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SUMMARY

The variational approach to data assimilation is a widely used methodology for both online prediction and
for reanalysis. In either of these scenarios, it can be important to assess uncertainties in the assimilated
state. Ideally, it is desirable to have complete information concerning the Bayesian posterior distribution
for unknown state given data. We show that complete computational probing of this posterior distribution is
now within the reach in the offline situation. We introduce a Markov chain–Monte Carlo (MCMC) method
which enables us to directly sample from the Bayesian posterior distribution on the unknown functions
of interest given observations. Since we are aware that these methods are currently too computationally
expensive to consider using in an online filtering scenario, we frame this in the context of offline reanalysis.
Using a simple random walk-type MCMC method, we are able to characterize the posterior distribution
using only evaluations of the forward model of the problem, and of the model and data mismatch.
No adjoint model is required for the method we use; however, more sophisticated MCMC methods are
available which exploit derivative information. For simplicity of exposition, we consider the problem of
assimilating data, either Eulerian or Lagrangian, into a low Reynolds number flow in a two-dimensional
periodic geometry. We will show that in many cases it is possible to recover the initial condition and
model error (which we describe as unknown forcing to the model) from data, and that with increasing
amounts of informative data, the uncertainty in our estimations reduces. Copyright ! 2011 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Data assimilation, using either filtering [1, 2] or variational approaches [3–5], is now a standard
component of computational modelling in the geophysical sciences. It presents a major challenge to
computational science as the space-time distributed nature of the data makes it an intrinsically four-
dimensional problem. Filtering methods break this dimensionality by seeking sequential updates of
three-dimensional problems and are hence very desirable when online prediction is required [6–8].
However, when reanalysis (hindcasting) is needed, for example to facilitate parameter estimation
in sub-grid scale models, it is natural to confront the fully four-dimensional nature of the problem
and not to impose a direction of time; variational methods are then natural [9–11].

However, for both filtering and variational methods an outstanding computational challenge is
the incorporation of uncertainty into the state estimation. Many of the practical methods used to
confront this issue involve ad hoc and uncontrolled approximations, such as the ensemble Kalman
filter [12]. While this has led to a very efficient methodology, and will doubtless continue to have
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significant impact for some time to come, there remains scope for developing new methods which,
while more computationally demanding, attack the problem of quantifying statistical uncertainty
without making ad hoc or uncontrolled approximations. The natural setting in which to undertake
the development of such new methods is the Bayesian framework in which one seeks to charac-
terize the posterior distribution of state given data [13]. The Markov chain-Monte Carlo (MCMC)
methodology provides a well-founded approach to fully probing this posterior distribution. The
purpose of this paper is to show that sampling of this posterior distribution is now starting to fall
within reach, via MCMC methods, in the offline situation. We also emphasize the possibility of,
in future work, using such MCMC based studies of the posterior distribution to benchmark more
practical algorithms such as filtering and variational approaches, both of which may be viewed as
providing approximations to the posterior.

The Bayesian approach to inverse problems [14] is a conceptually attractive approach to regular-
ization which simultaneously forces consideration of a number of important modelling issues such
as the precise specification of prior assumptions and the description of observational noise [15].
However, in the context of PDE inverse problems for functions the approach leads to a significant
computational difficulty, namely probing a probability measure on the function space. To be clear:
the probabilistic viewpoint adds a further degree of high dimensionality to the problem, over and
above that stemming from the need to represent the unknown function itself. Variational methods,
which minimize a functional which is a sum of terms measuring both model-data mismatch and
prior information, corresponds to finding the state of maximal posterior probability, known as
maximum a posteriori (MAP) estimator in statistics [15]. This will be a successful approach if
the posterior distribution is in some sense ‘close’ to Gaussian and with small variance. However,
since the dynamics inherent within the observation operator can be highly non-linear, and since
the observations may be sparse, it is not necessarily the case that a Gaussian approximation is
valid; even if it is, then the spread around the MAP estimator (the variance) may be important
and detailed information about it is required. Characterizing the whole posterior distribution can
be important, then, as it quantifies the uncertainty inherent in state estimation.

Markov chain–Monte Carlo (MCMC) methods are a highly flexible family of algorithms for
sampling probability distributions in high dimensions [16, 17]. There exists substantial literature
on the use of the MCMC methodology for the solution of inverse problems from fluid mechanics
[18–23] and from other application domains [24–28]. A key computational innovation in this paper,
which distinguishes the methods from those in the preceding references, is that the algorithms we
use estimate the posterior distribution on a function space in a manner which is robust to mesh
refinement.

