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Abstract

We present a parametric deterministic formulation of Bayesian inverse
problems with an input parameter from infinite-dimensional, separable Banach
spaces. In this formulation, the forward problems are parametric, deterministic
elliptic partial differential equations, and the inverse problem is to determine
the unknown, parametric deterministic coefficients from noisy observations
comprising linear functionals of the solution. We prove a generalized
polynomial chaos representation of the posterior density with respect to the
prior measure, given noisy observational data. We analyze the sparsity of the
posterior density in terms of the summability of the input data’s coefficient
sequence. The first step in this process is to estimate the fluctuations in the prior.
We exhibit sufficient conditions on the prior model in order for approximations
of the posterior density to converge at a given algebraic rate, in terms of
the number N of unknowns appearing in the parametric representation of the
prior measure. Similar sparsity and approximation results are also exhibited
for the solution and covariance of the elliptic partial differential equation
under the posterior. These results then form the basis for efficient uncertainty
quantification, in the presence of data with noise.

1. Introduction

Quantification of the uncertainty in predictions made by physical models, resulting from
uncertainty in the input parameters to those models, is of increasing importance in many areas
of science and engineering. Considerable effort has been devoted to developing numerical
methods for this task. The most straightforward approach is to sample the uncertain system
responses by Monte Carlo (MC) simulations. These have the advantage of being conceptually
straightforward, but are constrained in terms of efficiency by their N =2 rate of convergence
(N is the number of samples). In the 1980s, the engineering community started to develop

new approaches to the problem via parametric representation of the probability space for
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the input parameters [23, 24] based on the pioneering ideas of Wiener [27]. The use of
sparse spectral approximation techniques [26, 22] opens the avenue toward algorithms for
computational quantification of uncertainty, which beat the asymptotic complexity of MC
methods, as measured by the computational cost per unit error in predicted uncertainty.

Much of the work in this area has been confined to the use of probability models on
the input parameters, which are very simple, albeit leading to high-dimensional parametric
representations. Typically, the randomness is described by a (possibly countably infinite) set
of independent random variables representing uncertain coefficients in parametric expansions
of input data, typically with the known closed-form Lebesgue densities. In many applications,
such uncertainty in parameters is compensated for by (possibly noisy) observations, leading
to an inverse problem. One approach to such inverse problems is via the techniques of optimal
control [2]; however, this does not lead naturally to quantification of uncertainty. A Bayesian
approach to the inverse problem [ 14, 25] allows the observations to map a possibly simple prior
probability distribution on the input parameters into a posterior distribution. This posterior
distribution is typically much more complicated than the prior, involving many correlations and
without a useable closed form. The posterior distribution completely quantifies the uncertainty
in the system’s response, under given prior and structural assumptions on the system and given
observational data. It allows, in particular, the Bayesian statistical estimation of unknown
system parameters and responses by integration with respect to the posterior measure, which
is of interest in many applications.

MC Markov chain (MCMC) methods can be used to probe this posterior probability
distribution. This allows for computation of estimates of uncertain system responses
conditioned on given observation data by means of approximate integration. However, these
methods suffer from the same limits on computational complexity as straightforward MC
methods. It is hence of interest to investigate whether sparse approximation techniques can
be used to approximate the posterior density and conditional expectations given the data. In
this paper, we study this question in the context of a model elliptic inverse problem. Elliptic
problems with random coefficients have provided an important class of model problems for the
uncertainty quantification community, see, e.g., [4, 22] and the references therein. In the context
of inverse problems and noisy observational data, the corresponding elliptic problem arises
naturally in the study of groundwater flow (see [19]) where hydrologists wish to determine
the transmissivity (diffusion coefficient) from the head (solution of the elliptic PDE). The
elliptic inverse problem hence provides natural model problem within which to study sparse
representations of the posterior distribution.

In section 2, we recall the Bayesian setting for inverse problems from [25], stating
and proving an infinite-dimensional Bayes’ rule adapted to our inverse problem setting
in theorem 2.1. Section 3 formulates the forward and inverse elliptic problem of interest,
culminating in an application of Bayes’ rule in theorem 3.4. The prior model is built on the
work in [3, 6] in which the diffusion coefficient is represented parametrically via an infinite sum
of functions, each with an independent uniformly distributed and compactly supported random
variable as coefficient. Once we have shown that the posterior measure is well defined and
absolutely continuous with respect to the prior, we proceed to study the analytic dependence
of the posterior density in section 4, culminating in theorems 4.2 and 4.8. In section 5, we
show how this parametric representation, and analyticity, may be employed to develop sparse
polynomial chaos representations of the posterior density, and the key theorem 5.9 summarizes
the achievable rates of convergence. In section 6, we study a variety of practical issues that
arise in attempting to exploit the sparse polynomial representations as realizable algorithms
for the evaluation of (posterior) expectations. Section 7 contains our concluding remarks,
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and in particular, a discussion of the computational complexity of the new methodology, in
comparison with that for MC-based methods.

Throughout, we concentrate on the posterior density itself. However, we also provide
analysis related to the analyticity (and hence sparse polynomial representation) of various
functions of the unknown input, in particular, the solution to the forward elliptic problem, and
tensor products of this function. For the above class of elliptic model problems, we prove that
for given data, there exist sparse, N-term ‘generalized polynomial chaos’ (gpc) approximations
of this expectation with respect to the posterior (which is written as a density reweighted
expectation with respect to the prior), which converge at the same rates afforded by the best
N-term gpc approximations of the system response to uncertain, parametric inputs. Moreover,
our analysis implies that the set Ay of the N ‘active’ gpc coefficients is identical to the set
Ay of indices of a best N-term approximation of the system’s response. It was shown in [6, 7]
that these rates are, in turn, completely determined by the decay rates of the input’s fluctuation
expansions. We thus show that the machinery developed to describe gpc approximations of
uncertain system response may be employed to study the more involved Bayesian inverse
problem where the uncertainty is conditioned on observational data. Numerical algorithms,
which achieve the optimal complexity implied by the sparse approximations, and numerical
results demonstrating this will be given in our forthcoming work [1].

2. Bayesian inverse problems

Let G : X — R denote a ‘forward’ map from some separable Banach space X of unknown
parameters into another separable Banach space R of responses. We equip X and R with norms
|l - llx and || - ||z, respectively. In addition, we are given O(-) : R — RX denoting a bounded
linear observation operator on the space R of system responses, which belong to the dual space
R* of the space R of system responses. We assume that the data are finite so that K < oo, and
equip RX with the Euclidean norm, denoted by | - |.

We wish to determine the unknown data # € X from the noisy observations

§=0(Gw)+n, (1
where n € RX represents the noise. We assume that realization of the noise process is not
known to us, but that it is a draw from the Gaussian measure N (0, I'), for some positive

(known) covariance operator I' on RX. If we define G : X — RX by G = O o G, then we may
write the equation for the observations as

8§=Gw) +n. ()
We define the least-squares functional (also referred to as ‘potential’ in what follows)
®: X x RE = Rby

(u; 8) = 518 — Gt 3)
where | - |r = |F’% - | so that

D(u; 8) = 5((6 =G 'T~'(6 = Gw))).

In [25], it is shown that, under appropriate conditions on the forward and observation
model G and the prior measure on u, the posterior distribution on u is absolutely continuous
with respect to the prior with the Radon—-Nikodym derivative given by an infinite-dimensional
version of Bayes’ rule. Posterior uncertainty is then determined by integration of suitably
chosen functions against this posterior. At the heart of the deterministic approach proposed
and analyzed here lies the reformulation of the forward problem with stochastic input data as
an infinite-dimensional, parametric deterministic problem. We are thus interested in expressing

3
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the posterior distribution in terms of a parametric representation of the unknown coefficient
function u. To this end, we assume that, under the prior distribution, this function admits a
parametric representation of the form

u=a+y yjj )
jel
where y = {y;}jes is an i.i.d sequence of real-valued random variables y; ~ U(—1, 1) and q,
and ; are the elements of X. Here and throughout, J denotes a finite or countably infinite
index set, i.e. either J = {1, 2, ..., J} or J = N. All assertions proved in this paper hold in
either case, and all bounds are in particular independent of the number J of parameters.
To derive the parametric expression of the prior measure 1y on y, we denote by

U=(-1,1)"

the space of all sequences (y;) jey of real numbers y; € (-1, 1). Denoting the sub o -algebra
of Borel subsets on R, which are also subsets of (—1, 1) by B'(—1, 1), the pair

W.B) = | (-1.1)", QB (-1.1) (5)

jel

is a measurable space. We equip (U, B) with the uniform probability measure

— D
Ho(dy) = @) - (6)
jel
which corresponds to bounded intervals for the possibly countably many uncertain parameters.
Since the countable product of probability measures is again a probability measure, (U, B, 1)
is a probability space. We assume in what follows that the prior measure on the uncertain input
data, parametrized in the form (4), is (1o(dy). We add in passing that unbounded parameter
ranges as arise, e.g., in lognormal random diffusion coefficients in models for subsurface
flow [19], can be treated by the techniques developed here, at the expense of additional
technicalities. We refer to [1] for details as well as for numerical experiments.
Define E : U — RX by

E(y) =G (7

u=a+y_ .y Viv; ’
In the following, we view U as a bounded subset in £>°(J), the Banach space of bounded
sequences, and thereby introduce a notion of continuity in U.

