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Abstract

The study of numerical methods for initial value problems by considering
their approximation properties from a dynamical systems viewpoint is
now a well-established field; a substantial body of knowledge, developed
over the past two decades, can be found in the literature. Nonetheless
many open questions remain concerning the meaning of long-time simu-
lations performed by approximating dynamical systems. In recent years
various attempts to analyse the statistical content of these long-time
simulations have emerged, and the purpose of this article is to review
some of that work. The subject area is far from complete; nonetheless
a certain unity can be seen in what has been achieved to date and it is
therefore of value to give an overview of the field.

Some mathematical background concerning the propagation of prob-
ability measures by discrete and continuous time dynamical systems or
Markov chains will be given. In particular the Frobenius-Perron and
Fokker-Planck operators will be described. Using the notion of ergodic-
ity two different approaches, direct and indirect, will be outlined. The
majority of the review is concerned with indirect methods, where the
initial value problem is simulated from a single initial condition and
the statistical content of this trajectory studied. Three classes of prob-
lems will be studied: deterministic problems in fixed finite dimension,
stochastic problems in fixed finite dimension, and deterministic problems
with random data in dimension n — o00; in the latter case ideas from
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statistical mechanics can be exploited to analyse or interpret numericg]
schemes.

Throughout, the ideas are illustrated by simple numerical experi-
ments. The emphasis is on understanding underlying concepts at a high
level and mathematical detail will not be given a high priority in thig
review.

1 Introduction

It is well-known that, in general, individual trajectories of dynamical
systems cannot be well approximated over long time-intervals, since well-
posed initial-value problems admit exponentially divergent trajectories.t
However, experimental evidence strongly suggests that often statistics
can be robustly computed even when trajectories cannot. The aim of
the paper is to survey various avenues of investigation which attempt to
justify this observation. Definitive results are few and far between and
the overall picture is far from complete. However a general framework is
starting to emerge and it is therefore useful to set it out here. Ultimately,
study of the robustness of statistics generated through computations of
dynamical systems will both add significantly to the body of existing
theoretical results concerning the approximation of dynamical systems
[30, 34] and lend weight to the large number of initial-value calculations
routinely performed in the sciences and engineering where statistical
information is extracted from the data. Our presentation is informal
and is intended to be suggestive of the important ideas, rather than
being precise and detailed. -

We will study both the effect of rounding error on maps and of time-
discretization on (ordinary and stochastic) differential equations. To
illustrate the kinds of issues to be discussed consider the following

Example — The Hénon map Figure 1.1 shows some results from
computer simulation of the map

Tpy1 =1-—1.422 +03y,, z(0) =0,

1.1
Yn+1 = Tn, y(O) =0. ( )

Figure 1.1 top left shows the attractor for this map, generated by a
double-precision arithmetic simulation. Figure 1.1 top right shows the
difference between the two trajectories, one with single precision arith-
metic, the other with double. Since these trajectories are so different

t In the special case of hyperbolic systems shadowing ideas can be applied to give
long-time approximation for problems with divergent trajectories.
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Fig. 1.1. The Hénon map. Upper left: Attractor, generated by a double-
precision arithmetic simulation. Upper right: The difference between two
trajectories, one computed with single precision arithmetic, the other with
double. Lower left: Histogram of the empirical probability density for the
z variable, computed from very long-time simulations in single precision, and
the difference between the histogram computed in single and double precision.
Lower right: Difference in the time averages 5 Y ;_g(zx) with g(z) =
(z131.5)2_

it is natural to question whether they contain any meaningful informa-
tion about (1.1). In this paper we will concentrate on the statistical.
properties of such simulations. To this end it is natural to compare the
empirical probability densities generated by the single and double pre-
cision calculations. Histograms for the z variable, computed from very
long-time simulations in both single and double precision, and their dif-
ference are shown in Figure 1.1 bottom left, and the difference in the
time averages 57 > p_o 9(zx) with g(z) = (”%,}—5)2 in Figure 1.1 bot-
tom right. The closeness of the single and double precision calculations
in Figures 1.1 (bottom) is remarkable and suggests that, even when the
trajectories themselves are unreliable, the statistics contained within
them may be meaningful. &

