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SIAM REVIEW c 1989 Society for Industrial and Applied Mathematics 
Vol. 31, No. 2, pp. 191-220, June 1989 001 

NONLINEAR INSTABILITY IN DISSIPATIVE FINITE DIFFERENCE 
SCHEMES* 

ANDREW STUARTt 

Abstract. A unified analysis of reaction-diffusion equations and their finite difference representations 
is presented. The parallel treatment of the two problems shows clearly when and why the finite difference 
approximations break down. The approach used provides a general framework for the analysis and 
interpretation of numerical instability in approximations of dissipative nonlinear partial differential 
equations. 

Continuous and discrete problems are studied from the perspective of bifurcation theory, and 
numerical instability is shown to be associated with the bifurcation of periodic orbits in discrete systems. 
An asymptotic approach, due to Newell (SIAM J. Appl. Math., 33 (1977), 133-160), is used to investigate 
the instability phenomenon further. In particular, equations are derived that describe the interaction of the 
dynamics of the partial differential equation with the artefacts of the discretisation. 

Key words. continuous and discrete problems, dissipation and nonlinearity, bifurcation and instability 

AMS(MOS) subject classifications. 35A40, 35K57, 65M10 

1. Introduction. In this paper we analyse two problems: a scalar reaction- 
diffusion equation and its finite difference analogue. The problems appear below. 

PROBLEM (P). Find u(x, t) satisfying 

u,= u\+ Xf(u), 

u(O,t)=u(1,t)=O, u(x,O)=uo(x). 

PROBLEM (PD). Find Un satisfying 

nU 
1 
-U 

n 
# 2\ [0U + (1 -_)UJn] + XA\t [of(UnJ ) + ( _0)f (UJn)] 

u = UJ =O, U= U0 jAx) 

jfor j=1, , J- 1. Here UJ UJ+ 1 -2UJ+ UJ-1,JAx= 1, r= At/Ax2, and 
0<6' 1. 

Thus uj" approximates u(jAx, nAt). By studying the two problems in parallel we 
develop an understanding of the approximation of partial differential equations in 
which a dissipative mechanism is balanced by nonlinearity. The two fundamental 
questions we ask about the approximation of (P) by (PD) are: 

Question 1. What qualitative features of the partial differential equation (P) 
cannot be adequately represented by the discretisation (PD)? 

Question 2. What qualitative features of the discretisation (PD) are not present 
in the partial differential equation (P)? 

We analyse the behaviour of (P) by means of the elements of local bifurcation, 
linear stability, and weakly nonlinear stability theories. Such local theories cannot 
completely explain the global behaviour of the reaction-diffusion equation. Nonethe- 
less, analyses based on these local theories form the cornerstone of many global 
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192 ANDREW STUART 

theories, and the local results themselves yield direct insight into the behaviour of (P) 
in the vicinity of hyperbolic stationary points. 

We apply similar local analyses to (PD). The framework within which we study 
the finite difference equations is that of practical numerical stability (P-stability), 
rather than convergence. That is, we examine the behaviour of (P) for fixed, but small, 
mesh-spacings. As for the continuous case, the local analyses do not explain 
the behaviour of (P) in its entirety; they do, however, illuminate the answers to 
Questions 1 and 2. 

The pioneering paper in the analysis of numerical instability in discrete para- 
bolic problems, by means of the methods from bifurcation and stability theory, is 
that of Newell [38]. By generalising the method of multiple scales to difference 
equations, Newell extended weakly nonlinear analyses, developed in the context of 
hydrodynamic stability theory [53], [56], to discrete equations. He used this asymp- 
totic method to analyse numerical instability in representative dissipative and 
dispersive discretisations. 

The study of the qualitative behaviour of discretisations of differential equations 
has benefited considerably in recent years from the use of concepts and analytical 
tools originally developed for continuous problems. This has led to a deeper under- 
standing of the approximation process, and at the same time to simple interpretations 
of discretisation error in terms readily understood by those applying numerical 
methods to real problems. For example, a wide class of numerical instabilities can be 
interpreted as spurious triad wave interactions [10] generated by discretisation. The 
phenomenon of sideband instability in numerical methods was observed experimen- 
tally in [6] and has been analysed further in [48], where it is described in terms of the 
Benjamin-Feir instability from wave motion [2]. Also relevant in this context is the 
work of Moore [37], who identified a spurious triad interaction in a numerical model 
for wave propagation and analysed it by means of the Stokes expansion and multiple 
scaling arguments. This approach is applicable to a wide class of dispersive difference 
schemes and has been used to analyse discretisations of the Korteweg-deVries (KdV) 
equation (Herbst and Cloot [22]) and the inviscid Burger's equation (Cloot and Herbst 
[9]). Moore's analysis hinges on a comparison of the discrete dispersion relation 
with the continuous problem. The study of dispersion relations is useful both as a 
diagnostic and as the basis for analysis. For a survey of such results for linear 
problems see [54], [55]. 

The majority of the analyses described here are scattered throughout a broad 
body of literature in applied mathematics and numerical analysis. Thus it seems 
appropriate to present the study of both the reaction-diffusion equation and its 
discretisation in a unified way. The new work presented in this paper is an analytical 
description of the nonlinear interaction of a high wavenumber mode, which is a 
product of the discretisation, and a low wavenumber mode present in the governing 
differential equation. This is of interest since it shows how nonlinear numerical 
instability can be triggered by a mechanism inherent in the underlying partial 
differential equation-something that cannot happen in linear problems. The phe- 
nomenon of high/low wavenumber interaction has been identified in problems similar 
to (P), but with homogeneous Neumann or periodic boundary conditions, using a 
closed subsystem generated by aliasing as the basis for analysis (see [5 1]). 

Aliasing [50, p. 463] has formed the basis for many studies of nonlinear numerical 
instability, the foundational paper being [40]. However, the approach suffers from 
a major disadvantage: it generally applies only to the analysis of the interaction of a 
(relatively small) number of high wavenumber modes (the example in [5 1 ] is atypical 
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INSTABILITY IN DIFFERENCE SCHEMES 193 

in this respect since the special structure of the problem allows the inclusion of a 
nontrivial low wavenumber mode). Thus the instabilites predicted by these analyses 
[6], [9], [13], [16], [22], [48] are based on the assumption that initially a significant 
amount of energy is found in the high wavenumbers. For problems with smooth 
initial data this is not the case, and the instability predicted via the aliasing analysis 
may or may not appear in practice. 

In Burgers' equation there is a rapid cascade of energy to high wavenumbers 
through the formation of shocks, and the aliasing analysis of Fornberg [ 16] is relevant 
to a large class of problems with smooth initial data. However, for many other 
problems there remains the open question of how the energy distributes itself among 
Fourier modes as the timestepping proceeds. Nonetheless, Moore [37] shows that 
considerable insight into this question can be obtained by using asymptotic analysis 
to identify the interactions of the Fourier modes that dominate. Moore's method 
works well for dispersive equations; in these problems wave interactions determine 
the departure from a given initial state, and multiple scales arguments can be used to 
study the interactions. For dissipative problems like (P) and (PD), multiple scaling 
methods also form the basis for the analysis of departures from a given state. We use 
the method of Newell [38] to show that there is a direct interaction between the low 
and high wavenumber modes in (PD). This has an important consequence, since it 
means that the time scale on which the potentially destabilising high wavenumber 
modes are stimulated is not governed by the usual cascade of energy through higher 
and higher wavenumber modes, but by the direct transfer between low and high 
wavenumbers. 

The interaction of the two modes is associated with the interaction of the 
dynamics of the partial differential equation (represented by the low wavenumber 
mode) and the artefacts of the discretisation (represented by the high wavenumber 
mode). The crucial parameter in (P) is X; the crucial parameters in (PD) are X and r. 
These parameters define the structure of the bifurcation diagram for (P) and (PD). 
The parameter X controls the bifurcation of steady solutions in both (P) and 
(PD). Determining the set of critical values of X for (P) and (PD) forms the basis of 
the answer to Question 1. The parameter r controls the bifurcation of time-periodic 
orbits in (PD), a phenomenon that cannot occur in (P). Determining the smallest 
critical value of r for (PD) forms the basis of the answer to Question 2. In general we 
will consider problems of arbitrary, but fixed, dimension-that is, J, and hence Ax, 
will be fixed. Thus the critical value for r implicitly determines a critical value for At. 

Let K denote the smallest critical value of X and r,. the smallest critical value of 
r. The following table summarises the previous local studies of (P) and (PD); numerical 
methods valid for X K X are described in [29]. An asterisk denotes a piece of work for 
which a standard text or review is cited. Note that r plays no part in (P). 