Theorem 2.1. Assume that & : U — RX is bounded and continuous. Then, /,L‘S (dy), the
distribution of y given §, is absolutely continuous with respect to (o (dy). Furthermore, if

O(y) = exp(—P(u; §)) PSRN ®)
then

du? 1

d_Mo(y) = 26()7), &)
where

Z=L®®m@& (10)
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Proof. Let v, denote the probability measure on U x RX defined by o (dy) ® 7 (d§), where &
is the Gaussian measure (0, I"). Now, define a second probability measure v on U x RX as
follows. First, we specify the distribution of § given y tobe N (E(y), I'). Since E(y) : U — R
is continuous and po(U) = 1, we deduce that E is o measurable. Hence, we may complete
the definition of v by specifying that y is distributed according to 1. By construction, and
ignoring the constant of proportionality, which depends only on 8,

dv
T (3, 8) x O(y).
Vo

From the boundedness of E on U, we deduce that © is bounded from below on U by 6y > 0
and hence that

z>/%mmw=%>o
U

since wo(U) = 1. Noting that, under vy, y and § are independent, lemma 5.3 in [12] gives the
desired result. (|

We assume that we wish to compute the expectation of a function ¢ : X — S, for some
Banach space S. With ¢, we associate the parametric mapping

Y(y) =exp(—D(u; §))p(u) iS5, )v-qx-: U—S. (11D

From ¥, we define
Z=/wmmwms (12)
U

so that the expectation of interest is given by Z’'/Z € S. Thus, our aim is to approximate Z' and
Z. Typical choices for ¢ in applications might be ¢ (1) = G(u), the response of the system, or

du) = (GuN™ =G Q- - 9Gu) e S=R™:=R®---QR. (13)
N—
m times m times

In particular, the choices ¢(u) = G(u) and ¢(u) = Gu) ® G(u) together facilitate
computation of the mean and covariance of the response.

In the next sections, we will study the elliptic problem and deduce, from the known results
concerning the parametric forward problem, the joint analyticity of the posterior density ® (y),
and also W(y), as a function of the parameter vector y € U. From these results, we deduce
sharp estimates on size of domain of analyticity of ®(y) (and W(y)) as a function of each
coordinate y;, j € N. We concentrate on the concrete choice of W defined by (13), and often
the case p = 1. The analysis can be extended to other choices of W.

3. Model parametric elliptic problem

3.1. Function spaces

Our aim is to study the inverse problem of determining the diffusion coefficient u of an elliptic
PDE from observation of a finite set of noisy linear functionals of the solution p, given u.
Let D be abounded Lipschitz domainin R, d = 1, 2 or 3, with the Lipschitz boundary dD.
Let further (H, (-, -), || - ||) denote the Hilbert space L?(D), which we will identify throughout
with its dual space, i.e. H >~ H*.
We define also the space V of variational solutions of the forward problem: specifically,
we let (V, (V-,V.), || - |lv) denote the Hilbert space HOl (D) (everything that follows will hold

3 @(y) is also a function of § but we suppress this for economy of notation.
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for rather general, elliptic problems with affine parameter dependence and ‘energy’ space V).
The dual space V* of all continuous, linear functionals on V' is isomorphic to the Banach space
H~'(D), which we equip with the dual norm to V, denoted || - ||_;. We shall assume for the
(deterministic) data f € V*.

3.2. Forward problem

In the bounded Lipschitz domain D, we consider the following elliptic PDE:
—V-wVp)=f in D, p=0 in 9D. (14)

Given data u € L*°(D), a weak solution of (14) for any f € V* is a function p € V, which
satisfies

/ u(x)Vpx) - Vgx)dx = y{q, f)y- forall g e V. (15)
D

Here, y (-, -)y+ denotes the dual pairing between elements of V and V*.
For the well-posedness of the forward problem, we shall work under the following
assumption.

Assumption 3.1. There exist constants 0 < ayn < amax < 00 so that
0< amiN < M(X) < apmax < 00, x € D. (16)
Under assumption 3.1, the Lax—Milgram lemma ensures the existence and uniqueness of

the response p of (15). Thus, in the notation of the previous section, R = V and G(u) = p.
Moreover, this variational solution satisfies the a priori estimate

IS 1y
Gy = lpllv < . (17)

aMIN
We assume that the observation function O : V. — RX comprises K linear functionals o € V*,
k=1, ..., K. In the notation of the previous section, we denote by X = L*>°(D) the Banach

space in which the unknown input parameter u takes values. It follows that

K 2
Gl < v (Z ||ok||%*) . (1s)
k=1

AMIN

3.3. Structural assumptions on diffusion coefficient

As discussed in section 2, we introduce a parametric representation of the random input
parameter u via an affine representation with respect to y, which means that the parameters y;
are the coefficients of the function u in the formal series expansion

u(x,y) =a) + Y yjp(),  xeD, (19)
jel

where a € L*°(D) and {y;} 7 C L> (D). We are interested in the effect of approximating
the solutions input parameter u(x, y), by truncation of the series expansion (19) in the case
J = N, and on the corresponding effect on the forward (resp. observational) map G(u(-))
(resp. G(u(+))) to the family of elliptic equations with the above input parameters. In the
decomposition (19), we have the choice to either normalize the basis (e.g., assume they
all have norm one in some space) or to normalize the parameters. It is more convenient
for us to do the latter. This leads us to the following assumptions which shall be made
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throughout.
(i) Forall j € J: y; € L°(D) and ¥;(x) is defined for all x € D.
(i1)
y=0nyn. ) eU=[-11V. (20)

i.e. the parameter vector y in (19) belongs to the unit ball of the sequence space £°°(J).
(iii) For each u(x, y) to be considered, (19) holds for every x € D and every y € U.

We will, occasionally, use (19) with J C N, as well as with J = N (in the latter case the
additional assumption 3.2 has to be imposed). In either case, we will work throughout under
the assumption that the ellipticity condition (16) holds uniformly fory € U.

Uniform ellipticity assumption: There exist 0 < ayin < amax < 00 such that for all
x € Dandforally e U

0 < amv < u(x,y) < amax < 0. 2D

We refer to assumption (21) as UEA(amin, amax) in the following. In particular,
UEA (amN, amax) implies ayin < a(x) < amax for all x € D, since we can choose y; = 0
for all j € N. Also, observe that the validity of the lower and upper inequalities in (21) for all
y € U are respectively equivalent to the conditions that

Y W@l <akx) —amw,  x€D, (22)
jel

and
D @] <awax —ax),  xeD. (23)
jel

We shall require in what follows a quantitative control of the relative size of the fluctuations
in representation (19). To this end, we shall impose the following assumption.

Assumption 3.2. The functions a and ; in (19) satisfy
D il <

jel

K
14+«

amn,

with ayn = min,ep a(x) > 0 and k > 0.

Assumption 3.1 is then satisfied by choosing

K _ 1
aMIN =

1+« 1+«

amiN := dmIN — AaMIN- 24

3.4. Inverse problem
We start by proving that the forward maps G : X — V and G : X — RK are Lipschitz.

Lemma 3.3. If p and p are the solutions of (15) with the same right-hand side f and with
coefficients u and u, respectively, and if these coefficients both satisfy assumption 3.1, then
the forward solution map u — p = G(u) is Lipschitz as a mapping from X into V with the
Lipschitz constant defined by

ILf v

Ilp—plv < =5 —llu — dllz=). (25)
MIN
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Moreover, the forward solution map can be composed with the observation operator to prove
that the map u — G (u) is Lipschitz as a mapping from X into RX with the Lipschitz constant
defined by

1

G () — G| < ””V<§jnmw) u — iill=o). (26)

amiN

Proof. Subtracting the variational formulations for p and p, we find that for all g € V,
0:/qu~qux—/ﬁVﬁ-qux:/u(Vp—Vﬁ)-qux—{—/(u—ﬁ)Vﬁ-qux.
D D D D

Therefore, w = p— pis the solution of [, uVw-Vg = L(g), where L(v) := [, (i—u)Vp-Vv.
Hence,

I+
lwly < ,
AMIN
and we obtain (25) since it follows from (17) that
_ IIfllv*
IL]ly+ = Hf)THlaXI L) < llu— dllg=myIplly < llu— u||L°°(D)
v

The Lipschitz continuity of G = O o G : X — RX is immediate since O comprises the K
linear functionals 0. Thus, (25) implies (26). O

The next result may be deduced in a straightforward fashion from the preceding analysis.

Theorem 3.4. Under the UEA (ayin, amax) and assumption 3.2, it follows that the posterior
measure 1’ (dy) on 'y given § is absolutely continuous with respect to the prior measure (1o (dy)
with the Radon—Nikodym derivative given by (8) and (9).

Proof. This is a straightforward consequence of theorem 2.1 provided that we show
boundedness and continuity of & : U — RX given by (7). Boundedness follows from (18),
together with the boundedness of ||og|y«, under UEA (amin, amax)- Let u and & denote two
diffusion coefficients generated by two parametric sequences y and y in U. Then, by (26) and
assumption 3.2,

1

|vn X i

— — gy~ V* ~

IB(y) — EG)| < (§|wwa)|m—umwm
k=1

MIN
1

« 1
||f||v* Ko _ .
Z llo kllv* g KaMlN”y = Ve @)-

aMIN

The result follows. |

4. Complex extension of the elliptic problem

As indicated above, one main technical objective will consist in proving analyticity of the
posterior density ® (y) with respect to the (possibly countably many) parameters y € U in (19)
defining the prior and to obtain bounds on the supremum of ® over the maximal domains in C
into which ®(y) can be continued analytically. Our key ingredients for getting such estimates
rely on complex analysis.

8
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It is well known that the existence theory for the forward problem (14) extends to the case
where the coefficient function u(x) takes values in C. In this case, the ellipticity assumption 3.1
should be replaced by the assumption that

0 <amin < R(ux)) < lu(x)| < amax < 00, xeD, 27

and all the above results remain valid with Sobolev spaces understood as spaces of complex-
valued functions. Throughout what follows, we shall frequently pass to spaces of complex-
valued functions, without distinguishing these notationally. It will always be clear from the
context which coefficient field is implied.