In many of the examples that follow we show figures similar to Fig-
ure 1.1. In each case we perform two computer simulations of the same
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trajectory using single and double precision in the case of maps, and two
different time steps in the case of differential equations. The upper left
corner shows a single trajectory or its projection onto some two dimen-
sional space, the upper right the difference between the z coordinates
of the two trajectories, the lower left corner shows the densities of the
z coordinate and their difference, and the lower right figure shows the
difference between some time averages.

In section 2 we outline some mathematical background which will sug-
gest what is required to substantiate observations about the robustness
of statistics such as those exemplified by the Hénon map. We will intro-
duce the Frobenius-Perron operator and the Fokker-Planck or Liouville
equations which describe the propagation of measures by deterministic
or random dynamical systems. Using this mathematical background we
will distinguish between direct and indirect approaches to the problem
of approximating statistics and we will highlight three important classes
of problem:

A) deterministic problems in R® with n fixed;
B) stochastic problems in R" with n fixed;

C) deterministic problems in dimension n — oo with random initial
data.

In sections 3,4 and 5 we will discuss problems from categories A), B)
and C) respectively.

2 Mathematical Background

We start by outlining how probability measures are propagated by a
variety of deterministic and random dynamical systems. Foi simplicity
we first consider deterministic maps. Imagine that

Tnt1 = G(Zy), (2.1)

where z is a random variable with density pg. If we define the Frobenius-
Perron operator

(v)
(Lp)(z) = -
yec:z—:l(z) | det dG(y)|

and provided sufficient smoothness allows us to construct a density p,
for z,,, then this density satisfies

DPn+1 = £pn .
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A smooth invariant measure has density p:
p= Ly,

In both cases suitable decay of the densities at infinity is required.
It is interesting to note that, in general, this iteration may admit quite
non-smooth densities. The following example shows this.

Example — The Tent Map If

) 2=, z € [0, %),
Glz) = {2 -2z, zelk1], ke

i )_{x 2;:15}

Prsi(z) = [ a(3) +2s (Z%:E)] , z€[0,1].

Thus any singularity in p, will produce a singularity in p,41. However, |
some limited smoothing is present due to the repeated scahng by a factor
of 2 and a smooth invariant measure is

p(z)=1, ze€][0,1].

then

Thus

In fact this invariant measure is unique within a sufficiently smooth class
of functions and p, — p in this class — see [42]. &
We now randomise (2.1) to get the Markov chain (6,, i.i.d. v)

. Tn4+1 — Goﬂ (.'lin) (23)

where zq is distributed as before. For simplicity we assume that Gg(-)
is invertible for all §. We define the Frobenius-Perron operator

o p(Gg* (x))
(Lp)(z) = dot dG: (Gal(w)l"(do)‘

Then, if it exists, the probability density for z,, satisfies
Pnt1(z) = (Lpn)(2).
Again a smooth invariant measure has density p:
p=iLp

Often the randomisation smoothes through the averaging process though
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this need not necessarily happen. The following example illustrates such
smoothing.

Example ~AR(1) Process Consider the following random map, which
arises in autoregressive time series analysis:

Gy(z) = —;—x +6
with @ picked from the standard normal distribution N(0,1). Thus

Gy (z) = 2(z — )
so that

pua(a) = [ 222 Doy (20 - 20)a0.

The invariant measure is given by the law of the random variable
- raaes
= B3 5%
J:

See [7] for further examples of this type. H& ,

Now we move to continuous time where the issues are similar: in the
absence of randomness, non-smoothness in probability densities abounds;
randomness can often act to introduce smoothing.

Consider the It6 stochastic differential equation

dz = f(z)dt + o(z)dW, (2.4)
with £ € R™,W € R? being standard d-dimensional Brownian motion
and f : R® - R™, 0 : R® - R™*¢ and B : R® — R™*™ defined
by B(u) = o(u)o(u)T, where m > d. Again we assume that z(0) is
distributed randomly with density pg.