X XC r-r, r-r,andX-X, 
(P) Linear [49]* 
(P) Nonlinear [35] 
(PD) Linear This work* [41 ]* This work 
(PD) Nonlinear [58] [38] Thiswork 

This paper contains two main components: in ?2 we describe known results 
about (P), and in ?3 we derive analogous results for (PD). Section 2 is divided into 
four subsections concerned with, respectively, the properties of the eigenvalues of the 
linearisation of the partial differential equation, a local bifurcation analysis for the 
steady solutions, a weakly nonlinear analysis of the time-dependent problem, and 
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194 ANDREW STUART 

bifurcation from a parameter value at infinity. Section 3 contains analyses similar to 
those in ?2 but is longer, since the range of behaviour of the discretisation is far richer 
than that of the underlying partial differential equation. Section 4 contains a summary 
and various concluding remarks. 

We emphasise again that all the work contained in this paper is of a purely local 
nature. There is a great deal of current interest in questions concerning the global 
nonlinear stability of numerical approximations to partial differential equations. Most 
of that research is concerned with defining numerical stability for nonlinear problems 
in such a way that the Lax equivalence theorem [41], which concerns the relationships 
between consistency, stability, and convergence in linear problems, can be generalised 
[1 1], [30], [31]. The results in [30] provide a unifying framework for the analysis of 
discretisations in the limit as the mesh-spacing shrinks to zero. However, here we take 
the view that, in many practical large-scale computations, it is at least as important 
to understand how the qualitative behaviour of the discretisations compares with that 
of the underlying differential equation as it is to develop a convergence proof, since 
the limit "mesh-spacing shrinks to zero" is unattainable in practice. In particular, the 
asymptotic behaviour of discretisations of time-dependent problems for fixed values 
of the mesh-spacing is of fundamental importance in many applications. This stand- 
point is taken, for example, by Sanz-Serna [44], who studies the computation of 
periodic orbits by means of symplectic difference schemes (which mimic the area- 
preserving properties in Hamiltonian systems), and by Iserles [24], who analyses the 
asymptotics of Runge-Kutta and multistep methods applied to scalar ordinary 
differential equations. 

We hope that, by analysing in detail the local behaviour of a scalar reaction- 
diffusion equation and its discretisation, we can shed light on the approximation 
process for the wide class of equations in which a dissipative mechanism is balanced 
by nonlinearity. Our analysis concerns the behaviour of the partial differential 
equation and its discretisation near a trivial solution (zero). The ideas, however, apply 
more generally in the neighbourhood of any steady solution. We show this in ?3.3 by 
means of secondary bifurcation analysis, and also in [52], where numerical methods 
for a generalisation of (P) (to allow for convection) are studied using singularity 
theory. 

Problem (P) has a long history and finds application in the modeling of many 
biological and chemical phenomena. In the case f (u) oc e" it arises in the theory 
of combustion, where u represents departure of the temperature from an initial 
profile. Blowup can occur; this has an interpretation in ignition theory [25]. For 
f(u) = u(1 - u) the equation arises in population genetics, where u is the frequency 
of a favourable gene; various generalisations of this nonlinearity are also relevant to 
this application [ 14]. Similar nonlinearities also arise in studies of the spatial patterning 
of the spruce budworm [32]. We will study particular classes of nonlinearity which 
make the exposition simpler without changing the central ideas. Arbitrary nonlinear- 
ities are analysed in [52]. Problem (P) is also important, since it represents the 
enormous class of real-world problems in which a dissipative mechanism competes 
with nonlinear effects. 

2. The continuous problem. In this section we describe the behaviour of (P). We 
consider two classes of nonlinearity f(u), namely 

(i) f(u):f(O) = 0,f'(0) = 1,f"(O) = 0,f"'(0) ? 0; 
(ii) f(u):f(0) =f'(0) = 0,jf"(0) 0. 
In general it is important to define appropriate function spaces for (P). However, 

since our analysis is a local one, we refrain from detailing the nature of the space and 
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INSTABILITY IN DIFFERENCE SCHEMES 195 

assume that the solution of (P) possesses properties sufficient for our analysis to hold. 
We concentrate on an analysis of (P) for 11 u I,, << 1; however, the global behaviour is 
fairly well understood and described in detail in [7], [21], [34], [49]. In practical terms 
(P) behaves like a scalar ordinary differential equation-time-oscillatory solutions do 
not exist and solutions either converge to a steady state or diverge to infinity in finite 
or infinite time. 

2.1. The linearised problem. In this subsection we consider both cases (i) and 
(ii). Since f(O) = 0, the trivial solution u(x, t) 0 solves (P). The linearisation of (P) 
about this trivial solution is given by 

(2.1.1) v,=v -+ Xf'(O)v, 

(2.1.2) v(O, t) = v(1, t) = O, v(x, O) = uo(x). 

This problem is readily solved by separation of variables. We seek solutions 
v(x, t) = O(x)41(t). Then 

(2.1.3) 1(t)= exp (t), 

and ? (x) satisfies 

(2.1.4) /'V + Xf'(O) = ?, 

(2.1.5) =00)=0. 

The eigenvalue problem (2.1.4), (2.1.5) is fundamental to (P). First, to solve the 
linearised equations (2.1.1), (2.1.2) we require the eigenvalues and eigenfunctions a 
and ?(x) of (2.1.4), (2.1.5) for fixed X. Second, (2.1.4), (2.1.5) determines the 
eigenvalues a of the Frechet derivative of (P) with respect to the trivial solution. 
Hence, by the implicit function theorem, the eigenvalues X of (2.1.4), (2.1.5) for a 
satisfying Re (a) = 0 define the bifurcation points from the steady solution u(x, t) 0 
of (P); these are the values of X at which nontrivial solutions to (P) branch off from 
u(x, t) 0. Thus bifurcation occurs at those values of X for which the growth rate of 
one of the modes in the linearised solution is neutral (neither decaying nor growing) 
in time. This is a loose definition which suffices for the simple problem (P). The 
reader interested in precise conditions in the more general setting of nonlinear operator 
equations posed in a Banach space is referred to [8]. 

If Im (a) = 0 the bifurcation corresponds to a branching of steady solutions, 
whereas Im (a) $ 0 corresponds to the branching of periodic solutions, known as 
Hopf bifurcation [33]. However, (2.1.4) and (2.1.5) are in Sturm-Liouville form so 
that, necessarily, Im (a) = 0 [28]. We prove this well-known result for the purposes of 
comparison with the discrete case considered in ?3; this proof can be found in [12]. 

THEOREM 2.1.1. The eigenvalues a of the problem (2.1.4), (2.1.5) are real. 
Proof. Multiply (2.1.4) by ?*(x), the complex conjugate of ?(x), and integrate 

by parts. This yields 

[a-Xf '(0)] q05* dx+ q5 X* dx=0. 

Thus 

Va -Xf '(()]J 1/42 dx+17 It12 dx=0. 
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196 ANDREW STUART 

Taking the imaginary part gives 

Im (a)J II2 dx=0, 

since X c R; thus Im (a) = 0 as required. Li 
Applying the same method to the linearisation of (P) about any steady solution 

shows that Hopf bifurcation cannot occur; this fact may be deduced directly from the 
more general result about the behaviour of (P) described above: (P) behaves like a 
scalar ordinary differential equation and cannot exhibit oscillatory behaviour. 

2.2. Bifurcation analysis; steady solutions. As described in the previous sub- 
section, the bifurcation of steady solutions of (P) from u(x, t) 0 occurs at the 
eigenvalues X of the problem 

(2.2.1i) O." + Xf I(0)o= 0, OM0)= 0() =0. 

Clearly, if f'(0) = 0 then (2.2.1) possesses no eigenfunctions; thus we consider the 
casef'(0) $ 0 in this and the next subsection. Without loss of generality we may scale 
X so thatf'(0) = 1 (case (i)). 

For a detailed analytic discussion of the necessary and sufficient conditions for 
bifurcation of steady solutions the reader is referred to [8]; for a more geometrical 
viewpoint see [ 17]. For motivation, it is sufficient to consider the following argument 
for the derivation of (2.2. 1). We seek steady solutions U(x) of (P) with small supremum 
norm and set U(x) - co(x), where ?<< 1. Substituting this into (P) and equating 
powers of c yields the O(c) approximation (2.2.1). Thus, for small-norm solutions of 
the required form to exist, we require that nontrivial solutions of (2.2.1) exist. This 
occurs for 

(2.2.2) X = (k7r)2, 0(x) = sin (k7rx). 

Hence U(x) may be approximated by eak sin (k7rx), for X - (k7r)2. The ak are, as yet, 
undetermined. 

Let us continue the expansion to the next order in c, for X 27r . Since f"(0) = 0 
there are no 0(c2) terms in the expansion for U(x). Setting 

U(x) ea, sin (7rx) + c3x (x), X w 7 2 + x0c2 

we obtain 

(2.2.3) x 2+ =x=-Xoa sin (7rx)-7r 2f"'(O)a3 sin3 (7rx)/6, x(0)x(1)=. 