4.1. Notation and assumptions

We extend the definition of u(x, y) to u(x, z) for the complex variable z = (z;) jey (by using
z; instead of y; in the definition of u by (19)), where each z; has modulus less than or equal
to 1. Therefore, z belongs to the polydisc
U=QizeC:lzl <1} cC (28)
jel
Note that U C . Using (22) and (23), when the functions @ and v/ ; are real valued, the
condition UEA (amiN, amax) implies that for all x € D and z € U,

0 < aviv < R(u(x, 2)) < |ulx, 2)| < 2amax, (29)

and therefore, the corresponding solution p(z) is well defined in V for all z € U by the Lax—
Milgram theorem for sesquilinear forms. More generally, we may consider an expansion of
the form

ulx,z) =a+ Zzﬂﬂj,
jel
where @ and v/; are complex-valued functions and replace UEA (amin, amax) by the following,
complex-valued counterpart.
Uniform ellipticity assumption in C : There exist 0 < ayin < amax < 00, such that for
allx e Dandallze U
0 < amin < N(u(x, 2)) < |ulx, 2)| < amax < oo. (30)

We refer to (30) as UEAC (amin, amax)-

4.2. Domains of holomorphy

The condition UEAC (aymn, amax) implies that the forward solution map z + p(z) is strongly
holomorphic as a V-valued function, which is uniformly bounded in certain domains larger
than . For 0 < r < 2amax < 00, we define the open set

A ={zeClir<Nux, 2) < ulx, 2)| <2auax forevery xe D} c C. (€2))

Under UEAC (amn, amax), for every 0 < r < ayin, U C A, holds.
According to the Lax—Milgram theorem, for every z € A,, there exists a unique solution
p(z) € V of the variational problem: given f € V*, for every z € A,, find p € V such that

a(zp,q) = (f,q) VgeV. (32)
Here, the sesquilinear form «/(z; -, -) is defined as
a(z p,q) = f u(x,z)Vp-Vgdx Vp,qeV. (33)
D

9
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We next show that the analytic continuation of the parametric solution p(y) to the domain A,
is the unique solution p(z) of (32), which satisfies the a priori estimate

sup Ip@ly < I, (34)

Z€A, r
The first step of our analysis is to establish strong holomorphy of the forward solution map
z > p(z) in (32) with respect to the countably many variables z; at any point z € A,. This
follows from the observation that the function p(z) is the solution to the operator equation
A(z)p(z) = f, where the operator A(z) € L(V,V*) depends in an affine manner on each
variable z;. To prepare the argument for proving holomorphy of the functionals ® and ®
appearing in (8) and (11), we give a direct proof.

Using lemma 3.3, we have proved, by means of a difference quotient argument given in [7],
lemma 4.1. Lemma 4.1, together with Hartogs’ theorem (see, e.g., [13]) and the separability of
V, implies strong holomorphy of p(z) as a V-valued function on .4,, stated as theorem 4.2. The
proof of this theorem can also be found in [7]; the result will also be obtained as a corollary
of the analyticity results for the functionals ¥ and ® proved below.

Lemma 4.1. At any z € A,, the function z — p(z) admits a complex derivative ;,p(z) € V
with respect to each variable zj. This derivative is the weak solution of the problem: given
z€ A, find 9;,p(z) € V such that

a(z; 9;p(2), q) = Lo(g) := —/ ¥, Vp(z) - Vqdx, forallgeV. (35)
D

Theorem 4.2. Under UEAC (amiN, amax) for any 0 < r < aypn the solution p(z) = G(u(z))
of the parametric forward problem is holomorphic as a V-valued function in A, and the a
priori estimate (34) holds.

We remark that A, also contains certain polydiscs: for any sequence p := (p;)j>1 of
positive radii we define the polydisc
Uy=Qz; e C:lzjl < pj) =z, € Ciz= )i Izjl < pj} c CL (36)
jel
We say that a sequence p = (p;)j>1 of radii is r-admissible if and only if for every x € D
> il (0] < R@w) —r. (37)
jel

If the sequence p is r-admissible, then the polydisc U/, is contained in A, since on the one
hand for all z € U, and for almost every x € D

R(i(x, 2) = R@E) = Y Iz 0] = K@) — Y pjlv 01 > r,
jel jel
and on the other hand, if for every x € D
lulx, )| < la(x)| + Z 2y (O] < la()] 4+ R(ax)) — r < 2|a(x)| < 2amax-
jel
Here, we used |a(x)| < amax that follows from UEAC (avin, amax)-
Similar to (22), the validity of the lower inequality in (30) for all z € U is equivalent to

the condition that

Y 1Y) < R(@w) — avn, x € D. (38)

>l
This shows that the constant sequence p; = 1 is r-admissible for all 0 < r < amin.
Remark 4.3. For 0 < r < am, there exist r-admissible sequences such that p; > 1 for all
Jj = 1, i.e. such that the polydisc U, is strictly larger than { in every variable. This will be
exploited systematically below in the derivation of approximation bounds.

10
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4.3. Holomorphy of response functionals

We next show that, for given data §, the functionals G(-), ®(u(-); ) and ®(-) depend
holomorphically on the parameter vector z € C’, on polydiscs U, as in (36) for suitable
r-admissible sequences of semiaxes p. Our general strategy for proving this will be analogous
to the argument for establishing analyticity of the map z — G(u(z)) as a V-valued function.

We now extend theorem 4.2 from the solution of the elliptic PDE to the posterior density
and related quantities required to define expectations under the posterior, culminating in
theorem 4.8 and corollary 4.9. We achieve this through a sequence of lemmas that we now
derive.

The following lemma is simply a complexification of (18) and (26). It implies bounds on
G and its Lipschitz constant in the covariance-weighted norm.

Lemma 4.4. Under UEAC (ayvin, amax), for every f € V* = H™Y(D) and for every
O@) € (V)* ~V — Y = RK the following holds:

G ()| < ”f"v (Z I k||v*) : (39)

l—

6@ — 6@l < LV — iy (Znokuv*) . (40)

MIN k=1

To be concrete, we concentrate in the next lemma on computing the expected value of the
pressure p = G(u) € V under the posterior measure. To this end we define ¥ with ¢ as in
(13) with m = 1. We start by considering the case of a single parameter.

Lemma 4.5. Let J = {1} and take ¢ = G : U — V. With u(x,y) as in (4), under
UEAC (amN, amax), the functions WV : [—1,1] — V and ® : [—1, 1] — R and the potential
D (u(x, -); 8) defined by (11), (8) and (3), respectively, may be extended to functions that are
strongly holomorphic on the strip {y + iz : |y| < r/k} foranyr € (k, 1).

Proof. We view H, V and X = L*> (D) as Banach spaces over C. We extend the equation (19)
to complex coefficients u(x, z) = Re(a(x) + z¢¥ (x)) = a(x) + y¥ (x) since z = y + i¢. Note
that @ + zy is holomorphic in z since it is linear. Since Re(a + z¢) = a + y¥ > am, if
follows that, for all { = Im(z),

Re / U(IVp(x) — V@[ dr > ayxllp — Bl
D

We prove that the mappings W and ® are holomorphic by studying the properties of
G(a+ zy) and ®(a + zy) as the functions of z € C. Let h € C with |h] < € < 1. We show
that

Jim 1 (p(z+ ) = p(2)

exists in V (strong holomorphy). Note first that d,u = . Now consider p. We have
1 1
E(P(z +h) —pQ) = Z(G(a +@+hyY)—Ga+zy)) =r.

By lemma 3.3, we deduce that

||f||H IS 11 oy
Irllv <

MIN

— ¥l
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From this it follows that there is a weakly convergent subsequence in V, as |h] — 0. We
proceed to deduce the existence of a strong limit. To this end, we introduce the sesquilinear
form

b(p. q) =/leﬁqu.
D
Then,
b(Gu),q) = (f,q) VqeV.

For a coefficient function u as in (19), the form b(-, -) is equal to the parametric sesquilinear
form « (z; p, ) defined in (33).

Note that for z = a + y¢¥ € R and for real-valued arguments p and g, the parametric
sesquilinear form «(z; p, q¢) coincides with the bilinear form in (15). Accordingly, for every
z € CJ, the unique holomorphic extension of the parametric solution G (u(a+yv)) to complex
parameters z = y + i¢ is the unique variational solution of the parametric problem

a(z;Gla+zy),q) =(f,q) VgeV. 41)
Assumption UEAC (amn, amax) is readily seen to imply
VpeV: Re(a(z p,p)) = aunlplly.
If we choose § € (k, 1) and choose z = y + in, we obtain, for all ¢ and for |y| < §/«,
Re(a(z; p, p)) = avn (1 — 8)Iplly. (42)
From (41), we see that for such values of z =y + i¢
O=0a(z;Gla+z¥),q) —a(z; Ga+ z+ M), q) +a(z; Gla+ z+hv), q)
—aiz+hG@a+ +nhnv),q)
=a(z;Gla@a+zy) —G@a+ z+hv),q) — / hyVG@+ (z+h)y)Vgdx.
D
Dividing by &, we obtain that r satisfies, for all z = y + i¢ with |y| < §/k and every ¢ € R
VgeV: alz;r, q)+/ YVG@+ (z+h)y)Vgdx = 0. (43)
D

The second term we denote by s(#) and note that, by lemma 3.3,

1
[s(hy) — s(hy)| < 2—||1ﬁ||§o||f||1||61||v|h1 — hy|.
aMmIN

If we denote the solution r to equation (43) by r,(a; z), then we deduce from the Lipschitz
continuity of s(-) that r,(a; z) — ro(a; z), where
a(z;1r9,q) = s(0) VgeV.