If we define the Fokker-Planck operatorf by

Ap=~V - (fp) + 5V V- (Bp) (2.5)

then z(t) generates a probability measure with density satisfying
9p
5 = Ap p(2,0) = po(),

together with suitable decay conditions as |z| — 00. A smooth invariant
measure has density p:

0= Ap,

t The divergence of a matrix A is here defined in the fashion standard in the con-
tinuum mechanics literature, that is (V - A); = A;; ;, see [11].
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again together with decay conditions at infinity.
In the absence of noise, highly non-smooth p is possible, as the fol-
lowing example shows.

Example — Linear Decay If
flz)=—z, o(x)=0

then
op 0
o~ oal P

with solution
plz,t) = etpo(a:et),

where po(x) is the initial density, assumed to have compact support.
Then, as t = oo, the density approaches a point mass at the origin —
the invariant measure for this problem.

However, if

f(z) = —z, o) =e

then
0 0 €2 52
T —zp} + it 4
ot or i
The addition of the noise, however small, gives parabolic smoothing for
p and the unique invariant measure is now a Gaussian with density

p(r) < exp(—z?/€?). B

Invariant measures play a fundamental role, not only over many real-.
izations of the noise and/or random data, but also for individual real-
izations. This is because of ergodicity. Roughly, the map (2.1) ergodic.
if for some class of real valued functions g

n—1
> 9(e) > [ g@p)ds (26)
=0
or, for continuous time (2.4),
: | s@yis~ [o@pi)as, (27)

together with some assumptions on the set of initial conditions for which
this holds.

Birkhoff’s ergodic theorem states that the limit in (2.6) exists for al-
most every point with respect to any invariant measure for the map, with
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similar results in continuous time [42]. If for some z( this limit exists
for every continuous bounded function g, it defines a linear functional
and can hence be viewed as a Borel measure. If

1 n—1
n > Oay = p
j=0

(with = denoting weak convergence) and the limit is independent of
the initial point o when it is taken in some set of positive Lebesgue
measure, then the resulting measure is called a physical measure, or
SRB (for Sinai-Ruelle-Bowen) measure, since it can then be physically
observed, see [42].

To compute time averages in general we may either:

directly: calculate p and hence the right hand side in (2.6) or (2.7);

indirectly: calculate a trajectory and sum/integrate to get the left hand
side of (2.6) or (2.7).

For a general discussion of the direct and indirect methodologies for
the calculation of invariants of dynamical systems see the preface in
[34]. Direct methods are not the subject of this review, but we give a
brief bibliography before moving to the subject of indirect methods. In
[40] the idea of discretising R™ to obtain a finite state space Markov
chain approximation to (2.3) was introduced. Subsequent analysis of
this approach was given in [22] and [19]. More recent theoretical work,
and numerical experiments, includes [18, 17] and [16]. In the last few
years these ideas have been employed as an effective computational tool,
in particular by use of adaptive choice of the spatial discretization — see
[4, 3, 5] for example, together with [15] and [31] where applications to
molecular dynamics are described. A recent overview of the subject may
be found in [9].

We will concentrate here on indirect methods and split our study into
the three classes of problems described at the end of the last section.
The most satisfactory theory is for problems in Category B) where, for
example, the parabolic smoothing of probability densities for (2.4) is
exploited. A coherent theory of ergodicity for Category A) is very hard,
and hence so is any perturbation theory; much of what is currently
known is limited to expansive maps and certain hyperbolic maps — see
[42], [43], [23] for more details. Category C) is, somewhat surprisingly at
first glance, more tractable than A) in some instances. This is because
ideas from statistical mechanics allow certain problems in Category C)

iy
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to be approximated by Markov processes; their stochastic stability is a
strong property with implications for the robustness of statistics gener-
ated by approximation schemes.