The homogeneous version of (2.2.3) is singular (since it is precisely (2.2.1) with 
X = 7r2) so we must apply the Fredholm alternative for boundary value problems [20] 
to obtain the existence of a solution x(x). This orthogonality condition yields 

(2.2.4) a,=0 or al r6X, .(0 f sin4 (7X) dx 

Equation (2.2.4) has two nontrivial solutions, which differ only in sign, whenever 
sgn (X(ff"'(0)) = -1. This is an example of a pitchfork bifurcation. This particular 
bifurcation structure arises because of the conditions on f(u) listed in case (i). In the 
language of singularity theory the choice of case (i) leads to a particular normalform 
[17]; other classes of f(u) can be considered leading to different normal forms. The 
casef"(0) $ 0 is studied in the numerical context in [18], [52]. 
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INSTABILITY IN DIFFERENCE SCHEMES 197 

Similar pitchfork bifurcations are found for X - (k7r)2 + X0o2. The coefficients ak 
are then given by (2.2.4) with k7r replacing 7r throughout: 

(2.2.5) ak = 0 or ak = 26o f 1 sin2 (kw) d k2w2f"'(O) f0 sin4 (k7x) dx 

Piecing the information together, we obtain a local description of the steady solutions 
of (P) as shown in Figs. 1 and 2 for the two casesf"'(O) < 0 andf"'(O) > 0. The global 
structure of these bifurcation diagrams is determined by the global properties off(u). 

11 uflk 

7r2 4w7r2 97r2 

FIG. 1. Bifurcation diagram for (P). The casef"'(O) < 0. 

ull 

7r2 4742 9w2 X 

FIG. 2. Bifurcation diagram for (P). The casef"'(0) > 0. 
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198 ANDREW STUART 

2.3. Weakly nonlinear analysis. In this subsection we employ the notion of the 
stability of steady solutions of partial differential equations. A steady solution U(x) 
of (P) is said to be stable in a given norm 11 * 11 if, for any c > 0, there exists a 6 > 0 
such that 11 u(x, 0) - U(x)11 ' 6 implies that 11 u(x, t) - U(x) 11- c for all t. In addition, 
we say that the solution is asymptotically stable if 11 u (x, t) - U(x) -0 as t -> oo. For 
problem (P) the principle of linearised stability holds [21], [27], [49]. This means that 
the stability properties of a steady solution to the nonlinear problem (P) can be 
inferred from the spectrum of the Frechet derivative of (P) evaluated at the steady 
solution. 

As in ?2.2 we assume that f'(0) = 1. Solving (2.1.4), (2.1.5) for a and 0(x), we 
obtain the linearised solution of (P): 

00 

(2.3.1) v (x, t)= X a exp [(X - k %-r 2)t] sin (krx), 
k=O 

where the ak are determined by the initial conditions. For XA< 72 we obtain 
v(x, t) ->0 as t -> oo. For X> 7r2, V(x, t) ->oo as t -> oo. Thus u(x, t) 0 is a linearly 
stable (unstable) solution of (P) for X < 7r2(> 7r 2). By the principle of linearised stability 
we deduce the following about (P). For X < 7r2, u(x,t) 0 is a stable solution of (P), 
whereas for X> 7r2 it is not. The value X = 7r2 is the first bifurcation point from 
u(x, t) 0 (where Re (a) = 0; see ?2.2) and hence the first bifurcation point from 
U(X, t) 0 is a point of change in stability for the trivial solution. 

Thus a purely linear analysis determines the stability of the solution u(x, t) 0 
to infinitesimally small disturbances. However, to say more about the dynamics 
of (P)-in particular, to answer questions about finite amplitude disturbances of 
ll(x, t) 0-we must take into account the form of nonlinearityf(u). We do this by 
performing a weakly nonlinear analysis of (P) for X - 7r2. This method is, in fact, a 
reduction of the dynamics of (P) onto a center manifold [19]. The work in this 
subsection follows closely the exposition of Matkowsky [35]. 

The essence of weakly nonlinear analyses is to consider a modulation of the 
linearised solution for X w7r2; the modulation is chosen on a slow time scale on which 
the effect of the nonlinearity in f (u) plays a part. This is achieved by the method of 
multiple scales. Formally we set 

(2.3.2) =7r2+X'2 

and seek an expansion for u(x, t) in the form 

00 

(2.3.3) u (x, t; e) - E VE71(X, t, -r)c 
1171= I 

where r = c 2t. In keeping with the method of multiple scales we treat t and r as 
independent variables. The extra choice arising from the introduction of r enables us 
to eliminate terms in the expansion which are secular in t. Abusing notation we set 

o _ 2 a (2.3.4) -At 2 

at at aT 

in (P). We also assume that the initial data is of small amplitude so that 

(2.3.5) u(x, O) = ch(x). 
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Substituting (2.3.2)-(2.3.4) into (P) and equating powers of c, we obtain 

(2.3.6) Lv,-vu,-v,-\-\-7r 2V = O 
(2.3.7) Lv2 = 0, Lv3= r3, 

where 

r3 - -1, + XOv1 + 7r2f"'(O)v/6. 

Here v,(0) = v, (1) = 0. Equation (2.3.5) gives the initial conditions vu (x, 0) = h(x), 
and V,j7(X, 0) = 0 for m > 1. Equation (2.3.6), together with the initial and boundary 
conditions, has its solution given by (2.3.1) with X = 7r2 and the ak functions of r (as 
yet undetermined). Thus 

(2.3.8) vI(x,t,T)=a,() sin (7rX)+ L ak(T)exp [(1 -k2)7r2t]sin (k7rx), 
k=2 

where the second (summation) term decays with t. The solution for v2 is zero since L 
is linear and the initial and boundary conditions are homogeneous. 

Since the same differential operator L occurs at successive orders, secular solutions 
v3 may arise. We solve (2.3.7) for V3 by Fourier decomposition, using the complete 
set of eigenfunctions sin (krx). This gives an infinite set of coupled ordinary differ- 
ential equations in t. To avoid secularity we remove terms constant in t from the 
equation corresponding to k = 1 (the mode constant in time in v,). This condition 
can be written succinctly [35] as 

(2.3.9) lim}- exp [(1 - k2)_w2t] sin (kxx)r3 dx dt=O for k= 1, 

The only contribution to (2.3.9) occurs with k = 1 and comes from the first (non- 
decaying) term in (2.3.8) when substituted into r3; we obtain 

(2.3.10) da = Xoal + ba3 

where 

b_2f '(0) fC sin4 (7rx) dx 

60f sin2 (7rx) dx 

The critical points of (2.3.10), a =0 and a, =?-Xo/b, are precisely the 
amplitudes of the steady solutions given by (2.2.4). Equation (2.3.10) is explicitly 
solvable and a full description of its behaviour can be found in [12] and [35]. 
Combining (2.3.3) and (2.3.8) gives 

U (x, t) z ea, (Tr) sin (ax) 

at t -> oo. Using this we summarise the behaviour of u(x, t) as follows: 
(a) X0 > 0, b > 0. In this case a, (r) -- oo for finite r for all initial data. Thus the 

zero solution is unstable, as predicted by linear theory (see Fig. 4 with X > r2). 

(b) X0<O, b>O. In this case a,(T)-O as T-0oo for all initial data satis- 
fying Ia,(0)I < V/=777. For initial values of a,(0) lying outside this range, a,(T) 
increases without bound (see Fig. 4, X < 7r2). This is an example of afinite amplitude 
instability: the zero solution of (P) is unstable to initial disturbances satisfying 
Ia1 (0)1 > I-XO/b, even though the zero solution is linearly stable. 
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7r2 x 

FIG. 3. Diagram showing evoluttion of data under (P). The case f"'(O) < 0. 
The arrows indicate evoluition in time. 

Steady Solution 
Branch 

7r2 x 

FIG. 4. Diagram showing evoluttion of data tinder (P). The case f"'(O) > 0. 
The arrows indicate evoluttion in time. 

(c) Xo > 0, b < 0. In this case a, (T) -- >-X/b for all initial data. Thus the zero 
solution is unstable as predicted by linear theory. Furthermore, we obtain the 
additional information that u(x, t) evolves towards the nonzero steady state con- 
structed in ?2.2 (see Fig. 3, X > 7r2). 

(d) Xo < 0, b < 0. In this case a, (T) -> 0 for all initial data, confirming that the 
zero solution is stable for Xo < 0 (see Fig. 3, X < 7r2). 