Hence, ry = 9,G(a + zyy) € V and we deduce that G : [—1, 1] — V can be extended to a
complex-valued function that is strongly holomorphic on the strip {y+i¢ : |y| < §/«, ¢ € R}.

We next study the domain of holomorphy of the analytic continuation of the potential
®(a + zy; d) to parameters z € C. It suffices to consider K = 1 noting that then the unique
analytic continuation of the potential ® is given by

1
Q@+ 79 8) = 2—y2<a—g(a+zw>)T<a—g(a+zw>). (44)

The function z +— G(a + zy) is holomorphic with the same domain of holomorphy as
G(a + zy). Similarly, it follows that the function

2> 8 —G@+z9) (8 —G@+zy))

12
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is holomorphic, with the same domain of holomorphy; this is shown by composing the relevant
power series expansion. From this we deduce that ® and W are holomorphic, with the same
domain of holomorphy. (]

So far we have considered the case J = {1}. We will now generalize the case. To this end,
we pick an arbitrary m € J and write y = (y*, y,,) and z = (2%, zyn)-

Assumption 4.6. There are constants 0 < ayn < amax < 0o and k € (0, 1) such that

0 < auin < a < amax < 00, ae x €D, il ) ller gy < KamiN- (45)

For m € J, we write (19) in the form
u(ey) = ac) + v + Y yiv; ).
JjeI\{m}
From assumption 4.6, we deduce that there are numbers «; < « such that

1¥illLe < amink;-
Hence, we obtain, for every x € D and every y € U, the lower bound
u(x,y) z amin(l — (€ — k) — Km)
K
> a 1 — (k — K l—-
miN (1 — ( ) < . (K—Km)>

> afvnN(l - Kr/n)
with @y = avin(l — k) and k), = &, (1 — (k — k,,)) " € (0, 1). With this observation, we
obtain the following.

Lemma 4.7. Let assumption 4.6 hold and set U = [—1, 1P and ¢ =G : U — V. Then, the
functions W : U — V and ® : U — R, as well as the potential ® (u(x, -); §) : U — R, admit
unique extensions to strongly holomorphic functions on the product of strips given by

Sp =@ty +1izj : Ivjl < 8/}, z; €R) (#6)
jel
for any sequence p = (p;) jey with p; € (k, 1).

Proof. Fixing y*, we view W and ® as the functions of the single parameter y,,. For each
fixed y*, we extend y,, to a complex variable z,,. The estimates preceding the statement
of this lemma, together with lemma 4.5, show that W and ® are holomorphic in the strip
{¥m + 12 © [ym| < 8m/k,,} for any 8, € (x,,, 1). Hartogs’ theorem [13] and the fact that in
separable Banach spaces (such as V) weak holomorphy equals strong holomorphy extend this
result onto the product of strips, S. (|

We note that the strip S, C C? defined in (46) contains in particular the polydisc ¢/, with
(0j) jeys Where pj = §;/k;.

4.4. Holomorphy and bounds on the posterior density

So far, we have shown that the responses G(u), G(u) and the potentials ®(u; §) depend
holomorphically on the coordinates z € A, C C’ in the parametric representation u =
a+)y. jer2j¥j- Now, we deduce bounds on the analytic continuation of the posterior density
®(z) in (8) as a function of the parameters z on the domains of holomorphy. We have the
following.
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Theorem 4.8. Under UEAC (avn, amax) for the analytic continuation ©(z) of the posterior
density to the domains A, of holomorphy defined in (31), i.e. for

O() = exp(—®(: )lucary,, 20, @7)
there holds for every 0 < r < amin

K
I1£15-
sup |©(2)] = sup [exp(—P(u(2); )| <exp | =55 llocl, ). (48)
€A, z€A, L
These analyticity properties, and resulting bounds, can be extended to functions ¢ (-) as
defined by (13), using lemma 4.7 and theorem 4.8. This gives the following result.

Corollary 4.9. Under UEAC (amin, amax), for any m € N, the functionals ¢ (u) = p'™ € § =
VU the posterior densities W(z) = ©(2)¢ (u(z2)) defined in (11) admit analytic continuations
as strongly holomorphic, V"™ -valued functions with domains A, of holomorphy defined in
(31). Moreover, for these functionals the analytic continuations of \V in (11) admit the bounds

0@ (r(@)™ o < IF- A3 = o2 49
sup [©(2) (p(2) ™ llven < == exp | = ;noknv* : (49)

€A,

5. Polynomial chaos approximations of the posterior

Building on the results of the previous section, we now proceed to approximate ®(z), viewed
as a holomorphic functional over z € CY, by the so-called polynomial chaos representations.
Exactly the same results on analyticity and on the N-term approximation of W(z) hold. We
omit details for reasons of brevity of exposition and confine ourselves to establishing rates
of convergence of N-term truncated representations of the posterior density ®. The results
in this section are, in one sense, sparsity results on the posterior density ®. On the other
hand, such N-term truncated gpc representations of ® are, as we will show in the next section,
computationally accessible once sparse truncated adaptive forward solvers of the parametrized
system of interest are available. Such solvers are indeed available (see, e.g., [3, 5, 22] and the
references therein), so that the abstract approximation results in this section have a substantive
constructive aspect. Algorithms based on Smolyak-type quadratures in U, which are designed
based on the present theoretical results, will be developed and analyzed in [1]. In this section,
we analyze the convergence rate of N-term truncated Legendre gpc approximations of ® and,
with the aim of a constructive N-term approximation of the posterior ®(y) in U in section 6,
we analyze also the N-term truncated monomial gpc approximations of ®(y).

5.1. The gpc representations of ©

With the index set J from the parametrization (19) of the input, we associate the countable
index set

F={veN): v < oo} (50)
of multi-indices, where Ny = N U {0}. We remark that sequences v € F are finitely supported
even for J = N. Forv € F, we denote by I, = {j € N : v; # 0} C N the ‘support’ of v € F,
i.e. the finite set of indices of entries of v € F that are nonzero and by R(v) := #I, < oo,
v € F the ‘support size’ of v, i.e. the cardinality of [,,.

For the deterministic approximation of the posterior density ®(y) in (8), we shall use
tensorized polynomial bases similar to what is done in the so-called ‘polynomial chaos’
expansions of random fields. We shall consider two particular polynomial bases: Legendre
and monomial bases.

14
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5.1.1. Legendre expansions of ®. Since we assumed that the prior measure po(dy) is
built by tensorization of the uniform probability measures on (—1, 1), we build the bases by
tensorization as follows: let L, (z;) denote the kth Legendre polynomial of the variable z; € C,
normalized such that

! ,dt
/ (L)Y = 1. k=0,1,2, ... (51)
~1

Note that Ly = 1. The Legendre polynomials L; in (51) are extended to tensor-product
polynomials on U via

L =[]L,G).  zeC, veF. (52)
jel
The normalization (51) implies that the polynomials L, (z) in (52) are well defined for any
z € CJ since the finite support of each element of v € F implies that L, in (52) is the product
of only finitely many nontrivial polynomials. It moreover implies that the set of tensorized
Legendre polynomials

P, no(dy)) :={L, : v € F} (53)

forms a countable orthonormal basis in L?(U, uo(dy)). This observation suggests, by virtue
of lemma 5.1, the use of mean-square convergent gpc expansions to represent ® and W. Such
expansions can also serve as a basis for sampling of these quantities with draws that are
equidistributed with respect to the prior (g.

Lemma 5.1. The density ® : U — R is square integrable with respect to the prior po(dy)
overU, ie. ® € L*(U, wo(dy)). Moreover, if the functional ¢(-) : U — Sin (11) is bounded,
then

/U W (y)[I30(dy) < oo,

ie. W e L2(U, uo(dy); S).

Proof. Since @ is positive, it follows that ®(y) € [0, 1] for all y € U and the first
result follows because o is a probability measure. Now, define K = sup,¢;, [¢(y)|. Then,
sup,ey ¥ (y)lls < K and the second result follows similarly, again using that 11 is a probability
measure. ([l

Remark 5.2. It is a consequence of (17) that in the case where ¢ (u) = G(u) = p € V, we
have |V W) |lv < ||fllv</avn for all y € U. Thus, the second assertion of lemma 5.1 holds for
calculation of the expectation of the pressure under the posterior distribution on u. Indeed the
assertion holds for all moments of the pressure, the concrete examples that we concentrate on
here.

Since P(U, po(dy)) in (53) is a countable orthonormal basis of L? (U, o (dy)), the density
©®(y) of the posterior measure given data § € Y, and the posterior reweighted pressure W(y)
can be represented in L2 (U, uo(dy)) by (parametric and deterministic) generalized Legendre
polynomial chaos expansions. We start by considering the scalar-valued function ® (y):

O =Y 6L,() in LU, p(dy)), (54)
veF
where the gpc expansion coefficients 6, are defined by
o= [ eoLom@.  ver. (55)
U
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By Parseval’s equation and the normalization (51), it follows immediately from (54) and
lemma 5.1 with Parseval’s equality that the second moment of the posterior density with
respect to the prior

1O oary = D 10w (56)
veF

is finite.