We employ random walk Metropolis-type algorithms, introduced in [29], and generalized to
the high-dimensional setting in [30–32]. The method that we implement here does not use any
gradient information (adjoint solvers) for the model-data mismatch. It proposes states using a
random walk on the function space and employs a random accept/reject mechanism guided by the
model-data mismatch on the proposed state. This method is hence straightforward to implement,
but not the most efficient method: other methods (Langevin or Hybrid Monte–Carlo), which require
implementation of an adjoint model, can explore the state space in a more efficient manner [32].
In this paper, we stick to the simpler Random Walk method as a proof of concept, but the reader
should be aware that gradient methods, such as the Langevin Algorithm, or Hybrid Monte–Carlo,
could be implemented to increase the efficiency. The basic mathematical framework within which
we work is that described in [33] in which we formulate Bayesian inverse problems on the function
space, and then study data assimilation problems arising in fluid mechanics from this point of view.
The abstract framework of [33] also provides a natural setting for the design of random walk-type
MCMC methods, appropriate to the function space setting. The probabilistic approximation theory
associated to such algorithms is studied in [34].

In Section 2, we describe the data assimilation problems that we use to illustrate our Bayesian
MCMC approach; these problems involve the incorporation of data (Eulerian or Lagrangian)
into a model for Stokes’ flow. Section 3 briefly describes the mathematical setting for our data
assimilation problems, and for the MCMC algorithm that we employ throughout the paper. In
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Sections 4 and 5, we consider Eulerian and Lagrangian observations, respectively, incorporating
them into a two-dimensional Stokes’ flow model with periodic boundary conditions. In each case
we will consider first the problem of recovering the initial condition of the velocity field, given
that we assume that we know the forcing present in the system during the window of observation.
We will then consider, in each of the two data scenarios, what happens if we assume that we know
the forcing inherent in the system and incorporate this into the statistical algorithm, but in fact
there is a degree of model error which can only be accounted for by altering the distribution on the
initial condition. Finally, we will consider full initial condition and model error inference (which
together are equivalent to finding a probability distribution on the state of the velocity field for the
duration of the window of observation). In particular, we study the extent to which model error
may be recovered from data, and the uncertainty in this process. In Section 6, we present some
brief conclusions.

2. BAYESIAN DATA ASSIMILATION IN STOKES’ FLOW

We describe three steps required for the Bayesian formulation of any inverse problem involving
data: specification of the forward model; specification of the observational model; and specification
of prior models on the desired states.

2.1. Forward model

We consider a fluid governed by a forced Stokes’ flow on a two-dimensional box with periodic
boundary conditions (for shorthand we write T2, the two-dimensional torus):

!tv−!#v+∇ p= f ∀(x, t)∈T2 ×(0,∞), (1)

∇ ·v=0 ∀t ∈ (0,∞), (2)

v(x,0)=u(x) x ∈T2. (3)

This equation determines a unique velocity field v, given the initial condition u and the forcing
f . Our objective is to find u and/or f , given observations of the fluid. It is sometimes convenient
to employ the compact notation which follows from writing Stokes’ equation as on ordinary
differential equation for a divergence-free velocity field [35]:

dv

dt
+!Av=", v(0)=u. (4)

Here A is e Stokes’ operator, the Laplacian on divergence-free fields; and " is the projection of
the forcing f onto divergence-free fields.

We have chosen this simple linear model of a fluid for two reasons: (i) the linear nature enables
us, when observations are also linear, to construct exact Gaussian posterior distributions which
can be used to check MCMC methods and (ii) the linearity of the model means that the FFT
can be employed to rapidly evaluate the forward model, which is desirable as this may need
to be performed millions of times in order to obtain the complete statistical sampling of the
posterior. Regarding (i) note, however, that we will also consider non-linear observations and then
the posterior is not Gaussian. Regarding (ii) note that the MCMC method is trivially paralellizable
and our choice of the linear forward model is made simply to facilitate computations without
recourse to the use of a large number of processors; for more realistic forward models, however,
such massive parallelization would be necessary.

2.2. Observations

We consider two kinds of observations: Eulerian, which are direct measurements of the velocity
field and Lagrangian which are measurements of passive tracers advected by the velocity field.
We label the data vector by y and assume, for simplicity, that it is always subject to mean zero
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Gaussian observational noise # with covariance !. Note, however, that other non-Gaussian models
for the observational noise are easily incorporated into the methodology herein.