2.4. Bifurcation from infinity. In this subsection we consider f(u) defined by 
case (ii), so that f'(O) = 0. For simplicity, we consider (P) in the specific casef(u) = u2. 
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The discussion follows the work of Rosenblat and Davis [42], who consider a more 
general problem that includes the case f(u) = U2. To standardise notation with [42] 
we rescale (P) by setting T = Xt, giving 

(2.4.1) UT= X -I lA + u, 

subject to u(0, T) = U(l,T) = 0 and some initial conditions. 
Since f'(0) = 0 we deduce that there is no bifurcation from the trivial solution 

because (2.2.1) has no eigensolutions. However, (2.4.1) is characterised by a form of 
bifurcationfrom infinity. If we linearise (2.4.1) about U(X, T) 0 and solve the resulting 
equation by separation of variables, we obtain the linearised solution 

00 

(2.4.2) v(x, T) = L ak exp (-k27r9T/X) sin (krx). 
k=O 

For f(u) defined by case (i), the bifurcation points X = k2wX2 are defined by the 
points where the growth rates of the individual modes sin (krx) composing the 
linearised solution (2.3.1) are neutral in time (since Re (a) = 0 at such points; see 
??2.1 and 3). In this sense the point X = oo is a candidate for a bifurcation point of 
infinite multiplicity in the current problem (case (ii)), since the growth rates of each 
mode in (2.4.2) all approach zero as X -> oo. 

This heuristic discussion does not constitute a proof. However, in the case 
f(u) = U2 it can be shown that (2.4.1) possesses a nontrivial steady solution whose 
supremum norm approaches zero at a rate X-1 as X -- oo; the details of the proof may 
be found in [42], together with a stability analysis of the nontrivial solution. The 
solution is shown to be unstable. For our purposes, it suffices to note that bifurcation 
from infinity is characterised by the case where the growth rates of the linearised 
solution all approach zero simultaneously. Furthermore, the bifurcation is subcritical 
and the solution is unstable; thus a finite amplitude instability occurs in this problem, 
even though there is no bifurcation from the trivial solution at any finite value of X 
(see [42]). 

3. The discrete problem. In this section we analyse the two-level approximation 
(PD), known as the 0-method [41], by the methods described in ?2. We examine (PD) 
from the perspective of practical nuimerical stability defined in ?3.3. We will show, 
among other things, that nonlinear numerical instability is associated with the 
bifurcation of solutions periodic in n from steady (n-independent) solutions of (PD). 
A clear illustration of a related phenomenon in ordinary differential equations is 
described in [5]. 

Unlike the continuous problem, the global behaviour of (PD) is not well under- 
stood. The dynamics of discretisations (which are coupled iterated maps) are generally 
far more complicated than the dynamics of their continuous counterparts (which are 
differential equations); this is certainly the case for reaction-diffusion equations. For 
example, if we assume that r is unrestricted, the maximum principle for linear 
parabolic problems has no known general counterpart in the 0-method for 0 ? 1 (see 
[41 ])-indeed, the Crank-Nicolson method often introduces spatial oscillations not 
present in the differential equation. There are, however, some scattered results of a 
global nature about the behaviour of (PD). An important paper of Hoff [23] generalises 
the concept of invariant regions (see [49] and the references cited there) to discrete 
problems, and the method can be used to prove global results about specific discrete 
reaction-diffusion equations. 

The work in ?3.1 is mostly well known and described in [41]; the exception is 
the proof of Theorem 3. 1.1, which is nonstandard and presented for the purposes of 
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comparison with the continuous case. The analysis in ?3.2 is also well known [41], 
but the bifurcation theoretic presentation is new and facilitates direct comparison 
with the continuous case. The methods employed in ?3.3 are those of Newell [38], 
who generalised the method of multiple scales to difference equations. However, we 
consider some properties of (PD) not analysed by Newell: the evolution of arbitrary 
initial data and the interaction of numerical instability with the underlying dynamics 
of (P). 

In ?3.1 we consider arbitrary functionsf(u). In ?3.4 we consider functions from 
case (ii), detailed at the start of ?2. In ??3.2 and 3.3 we consider case (i). These 
assumptions onf(u) simplify the analysis without changing the qualitative results. In 
[52] it is shown that the flip bifurcation of periodic orbits from steady solutions, 
characteristic of numerical instability, is generically of pitchfork type, regardless of 
the form off(u). However, the calculation of the coefficients in the normal forms is 
considerably more complicated when f"(0) ? 0; the details may be found in [52]. 

3.1. The linearised problem. The linearisation of (PD) about u' =0 is given by 

(3. 1. 1 ) vn+1 I vn = rb2 [vn+l + ( _-O)vn] + XAXtf (0)[oVnl + (1 -O))Vn], 
with the boundary and initial conditions 

(3.1.2) v = VJ=, Vn = o(j/\x). 

As in the continuous case, this problem may be solved by separation of variables. We 
seek solutions v n= q5jtn. Then 

(3.1.3) 46n 
= 

sd 

where oa is an eigenvalue of the problem 
(3.1.4) rb2o + Xz\tf'(0)0k= = j 
with 

(3.1.5) Oo= J= 0. 

These equations can be written succinctly in the matrix form 

(3. 1.6) AO = (X\tf '(0)-- o)}, 

where A is a positive definite tridiagonal matrix and 0 = ( 1, 02, * **, I- 1) T 

Equations (3.1.3)-(3.1.5) are the discrete analogues of (2.1.3)-(2.1.5) and are 
fundamental to (PD). In ?2 we saw that bifurcations in (P) are determined by the 
eigenvalues X for which the growth rate a- of a particular mode satisfies Re (a-) = 0, so 
that the linearised solution it(t) of (2.1.3) is neutral in time t. Similarly we describe 
bifurcation in the discrete system by the condition I I = 1, where the growth rate t is 
given by 

(3.1.7) +[ 1-O)] 

so that the linearised solution (3.1.3) is neutral in n. In ?3.2 we discuss bifurcation in 
(PD) further. 

The following theorem is the discrete analogue of Theorem 2.1.1. This result can 
be proved directly by noting that (3.1.6) defines a real symmetric matrix eigenvalue 
problem for o. However, we choose a discrete analogue of the proof of Theorem 2.1 .1 . 
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THEOREM 3.1. 1. The eigenvalues u- of the problem defined by (3.1.4), (3.1.5) are 
real. 

Proof. Multiply (3.1.4) by k*, the complex conjugate of ,. Summation by parts 
[41, p. 14] and boundary conditions (3.1.5) yield 

J- J-l 

J=1 J=1 

Thus 

I0-_X'Atf'(O)] X, 10J12 +r E IOJ+ I _ o I2 +10112=O. 
J=l j=I 

Taking the imaginary part and noting that X is real, we obtain 
J- I 

IM(O-) E 10J12=O' 
J= I 

so that Im (a) = 0 as required. D 
Since o- is real we deduce from (3.1.7) that t is real, and that bifurcation occurs 

for t = ? 1 only. Equation (3.1.7) shows that if t = 1 then a- = 0. Hence t = 1 
corresponds to steady bifurcation, as in the continuous case. The case t = -1, however, 
has no analogy in the continuous case. In the language of dynamical systems it is 
known as a flip bifurcation point [19]; it corresponds to the bifurcation of solutions 
of (PD) with period 2 in n and is purely a product of the discretisation-as we 
explained earlier, (P) does not have solutions that oscillate in time. Of course we have 
not yet shown that I =-1 is ever achieved; in the following subsection we show that 
for 0 ' 0 < I, t =-1 occurs for J - 1 critical values of the parameter r. 

The case I =-1 is the familiar condition for the onset of (practical) numerical 
instability in discretisations of linear problems [41]. In the nonlinear problem (PD), 
practical numerical instability is associated with the bifurcation of a branch of periodic 
solutions of (PD) from the trivial solution. The critical parameter value at which this 
bifurcation occurs is predicted by the linear theory, but, as for problem (P) in ?2.3, 
the behaviour of the fully nonlinear problem (PD) depends crucially on the properties 
of the bifurcating solution. The situation is considerably more complicated than in 
the continuous case, since we need to consider not only the bifurcation of discrete 
steady solutions (associated with t = 1) but also the bifurcation of periodic solutions 
(associated with t = -1), which affect the numerical stability of the scheme. 

3.2. Bifurcation analysis. Here f'(0) = 1. We solve the eigenvalue problem 
(3.1.4), (3.1.5) which determines the bifurcation points from uJ- 0 in (PD). We seek 
solutions in the form qj = exp (ikwxj/J), for integer k. Substitution into (3.1.4) yields 

2r(cos (kwx/J) - 1) exp (ikwxj/J) = (o- - XAzt) exp (ikwxj/J). 

Thus 

(3.2. 1) - = -4r sin2 (k7r/2J) + XAt. 

To satisfy the boundary conditions 00 = qj = 0 we take the imaginary part of the 
eigenfunction so that 

(3.2.2) (j = sin (kwxj/J). 

For the purposes of representation on a discrete grid, we need only consider the 
wavenumbers k= 1, * , J-1. All other values of k are merely aliases of these 
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values. Thus we have constructed the complete set of eigenvectors and eigenvalues of 
the (J - 1)-dimensional matrix eigenvalue problem (3.1.6). 