5.1.2. Monomial expansions of ®. We next consider expansions of the posterior density ©
with respect to monomials

y":l_[yl;’, yeuU, veF.
izl
Once more, the infinite product is well defined since, for every v € F, it contains only R(v)
many nontrivial factors. By lemma 4.7 and theorem 4.8, the posterior density ® (y) admits an
analytic continuation to the product of strips S, that contains, in particular, the polydisc I,.
In U, ©(y) can therefore be represented by a monomial expansion with uniquely determined
coefficients t, € V that coincide, by uniqueness of the analytic continuation, with the Taylor
coefficients of ® at 0 € U:

v 1 v
WeU: O =) ny T = —0/00) = (57)
veF '

5.2. Best N-term approximations of ©®

In our deterministic parametric approach to Bayesian estimation, the evaluation of expectations
under the posterior requires evaluation of integrals (10) and (12). Our strategy is to approximate
these integrals by truncating the spectral representation (54), as well as a similar expression
for W(y), to a finite number N of significant terms, and to estimate the error incurred by
doing so. It is instructive to compare with MC methods. Under the conditions of lemma 5.1,
posterior expectation of functions ¥ have finite second moments so that MC methods exhibit
the convergence rate N~!/2 in terms of the number N of samples, with similar extension to
MCMC methods. Here, however, we will show that it is possible to derive approximations that
incur error decaying more quickly than the square root of N, where N is now the number of
significant terms retained in (54).

By (56), the coefficient sequence (6,),c+ must necessarily decay. If this decay is
sufficiently strong, possibly high convergence rates of N-term approximations of integrals
(10) and (12) occur. The following classical result from approximation theory [9] makes
these heuristic considerations precise: denote by (¥,).en a (generally not unique) decreasing
rearrangement of the sequence (|6,|),cx. Then, for any summability exponents 0 < o < g <
oo and for any N € N holds

. 1

<Z Vf)q <N7($75) Zy,f . (58)

n>N n>1

5.2.1. L*(U; o) approximation. Denote by Ay C F a set of indices v € F corresponding
to N largest gpc coefficients |6, | in (54), and denote by

Oay () == Y 6Ly () (59)

veEAN

16
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the Legendre expansion (54) truncated to this set of indices. Using (58) with g = 2, Paseval’s
equation (56) and 0 < o < 1, we obtain for all N

s 1 1
19(z) — Oay @2, mo@yy) <N IO lee(F), $i=— =5 (60)
We infer from (60) that a mean-square convergence rate s > 1/2 of the approximate posterior

density © 4, can be achieved provided that (6,) € £° (F) forsome 0 < o < 1.

5.2.2. LY (U; o) and pointwise approximation of ®. The analyticity of @ (y) in U, implies
that ®(y) can be represented by the Taylor expansion (57). This expansion is unconditionally
summable in U and, for any sequence {Ay}yeny C F that exhausts F 4, the corresponding
sequence of N-term truncated partial Taylor sums

Tay () = Y ) (61)

vEAN

converges pointwise in U to ®. Since fory € U and v € F, we have |y’| < 1,forany Ay C F
of cardinality not exceeding N holds

sup[O() — Ta, | =sup| Y wy'|< D Inl. (62)
yeU YEU | e P\ Ay veF\Ax

Similarly, we have

o= Tl =| £ 2] € T b
UE]:\AN LI(U,/L[)) Ue}-\AN
For v € F, we calculate
v = v dy) = ——
1" 112 o) /yd] ¥ lro(dy) (v+1)!
so that we find
[Tyl
10 = Taul i < D o (63)
veF\Ay )

5.2.3. Summary. There are, hence, two main issues to be addressed to employ the preceding
approximations in practice: (i) establishing the summability of the coefficient sequences in
the series (54), (57) and (ii) finding algorithms that locate sets Ay C F of cardinality not
exceeding N for which the truncated partial sums preserve the optimal convergence rates and,
once these sets are localized, to determine the N ‘active’ coefficients 6, or t,, preferably in
close to O(N) operations. In the remainder of this section, we address (i) and consider (ii) in
the next section.

5.3. Sparsity of the posterior density ©

The analysis in the previous section shows that the convergence rate of the truncated gpc-type
approximations (59) and (61) on the parameter space U is determined by the o -summability of
the corresponding coefficient sequences (|6,|)ver, (|7y])ver. We now show that summability
(and, hence, sparsity) of Legendre and Taylor coefficient sequences in expansions (54) and

4 We recall that a sequence {Ay}yey C F of index sets Ay whose cardinality does not exceed N exhausts F if any
finite A C F is contained in all Ay for N > Ny with Ny being sufficiently large.
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(57) is determined by that of the sequence (||[lz=p)) jen in the input’s fluctuation expansion
(19). Throughout, assumptions 3.1 and 3.2 will be required to hold. We formalize the decay
of ¥; in (4) by the following.

Assumption 5.3. There exists 0 < o < 1 such that for the parametric representations (19)
and (4), it holds that

D il ) < o0 (64)

j=1

The strategy of establishing sparsity of the sequences (|6,|)yer, (|Ty])ver is based on
estimating the sequences by Cauchy’s integral formula applied to the analytic continuation
of ®.

5.3.1. Complex extension of the parametric problem. To estimate |0,| in (59), we shall
use the holomorphy of solution to the (analytic continuation of the) parametric deterministic
problem: let 0 < K < 1 be a constant such that

o0
Amin
KE 1Vl < s (65)
Jj=1

Such a constant exists by assumption 5.3. For K selected in this fashion, we next choose an
integer Jy such that

Z Il < _ aminK
TP = 240+ K)

j>JD
LetE={1,2,...,Jo} and F = N\ E. We define
el =Y |vjl.
J=J

For each v € F, we define a v-dependent radius vector r = () ey With r,,, > Oforallm € J
as follows:

rm=Kwhenm < Jypandr, =1+ _ Gminbm when m > Jy, (66)
A e|l[¥mllL= )

where we make the convention that % = 0if |vg| = 0. We consider the open discs U, C C
defined by

[-L,11CcU, ={za€C:lzul <1+ r,} CC. (67)
We will extend the parametric deterministic problem (32) to parameter vectors z in the polydiscs

Upr = QU  C. (68)

meJ

To do so, we invoke the analytic continuation of the parametric, deterministic coefficient
function u(x, y) in (19) to z € U that is for such z formally given by

u(x,2) = A + ) Y.

meJ

18
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We verity that this expression is meaningful for z € U,: we have, for almost every x € D,

u(x, )l < ae) + Y 1Y@ + 1)

mel]

AminVm
< esssupla(y)| +Z 1mlliey 1+ K) + Y ( —) 1m0y

xeD el m=To 4|VF|||Wm||L°°(D)

< all~m) +2 Z ¥l ) + Zm

m=1

5.3.2. Estimates of 0,,.

Proposition 5.4. There exists a constant C > 0 such that, with the constant K € (0, 1) in (65),
for every v € F, the following estimate holds:

21+ K
0. < C( I %nm) (69)

mel(v)

where 1y, := ry + /1 + 12, with r,,, as in (66).

Proof. For v € F, define 6, by (55), let S = I(v) and define S = J\ S. For S denote by
Us = QumesUn and Us = ®,,.5Un, and by ys = {y; : i € S} the extraction from y. Let £, be

the ellipse in U,, with foci at 1 and semiaxis sum 7,, > 1. Denote also & = [],,cy(,) Em- We
can then write (55) as
1 / O(zs,y3)
b =—-— | L) P ————7dzsdp(y).
Qri)b Jy & (25 = ys)!
For each m € N, let ', be a copy of [—1, 1] and y,, € T',,,. We denote by Ug = Hmes I',, and

Us = [ ,ue5 Tm- We then have
/ f 0Gs.ys) | 2 dps(vs) des dps(ys).
(27T1)‘”‘“ us (2s — ¥s)
To proceed further, we recall the definitions of the Legendre functions of the second kind
La(y)
On(2) = / ——dp(y).
-1 (=)
Let vg be the restriction of v to S. We define
Qus) = [] Qu.Gm).
mel(v)

Under the Joukovski transformation z,, = %(wm + wnjl ), the Legendre polynomials of the
second kind take the form

0. <1 (1 + > qvm

k=v,+1 m

with |g,, x| < 7. Therefore,

1)l < T Z =[]

meS k= vm+l meS
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We then have
1
0] = (2ni)|u\0f f O (zs, y5) Qg (z5) dzs dpg(vs)
S (Zn)lv\o/ f 1©(zs, y5)| Qug (z5) dzs dps (vs)
1
< Goyh )MO 1O @) llz=(egxug) maxIQUY|HLen(5 )
meS
u,,, 1
< Goyw )MO ||®(Z)||Loc(£sxus)nl11n — = Len(Ey)
204+K) _,
<cl]=———m"
mesS K
as Len(&n) < 4w, M = 1 + K and as |©(z)] is uniformly bounded on & x Ug by
theorem 4.8. Y

5.3.3. Summability of 6,. To show the £° (F) summability of |6,|, we use the following
result, which appears as theorem 7.2 in [6].

Proposition 5.5. For 0 < o < 1 and for any sequence (b,),cr,

|
(ﬁb”> €l'(F) Z bl <1 and (bp)men € £ (N).

v!
m>1

This result implies the o-summability of the sequence (6,,) of Legendre coefficients.

Proposition 5.6. Under assumptions 3.1 and 3.2, for 0 < o < 1 as in assumption 5.3,
e 10,17 is finite.