In the Eulerian case the observations are

y j,k =v(x j , tk)+# j,k, j =1, . . . , J, k =1, . . . , K . (5)

In the Lagrangian case, we define the J Lagrangian tracers {z j }J
j=1 as solutions of the ODEs

dz j

dt
(t)=v(z j (t), t), z j (0)= z j,0, (6)

where we assume that the set of starting positions {z j,0}J
j=1 is known (although they too could be

part of the estimated state if desired). The Lagrangian observations are then

y j,k = z j (tk)+# j,k, j =1, . . . , J, k =1, . . . , K . (7)

In both the cases, we may define an observation operator H mapping the unknown function
u (or u and ") to the place where the observations are made. Thus, H(u) j,k =v(x j , tk) in the
Eulerian case and H(u) j,k = z j (tk) in the Lagrangian case. Then, the data assimilation problem is
to find u from y given by

y =H(u)+#. (8)

The observation error # is not known to us, but the common assumption is that its statistical
properties are known and should be exploited. To this end we introduce the covariance weighted
least-squares function

"(u; y)= 1
2 |!− 1

2 (y−H(u))|2. (9)

Here, |·| denotes the Euclidean norm and hence " measures the model-data mismatch, normalized
by the scale set by the standard deviations of the observational error.

In the case where the forcing " is to be estimated as well as the initial condition, then we view
v(x j , tk) (Eulerian case) or z j (tk) (Lagrangian case) as functions of u and " and H(u) is replaced
by H(u,") in (8) and (9).

2.3. Priors

A key to the particular class of MCMC algorithms that we use in this paper is the specification
of Gaussian priors on the unknown states. The algorithms we use require us to be able to sample
from the prior measure, but do not require explicit construction of the covariance operator, its
inverse or its Cholesky factorization.

The prior on the initial condition u will be a mean zero Gaussian with covariance Cu =$A−%,
where A is the Stokes operator. The numerical experiments use all the values %=2.0 and $=400.
This means that, under the prior measure, the Fourier coefficients of exp(2&ik ·x) in the stream
function are independent Gaussians with a standard deviation proportional to (4&2|k|2)−1. Samples
from the prior can thus be constructed in Fourier space, using this specification.

When we also consider estimation of the forcing ", we again use a Gaussian with mean zero
and we implicitly define the covariance operator C" as follows, by describing how to create draws
from this prior. These draws are found by solving the following stationary Ornstein–Uhlenbeck
(OU) process:

d"
dt

+ R"=
√

#', "(0)∼ N
(

0,
1
2

R−1#
)

. (10)

Here ' is space-time white noise and we assume that R and # are self-adjoint positive operators
diagonalized in the same basis as the Stokes operator A. In practise, this means that draws from the
prior can be constructed by solving independent OU processes for each coefficient of the forcing,
written in a divergence-free Fourier basis. At each time t , the spatial distribution of " is mean zero
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Gaussian with covariance operator 1
2 R−1#. The choice of R determines the decorrelation time

of different Fourier modes. Thus, by playing with the choices of R and # we can match various
space-time covariance structures.

For all the experiments in this paper, we choose # and R such that the stationary distribution of
(10) is the same as for the initial condition: N(0,$A−%) with %=2.0 and $=400. The operator R
is chosen to be proportional to A so that the decorrelation time in the Fourier mode exp(2&ik ·x)
is inversely proportional to |k|2.

2.4. Bayes theorem and relationship to variational methods

The previous three sections describe a probability model for the joint random variable (u, y) or
(u,", y). Our aim now is to condition this random variable on a fixed instance of the data y. We first
describe the situation where only the initial condition u is estimated and then the generalization
to estimating (u,").

The random variable u is Gaussian N (0,Cu). The random variable y|u is Gaussian N (H(u),!).
Application of the Bayes theorem shows that

P(u|y)
P(u)

∝exp(−"(u; y)). (11)

The MAP estimator for this problem is simply the minimizer of the functional

J (u) := 1
2‖C− 1

2
u u‖2 +"(u; y), (12)

where ‖ ·‖ denotes the L2(T2) norm. Minimizing J is simply the 4DVAR method, formulated in
a non-incremental fashion.

When the pair of states (u,") are to be estimated then the probability model is as follows. The
random variable (u,") is the product of two independent Gaussians, N (0,Cu) for u and N (0,C")
for ". The random variable y|u," is Gaussian N (H(u,"),!). Application of the Bayes theorem
shows that

P(u,"|y)
P(u,")

∝exp(−"(u,"; y)). (13)

The MAP estimator for this problem is simply the minimizer of the functional

J (u) := 1
2‖C− 1

2
u u‖2 + 1

2‖C− 1
2

" "‖2 +"(u,"; y), (14)

where ‖ ·‖ denotes the L2(T2) norm on the u variable and the L2([0,T ]; L2(T2)) norm on ". Note
that finding the initial condition u and space-time dependent forcing " is equivalent to finding
the velocity field v for the duration of the observation window. Minimizing J is simply a weak
constraint 4DVAR method, formulated in a non-incremental fashion.

3. THE RANDOM WALK ALGORITHM

If, instead of maximizing the posterior probability, we try and draw multiple realizations of the
posterior probability in order to get information about it, this will lead to a form of statistical
4DVAR. We describe a random walk algorithm which does this. We describe it first for estimation
of the initial condition alone where we generate {u( j)} from P(u|y) given by (11), starting from
{u(0)}. A key fact to note about the algorithm is that the normalization constant in (11) is not
needed.