3 Deterministic Problems

Problems in Category A) are the hardest in which to treat the effect
of any approximation, including numerical. For the Hénon map SRB
measures are known to exist [43] and it is reasonable to conjecture that
the robust statistics observed in numerical simulations such as those
shown in section 1 are due to robust calculation of an SRB measure.
However, although the example of the Henon map is very suggestive that
strong results might be provable in the deterministic case, the following
example should strike a note of caution.
Example — The Tent Map Consider again the map (2.1), (2.2). If
the initial condition zg is irrational the resulting trajectory is chaotic,
and hence the problem is chaotic for a.e. initial condition. However,
if zo is of the form u/2P, where u is an odd integer, then z, = 0 for
n > p+ 1 and thus any computer simulation of this map (using float-
ing point arithmetic) will have trivial dynamics. To create the effect of
the irrational initial conditions which lead to chaos one can add random
noise slightly larger than machine precision at each step, and Figure 1.2
shows results from two such simulations using single and double pre--
cision. Consistent statistics are observed at the two levels of precision
and the empirical density is close to the true (Lebesgue) density gener-.
ated by chaotic solutions of the original map. No rigourous justification
of this is known as yet, but work of Kifer [20] comes close. He shows
that replacing (2.1) by its restriction to a uniform lattice of scale §, and
adding noise with scale ¢, yields a Markov chain with invariant measure
close to an invariant measure of the original map (2.1), provided that
d = O(e'*°),c > 0. Further study of the effect of rounding error on
iterated maps, concentrating on attractors, may be found in [6]. &
However, despite this cautionary example, the numerical evidence for
many deterministic problems is similar to that seen for the Henon map
in the introduction - namely that statistics are well-reproduced, even
when trajectories are not. To illustrate this we give a simple example
from ODEs:
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Fig. 1.2. The tent map. Upper left: z,4+1 vs. z,, generated by a double-
precision arithmetic simulation. Upper right: The difference between two
trajectories, one computed with single precision arithmetic, the other with
double. Lower left: Histogram of the probability density for z, computed from
very long-time simulations in single precision, and the difference between the
histogram computed in single and double precision. Lower right: Difference
in the time averages 5 Y7, g(zx) with g(z) = z°.

Example — Lorenz Equations Consider the equations

z = 10(y—1z)
Yy = 280—y—zxz
z2 = Ty — %z

Figure 1.3 shows two calculations using the Euler method, one with
time-step twice the other. It is clear that the method reproduces statis-
tics well even though trajectories are completely wrong. There is no
satisfactory theory to rigourously justify this observation at present but
the recent work of Tucker [39] may facilitate rigourous justification. H

The previous problem is dissipative with a global attractor, but the
observation about robustness of statistics extends to some Hamiltonian
problems alsof. The following example illustrates this:

1 Note that, in a generic sense, such problems are not ergodic on every energy shell
[24].
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Fig. 1.3. The Lorenz equations. Upper left: The attractor computed using
Euler’s method. Upper right: The difference between two trajectories, one .
computed with time step twice the other. Lower left: Histogram of the prob-
ability density for z, computed from very long-time simulations, and the dif-
ference between the histogram computed with two different time steps, one
twice the other. Lower right: Difference in the time averages F-IT-_I 2 tagi®r)

with g(z) = (%)2.

Example — Three Interacting Particles Consider a system of three
particles with pairwise interaction potential U;(r) = 1/r, where r > 0 is
the distance between the two particles, and potential energy

Up(go,qy) = e\ %=/9° + elas/9* _9¢

~ added to keep the particles in a finite area [27].

