be the same as the Cameron–Martin space of the prior.

Finally, note also that methods based on polynomial chaos show some promise for the solution
of inverse problems. In particular, they can exhibit rates of convergence that afford the possibil-
ity of improving on the computational complexity of Markov chain Monte Carlo methods; see
Marzouk et al. (2007), for example.

7·2. Semiparametric modelling

Our approach can be generalized to a semiparametric framework where the drift of (2) is
in the form f (x)+ g(x)α(x), for parametrically specified f and g. The calculations to iden-
tify and approximate the posterior distribution can be carried through as in § 4, because the
likelihood remains quadratic in α. The investigation of the strength of mean reversion of inter-
est rates in § 6·2 motivates such an extension. In that context, it is interesting to assume that
ξ(v; a, b, β)= a + bv + β(v), where β is to be estimated nonparametrically from the data. After
the transformation (11), the drift becomes

(
2a

θ2
− 1

2

)
x−1 + b

2
x + 2

θ2x
α(x),

where α(x)= β{(θx/2)2} is to be estimated nonparametrically.

7·3. Latent diffusion models

The full potential of the probabilistic approach to function estimation, as opposed to other
types of penalizations, is realized when considering more complex observation schemes than
the discrete-time sampling considered in § 5. The key feature of our methodology is conditional
conjugacy: given a complete diffusion trajectory and further hyperparameters, computationally
efficient Gaussian inference for the drift is feasible. Thus, our approach can be implemented in
a variety of other contexts. It directly covers the case where the diffusion is observed with error,
either via conditionally independent noisy observations or via a discretely observed continuous-
time process whose drift depends on the diffusion; these are versions of the so-called nonlinear
filtering problem, see for example Del Moral & Miclo (2000) and Fearnhead et al. (2010). It can
deal with the case that (1) drives the stochastic intensity of a Poisson process whose arrivals are
observed. This arises for example in single molecule experiments (Kou et al., 2005), where a
flexible model for the drift allows the identification of metastable states for the molecule; for
details and further references in the context of Förster resonance energy transfer experiments,
see Wu & Noé (2011).
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7·4. Multi-dimensional extensions

The approach we introduce in this article can be extended for estimating the drift of multi-
dimensional diffusions. The prior distributions of § 3 can be defined on higher dimensional
spaces, whereas the likelihood can be expressed as a space integral using the occupation mea-
sure of the diffusion, which admits the local time process as its Lebesgue density in the one-
dimensional case. Similarly, the finite elements implementation is numerically efficient for
dimensions up to 3. On the other hand, the roughness of the occupation measure increases with
dimension, so stronger smoothness conditions are required to estimate a drift of given regularity.

7·5. Some related literature

It is worth pointing out recent work on methods and theory for nonparametric estimation
in diffusions. For frequentist nonparametric inference with low-frequency data see for example
Comte et al. (2007) and Bandi & Phillips (2003) and references therein. There is also a growing
body of theoretical literature concerning the rate of posterior contraction in Bayesian nonpara-
metric drift estimation using Gaussian process priors, e.g., van Zanten & van der Vaart (2008)
and van der Meulen & van Zanten (2012).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online describes the molecular dynamics
models and data, the numerical solution of the differential equations in terms of a finite element
representation and a weak solution, and the approximation of the local time process from data.

APPENDIX

Target distribution of the Markov chain Monte Carlo algorithm and approximations

Let pt (x, y;α) denote the transition density of (2), qt (x, y) the transition density of the Brownian
motion, L the Lebesgue measure, and W

(t,0,0) the Brownian bridge measure, i.e., the law of Brow-
nian motion on (0, t) conditioned to take the value 0 at the two endpoints. For η defined in (11),
dη/dv = 1/σ(v; θ).

According to the notation of § 5·2, let Z ( j) = {Zs : s ∈ [t j−1, t j ]} for j = 1, . . . , n, X = h(Z; θ, {Vj }) be
the transformed path, X j = η(Vj ; θ) be the transformed endpoints, and X ( j) be the transformed bridges.
Let I (α, X, t, v), for t < v, be defined as in (3) where we explicitly denote the dependence on X . Finally,
we assume that θ ∈ R

p, with Lebesgue density p0(θ). Recall that the initial data point V0 is treated as fixed
for simplicity.

We have the following decomposition of the joint law of parameters, missing and observed data:

P(α, θ, Z , {Vj })= P(α)P(θ)P({Vj } | α, θ)P(Z | α, θ, {Vj }).

Due to the Markov property,

P(Z | α, θ, {Vj })=
N⊗

j=1

P(Z ( j) | α, θ, Vj−1, Vj ),
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dP({Vj } | α, θ)
dLN

=
N∏

j=1

p�t j−1(X j−1, X j ;α) 1

σ(Vj ; θ) ,

where in the second equality a change of variables is used. From Papaspiliopoulos & Roberts (2012) we
can derive that

dP(Z ( j) | α, θ, Vj−1, Vj )

dW(�t j−1,0,0)
= q�t j−1(X j−1, X j )

p�t j−1(X j−1, X j ;α) exp{−2I (α, X, t j−1, t j )},

so the density of the posterior measure P(α, θ, Z | {Vj }) with respect to μ0 ⊗ L
p
⊗N

j=1 W
(�t j−1,0,0) is pro-

portional to
N∏

j=1

q�t j−1(X j−1, X j )

σ (Vj ; θ) exp

⎧⎨
⎩−2

N∑
j=1

I (α, X, t j−1, t j )

⎫⎬
⎭ ,

where μ0 is the prior Gaussian measure for α defined in § 3·4. From this expression, it directly follows that
P(α | θ, Z , {Vj })= P(α | X)where the latter is described in Theorem 1. Finally, it follows that the X ( j) are
conditionally independent given α, θ, {Vj }, with density proportional to exp{−2I (α, X ( j), t j−1, t j )}, with
respect to W

(�t j−1,0,0). Typically, the conditional density of θ is sampled using a local Metropolis–Hastings
step and the X ( j) are sampled using an independence Metropolis–Hastings sampler with Brownian bridge
proposals.

Implementation of the algorithm will typically require a finite-dimensional approximation of Z and
discretization of the integrals involved in each I (α, X, t j−1, t j ). Hence, we simulate a skeleton of X at
equally spaced times in each interval [t j−1, t j ], and use a corresponding Riemann approximation to the
integrals. In order to sample a new drift function, we approximate the local time implied by the imputed
data points by computing a histogram, counting the number of imputed points falling in each interval
defined in the finite element method. It is important to make the number of imputed points large enough
such that the histogram is a fair representation of the true local time.
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