Proof. We have from proposition 5.4 that

2(1+K) —
ol <[] === +m™

meS

<ol T HED [ 2R (4|uF|||wm||Lw<D)>“m |

K
mekE v, 70 meF,v,,#0

wheren =1/(1+K) < l.Let Fp ={ve F: 1I(v) C E}and Fr = F \ E. From this, we
have

AminVm

D 16,17 < CAgAF,
veF
where

2(14+K) o
-2 1 (P7)

veFg meE v, #0

A=Y TI (2(1+K)> <4|v|||xgm||Lw<D>>”“M_

AminV
veFr meF,v,,#0 min “m

and

20
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We estimate Ag and Ar: for Ag, we have
Jo

2(1+K)\° "
m>1
which is finite due to n < 1. For Ag, we note that for v,, # 0,
2(1+K) < <2(1 +K))”’”

K K
Therefore,
A< YT (""dm)”’”,
veFr meF Vm
where

_ 8+ B Ymlle=wm)

d,
" K Amin

With the convention that 0° = 1, we obtain from the Stirling estimate

le'" le'"
n.e n n.e

n s

6\/5 = 2nn

that |v|"! < |v|!e/’!. Inserting this into the above bound for A, we obtain

vlelV!

H v > .
[ 1.cr max{1, e\/v,}

meF

Hence,

Ar < Z (%d\)>" (1—[ max{],eﬂ}) < Z <%d_">a’

veFr meF veFr

where d,, = ed,, and where we used the estimate e./n < ¢". From this, we have

. 24(1 + K) |l
S < Y 2O Wlew

m=1 meF Kamin
Since also
ldllie vy < o0
we obtain with proposition 5.5 the conclusion. ]

We now show o -summability of the Taylor coefficients 7, in (57). To this end, we proceed
as in the Legendre case: first we establish sharp bounds on 7, by complex variable methods
and then show o -summability of (7,),c+ by a sequence factorization argument.

5.3.4. Bounds on the Taylor coefficients t,,.

Lemma 5.7. Assume UEAC (amiN, amax) and that p = (p;) j>1 is an r-admissible sequence of
disc radii for some 0 < r < ayin. Then, the Taylor coefficients T, of the parametric posterior
density (57) satisfy

K
113
VveF: |ru|<exp( 2 Mol | [Ty (70)
k=1

izl
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Proof. For v = (v;)j»1 € F holds J = max{j € N : v; # 0} < oo. For this J, define
O () == O(z1,22, -+, 27, 0, ...), i.e. Op(Z’) denotes the function of 7/ € C’ obtained by
setting in the posterior density ©(z) all coordinates z; with j > J equal to zero. Then,

"oy,

3’® 0= ———1(0,...,0).
YO@) 0 = g (0. 0)
Since the sequence p is r-admissible, it follows with (48) that
K
A1 2
sup (O @)l <exp (=55 Y okl | - (71)
(Zl,~~~,Z.I)Eup,J r k=1
for all (z1, ..., z) in the polydisc U, ; := ®i<;<s{zj € C: |z;] < p;} € C/. We now prove

(70) by Cauchy’s integral formula. To this end, we define p by
r

5o it i<, 5o ’ - .
Pj piteif j<J pj=pjifj>1J € 2] ng Vi~ o)
Then, the sequence p is r/2-admissible, and therefore, ¢; C A, /. This implies that for each
z € U, u is holomorphic in each variable z;.

It follows that u; is holomorphic in each variable zy, . . . , z; on the polydisc ® ¢ <s{lzj] <
0;} that is an open neighborhood of ¢/, ; in C’.

We may thus apply the Cauchy formula (e.g. theorem 2.1.2 of [13]) in each variable z;:

uy(Zy, ..., 2 ~ ~
/ JE‘ J)~ dz, - - - d3;.
5= @1 —21) (2 —2p)

uj(zi, .. 2y) = (27Ti)71/
al=h1

We infer

gVl s os 2 - -
(0, 0) = v!(znir’/ f )
dz)' -+~ 0z, 121 |=p1 El=p % Ly

Bounding the integrand on {|Z;| = p1} x --- x {|Z)| = py} C A, with (48) implies (70). O

5.3.5. o-summability of t,. Proceeding in a similar fashion as in section 3 of [7], we can
prove the o-summability of the Taylor coefficients t,,.

Proposition 5.8. Under assumptions 3.1, 3.2 and 5.3, (||t,|lv) € £°(F) for0 <o < l asin
assumption 5.3.

We remark that under the same assumptions, we also have o-summability of (z,/(v +
1) ,cr, since

YwveF: |t|>

5.4. Best N-term convergence rates

With (58), we infer from proposition 5.6 and from (60) convergence rates for ‘polynomial
chaos’-type approximations of the posterior density ©.

Theorem 5.9. If assumptions 3.1, 3.2 and 5.3 hold, then there is a sequence (Ay)nen C F
of index sets with cardinality not exceeding N (depending o and on the data §) such that the
corresponding N-term truncated gpc Legendre expansions © »,, in (59) satisfy

_(Lr_1
10 — Oayllzw @y <N~ 210 ller (7). (72)

22



Inverse Problems 28 (2012) 045003 C Schwab and A M Stuart

Likewise, for ¢ = 1, oo and for every N € N, there exist sequences (Ay)yen C F of index
sets (depending, in general, on o, q and the data) whose cardinality does not exceed N such
that the N-term truncated Taylor sums (61) converge with the rate 1 /o — 1, i.e.

1
—(io
10 — Tay e oy < N~ V@) lles (7:m).- (73)

Here, for g = oo, the norm || o ||p=w:; ) s the supremum over all y € U.

6. Approximation of expectations under the posterior

Recall that in our approach to the Bayesian estimation, the expectations under the posterior
given data § are rations of deterministic, infinite-dimensional parametric integrals Z’ and Z with
respect to the prior measure (¢, given by (10) and (12). For our specific elliptic inverse problem,
these reduce to iterated integrals over the coordinates y; € [—1, 1] against a countable product
of the uniform probability measures %dy ;. To render this practically feasible, the numerical
evaluation of integrals of the form

o) = / D )OO o(dy) € S (74)
yeU

is required for functions ¢ : U — S, for a suitable state space S. Note that the choice ¢ = 1
gives Z. For ¢ not identically 1, integral (74) gives the (posterior) conditional expectation
E,s[¢ (w)] if normalized by Z.

For the elliptic inverse problems studied here, the choices of ¢ () = u given by (13)
with G(u) = p are of particular interest. For p = 1, this gives rise to the need to evaluate the
integrals

P = / P OMIpo(dy) €V (75)
yeU

which, when normalized by Z, gives the (posterior) conditioned expectation E s [p]. We study
how to approximate this integral. With the techniques developed here, and with corollary 4.9,
analogous results can also be established for expectations of m point correlations of G(u) as
in (13), using (74), and the normalization constant Z.

Our objective is to find constructive algorithms that achieve the high rates of convergence,
in terms of number of retained terms N in a gpc expansion, implied by the theory of the previous
section, and offering the potential of beating the complexity of MC-based methods. The first
option to do so is to employ sparse tensor numerical integration scheme over U tailored to the
regularity afforded by the analytic parameter dependence of the posteriori density on y and
of the integrands in (74). This approach is not considered here, but is considered elsewhere:
we refer to [1] for details and numerical experiments. Here, we adopt an approach based
on showing that integrals (74) allow semianalytic evaluation in log-linear’ complexity with
respect to N, the number of ‘active’ terms in a truncated polynomial chaos expansion of the
parametric solution of the forward problem (14), (4).

To this end, we proceed as follows: based on the assumption that N-term gpc
approximations of the parametric forward solutions p(x, y) of (14) is available, for example
by the algorithms in [3, 5, 10], we show that it is possible to construct separable N-term
approximations of the integrands in (74). The existence of such an approximate posterior
density that is ‘close’ to ® is ensured by theorem 5.9, provided the (unknown) input data u

5> Meaning linear multiplied by a logarithmic factor.
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satisfy certain conditions. We prove that sets Ay C F of cardinality at most N that afford the
truncation errors (72), (73) can be found in log-linear complexity with respect to N and, second,
that integrals (74) with the corresponding approximate posterior density can be evaluated in
such complexity and, third, we estimate the errors in the resulting conditional expectations.

6.1. Assumptions and notation

Assumption 6.1. Given a draw u of the data, an exact forward solution p of the governing
equation (14) for this draw of data u is available at unit cost.

This assumption is made in order to simplify the exposition. All conclusions remain valid
if this assumption is relaxed to include an additional finite-element discretization error; we
refer to [1] for details. We shall use the notion of monotone sets of multi-indices.

Defintion 6.2. A subset Ay C F of finite cardinality N is called monotone if (M1) {0} C Ay,
and if (M2) Y0 # v € Ay, it holds that v — e; € Ay for all j € 11, where e; € {0, 1} denotes
the index vector with 1 in the position j € J and 0 in all other positions i € J\{j}.

Note that for monotone index sets Ay C F, properties (M1) and (M2) in definition 6.2
imply

Pa, (U) = span{y’ : v € Ay} =span{L, : v € Ay}. (76)

Next, we will assume that a stochastic Galerkin approximation of the entire forward map of
the parametric, deterministic solution with certain optimality properties is available.

Assumption 6.3. Given a parametric representation (19) of the unknown data u, a stochastic
Galerkin approximation py € Pp, (U, V) of the exact forward solution of the governing
equation (14) is available at unit cost. Here, the set Ay C F is a finite subset of ‘active’ gpc
Legendre coefficients whose cardinality does not exceed N. In addition, we assume that the gpc
approximation py € Pa, (U, V) is quasi optimal in terms of the best N-term approximation,
i.e. there exists C > 1 independent of N such that

1P — pullzw vy < CN~YT7V2D00,) [l (7). (77)

Here, 0 < o < 1 denotes the summability exponent in assumption 5.3. Note that best N-
term approximations satisfy (77) with C = 1; we may refer to (77) as a quasi-best N-term
approximation property.