Figure 1.4 shows calculations with two different time-steps (related by
a factor of two) using the Verlet method [41]. Once again it is clear that
the method reproduces statistics even though trajectories are completely
wrong. Reich [27] has an explanation for why symplectic methods repro-
duce time-averages well which, in outline, goes like this: hypothesise that
some Poincaré suspension of the flow satisfies the conditions developed
by, for example Young and Liverani (see [43, 23, 42]) which yield decay
of correlations, the law of large numbers or the central limit theorem.
Note that, for times of order exp(—1/At), a symplectic method approx-
imates a nearby Hamiltonian problem [30]; then use stochastic stability
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Fig. 1.4. Particle system. Upper left: Trajectories of the particles computed
using the Verlet method. Upper right: The difference between two trajectories
of a single particle, one computed with time step twice the other. Lower left:
Histogram of the probability density for z, computed from very long-time
simulations, and the difference between the histogram computed with two
different time steps, one twice the other. Lower right: Difference in the time

n = z 2
averages ,—;};—1- Y k=0 9(zx) with g(z) = (&£2)°.

of the original Hamiltonian problem, which follows from the assump-
tions on the flow, to study time averages for the perturbed Hamiltonian
problem. The conclusion is that time averages are well approximated for
times exponentially long in At~!. (Standard convergence theory would
give times only logarithmic in At~!.) Note however that Reich’s as-
sumptions appear very hard to verify on any concrete examples and so
his ideas, whilst very suggestive, fall short of a completely satisfactory
explanation. &

4 Stochastic Problems

Because of the parabolic smoothing induced by white noise (see (2.5))
the picture here is fairly well-developed from a theoretical standpoint.
The simplest examples are of the following type:

Example — Lorenz with Noise Consider the Lorenz equations with
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additional white noise:

dz = 10(y — z)dt + dW,
dy = (8z—y—zz)dt + dWs
gz = (zy - %z) dt + dWs

30
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o 10
Y Az
s -10
10 -20
-30
0
0 5 10 15 20
2 0.03
0.025
15
0.02
P Ag
0.015
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0.005
¢ 0
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o

(1] 500 1000 1500 2000
T t

Fig. 1.5. The Lorenz equations with white noise. Upper left: A trajectory
computed using Euler’s method. Upper right: The difference between two
trajectories, one computed with time step twice the other. Lower left: His-
togram of the probability density for z, computed from very long-time simula-
tions, and the difference between the histogram computed with two different
time steps, one twice the other. Lower right: Difference in the time averages

n . z 2
T Lk=o 9(zk) With g(z) = (=53%)".

Figure 1.5 shows simulations, for a single realization of the noise,
using the Euler-Maryuma method [21]. Once again we see that the
method appears to reproduces statistics well even though trajectories
are completely wrong. However, in contrast to the deterministic case,
for this problem there is a very well-developed and satisfactory theory.
Since B = I the Fokker-Planck equation with generator 4 is uniformly
parabolic; this fact, combined with dissipativity of the deterministic
vector field, gives ergodicity [13]. Exploiting this structure, Talay [36,
37, 10] proves theorems which show that the densities and time averages
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shown in Figure 1.5 are indeed accurate approximations of their true
counterparts in the SDE.}

We now modify the previous problem so that noise is only present in
the z and y equations

a8 = 10(y — z)dt + dW;,
dy = (282 —y—zz)dt + dWa,
e 8
dz = (zy- 32)dt.
50
30
40 20
10
Y Az o
-10
10 -20
=30}
2 -20 -10 0 10 20 0 100 200 300 400 500
T t
2 = 0.05
AN
s i 0.04
p ! AgODS
0.02
0.5
0.01
o i
-20 -10 0 10 20 0 1 2 3 4 5
T t x10*

Fig. 1.6. The Lorenz equations with white noise in two components. Upper
left: A trajectory computed using Euler’s method. Upper right: The difference
between two trajectories, one computed with time step twice the other. Lower
left: Histogram of the probability density for z, computed from very long-
time simulations, and the difference between the histogram computed with
two different time steps, one twice the other. Lower right: Difference in the

time averages 37 > ¢_, g(zx) with g(z) = (& 5‘)2°

The theory of Talay in [36, 37, 10] no longer applies since B is now
singular so that the Fokker-Planck equation with generator .4 is not
uniformly parabolic. Nonetheless the SDE itself is provably geometri-
cally ergodic (see [25]) and the numerical evidence in Figure 1.6 suggests
that the Euler-Maryuma method reproduces statistics well even though

t Note that this theory requires globally Lipschitz vector fields. Recent work by
Talay [38] is aimed at removing this restriction.
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trajectories are completely wrong. A theory for the approximation of
such degenerate diffusions is being developed in [32] and [14], using the
approach to Markov chains described in [26], and by [38] using Malliavin
calculus. &