(1) Set j =0.
(2) Draw '( j) from the Gaussian N (0,Cu).
(3) Set v( j) = (1−(2)

1
2 u( j) +('( j).
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(4) Define %( j) =min{1,exp("(u( j); y)−"(v( j); y))}.
(5) Draw )( j), a uniform random variable on [0,1].
(6) If %( j)>)( j) set u( j+1) =v( j). Otherwise set u( j+1) =u( j).
(7) Set j → j +1 and return to 2.

The parameter (∈ [0,1] is a free variable that may be chosen to optimize the rate at which the
algorithm explores the space. Note that if the least-squares functional " is smaller at the proposed
new state v( j) than it is at the current state u( j) then this new state is accepted with probability one.
If " is larger at the proposed state then the proposed state will be accepted with some probability
less than one. Thus, the algorithm tends to favour minimizing the model-data mismatch functional
", but in a manner which is statistical, and these statistics are tied to the choice of prior. In this
sense, the prior regularizes the problem.

If the target distribution is (13) then the algorithm is the same except that a move in (u,") space
is proposed, from the two Gaussians N (0,Cu) and N (0,C"). Then the accept/reject probability
%( j) is based on the differences of "(u,"; y).

The algorithm draws samples from the desired posterior distribution given by Bayes formula
(11) or (13). We refer to this algorithm as Random Walk Metropolis–Hastings (RMWH) but
emphasize that this is a non-standard random walk proposal because it is not centred at the current
state, but rather at a scaled version of the current state [32]. It is straightforward to implement and
involves only repeated solution of the forward model, not an adjoint solver. On the other hand,
for probability distributions which are peaked at a single maximum it may be natural to solve the
4DVAR variational problem (12) or (14) first, by adjoint methods, and use this is as a starting
point for the above random walk method.

We emphasize that in contrast to variational methods or the extended/ensemble Kalman filter,
this method, in principle, computes the entire posterior distribution on the state of the system,
given data, with no approximation other than through discretization of the PDE. This distribution
is represented through the set of samples of the RWMH method. We reemphasize, however, that
this complete information comes at a considerable computational cost, requiring on the order of
106 forward model runs. In contrast, variational methods and generalized Kalman filters may only
use on the order of 102 model runs. Thus, the method we propose can only be used in an offline
situation. However, when accurate uncertainty quantification is required, the method we propose
constitutes a way of computing the ‘ideal solution’ and may hence be used to benchmark existing
algorithms and to guide the development of new ones.

4. DATA ASSIMILATION OF EULERIAN DATA

Our aim is to sample from the posterior measure (11) using the algorithm from Section 3. In the
first two subsections we study the recovery of the initial condition, first with a perfect model and
second with an imperfect model. In the third subsection, we study recovery of both the initial
condition and the forcing. Note that the posterior measure is Gaussian in this case, because H is
linear, and this has been used to compute explicit solutions to verify the accuracy of the random
walk method [36].

In all of the figures we display only the marginal distribution of the Fourier mode Re(u0,1) for
the initial condition of the vector field, and Re("0,1(0.5)) for the forcing in the model error case.
Other low wave-number Fourier modes behave similarly to this mode. However, high wave-number
modes are not greatly influenced by the data, and remain close to their prior distribution. In each
case, since we know the value of the Fourier mode that was present in the initial condition of the
velocity field that created the data, we plot this value in each example as a vertical black line. In
the cases where we are trying to recover an entire time-dependent function, the truth will similarly
be given by a black curve.

In each example, since the amount of data we are attempting to assimilate varies, we would
expect the optimal value of ( in the RWMH method to vary accordingly. Since we do not know
this value a priori, we can approximate it during the burn-in process. By monitoring the average
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Figure 1. Increasing numbers of observations in space, Eulerian. True value given by black vertical line.

acceptance probability for short bursts of the MCMC method, we can alter ( accordingly until we
are happy with this acceptance rate. For the purposes of the numerics that follow, ( in each case
was tuned so that the acceptance rate was approximately 50%. The values of ( vary quite widely,
but are typically quite small, ranging from 10−4 to 10−6.

4.1. Recovering the initial condition

In this section, we assimilate data using a forward model with no forcing: "=0. We also use data
that is generated by adding noise to output for the forward model, again when "=0. In each of the
following figures we demonstrate a phenomenon known as posterior consistency: as the amount of
data is increased the posterior measure becomes more and more sharply peaked on the true value
that gave rise to the data. To be precise we demonstrate posterior consistency only for the low
wave-number modes: as mentioned above, the data contains little information about high wave
numbers and the random walk method returns the prior for these variables. In this subsection,
we consider only cases where we do not try to ascertain the model error. In all the examples in
this paper, the noise is assumed to be mean zero Gaussian, with covariance matrix !=)2 I , with
)=0.01.