We substitute (3.2.1) for u- into the growth rates t given by (3.1.7). This yields 

(3.2.3) (k = 1 - 4r(1-)sin2(kr/2J)2+Xzt(lO) fork= 1,-- ,J- 1. 1 + 4r0 sin2 (kw/2J) - XzAtO 

The condition tk = 1 defines the steady bifurcation points and k = -1 defines periodic 
bifurcation points. Let us compare the steady bifurcation points of (PD) with those 
of (P). Setting tk = 1 (note that r = zXt/zXx2) gives 
(3.2.4) X=4 sin2 (kw/2 J)/zx2 fork= 1,.* ,J- 1. 

Thus the discrete model (PD) possesses only (J - 1) steady bifurcation points 
whereas the continuous model (P) has a countably infinite set (see (2.2.2)). The 
corresponding eigenfunctions of the two problems (compare (2.2.2) and (3.2.2)) are 
identical at the discrete sampling points x = j/J = jAx. The eigenvalues, however, 
agree only when the wavenumber k of the eigenfunction is small compared with the 
number of spatial meshpoints J. Expanding (3.2.4) for k << J = zX-' gives 

X~k27r2LI _(Axk])21 

Comparing this result with the continuous result (2.2.2), we deduce that for k << J the 
eigenvalues are approximated to within an error of O(\x2). But for (J - k)/J << 1, 
(3.2.4) gives 

X 4 [1_( J- k ) 27 2] 
',zXx2 8J2 J 

which bears little resemblance to (2.2.2). 
Figure 5 shows a graph comparing the loci of steady bifurcation points for (P) 

and (PD) with Xx = 0.01. The graph confirms the analysis above and indicates that 
the positions of only the first few bifurcation points in (P) are well approximated 
by (PD). Analogous results for spectral approximations to the differential operator 
d9/dx9 are discussed in [57]. 

It is possible to construct small-amplitude nontrivial steady solutions of (PD) in 
the neighbourhood of the bifurcation points (3.2.4). The analysis is the discrete 
analogue of the one in ?2.2. We seek expansions of the form 

UJ 7 eak sin (kwj/J) + e 3XJ, X Xk+ Xo. 2 

The problem for x, arising at 0(e 3) is singular, as in the continuous case (2.2.3). 
Applying the Fredholm alternative for matrices yields 

(3.2.5) ak = 0 or a = -6X0 sin2 (kwxj/J) dx 
Xkf "(0) EJ% si(kjJ 

Here the Xk are given by (3.2.4) for k = 1, . , J - 1. These values accurately 
approximate the amplitudes of the bifurcating trivial solutions in the continuous 
problem only when the Xk are good approximations of the true eigenvalues k%2 - 
compare (2.2.5) and (3.2.5). Convergence results for the bifurcating branches are 
discussed in [58]. 

The inability of the discrete model (PD) to locate accurately all the bifurcation 
points of (P), and hence the amplitudes of the bifurcating solutions, is very important 
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FIG. 5. Comparison of eigenvalutes for (P) and (PD). A\x = 0.01. 

for the following reason. The dynamics of (P) are determined by the underlying 
structure of the steady solution set (see [7], [21]). In any practical computation there 
is always a lower bound on the size of the mesh-spacing zAx, say AX,min, and a 
corresponding upper bound on J(= zx-1), say Jmax. If we solve (P) approximately 
using (PD) then, for given Jniax, we may always choose a value of X above which the 
underlying steady solution set of (PD) is a very poor representation of that in (P), 
since the position of the steady bifurcation points, and hence the amplitude of the 
solutions, are inadequately represented. Consequently the dynamics of (P) and (PD) 
for sufficiently large X will differ substantially. We emphasise that this result is not a 
product of numerical instability, but merely reflects the inability of the discrete system 
to capture all the features of the continuous case: the steady solutions bifurcating 
from X = (kir)2 have k - 1 zeros and thus, for given Jniax, we can always choose a X 
such that the branching steady solution cannot be resolved accurately on the grid. 
However, the values of X at which this phenomenon occurs are large and the problem 
may be ripe for an asymptotic analysis. For examples of such analysis applied to the 
steady version of (P), see Fife [15] and Norbury [39]. 

The converse of the phenomenon described above can also occur: a discretisation 
can possess steady solutions which do not correspond to any steady solution in the 
underlying continuous problem as the mesh is refined [4], [46]. This phenomenon is 
sometimes termed ghost bifurcation (see [5]). If steady solutions alone are the goal, 
there are two main ways of identifying these spurious solutions: 

(i) To examine the bifurcation diagram for a sequence of mesh-spacings. Typi- 
cally, as the mesh is refined, these spurious solutions will either move off to infinity 
in the bifurcation diagram or coalesce with one another at turning points. 

(ii) Solutions varying on a scale comparable to the grid are frequently spurious. 
However, although it is relatively easy to identify spurious solutions, their presence 
has two important effects on the solution of (P). First, for steady solutions, it can 
mean that great care is needed to employ continuation procedures to prevent the 
nonlinear algebraic solver from converging to nonphysical solutions [47]. Second, the 
spurious steady solutions can affect the global dynamics of the discrete problem. (This 
is related to the first point, since many algebraic solvers involve a time-like iterative 
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procedure.) An example of how spurious steady solutions can affect time-dependent 
computations is described in [51]; the numerical solution of (P) is considered for 
functionsf(u) which lead to the development of finite-time singularities. The presence 
of spurious steady solutions leads to a degradation of the time-evolving problem 
which completely destroys the spatial structure of the solution close to the blowup 
time. This strictly nonlinear phenomenon occurs even for time-exact numerical 
methods and is caused purely by the spatial discretisation. As for the steady problem, 
we emphasise the importance of simulating the problem for a sequence of mesh- 
spacings to help identify phenomena that are products of the discretisation. 

There is a great deal of literature concerning the numerical solution of bifurcation 
problems. Standard numerical schemes become singular at bifurcation points but this 
can be overcome by using the idea of extended systems. Numerical methods for 
bifurcation problems have been developed by, among others, H. Keller, A. Jepson, 
and A. Spence. Expository papers by these authors, and many other references, are 
cited in [29]. 

We now turn to the ghost bifurcation of periodic solutions not present in the 
continuous problem (P). The trivial solution uJ =-0 bifurcates into periodic solutions 
when tk =-1. From (3.2.3) this happens for 

(3.2.6) 2+XAt(1 - 20) for k= l J- l r4(l-20) sn2(kr/2J) fr=,. Jl 

Since r(=zXt/zXx ) is positive, (3.2.6) determines no bifurcation points for ? < 0 < 1 
(assuming that XAzt is sufficiently small that the numerator in (3.2.6) is positive), and 
for 0 = 2 there are J - 1 bifurcation points located at r = oo. For 0 < Q <2 however, 
there are (J - 1) distinct bifurcation points, the smallest of which, rP, is given by 
(3.2.6) with k = J - 1. This is the value of r above which numerical instability occurs 
in the linearised equations (3.1.1), (3.1.2). In the following section we investigate the 
bearing of the value of r. on the fully nonlinear problem (PD). For ease of exposition 
we assume that 0 = 0 although the analysis can be extended to deal with all 
o<-0<!2 

3.3. Weakly nonlinear analysis. In this subsection we employ the notion of 
practical numerical stability (P-stability): a solution of (PD) is said to be P-stable if it 
admits no solutions that grow faster in nAXt than solutions of (P) do in t. This notion 
of stability is distinct from convergence stability [1 1], [30], [31] since it is concerned 
with the behaviour of (PD) for fixed values of the mesh-spacing. In particular, we 
shall fix A\x, and hence J, since the bifurcation and stability theories we employ 
implicitly assume a fixed-dimensional problem. With this convention the parameters 
X and A\t are the natural distinguished or bifurcation parameters; the bifurcation 
parameter r is defined through At, with ASx fixed. 

We describe the application of weakly nonlinear stability theory to (PD), in the 
case 0 = 0, using the method introduced in [38]. There are two lowest critical values 
of the parameters X and r at which bifurcation first occurs from the solution uJ 0 
in (PD). The first is 

4 sin2 (7r/2J) 
(3.3.1) XC = zx 
(see (3.2.4)), the lowest value of X at which steady bifurcation occurs. The second is 

(3.3.2) r'. = sI 2 (1 -\ X 
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the lowest value of r at which periodic bifurcation occurs. This critical value of r is 
found by solving (3.2.6) for the minimum critical value of A\t, which occurs for 
k = J - 1. Denoting this value by z\tc, we define 

X2tc 

We emphasise that we expect this value of r to be associated with numerical instability 
in (PD), since it corresponds to (j_I = -1. 