This best N-term convergence rate of stochastic Galerkin finite-element method
(sGFEM) approximations follows from results in [6, 7], but these results do not indicate
as to how sequences of sGFEM approximations that converge with this rate are actually
constructed. We refer to [10] for the constructive algorithms for quasi-best N-term Legendre
Galerkin approximations and to [5] for constructive algorithms for quasi-best N-term Taylor
approximations and also to the references therein for details on further details for such sSGFEM
solvers, including space discretization. In what follows, we work under assumptions 6.1
and 6.3.

6.2. Best N-term-based approximate conditional expectation

We first address the rates that can be achieved by the (a priori not accessible) best N-term
approximations of the posterior density ® in theorem 5.9. These rates serve as benchmark
rates to be achieved by any constructive procedure.
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To derive these rates, we let Oy = © 4, denote the best N-term Legendre approximations
of the posterior density ® in theorem 5.9. With (77), we estimate

H /U (®p — Onpn) po(dy)

15° — By llv
14

H/U ((© —On)p+ On(p — pn)) Ho(dy)

v
< / 1© — OpllIpllvno(dy) + 1ONl 2wy 1P — PN 2w 0. v)
U

1® — ®N||L2(U)||p||L2(U,Mo;V) + ||®N||L2(U)||P - pN”LZ(U,Mo;V)

1 1

<
<CON-Go,

With Ty = T,, denoting a best N-term Taylor approximation of ® in theorem 5.9, we obtain
in the same fashion the bound

17 — Rlly = / (©p — Typy) 1o(dy)
U

< / 1O — Tylllpllviro(dy) + I Tl lp — P llL @, ;v
U

1%

/U ((® =Tv)p + ITn(p — pn)) po(dy)
%4

<O = Tl w, u) 1PN @ po:vy + 1Tl 1P — P ll2 @, pg:v)
1
< CN~G7D,

We now address question (ii) raised at the beginning of section 5.2, i.e. the design of
practical algorithms for the construction of sequences (Ay)yen C F such that the best-N
term convergence rates asserted in theorem 5.9 are attained. We develop the approximation in
detail for (75); similar results for (74) may be developed for various choices of ¢.

6.3. Constructive N-term approximation of the potential ®

We show that, from the quasi-best N-term optimal stochastic Galerkin approximation
uy € Pp, (U, V), and in particular, from its (monotone) index set Ay, a corresponding N-term
approximation ®y of the potential @ in (3) can be computed. We denote the observation
corresponding to the stochastic Galerkin approximation of the system response py by Gy, i.e.
the mapping

U3 ye Onlicary,, v, = (© 0 G Wlucary,, e (78)

where Gy(u) = py € Py, (U; V). By the linearity and boundedness of the observation
functional O(-) then Gy € Py, (U; RX); in the following, we assume for simplicity K = 1
so that gN'M:5+ZjeJ viv; € Pay(U). We then denote by U > u +— & the potential in (3) and
by @y the potential of the stochastic Galerkin approximation Gy of the forward observation
map. For notational convenience, we suppress the explicit dependence on the data § in the
following and assume that the Gaussian covariance I' of the observational noise 1 in (1) is the
identity: I' = I. Then, foreveryy € U, withu = a+ ) _ jes Yj¥ > the exact potential @ and the
potential ®y based on N-term approximation py of the forward solution take the form

d(y) =16 — Gw)*, Dy () = 16 — Gy(w))*. (79)
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By lemma 4.7, these potentials admit extensions to holomorphic functions of the variables
z € S, in the strip S, defined in (46). Since Ay is monotone, we may write py € IPa, (U, V)
and Gy € P5, (U) in terms of their (uniquely defined) Taylor expansions about y = 0:

Gy = guy”. (80)

veAy
This implies, for every y € U, ®n(y) = 6% — 285Gy (y) + (Gy(y))?, where
Gy = Y gugwy" €Payia,(U)
v,V eAN

has a higher polynomial degree and possibly O(N?) coefficients. Therefore, an exact evaluation
of a gpc approximation of the potential ®y might incur loss of linear complexity with respect
to N. To preserve log-linear in N complexity, we perform an N-term truncation [®y]uy of Py,
thereby introducing an additional error which, as we show next, is of the same order as the
error of gpc approximation of the system’s response. The following lemma is stated in slightly
more general form than is currently needed, since it will also be used for the error analysis of
the posterior density ahead.

Lemma 6.4. Consider the two sequences (g,) € £°(F) and (g,) € £°(F'), 0 <o < L
Then,

(gvg,v')(v,u’)efx}" € go(j: X ]:,)
and there holds
I (gv& ) 1Ge (Fxry < 1@Go () 1€ T 77y (81)

Moreover, a best N-term truncation [olu of products of corresponding best N-term truncated
Taylor polynomials, defined by

(Z guy”) > gy = ) qgyT el U) (82

veEAy Ven)y 4N (vv)eA)

where A, C F x F' is the set of sums of index pairs (v, V') € F x F' of at most N largest
(in absolute value) products g,g., has a pointwise error in U bounded by

(Ll

NN @) ler A @) ller .- (83)
A_/Ioreover, if the index sets Ay C F and Ay, C F' are each monotone, the index set
Ay = {v+Vv : (vY) e Azlv} C F can be chosen monotone with cardinality at most

2N.

Proof. We calculate

”gl)g/\)'”(@’t’(}'xj:) = Z Z |gvg/u’|a = Z <|gv|a Z |g/u’|a)

veF vVeF veF VeF
= ” (gv) ”20(_7-') ” (g,\;/) ”?ﬂ(]:)
Since (g,&,,) € £° (F x F), we may apply (58) with (81) as follows:

" "
)BDIE A B DD IR S
VEAN V'EA) VEAN V'EA) avll )
1
—(1-1
<) 128 SNTETVN@) e 1E ) e )
(v.v’)e]-'x}'\A,'v
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Evidently, Ay € Ay + Ay and the cardinality of the set Ay + A} is at most 2N. If Ay and
A}, are monotone, then Ay + A}, is monotone. To see it, let & € Ay + Ajy. Then, p = v 4/
for some v € Ay, V' € Ay, and I, =1, UL, . Let 0 # u, j € I, and assume w.Lo.g. that
je€l,. Then, u —e; = (v —e;) +v' € Ay + A}y by the assumed monotonicity of the set Ay.
If j € I/, the argument is analogous. Therefore, u — ¢; € Ay + A}, for every j € I,. Hence,
Ay + A) C F is monotone. a

Lemma 6.4 is key to the analysis of consistency errors in the approximate evaluation of N-
term truncated power series and, in particular, of the potential exp(—® (u; §)), which appears
in the posterior density ®. It crucially involves Taylor-type polynomial chaos expansions.
Expansions based on Legendre (or other) univariate polynomial bases can be covered by
lemma 6.4 by conversion to monomial bases, using (76), as long as N-term truncations are
restricted to monotone index sets Ay C F.

Applying lemma 6.4 with 7" = F and with (g}, )ver = (gv)ver, we find

sup | DN () — [Py an| = sup |Gy D) = [GNO)) ]l
ye ye

(1
SN N5 5y (84)

6.4. Constructive N-term approximation of ©® = exp(—®)

With the N-term approximation [ Dy ]sy, we now define the constructive N-term approximation
®p of the posterior density. We continue to work under assumption 6.3, i.e. that N-term
truncated gpc approximations py of the forward solution p(y) = G(u(y)) of the parametric
problem are available that satisfy (77). For an integer K(N) € N to be selected below, we
define

N\~ =D
On =) —— [aenlwD L,y - (85)
k=0 )
We then estimate (all integrals are with respect to the prior measure wo(dy))
W« D
10 = O, = ™ — e et — ) T = [ @nl]) ],y
k=0 Ll (U)
= (=D
- —[®nlun —[Dnlun k
< flem® et g et = 7 e [ endaD)
k=0 L](U)

= 14+1L

We estimate both terms separately.
For term I, we observe that due to x = [®y]ay — P > O for sufficiently large values of N,
itholds 0 < 1 —e™ < x, so that by the triangle inequality and the bound (84):

—o >—[d ([ ®xTan—D
I= He (1—e®t N]#N)HLI(U) < 1Ol > w) Hl — e (IOl )HLI(U)
< 1By 1P = [Pnlanllpiwy < CUIDP — Pyl + 1Py — [Pulanlln @)
(o (i
< ”P_pN”LZ(U,V)'FCN Go=D < CN G 1),

where C depends on §, but is independent of N. In the preceding estimate, we used that ® > 0
and 0 < ® = exp(—P) < 1 imply

1 — nllpwy < IOlvlp — pyllzw.yy (2181 + 11Olv-llp + pallzw.v)) -
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We turn to term II. Using the (globally convergent) series expansion of the exponential function,
we may estimate with the triangle inequality

K(N)
1
A L P D= (G Mot ((C 0 W P (86)
k=0
where the remainder Ry equals
o (DF
Reon = D (@xlwD". (87)

k=K(N)+1

To estimate the second term in the bound (86), we claim that for every k, N € Nj the following
holds:

| @ntan)’ = [APN I Ty |y <NV @DIET)- (88)

We prove (88) for arbitrary, fixed N € N by induction with respect to k. For k = 0, 1, the bound
is obvious. Assume now that the bound has been established for all powers up to some k > 2.
Writing ([Pn1e) ' = ([(Pnlen) [Pylen and denoting the sequence of Taylor coefficients
of [®y]F by ¢, with v € (F x F)F ~ F?, we note that by the k-fold application of (81) it
follows that || (g’v,)||;,(}.2k) < |l (gy) ||§f‘(’}-). By the definition of [®y]uy, the same bound also
holds for the coefficients of ([®y]sv ), for every k € N. We may therefore apply lemma 6.4 to
the product ([Dnlen)¥[Dn sy and obtain the estimate (88) with k + 1 in place of k from (83).
Inserting (88) into (86), we find

K(N) 1 K(N) 1
> o 1@l = (@1 Ty 11y <N > 2l @1
k=0

—L-1n 20
<N Vexp([l (@)l 7)- (89)

In a similar fashion, we estimate the remainder Rk ) in (86): as the truncated Taylor expansion
[®y]uy converges pointwise to y and to ® > 0, for sufficiently large N, we have [®y]uy > 0
forally € U, so that the series (87) is alternating and converges pointwise. Hence, its truncation
error is bounded by the leading term of the tail sum:

PNl 11Gsv) I 00)

KN +D! KN D!