In our first example, the observations are made at 100 evenly spaced times, on an evenly spaced
grid with an increasing number of points. Figure 1 shows how the posterior distribution on Re(u0,1)
changes as we increase the number of points in space at which we make Eulerian observations of
the velocity field. The figure shows converged posterior distributions which resemble Gaussians
on Re(u0,1). Note that the curve corresponding to the distribution using data from nine observation
stations is so flat on the scale of this graph that the line appears to lie along the x-axis. We also
see that we have posterior consistency, since as the number of spatial observations increases, the
posterior distribution on Re(u0,1) appears to be converging to an increasingly peaked measure on
the value that was present in the true initial condition, denoted by the vertical black line.

We also have results (not included here) showing convergence of the posterior distribution to
an increasingly peaked distribution on the correct values as we increase the number of observation
times on a fixed time interval, keeping the number of observation stations constant.

4.2. Mismatches in model forcing

Now, we consider the case where we create data with forcing present, but in our algorithm we
assume that there is no forcing so that "≡0. Once again the noise is assumed to be mean zero
Gaussian, with covariance matrix !=)2 I , with )=0.01. We attempt to explain the data arising from
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Figure 2. Re(u0,1(t)): increasing number of observation times, unmatched low frequency forcing in data
and model, Eulerian data. True value given by black vertical line.

a forced model through the initial condition for an unforced model. Figure 2 shows the marginal
distributions of one Fourier mode in such a situation, where the forcing is low frequency in space
and constant in time, and where we steadily increase the number of observation times, with 100
observations fixed on a grid. The forcing in this instance is positive for the wave number displayed
in the figure. Two things are noteworthy: (i) the posterior tends towards a peaked distribution as
the amount of data increases; (ii) this peak is not located at the true initial condition (marked with
a black line). This incorrect estimate of the initial condition is, of course, because of the mismatch
between model used for the assimilation and for the data generation. In particular, the energy in
the posterior on the initial condition is increased in an attempt to compensate for the model error
in the forcing.

Further to this, we consider the similar problem of studying the effect of using a forward model
without forcing, when the data is generated with forcing, this time with data created using a
stationary solution of the OU process (10). This forcing function is then fluctuating constantly in
all Fourier modes.

Figure 3 shows the marginal distribution for one low-frequency Fourier mode with data from
one observation time, with an increasing number of observations in space. Notice that once again
the distributions are becoming more and more peaked as the number of observations increases,
but that the peaks of these distributions are centred away from the value of the Fourier mode that
was present in the actual initial condition that created the data.

4.3. Quantifying model error

The previous section shows us that if we assume that our model accurately reflects the real
dynamical system generating the data, but in fact it does not do so, then our estimates for the
initial condition of the system will be flawed and inaccurate. This motivates us to try to recover
not only the initial condition of the system, but also the model error forcing ".

We first observe that, in the Eulerian case, parts of the forcing are unobservable and cannot be
determined by the data. To state this precisely, we define

F(t1, t2)=
∫ t2

t1
exp(−!A(t2 − t1))"(t)dt.
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Figure 3. Re(u0,1(t)): increasing number of observation times, unmatched forcing in
data and model, Eulerian data, forcing given by a stationary solution of OU process.

True value given by black vertical line.

This is the term in the solution map of the Stokes equations that is dependent on the forcing term ". If
the observations are made at times {ti }K

i=1 then the data is informative about F̃ :={F(t j , t j−1)}K−1
j=0 ,

rather than about " itself. Proof of this is given in [36], by showing that many different (in fact
infinitely many) functions " give rise to the same vector F̃ , and therefore to the same velocity
field at each of the observation times. Because of this, we expect that the posterior measure will
give much greater certainty to estimates of F̃ than ".

This basic analytical fact is manifest in the numerical results which we now describe. First,
there are infinitely many functions compatible with the observed data so that obtaining a converged
posterior on " is a computationally arduous task; second the prior measure plays a significant role
in weighting the many possible forcing functions which can explain the data.

As in the non-model error case, we look at a set of experiments where the observations are
made at 100 evenly spaced times, with the observation stations evenly spaced on a grid with an
increasing number of points. Once again, as we increase the number of observation stations, we
are able to recover the value of any given Fourier mode in the initial condition with increasing
accuracy and certainty as we increase the amount of data. We omit the majority of the graphical
representations of this fact and concentrate instead mainly on the posterior distribution on the
forcing function ". Once again the noise is assumed to be mean zero Gaussian, with covariance
matrix !=)2 I , with )=0.01.