5 Statistical Mechanics

We have seen that for stochastic problems study of the statistics of
trajectories is made simpler than for deterministic problems, essentially
because of smoothing in the propagation of probability densities. This
smoothing in Markov chains/processes can, in some cases, be exploited
to study deterministic problems with random data. In particular such
problems often simplify, as the dimension n — oo, to yield the Markov
property; random noise in the initial data becomes near memoryless
noise when only a subset of the variables is observed. We now exploit
this basic idea from statistical mechanics to study numerical schemes.
The general picture here is to consider ODEs partitioned in the form

T = f(xay)a :B(O)Z:BO

i = gz, 90 = Bl

with (zo,y0) a random variable distributed according to some measure
V.

Thus
y(t) = G(yo, {z(s) }o<s<t)

and so

& = f(z,G(Y0,{z(5) }o<s<t)), z(0) = zo. (5.2).

In previous sections we have concentrated on whether we can calculate
statistics accurately over long times, where trajectories are not accu-
rate. Here we shift emphasis slightly and ask whether we can accurately
compute the statistics of the = variable without accurately computing
y. There are many problems where only a subset of the variables is
of interest so that this question is natural — it may be be desirable to
under-resolve y for reasons of computational efficiency.

A recent approach to this problem by Chorin et al [2] (1998) is to de-
velop an equation for X (¢) = Ex(t), where expectation is with respect to
v on (zo,yo). Assuming stationarity leads to the approximate equations

X =F(X), X(0)= =,
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where
F(X) =E{f(z,y)|lz = X},

and now expectation is with respect to v on (z,y) There is strong exper-
imental evidence to show that this gives good approximations for some
problems, but no substantial theory as yet. Some preliminary theoreti-
cal investigations may be found in [12]. Another approach is to try and
identify low-dimensional stochastic models from numerical simulation of
the full problem, without explicit a priori knowledge of which variables
will comprise the low-dimensional approximation. This work may be
found in [15] and [31].

We will consider a less ambitious approach where the complete system
for z, y is still integrated, but methods used which are cheap and formally
inaccurate trajectory-wise in the y component. The reason to expect
that we might still accurately compute z, or at least its statistics, is
that, often, for dimension n — oo, one obtains from (5.2) a Markov
process or chain such as

dz = fo(z)dt + oo(z)dW.

This can be accurately approximated without approximating y accu-
rately. We look at three examples which illustrate this idea.

Example — Construction of an SDE [1] Consider the equations,
F=l. . N

U +j2uj =0,

N
Zn = f(ZN) .4 Zuj(t),

u;(0) = \/gnj, (0} =0, 2B} =20

where the 7); are i.i.d. N(0,1). Thus z = zy and y = {(u;, u;} ).
For large N, zy approximates the solution of the SDE

dz = f(z)dt + dW, z(0) = zo,
where W is standard Brownian motion. Precisely we have that, for
T € [0, ],

c)

Bl2(T) - 2(T)|* < =
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Let 2™ = z(nAt) and let Z™ = 2y(nAt) be our numerical approxi-
mation. In order to make precise the notion of computing inaccurately
with respect to the y variable we take the limit

N = o0, At—0, NAt=(. | (5.3)

Under this limit process the oscillators u; are not well resolved for large
j. We apply Leap-Frog to the oscillators with { < 2f and the theta-
method to the z equation. Then, for nAt € [0, 7],

E||z" — Z™||2 < C(nAt)AL?/3.
For sufficiently smooth g and for linear f
|Eg(z") — Eg(Z™)| < C(nAt)At?/3.