Now, given N sufficiently large, we choose K (/N) so that the bound (90) is smaller than (89),
which leads with Stirling’s formula in (90) to the requirement

IRkl @y <

X

Ae 1
(K+1)In <?> <InB— (——l)lnN 91

o

for some constants A, B > 0 independent of K and N (depending on p and on (g,)). One
verifies that (91) is satisfied by selecting K(N) >~ InN.

Therefore, under assumptions 6.1 and 6.3, we have shown how to construct an N-term
approximate posterior density ®y by summing K = O(InN) many terms in (85). The
approximate posterior density has at most O(N) nontrivial terms, which can be integrated
exactly against the separable prior po over U in complexity that behaves log-linearly
with respect to N, under assumptions 6.1 and 6.3: the construction of ®y requires K-fold
performance of the [-]uy-truncation operation in (82) of products of Taylor expansions, with
each factor having at most N nontrivial entries, amounting altogether to solving (possibly
approximately) O(KN InN) = O(N(InN)?) forward problems.

28



Inverse Problems 28 (2012) 045003 C Schwab and A M Stuart

Remark 6.5. Inspecting the (constructive) proof of lemma 6.4 and the definition of the N-term
approximation @y of the posterior density (85), we see that the index set A% of active Taylor
gpc coefficients of ®y satisfies

A9 C A9 := (Ay+ Ay) + -+ (K(N) —times) - - - + (Ay + Ay) C F,

where Ay C F is the set of N active gpc coefficients in the approximate forward solver in
assumption 6.3. _

If, in particular, Ay is monotone, so is the set A,‘\; This follows by induction over K with
the argument in the last part of the proof of lemma 6.4. Moreover, the cardinality of AY is
bounded by 2NK(N) < Nlog(N).

7. Conclusions

This paper is concerned with the formulation of Bayesian inversion as a problem in infinite-
dimensional parametric integration and the construction of algorithms that exploit analyticity
of the forward map from state space to data space to approximate these integration problems.
In this section, we make some concluding remarks about the implications of our analysis. We
discuss computational complexity for such problems, and we discuss further directions for
research.

7.1. Computational cost: idealized analysis

Throughout, we have been guided by the desire to create algorithms that outperform MC-
based methods. To gain insight into this issue, we first proceed under the (idealized) setting
of assumptions 6.1 and 6.3, which imply that the PDE (14), for fixed parameter u, and its
parametric solution, for all u € U, can both be approximated at unit cost. In this situation, we
can study the cost per unit error of MC and gpc methods as follows. We neglect logarithmic
corrections for clarity of exposition. The MC method will require O (N) work to achieve an
error of size N=2, where N is a number of samples from the prior. To obtain error € thus
requires work of order O(e~?). Recall the parameter o from assumption 5.3 that measures
the rate of decay of the input fluctuations and, as we have shown, governs the smoothness
properties of the analytic map from unknown to data. The gpc method based on the best N-term
approximation requires work which is linear in N to obtain an error of size N~(!/°~D_ Thus,
to obtain error € requires work of order O(e°/(!1=?)). For all o < 2/3, the complexity of the
new gpc methods, under our idealized assumptions, is superior to that of MC-based methods.

7.2. Computational cost: practical issues

The analysis of the previous subsection provides a clear way to understand the potential of the
methods introduced in this paper and is useful for communicating the central idea. However,
by working under the stated assumptions 6.1 and 6.3, some aspects of the true computational
complexity of the problem are hidden. In this subsection, we briefly discuss further issues that
arise. Throughout, we assume that the desired form of the unknown diffusion coefficient for
the forward PDE (14) is given by (19) in the case where J = N:

u(x,y) =a@) +» yjy;(x), xeD. (92)
jeN
To quantify the complexity of the problem, we assume that, for some b > 0,

19y < 2. (93)
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Then, assumption 5.3 holds for any o > (1 4 b)~'. In practice, to implement either MC- or
gpc-based methods, it is necessary to truncate the series (92) to J terms to obtain

W y)=aw+ Y vy, xeD. (94)
1<j<I
To quantify the computational cost of the problem, we assume that the non-parametric forward
problem (14) with fixed u € U incurs costs pde(J, €) to make an error of size € in V. Likewise,
we assume that the parametric forward problem (14), for all u € U, incurs costs ppde(N, J, €)
to make an error of € in L>(U, uo(dy); V) via computation of an approximation to a quasi-
optimal best N-term gpc approximation.

Both MC- and gpc-based methods will incur an error caused by truncation to J terms.
Using the Lipschitz property of G expressed in (26), together with the arguments developed
in [8],° we deduce that the error in computing expectations caused by truncation of the input
data to J terms is proportional to

oo
> il

j=J+1
Under assumption (93), this is of order O (J~") and since b may be chosen arbitrarily close to
1/o — 1 we obtain an error O(J'~/?) from truncation.

The total error for MC-based methods using N samples is then of the form

cu
Emec = Q + 00Uy te.
N2

In the case where C(J) is independent of J, which arises for pure MC methods based on prior
sampling and for the independence MCMC sampler [15, 20], choosing N and J to balance
the error gives N = O(e~2) and J = O(e~°/1=9)) and, with these relationships imposed, the
costis N x pde(J, €) since one forward PDE solve is made at each step of any MC method. In
practice, the standard MC sampling may be ineffective, because samples from the prior are not
well distributed with respect to the posterior density; this is especially true for problems with
large numbers of observations and/or small observational noise. In this case, MCMC methods
may be favored and it is possible that C(J) will grow with J; see [21] for an analysis of this
effect for random walk Metropolis algorithms. Balancing the error terms will then lead to a
further increase in computational cost.
For gpc methods based on N-term truncation, the error is of the form

Egpe = O™ +OU'7) +e

implying that N = J = O(e~°/(1=9)) to balance errors. This expressions must be substituted
into ppde(&V, J, €) to deduce the asymptotic cost.

In practice, however, the gpc methods can also suffer when the number of observed data
is high, or when the observational noise is small. To see this, note that the choice of active
terms in the expansion (55) is independent of the data and is determined by the prior. For
these reasons, it may be computationally expedient in practice to study methods that marry
MCMC and gpc [16-18]. In a forthcoming paper [11], we will investigate the performance
of the gpc-based posterior approximations, in particular in the case of values of o, which are

® The key idea in [8] is that error in the forward problem transfers to error in the Bayesian inverse problem, as
measured in the Hellinger metric and hence for a wide class of expectations; the analysis in [8] is devoted to Gaussian
priors and situations where the Lipschitz constant of the forward model depends on the realization of the input data
u and the Fernique theorem is used to control this dependence; this is more complex than required here because the
Lipschitz constants in (26) here do not depend on the realization of the input data u. For these reasons, we do not feel
that it is necessary to provide a proof of the error incurred by truncation.
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close to 0 = 1, i.e. in the case of little or no sparsity in the expansion of the unknown u, for
parametric precomputation of an approximation of the law of the forward model, removing
the necessity to compute a forward solution at each step, and by extending this idea further to
multi-level LMCMC.

7.3. Outlook

We have proved that for a class of inverse diffusion problems with an unknown diffusion
coefficient u, that in the context of a Bayesian approach to the solution of these inverse
problems, given the data §, for a class of diffusion coefficients u that are spatially heterogeneous
and uncertainty parametrized by a countable number of random coordinate variables, sparsity
in the gpc expansion of u entails the same sparsity in the density of the Bayesian posterior
with respect to the prior measure.

We have provided a constructive proof of how to obtain an approximate posterior density
by an O(N)-term truncated gpc expansion, based on a set Ay C F of N active gpc coefficients
in the parametric system’s forward response. We have indicated that several algorithms for
the linear complexity computation of approximate parametrizations including prediction of
the sets Ay with quasi-optimality properties (in the sense of best N-term approximations) are
now available.

In [1], based on this work, we present a detailed analysis including the error incurred
through finite-element discretization of the forward problem in the physical domain D, under
slightly stronger hypotheses on the data  and f than studied here. Implementing these methods,
and comparing them with other methods, such as those studied in [11], will provide further
guidance for the development of the promising ideas introduced in this paper and variants on
them.

Furthermore, we have assumed in this paper that the observation functional O(-) € V* that
precludes, in space dimensions 2 and higher, point observations. Once again, results that are
completely analogous to those in this paper hold also for such O, albeit again under stronger
hypotheses on u« and on f. This will also be elaborated in [1].

As indicated in [3, 5-7, 10, 22], the gpc parametrizations (by either Taylor-type or
Legendre-type polynomial chaos representations) of the laws of these quantities allow a choice
of discretization of each gpc coefficient of the quantity of interest by sparse tensorization of
hierarchic bases in the physical domain D and the gpc basis functions L, (y) resp. y” so that
the additional discretization error incurred by the discretization in D can be kept of the order
of the gpc truncation error with an overall computational complexity, which does not exceed
that of a single, deterministic solution of the forward problem. These issues will be addressed
in [1] as well.
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