There are three possible parameter ranges in which we can perform weakly 
nonlinear analyses in (PD): 

(a) r rc, X < X,, and (X - k) = 0(1); 
(b) X - X', r< r., and (r- re.)= 0(1); 
(c) X X, and r r. 
Case (a) is essentially that considered by Newell [38], although he did not consider 

arbitrary initial disturbances, but only initial data proportional to the most unstable 
mode (sin ((J - 1)7rj/J) in this case). Following Matkowsky's work [35] on the 
continuous problem (see ?2.3), we treat arbitrary initial disturbances. Case (b) is the 
discrete analogue of the analysis in ?2.3; as the analysis is similar, we omit the details 
and present only the results. Case (c), describing the interaction of numerical instability 
with the dynamics of the underlying partial differential equation, has not been 
considered before, and we analyse it in some detail. 

Case (a). We seek the solution of (PD) for r close to the critical value defined by 
(3.3.2). Since we are considering a problem of fixed dimension (that is, A\x is fixed), 
any perturbation of r necessarily induces a perturbation of A\t. Hence we set 

(3.3.3) r=r,.+ ro2, zXt=\t,++ro\x2e2. 

We assume that (X - X) = 0(1) and X < X,. Following the analysis of Matkowsky 
outlined in ?2.3, we seek an expansion for uJ in the form 

OC 

(3.3.4) U E u,,1 (n,j, q) 

where q is a slowly varying n-variable, treated as independent. The extra freedom 
obtained by introducing q enables us to suppress secularity in n. We choose small 
amplitude initial data of the form uo = ch(j Xx). 

We assume that vu (n, j, q) has the form of the linearised solution with coefficients 
varying weakly in n, so that 

1- 1 

(3.3.5) v I (n, j, qZ) E tsi sn (k-xjlJ)Ak(n;e) 

where Ak(n; e) ak(,). The tk are defined by (3.2.3) with 0 = 0, r= r(, and z\t = zXt, 
so that 

(k =1 - 4r. sin2 (kr/2 J) + XAt,. for k= 1, , J- 1. 

Thus I =-l and 1A-I < 1 for k= 1, , J- 2. We now make the assumption of 
multiple scales, namely that 

(3.3.6) Ak(n+ 1;e)-Ak(n;e)=e2[akt(ri+ 1)-ak('q)]. 

This is essentially assumption (2.12) of [38]. The precise meaning of the variable 
77 is not as clear as that of its continuous counterpart T in ?2.3, since (PD) is only 
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defined on a discrete grid (representing discrete time intervals) and fractional multiples 
of the timestep have no meaning; this matter is addressed further in [45]. For our 
purposes it is sufficient to consider (3.3.6) as the defining relationship for akQ,I + 1) 
and to note that the a,'s can be eliminated in favour of the A,k's in the final recurrence 
relation (3.3.10). Identical results are obtained by using the discrete multiple-scales 
operators defined in [45]. 

Substituting (3.3.3)-(3.3.5) into (PD) and equating successive powers of e, 
we obtain 

(3.3.7) L,j vu = L, vu = 0, 
1- 1 

L lv3= E [ +(ak (q )- ak(q+ 1)) sin (kwxj/J) + rob' sin (kwrj/J)ak(0q)] 
k= 1 

(3.3.8) + XrozX2 x sin (kirJ/J)ak (q) 

1-~~~ ~ 1 

+\AX\t4f '(0) E sin (kxj/J)ak()/ 61 

with (V77.)O = (V,77)J = 0. Here 

LvIJ = - -7+_ V r(. - 'Xzv2U. 

The initial conditions are (v1 )J = h(jz\x) and (V9) = (V3) = 0. Thus vu is identically 
zero. 

As in the continuous case (see ?2.3), secularity may occur since the finite 
difference operator L(1 occurs at successive orders. We solve (3.3.8) by Fourier 
decomposition of V3 in terms of the eigenfunctions sin (kwXj/J). This gives a set of 
J- 1 coupled recurrence relations in n. To suppress secularity we remove terms 
proportional to (-1)' from the recurrence relation corresponding to k = J - 1 (the 
mode proportional to (-1)" in v1). This requires the discrete analogue of (2.3.9), 
namely 

1 N X (3.3.9) lim- L X1ksin(krj/J)r3=0 fork= 1,... J- 1. 
No 11 = I j = 0 

xi 

Here r3 denotes the right-hand side of (3.3.8). 
Since 1 & I < 1 for k # J - 1, this condition yields nothing except from the mode 

corresponding to k = J - 1. Note that 

52 sin (k-rj/J) = -4 sin2 (kr/2J) sin (k-rj/J); 
condition (3.3.9) gives us 

aj_ I r + 1 ) - aj- I r [4ro sin9 ((J-1)r/2J) - Xro i2aj_ l (r/ ) -ba 3-j lX 3_ ) 
where 

XA\tf "'(0) Xf sin4 ((J- 1)rj/J) b=J b= 6 >o sin2 ((J- 1)wj/J) 

By (3.3.2) this may be written as 

(3.3.10) ama be rerte in tes o_f (= 2( +o 1; _ (b ) - bao (316). 
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Equation (3.3.10) describes the (slow) evolution of the amplitude a11 (a). The 
modes associated with all other amplitudes are decaying (Ij,k I< 1); therefore (3.3.10) 
determines the asymptotic behaviour of (PD) for I11' << 1 and r re.. A thorough 
discussion of the behaviour of(3.3. 10) is in [38] and the results are summarised below 
(for a(r) aj_I (n)), after which we describe some illustrative numerical results. 

ro < 0. In this case r is below the linearised numerical instability threshold r = r,.. 
For b > 0 all solutions of (3.3. 10) tend to zero as q -* oo. Hence the nonlinear problem 
acts in a stable fashion, as predicted by linear theory. If b < 0 then the evolution of 
a(r) depends critically upon a(0): if Ia(0)I < y then a(r) - 0 as q -- oo. Otherwise, 
Ia(7)I oo as 7 oo. Here a is the nonzero critical point of (3.3.10), namely 

(3.3.11) 2r= 
br7. 

Thus finite amplitude numerical instability is possible in the nonlinear problem for 
values of r beneath the critical linearised prediction of r(, provided that the initial 
excitation of the unstable mode is sufficiently large. 

ro > 0. In this case r is above the linearised numerical stability threshold. For 
b < 0 all solutions satisfy Ia(q)I oo as X -- oo, which is the natural manifestation of 
numerical instability in parabolic problems, namely the unbounded growth of a highly 
oscillatory spatial mode; note, however, that the instability is far more explosive than 
the linear theory (b = 0) predicts. If b > 0, then the critical point a can be an attractor 
and some solutions of (3.3.10) evolve so that Ia(q)j -*'y as -> oo. In this case we 
deduce from (3.3.4)-(3.3.6) that 

UJ7 e(-1) " sin [(J- I)wj/J]'y 

as q (and hence n) -**oo. Thus ui evolves towards a solution oscillatory in n. This 
stable oscillatory state is purely a product of the discretisation. It is not the standard 
manifestation of a numerical instability since its growth is bounded-here the nu- 
merical instability is inhibited by the nonlinearity and the two effects balance to 
produce an oscillation. 

In summary of case (a), we note that practical numerical instability in (PD) is 
associated with the bifurcation of a periodic orbit from the trivial solution u7 -- 0. 
The manifestation of the numerical instability depends crucially on the properties of 
this periodic orbit. If the periodic orbit repels data starting in its vicinity, then the 
numerical instability occurs in the familiar fashion as the unbounded growth of an 
oscillatory spatial mode; in addition, finite amplitude numerical instability occurs 
at values of r beneath those predicted by the linear theory. This is demonstrated in 
Fig. 6, which shows the solution of (PD) with f(u) = U - U3. The parameters are 
chosen so that z\x = 0.01, X = 1.0, and r < r,.. Thus the numerical method is operating 
below the linear stability limit. The initial data is proportional to the most unstable 
mode sin ((J - 1)wxj/J). The initial evolution of the mode is governed by (3.3.10). 
Eventually other modes are stimulated and a nonlinear focusing occurs. Soon after 
Fig. 6d the scheme blows up. It may be shown that the L2-norm of the true solution 
of (P) is a monotonic decreasing function satisfying, for t > 0, 

11 u(x, t)II < 11 tII(x, 0)1e( 4) 

Figure 7 was generated from the same parameter set as Fig. 6 but with a parabolic 
profile as initial data. While the asymptotic behaviour is correct, the transient 
behaviour is entirely spurious: the solution forms four interior zeros in one timestep. 
The spatial structure shown in Fig. 7c,d is characteristic of subcritical numerical 
instability and it can be explained by a modified equations analysis (see [52]). 
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FIG. 6. Sollution of (PD) for r < r.. (a) t = 0. (b) t = 7OAt. (c) t = 14OAt. (d) t = 21OAt. 