Precise statements of these theorems, together with numerical results
illustrating them, can be found in [1]. H&

A more physically realistic model — based on a mechanical description
of a heat bath due to Ford and Kac [8] — is the following:

Example — Heat Bath [35] Consider the equations, for j = 1,...,N

ii; + j%(u; — q) =0,

N
i+V' (@) =) 7 (u; -
=1

u;(0) = \/gnj, 2;(0) =0, ¢(0) = go, 4(0) = po

where z = {p,q} and y = {{vj,uj}j-vzl,p, q}, and the n; are as before.
When N is large the motion of g is governed by an SDE:}

G+v@-Lo+TIg=5
2
Q) =g, Q0)=po - L=,

B(#) = f (o) - Lwm)

Here W (t) is as before. In fact, for any T € [0, 7],
ln(N )2

E{llg — QllZ=o,r) + 1§ = Qll12(0,r)} < C(T)

t The method then gives exact solutions to a nearby linear oscillator problem; see
(28]
1 This formal equation can be put in first order form and cast as an It6 SDE.
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Again we compute ¢ numerically by solving the large system in the limj
(5.3). Precise statement of results, together with numerical experiment
showing that under-resolved simulations can produce accurate (i.e. clog
to @) simulations of g, can be found in [35]. ©

Example — Billiards [33] Small particles suspended in a fluid wit}
velocity field v can be modelled by having the particles obey Stokes’ lay
between elastic collisions. Briefly we have
m%,'i:a[v(z,;,t)—é,-], i=1,...,N,
+ELASTIC COLLISIONS,
z;(0) ~ U([0,1] x [0,1]), 2;(0) ~ N(O,I).

We may think of z = (z1,7;); y comprises the positions and velocities
of the remaining particles.

Az 4
-0.1
-0.2
1 o o5 1,15 2 25
t
4 05
& 0.4
p Agos
2

0.2

1 -
0.1
. 0

i I 0 1 2 ) 500 1009 1500 2000
v 5

Fig. 1.7. The Billiards Problem. Upper left: A trajectory of a single parti-
cle, computed in double precision. Upper right: The difference between two
trajectories, one computed with single precision arithmetic, the other with
double. Lower left: Histogram of the probability density for the velocity of
a single particle, computed from very long-time simulations in single preci-
sion, and the difference between the histogram computed in single and double
precision. Lower right: Difference in the time averages —7 3 ;_ 9(zx) with

g(z) = (2£2)°.

Figure 1.7 shows data generated from a simulation of this problem
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with 210 particles and a = 0. All data is generated by considering one
particle. Figure 1.7 top left shows the particle trajectory, generated by
a double-precision arithmetic simulation. Figure 1.7 top right shows the
difference between two trajectories, in double and single precision; as is
to be expected the trajectories rapidly diverge. However, once again, the
statistics are well-reproduced: Figure 1.7 bottom left shows for that the
empirical density is close in both precisions and that hence time-averages
are insensitive to precision — see Figure 1.7 bottom right.

There is no rigourous explanation for the observation. However, it is
believed that, for V > 1 z;, 2; can in some situations be modelled by a
Markov stochastic process of the form:

mZy = afv(Zy,t) = Zi]+ Y 8(t —t;)F;,

7=1

Here {t;, F;)};j>1 form a family of i.i.d. random variables. Their joint
distribution is calculated by arguments similar to those Boltzmann used
to derive his equation. Assuming that this equation has a unique ex-
ponentially attracting invariant measure then its statistics are likely to
be insensitive to perturbation; arguments showing the effect of rounding
error on invariant measures of Markov chains may be found in [29] and

the effect of time-discretization on time-continuous Markov chains may
be found in [32]. &

6 Conclusions

The numerical experiments and accompanying mathematical discussion
in this paper have illustrated the following main points concerning the
statistical content in numerical simulations of initial value problems:

e Experimental evidence strongly suggests that, often, statistics are ro-
bust under time-discretization and round-off error even when trajec-
tories are not.

e Substantiating this is typically far harder for deterministic problems
than for stochastic ones.

e Large deterministic problems with random data fall somewhere in be-
tween deterministic and stochastic problems; some progress has been
made using ideas from statistical mechanics, but this work is in its
infancy.

e Much remains to be done.
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