Figures 4(a) and (b) show the marginal posterior distributions on Re("0,1(0.5)) (the real part
of the (0,1) Fourier coefficient of the forcing at time t =0.5) and on Re(F0,1(0.5)), respectively,
given an increasing number of observation stations. The first figure shows that even with a large
amount of data the standard deviation about the posterior mean for Re("0,1(0.5)) is comparable
in magnitude to the posterior mean itself. In contrast, for Re(F0,1(0.5)) and for a large amount
of data, the standard deviation around the posterior mean is an order of magnitude smaller than
the mean value itself. The data is hence much more informative about F̃ than it is about ", as
predicted.

We pursue this further by comparing samples from the Markov chain used to explore the
posterior distribution, with the empirical average of that chain. Figure 5(a) shows an example
trace of the value of Re("0,1(0.5)) in the Markov chain (fluctuating), together with its empirical
average (smoother). The slow random walk of the sample path, around the empirical mean, is
the hallmark of an unconverged Markov chain. In contrast, Figure 5(b) shows how well the value
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Figure 4. Increasing numbers of observations in space, Eulerian model error case. (a) Re("0,1(0.5)), (b)
Re(F0,1(0.5)). Note much smaller variances in the distributions in (b) in comparison with those in (a).
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Figure 5. Value of (a) Re("0,1(0.5)) and (b) Re(F0,1(0.5)) in the Markov chain.

of Re(F0,1(0.5)) converges in distribution in the Markov chain. The whole trace stays within a
reasonably tight band around the empirical mean, fluctuating in a white fashion; it does not display
the slow random walk behaviour of Figure 5(a).

Figure 6 shows the expectation of the entire function Re(F0,1(t)), given an increasing number of
points in the vector field to be observed. As the number of observations increases, the expectation
of Re(F0,1(t)) nears the true value, given by the black curve.

If we now look at the posterior mean of the initial condition with a varying number of observation
stations, and compare this to the true initial condition, we get an error curve as shown in Figure 7.
This shows that as the number of observation stations increases in a sensible way (for example
using a space-filling algorithm), the posterior mean of the initial condition converges to the true
initial condition.

Similarly, if we look at the L2([0,T ]; L2(T2))-norm of the difference between the posterior
mean of the time-dependent forcing, and the true forcing that created the data, we get an error
curve as shown in Figure 8(a). This shows that as the number of observation stations increases in
a sensible way that the posterior mean of the time-dependent forcing converges to the true forcing.
Notice however, that the convergence is slower in this quantity than in that given in Figure 8(b),
which shows the norm of the difference between the posterior mean of F and the true forcing
F. Again, this shows that as we increase the number of observation stations, the posterior mean
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Figure 7. ‖E(u)−uAct‖L2 : increasing numbers of observations in space, Eulerian model error case. uAct
is actual initial condition that created the data.

converges to the true answer. The convergence of this quantity (gradient ≈−0.323) is much quicker
than that of " (gradient ≈−0.216), but slower than that of u (gradient ≈−0.778). Note that these
gradients are reliant on the way in which the amount of data is increased, where in this case the
observation stations were placed on an increasingly refined grid.

We also have analogous results (given in [36]) for the case where we increase the number of
observations in time, but keep the number of observation stations the same.

We may also be interested in understanding how well we are able to characterize high-frequency
(in space) forcing from Eulerian data. In the following experiment, all Fourier modes in the forcing
that created the data were set to zero, apart from two high-frequency modes for k = (5,5) and
k = (4,5). An increasing number of observation stations were placed on a grid, with observations
made at 100 evenly spaced times up to T =1. Figure 9 shows the mean forcing function (an average
over all the realizations in the Markov chain) for the Fourier mode Re("5,5(t)), as a function of
time. The actual value that was present in the forcing that created the data is indicated by the solid
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(a) (b)

Figure 8. Increasing numbers of observations in space, Eulerian model error case, (a) ‖E(")−"Act‖L2(0,T ;H )
(b) ‖E(F)− FAct‖L2(0,T ;H ). "Act and FAct are the actual forcing functions that created the data.
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Figure 9. Re("5,5(t)): increasing numbers of observations in space, Eulerian model error case, high
frequency forcing. True value given by black line.

line. Figure 10 shows the absolute value of the difference between the mean function and the true
value that created the data.

In each Fourier mode, the more observations in space that are assimilated, the better the estimate.
Moreover, the variance in these estimates (omitted here) reduces as the amount of information
increases, leading to peaked distributions on the forcing function that created the data.

Note that high-frequency modes require more spatial observations to be able to make accurate
estimates than the low-frequency modes. This is simply due to the fact that with few spatial
observations, no matter how many observations we have in time, our information about the high-
frequency Fourier modes is under-determined, and aliasing leads to a great deal of uncertainty
about these modes.