If the periodic orbit is an attractor for data starting in its vicinity, however, then 
the numerical instability of the scheme is far more subtle since its manifestation is 
bounded periodic behaviour (in n). This is demonstrated in Fig. 8, which shows the 
solution of (PD) with f(u) = u + u3, AX = 0.05, X = 1.0, and r> re.. For large n the 
solution oscillates between the profile shown in Fig. 8d and its negative at successive 
timesteps. Figure 8e shows the 12-norm of the solution plotted against time; initially 
the amplitude of the solution decays, until the linear instability magnifies the unstable 
high wavenumber component significantly. Thereafter, the amplitude continues to 
grow until nonlinearity balances the linear instability and an equilibrium is reached. 

Case (b). This case concerns the solution of (PD) for X = XK + Xoe2, on the 
assumption that (r - r,) = 0(1) and r < re.. The analysis is analogous to that considered 
in case (a) and we omit the details. We seek an expansion for uJ in form (3.3.4), 
where vu (n,j, r) is given by (3.3.6). The tk are defined by (3.2.3) with 0 = 0 and X = K 
(see (3.3.1)), so that 

&k= 1 -4rsin2 (k-r/2J) + X-AXt. 

Thus4= 1, and I skj < I, for k =2, ..,Ji- 1. 
A similar analysis to that in case (a) shows that 

j- 1 

u I (n, jvn =S Y 7_ / si (k-XiMJ 
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FIG. 7. Sollution of (PD) for r < r,. (a) t = 0. (b) t = A\t. (c) t = 2,At. (d) t = 3t. 

where a, (a), the amplitude of the nondecaying mode, is governed by 

(3.3.12) al (Gi + 1) - al (i) = A\tXoak (G )+ bakG ), 

with 

X(Atf "'(0) EJ' -, 
sin4 (rj/J) 

6 E`,'l sin 2 (7rjlj) 

Thus (3.3.12) is the discrete analogue of (2.3.10)-indeed, if we rewrite (3.3.12) 
in terms of A,(n;c) by using (3.3.6) and take the limits Ax-*0 and A\t-*0, (2.3.10) 
is recovered-and the behaviour is essentially as in the continuous case, summarised 
in Figs. 3 and 4. Thus, in the neighborhood of the steady bifurcation point X, = 7r in 
(P), the behaviour of (PD) and (P) is similar, since X - 7r2. This is true for the other 
steady bifurcation points except that, as we noted earlier, the approximation of the 
position of the bifurcation points X = (kir)2 and the corresponding amplitudes of 
the bifurcating solutions deteriorate rapidly with increasing k (for fixed J). 

Case (c). We now analyse the discrete problem (PD) in the case where both X 
and r are close to their critical values X, and r,.. The method is an extension of Newell's 
presented in case (a). However, the eigenvalue of the linearised operator (3.1.4), (3.1.5) 
determining bifurcation is of multiplicity 2; the analysis is complicated by this fact. 
An analysis of bifurcation from a double eigenvalue in the partial differential equation 
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FIG. 8. Solltion Of (PD) for r> r;. (a) t= 0. (b) t =25OO\t. (c) t =5000Ot. (d) t =7500At. 
(e) Convergence to a spiuriouis equilibrium; 11 u(x) 1 12 versuts t for r> r . 

case can be found in Keener [26]. The existence of a double eigenvalue is usually 
associated with secondary bifurcation [1], and we show that this is indeed the case 
here. We show that the onset of numerical instability in the nonlinear problem (PD) 
is associated not only with bifurcation of periodic orbits from the trivial solution (as 
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in case (a)), but also with bifurcation of periodic orbits from nontrivial steady state 
branches. 

We seek an expansion for the solution it" of (PD) under assumptions (3.3.4)- 
(3.3.6). In addition we now assume that 

(3.3.13) X=X, +X(c, z At=zAt,.+rOAx%2, r=r.+r0e O, 

so that the growth rates /,, (from (3.2.3) with 0 = 0) satisfy 4 = 1, (- I -1, and 
II < 1 for k= 2, , J-2. Here r,. is given by (3.3.2) with X= X,.. Substituting 
(3.3.4)-(3.3.6) and (3.3.13) into (PD) and equating successive powers of e yield 

LCIuI = L,= 0 

1- 1 
L IU3 = fi[( a r ,(z+ 1 )) sin (k7rjlJ) 

(3.3.14) X= I 

+ (/(X( rO \x2 + XSo\t, - 4ro sin2 (kr/2J))ak (,) sin (krj/J)] 

3 1 

XC Jt f"' (0) E al, (rq) sin (krJ/J)1 6 
/,k= I _ 

where Ld1 is identical to the definition beneath (3.3.8), except that X,. replaces X. 
Denoting the right-hand side of (3.3.14) by r3 we may write 

r3=[a1(iq)-al(iq+ 1)]sin (irj/J)+(-1)1?+l[aj i(iq)-aj-,(i+ 1)] sin ((J-I1)-) 

+ [X(.ro0\x2 + X0z\t(.-4ro sin2 (r/2J)]aj (n) sin (rj/J) 

+ [X(.rO0Ax2 + XAt(. - 4ro sin2 ((J-1 )r/2J)](-1 )' a.,1 1 (,q) sin ((J-1 )rj/J) 

+ X( AtXf (O)[a 13 (n ) sin3 (rj/J) + (-1 )3I1aj 1 (n ) sin3 (( J- 1 )j/J) 

+ (-1)'13a 2 (q )aj-l (,q) sin2 (rj/J) sin ((J- 1)rj/J) 

+ 3a, (,q)a 2_ l (,q) sin (wj/J) sin2 ((J- 1)rj/J)]/6 + r*, 

where 

1 A J 

lim-E E r*=0. 

Thus we have separated the terms that cause secular growth from those that do not 
(contained in r*). 

As in case (a), we solve (3.3.14) by Fourier decomposition, choosing the a,q ) to 
suppress the occurrence of terms secular in n. Thus, in the decomposition of V3 
corresponding to k = 1 we remove terms constant in n (since the mode with k = 1 is 
constant in n in vu), and in the decomposition corresponding to k = J - 1 we remove 
terms proportional to (-1) " (since the mode with k = J- 1 is proportional to (-1)1 
in vu ). This yields the following pair of coupled recurrence relations for a, (q) and 
a(. I (n ): 

(3.3.15) al(n+ I)-aj(n)=djaj(n)+bja 3(n) +b-,a, (n)a 2_ (n), 
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The coefficients are given by 

d, = X, ro A\x2 + Xoz\t,. - 4ro sin2 (r/2 J), 

d2 = 4rO sin2 ((J- 1)r/2J) - Xo0t'.- k,.roz\x2 _ So X\t', 

l= yz\t(f"'(0) f;J-1 sin4 ((j/J) 

b, = X,. At,f "I (o) EJ= I S 
in-2 (rjlj) i ( l)/) 

6 >J'=-,' sin2( j/) 
=J- II sin2 (wj/J) sin2 ((J- 1)7rj/J) 

(3.3t5 tf(0) Ja 2 t J'=-,' s inm2 (jl/j) 

b3- 
zXCtCf 

/1(0) 
>Jsin42 ((j_ 

1)wr-j/) 
6 >f1 si2 ((- 2 )irj/JI)' j 

b4 _cAj . () j>W_ sin2 (wj/J) sin2(J1)/) = -kz\t.f"'(O) 2 >J'=-, s in2 ((j- 1)wjj/) 

Since 1WI <1I for k =2, ,J -2, ~ = 1, and ~,_ =-1I we deduce from (3.3.4), 
(3.3.5) that for large n (PD) has the approximate solution 

u ev1 (n,j,) -eaI (r) sin (rj/J) + e(- 1)'1a_1 (rq) sin ((J- 1)rj/J). 

Thus the behaviour of al (q) and aj-I (q) as described by (3.3.15), (3.3.16) governs the 
evolution of uJ. A complete analysis of (3.3.15), (3.3.16) is not possible in a short 
space and we confine ourselves to a brief discussion. 

Equations (3.3.15) and (3.3.16) possess four critical points (solutions independent 
of ,), namely 

(00 (?,d) ( d? ) b( b b2b4 
(0,b0) 0 b3 (3 I 0 - b2b4 b1b3- b2b4 

The second and third critical points occur as a bifurcation from the first (trivial) 
critical point; the fourth occurs as a bifurcation from either the second or the third 
critical point. In terms of the solution of (PD), the second critical point represents a 
mode that oscillates in n, the third a stationary solution, and the fourth a mixture of 
the two. The existence of the mixed mode is important, since it demonstrates that the 
onset of numerical instability in (PD) is associated with the bifurcation of periodic 
orbits (in n) from a nontrivial solution. Of course our analysis is restricted to the 
neighbourhood of X K X, and r re.; but, by continuation to other parameter values, 
we deduce that the secondary bifurcation of numerically destabilising periodic orbits 
from steady solutions is a generic occurrence in (PD). 

The number of possible bifurcation diagrams for (3.3.15), (3.3.16) is large due to 
the number of parameters. We depict two, showing the secondary bifurcation of the 
mixed-mode solution from the stationary state (Fig. 9) and from the oscillatory state 
(Fig. 10). Our choice of parameters has ensured that the secondary solution is 
supercritical and thus stable; this can be altered by changing the sign of b1 b3 - b2b4. 

The numerical method (PD) will be P-unstable (that is numerically unstable in 
practice) if either the mode with k = J - 1 is amplified or the mode with k = 1 is 
amplified more rapidly than in (P) itself. Thus the interaction of the two modes is 
crucial to the approximation of (P) by (PD). This analysis shows a direct mechanism 
for the exchange and nonlinear generation of energy between the highest and lowest 
wavenumbers in the discretisation (PD). This possibility, which has important effects 

This content downloaded from 137.205.50.42 on Mon, 15 Feb 2016 12:01:02 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INSTABILITY IN DIFFERENCE SCHEMES 215 
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rO 

FIG. 9. Bifurcation diagram for (3.3. 15), (3.3. 16) X0 <O, 
f "'(O) >0O, and b, b3 -b2b4 >0O. Key: -stable stationary soluwtion; 
- - unstable stationary solution; + stable periodic solution (in n); 
O unstable periodic solution (in n). 

0~~~~~~~~~~~A 

FIG. 10. Bifurcation diagram for (3.3.15), (3.3.16) r <0?, 
f "'(O) <0O, and b b3 - b2b4 >O. See previous figure Jor key. 

On the practical numerical stability of (PD), is the consequence of the interaction 
between the underlying dynamics of the partial diffierential equation and the artefacts 
of the discretisation. 

Figure 1 1 shows the solution of (PD) with f(u) = sinh (u). The parameters are 
chosen so that z\x =0.05, A = 1O.0(> Xe), and r> rc. The initial data is smooth so 
that the initial excitation of a11 is much smaller than that of al1. Initially the solution 
evolves in a stable fashion until the high wavenumber mode a1_1 is stimulated by 
linear effiects and through the interaction with al (see (3.3.15), (3.3.16) and Fig. 1 ib). 
For a period of time a1_1 swamps the solution as shown in Fig. 11lc. However, 
eventually there is a transfer and generation of energy in the low wavenumber mode 
al and the profile in Fig. 1ld emerges prior to blowup of the scheme. 
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FIG. 1 1. Soliition of (PD) for r > r, and X > X. (a) t = 0. (b) t = 500Ot. (c) t = 625z,t. (d) t = 760&At. 

3.4. Bifurcation from infinity. In this subsection we analyse (PD) in case (ii), 
where f'(0) = 0. It is possible to discuss this problem from the perspective of ?2.4, 
namely the bifurcation of steady solutions from X = oo. We choose, however, to 
consider the case 0= and discuss the bifurcation of n-dependent solutions from 
r = oo. 

When 0 = I, (PD) reduces to 

(3.4.1) 2(1u 1 - i)= rb 2 (1il+ 1 + ii$l) + XAzt [f(U 1+ I ) +f([Iu)], 

(3.4.2) it= i+1 =0, it = Iti(jz\x). 
Linearising about UJI = 0 we obtain the solution vju ,given by 

J-l 

v,'+l E Ak Ak' sin (kwj/J), 
kv=1 

where the Ak are determined by initial conditions and 
1 -2r sin2 (kw/2J) 
1 +2r sin2 (kw/2J) 

This expression is obtained from (3.2.3) by setting 0 = + and X = 0, since X actually 
represents _f'(0) in (3.2.3), where f'(0) is scaled to be 1, and here,f'(0) = 0. 
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Thus (PD) is numerically stable, according to linear theory, for all values of r, 
since 1 I < 1. However, as r -* oo, some of the modes satisfy I tkI -1> 1. This suggests 
that r = oo is a candidate for a bifurcation point in (3.4.1), (3.4.2). 

We may induce r -0oo by taking A\x = z\t/r&/2 and letting z\t -> . In this case 

_Xt - 2ro sin2 (kwzXt/2ro' ) 
, z\t + 2 ro sin2 (kwxAt/2r r') 

Thus for kXt << 1, ;k -- 1, and for all other k, Sk I -1. Since the growth rates 
approach neutral values, we deduce that z\t = 0 is a candidate for a bifurcation point. 
As in the continuous case [42], a weakly nonlinear analysis along the lines of the 
previous section will not be fruitful in this case, since all the modes are near neutral. 
However, the discussion suggests that some form of n-dependent solution bifurcates 
from r = oo. This, in turn, suggests that some form of finite-amplitude instability is 
possible, since the solution bifurcating from infinity almost certainly repels data 
starting in its vicinity; see the discussion of the continuous case in [42]. 

Of course, in reality, no sensible computations would involve a value r>> 1. 
However, if the branch of solutions bifurcating from r = oo extends to moderate values 
of r, it will affect the dynamics of (3.4.1), (3.4.2) considerably, since a finite-amplitude 
instability can occur. 

4. Conclusions. We have examined problems (P) and (PD) in the vicinity of the 
trivial solution. The important points we have illustrated are: 

(i) The growth rates in the linearised problems, o- for (P) and t for (PD), are 
necessarily real (see Theorems 2. 1.1 and 3. 1. 1). 

(ii) Bifurcation and change in stability are associated with Re (a) = 0 for (P) 
and I I = 1 for (PD). This is clearly seen by analysing the Laplace and Z-transforms 
(which are treated in parallel in [50]) for the linearisations of (P) and (PD), respectively. 

(iii) The steady bifurcation points at which o- = 0 in (P) correspond to t = 1 in 
(PD). The positions of the bifurcation points and the amplitudes of the bifurcating 
solutions are only well approximated by (PD) for /X7 << J, where J is the number 
of spatial meshpoints (see ?3.2). 

(iv) The periodic bifurcation points at which I = -1 in (PD) have no analogy 
in (P). They are associated with the onset of numerical instability in (PD) (see ?3.2). 

(v) The manifestation of numerical instability depends crucially upon the 
properties of the bifurcating periodic orbit (see ?3.3, case (a)). 

(vi) The presence of spurious steady solutions caused by spatial discretisation 
can seriously degrade time-dependent calculations (see ?3.2 and [5 1]). 

(vii) The direct interaction between growing low wavenumber modes present in 
both (P) and (PD), and high wavenumber modes produced by the discretisation, is 
fundamental to nonlinear numerical stability (see ?3.3, case (c)). This result seems to 
be generic in nonlinear parabolic equations and is demonstrated under entirely 
different assumptions in [51] (see the discussion in ?3.2). 

We make two observations about the relevance of the results obtained here to 
more general situations. First, our analysis has relied heavily on the simplification of 
problems (P) and (PD) in the vicinity of the trivial zero solution. However, the 
secondary bifurcation of numerically destabilising periodic orbits demonstrated in 
case (c) of ?3.3 shows that the ideas described hold in the neighbourhood of any 
steady solution of (P). This assertion is proved in [52], where (P) is generalised to 
include convection, and the normal form governing the bifurcation is derived. Second, 
our analysis has also relied on choosing r rL, whereas any sensible computation 
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would involve r < r. However, it is our objective to describe the manifestations of 
numerical instability in problems where a dissipative mechanism is balanced by a 
nonlinearity. For problems more complicated than (P) the linearised stability threshold 
may not be known explicitly, and thus it is important to be able to recognize the 
many manifestations of numerical instability in nonlinear problems. The analysis of 
the simple problems (P) and (PD) enables us to achieve this. 

Finally, we conclude by stating our belief that the analysis of numerical methods 
will benefit increasingly from an interaction with bifurcation theory and dynamical 
systems theory. It is important to study the bifurcation diagram generated by a 
numerical approximation and compare it with that of the underlying continuous 
problem. In practice this means examining the numerical method for all ranges of 
the physical parameters at once rather than looking at convergence for a fixed set of 
physical parameters. This reveals critical scalings of the natural physical parameters 
of the problem in terms of the discretisation parameters. In the long term, analysis 
should aim toward proving convergence to a given bifurcation diagram rather than 
to a solution for a fixed parameter set. Similarly, it is valuable to consider the 
numerical method as a dynamical system and to compare the flow generated by 
the numerical method with that generated by the underlying continuous problem. 
Such analysis reveals critical scalings of the initial data in terms of the discretisation 
parameters. In contrast, classical analysis focuses on convergence for fixed initial 
conditions. Recent rigourous analysis of numerical methods for ordinary differential 
equations considered as dynamical systems has been achieved by (among others) Beyn 
[3] and Iserles [24]. 

Acknowledgments. I am grateful to Professors L. N. Trefethen and J. M. Sanz- 
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this paper. The work presented here is based in part on a seminar given at the 
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