So far we have only considered examples where the model error forcing that created the data
is constant in time. In the following experiment, we take a draw from the model error prior (10)
as the forcing function that is used in the creation of the data. This means that we have non-zero
forcing in all of the Fourier modes, and this value is constantly changing at each time step also.
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Figure 11. Re("0,1(t)): increasing numbers of observations in space, Eulerian model error case, forcing
function taken from prior. True value given by black curve.

Figure 11 shows the estimates (with varying numbers of spatial observations with a fixed number
of 100 observations in time) of the forcing function for a particular Fourier mode, along with the
actual forcing function that created the data. In Figure 12 the absolute value of the difference
between the estimates and the function that created the data are plotted.

These graphs show that as we increase the number of spatial observations, the estimates of the
forcing functions converge to the function which created the data.

5. LAGRANGIAN DATA ASSIMILATION

Now our aim is to sample from the posterior measure (13) using the algorithm from Section 3.
Unlike the Eulerian case, the posterior measure is not Gaussian, because H is non-linear, and so
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Figure 13. Increasing numbers of observations in time, Lagrangian. True value
given by black vertical line.

the posterior cannot be computed simply by means of linear algebra. In the first two subsections,
we study recovery of the initial condition, first with a perfect model and second with an imperfect
model. In the third subsection, we study recovery of both the initial condition and the forcing.

5.1. Recovering the initial condition

We consider an example where we have a fixed number of 25 tracers, whose initial positions
are evenly spaced on a grid, and assumed to be known. We observe each tracer at an increasing
number of times evenly spaced on the unit interval, as we have previously done in the Eulerian
case, and attempt to recover the initial condition of the fluid. Once again the noise is assumed
to be mean zero Gaussian, with covariance matrix !=)2 I , with )=0.01. Figure 13 shows that
the marginal distributions for Re(u0,1) have converged to approximate Gaussian distributions, and
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creation. True value given by black vertical line.

exhibits posterior consistency as the number of temporal observations increases. We also have
similar results showing posterior consistency in the case that we have a fixed observation time and
an increasing number of tracers whose initial positions are evenly spaced on a grid (given in [36]).

5.2. Mismatches in model forcing

As in Section 4.2, we now consider the case where the model in our statistical algorithm does
not reflect the dynamical system from which we are making our observations. We attempt to
explain the data arising from a forced model through the initial condition for an unforced model.
Once again the noise is assumed to be mean zero Gaussian, with covariance matrix !=)2 I , with
)=0.01. Figure 14 shows the marginal distributions of one Fourier mode in such a situation where
we introduce low-frequency constant forcing in the data creation process, but set "≡0 in the
statistical algorithm. Again, we consider Lagrangian data in the case where we steadily increase
the number of observation times. As in the Eulerian example, two things are noteworthy: (i) the
posterior tends towards a peaked distribution as the amount of data increases; (ii) this peak is
not located at the true initial condition (marked with a black line). This incorrect estimate of the
initial condition is due to the mismatch between model used for the assimilation and for the data
generation. In particular the energy in the posterior on the initial condition is increased in an
attempt to compensate for the model error in the forcing.

Lagrangian data is much more sensitive to small changes in the model error forcing than
the equivalent Eulerian data, due to particles’ positions being dependent on the entire history of
the velocity field from the initial time. Therefore, creating more complex incongruities between the
data creation schemes and the model used within the statistical algorithm, as we did in Section 4.2,
can cause more serious problems. To this end, the RWMH algorithm simply failed to converge in
several experiments of this type. A random walk method is clearly inadequate for exploring these
types of highly complex probability densities. The assumed amount of observational noise can be
altered to allow freer exploration of the state space, but finding a value which simultaneously does
not simply return a trivial solution (the prior distribution) or does not converge in a reasonable
amount of time due to the complexity of the posterior distribution can be challenging. It might
be instructive to implement a gradient-type method, or other MCMC methods, in these more
challenging scenarios to better understand these types of problems.
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Figure 15. Re(u0,1): increasing numbers of observations in space, Lagrangian model error case. True value
given by black vertical line.

5.3. Quantifying model error

The problems we experienced in Section 5.2 serve to highlight the need to estimate not only the
initial condition, but also the model error forcing. The Lagrangian equivalent of the model error
problem is more harder to sample from in comparison with the Eulerian case. This is due to the
fact that the position of a passive tracer is dependent upon the entire history of the velocity vector
field up to the observation time. Moreover, a small change in the forcing function can result in
the small displacement of hyperbolic points in the flow, which in turn can drastically alter the
trajectory of one or more tracers. This makes it hard to move in the Lagrangian model error state
space within the MCMC method. As a consequence a simple random walk proposal is highly
unlikely to be accepted. Indeed, this was borne out in our initial results, which showed that even
after very large amounts of samples, the Markov chains were far from converged, as the size of
jump in the proposals of the next state that is required to give reasonable acceptance probabilities
was simply too small to allow efficient exploration of the state space in a reasonable time.

One way to tackle this is to alter the likelihood functional (which calculates the relative likelihood
that a given choice of functions created the observations) to allow freer exploration of the state
space. The data was created with observational noise with variance !=)2

1 I , but the assimilation is
performed with !=)2

2 I and )2 0)1. Then, the acceptance probabilities increase, allowing larger
steps in the proposal to be accepted more of the time. The results that follow in this section
use )2

1 =10−4 and )2
2 =25. We will show that, despite this large disparity, it is possible to obtain

reasonable estimates of the true forcing and initial condition. In particular, for large data sets, the
posterior mean of these functions is close to the true values that generated the data. However,
because )2/)1 is large, the variance around the mean is much larger than in the previous sections
where )1 =)2.

Equivalently to the Eulerian case, we first consider the scenario where we have 100 equally
spaced observation times up to time T =1, at which we observe the passive tracers, whose initial
positions are given on a grid with an increasing number of points. Figure 15 shows how the
marginal distributions on Re(u0,1(0)) change as we increase the number of tracers to be observed.
This figure indicates that as the number of spatial observations is increased in a sensible way,
the marginal distribution on this particular Fourier mode is converging to an increasingly peaked
distribution on the true value that created the data.
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Figure 16. Increasing numbers of observations in space, Lagrangian model error case, (a) Re("0,1(0.5))
(b) Re(F0,1(0.5)). True values given by black vertical lines.

Figure 16(a) shows how the marginal distribution on Re("0,1(0.5)) changes as we increase the
number of paths to be observed. In comparison to the Eulerian case, we are able to determine much
more about the pointwise value of the forcing function, here using the idea of inflated observational
noise variance in the statistical model. Notice that, as in the Eulerian case, the uncertainty in the
pointwise value of the forcing is far greater than that for the initial condition of the dynamical
system.

Figure 16(b) shows distributions of Re(F0,1(0.5)) and demonstrates convergence to a sharply
peaked distribution on the true value that created the data in the limit of large data sets. The
uncertainty in this quantity is less than for the pointwise value of the forcing, as in the Eulerian
case, but the discrepancy is considerably less than in the Eulerian case.

Figure 17 shows the expectation of the entire function Re(F0,1(t)), given an increasing number
of points in the vector field to be observed. As the number of paths to be observed increases, the
approximation does improve in places. However, since we altered the likelihood to make it possible
to sample from this distribution, this also vastly increased the variance in each of the marginal
distributions as there is relatively more influence from the prior. Therefore, the expectation of
this function does not tell the whole story. This picture does show us however that it is certainly
possible to get ballpark estimates for these functions given Lagrangian data.

We also have similar results (given in [36]) for when a fixed number of tracers are observed at
an increasing number of observation times on a fixed interval.

6. CONCLUSIONS

We have argued that, in situations where uncertainty quantification is important, the use of an
MCMC method to fully explore the posterior distribution of state given data is both worthwhile and
increasingly viable. We have investigated in some details the properties of the posterior measure
for simplified models of data assimilation in fluid mechanics, for both Eulerian and Lagrangian
data types, with and without model error. Through this work, we were able to say more about
what kind of information we can garner from these different data types in different scenarios.
Although only indicative, being a markedly simpler model than any model that is currently used
in practical meteorological and oceanographical scenarios, it still gives us a better idea of how to
attack these problems, and of how much information is contained within different types of noisy
observation in them. Furthermore, in the current computational practise various simplifications are
used—primarily filtering or variational methods [33]—and the posterior measure that we compute
in this paper could be viewed as an ‘ideal solution’ against which these simpler and more practical
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Figure 17. Re(F0,1(t)): increasing numbers of observations in space, Lagrangian model
error case. True value given by black curve.

methods can be compared. To that end it would be of interest to apply the ideas in this paper to
a number of simple model problems from data assimilation in meteorology or oceanography and
to compare the results from filtering and variational methods with the ideal solution found from
MCMC methods.

We have also shown that in the limit of a large amount of informative data, whether that be
created by increasing the number of observation times, or by increasing the number of tracers being
observed, or the number of observation stations in the Eulerian case that the posterior distribution
converges to an increasingly sharply peaked measure on the field/forcing function that created
the data, with and without model error. Proving such a result presents an interesting mathematical
challenge that will give insight into the large data scenario.

We have also seen certain scenarios in which the random walk method was pushed up to,
and beyond its boundaries of efficacy. Implementation of gradient-based methods such as the
(Metropolis-Adjusted Langevin) MALA algorithm, as shown in [33], is also of great interest, and
may be useful in tackling these more complex posterior densities.

There are also many other application domains to which the algorithmic methodology developed
here could be applied and another future direction will be to undertake similar studies to those here
for problems arising in other application areas such as subsurface geophysics and applications in
image processing such as shape registration.
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