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Abstract
We provide an explicit rigorous derivation of a diffusion limit – a stochas-

tic differential equation with additive noise – from a deterministic skew-
product flow. This flow is assumed to exhibit time-scale separation and has
the form of a slowly evolving system driven by a fast chaotic flow. Under
mild assumptions on the fast flow, we prove convergence to a stochastic dif-
ferential equation as the time-scale separation grows. In contrast to existing
work, we do not require the flow to have good mixing properties. As a con-
sequence, our results incorporate a large class of fast flows, including the
classical Lorenz equations.

The updated version contains a correction to the proof of the main result,
and removes an unnecessary large deviation assumption.

1 Introduction
There is considerable interest in understanding how stochastic behaviour emerges
from deterministic systems, both in the mathematics and applications literature.
∗E-mail address: i.melbourne@surrey.ac.uk
†E-mail address: a.m.stuart@warwick.ac.uk.
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In this note we provide a simple explicit construction of such emergent stochastic
behaviour in the setting of skew-product flows exhibiting time-scale separation. We
prove a diffusion limit for the following ordinary differential equations (ODEs):

ẋ(ε) = ε−1f0(y
(ε)) + f(x(ε), y(ε)), x(ε)(0) = ξ, (1.1a)

ẏ(ε) = ε−2g(y(ε)), y(ε)(0) = η. (1.1b)

Here x(ε) ∈ Rd, y(ε) ∈ R`. Roughly speaking we assume that the equation for y(ε)

has a compact attractor Λ ⊂ R` supporting an invariant measure µ and satisfying
certain “mild chaoticity” assumptions. These conditions are stated precisely in
Assumptions 1.2 below. In addition, we assume that f0 should average to zero
with respect to µ.

Consider the stochastic differential equation (SDE)

X(t) = ξ +

∫ t

0
F (X(s)) ds+

√
ΣW (t). (1.2)

where W is unit d-dimensional Brownian motion, Σ is a d × d covariance matrix
(depending on f0 and g) and F (x) is the average of f(x, ·) with respect to the
aforementioned invariant measure µ. The goal of the note is to prove the following
limit theorem relating the solution x(ε) of (1.1) and X of (1.2). Throughout we use
→w to denote weak convergence in the sense of probability measures [1, 2].

Theorem 1.1. Let Assumptions 1.2 hold and let η be a random variable dis-
tributed according to the measure µ on the attractor Λ ⊂ R` and fix any ξ ∈
Rd. Then, almost surely with respect to η and W , there is a unique solution
(x(ε), y(ε)) ∈ C1([0,∞);Rd × R`) of (1.1) for each ε > 0, and a unique solu-
tion X ∈ C([0,∞);Rd) of (1.2). Furthermore x(ε) →w X in C([0,∞),Rd) as
ε→ 0.

Throughout the note we make the following standing assumptions.

Assumptions 1.2. The differential equations (1.1) satisfy the following:

1. Equation (1.1b) with ε = 1 has a compact invariant set Λ, η ∈ Λ, and
there is an invariant probability measure µ supported on Λ; expectation with
respect to this measure is denoted by E.

2. The vector fields g : Λ → R` and f0 : Λ → Rd are locally Lipschitz, and
the vector field f : Rd × Λ → Rd is bounded and Lipschitz with uniform
Lipschitz constant L.

3. The vector field f0 : Λ→ Rd averages to 0 under µ : Ef0 = 0.

4. Define Wn(t) = n−
1
2

∫ nt
0 f0(y

(1)(τ)) dτ , for t ≥ 0. Fix any T > 0. We
assume the weak invariance principle (WIP), namely that Wn →w

√
ΣW

in C([0, T ],Rd) as n→∞ for unit d-dimensional Brownian motion W and
some covariance matrix Σ, independent of T .
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Remark 1.3. (a) The regularity conditions on f, f0, g in assumption 2 guaran-
tee global existence and uniqueness of solutions to the ODEs (1.1) and the SDE
(1.2) for all positive time and all initial conditions ξ ∈ Rd, η ∈ Λ. We note that
uniformity of the Lipschitz constant for f is automatic in y since Λ is compact.
(b) Assumption 4 holds for a large class of flows. In particular, the WIP is proved
in [3] for flows that have a Poincaré map modelled by a Young tower [4, 5] with
summable tails. This includes Anosov and Axiom A flows, nonuniformly hyper-
bolic flows such as Hénon-like flows (where the Poincaré map has a Hénon-like
attractor), and Lorenz attractors [6] (including the case of the classical parameter
values in [7]). In this class of examples, the Poincaré map has good statistical
properties and limit laws such as the WIP transfer to the flow [8].

There are two main routes leading to emergent stochastic behaviour in deter-
ministic systems. The first is through the elimination of a large number of degrees
of freedom, and the reliance on the central limit theorem to provide fluctuations
and the second is through time-scale separation; see [9] for an overview. The first
mechanism does not require any assumption of chaotic behaviour and may even be
observed in large systems of linear oscillators; work in this area was initiated in
[10] and more recent work includes [11, 12]. The second mechanism relies on the
presence of some fast chaotic dynamics to induce white noise and has a long his-
tory in the applied literature; we mention, in particular, the work in [13, 14, 15, 16].
Our work provides a very simple scenario in which the second mechanism may be
used, provably, to establish emergent stochastic dynamics. We anticipate that the
basic ideas would apply to a far larger class of problems as indicated, for example,
by the program outlined in [17]. Moreover the basic mechanism that underlies the
work in this note was identified and studied in the seminal paper [18]. However
the conditions in that paper can be hard to verify for specific ordinary differential
equations. In contrast our construction holds for explicit systems on R` such as the
classical Lorenz equations.

An important aspect of our theory is that we require no knowledge of mixing
properties of the flow, In contrast, previous rigorous results in the literature required
strong assumptions on the mixing properties of the flow. See [19] for the most
powerful results in this direction where it is required that the flow has stretched
exponential decay of correlations. Even for Anosov flows this has been proved
only in very special cases [20, 21, 22]. Superpolynomial decay has been proved for
typical Anosov and Axiom A flows [23, 24] and typical nonuniformly hyperbolic
flows governed by Young towers [25, 26] but only for very smooth observables;
this smoothness would have to be imposed on f0. For the Lorenz equations there
are currently no results at all on rates of mixing (though superpolynomial decay
holds for typical nearby flows by [26]).

2 Diffusion Limit
We now prove the diffusion limit contained in Theorem 1.1. The method of proof
generalizes that described in Chapter 18 of [27] for homogenization in SDEs with
additive noise and a skew-product form.

Proposition 2.1. Let (x(ε)(t), y(ε)(t)) denote the solution to (1.1) with f ≡ 0,
ξ = 0 and with η a random variable distributed according to the measure µ on
Λ. Let T > 0. Then x(ε) →w

√
ΣW in C([0, T ],Rd) as ε → 0. Here, W is unit

d-dimensional Brownian motion and the covariance matrix Σ is independent of T .
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Proof. Note that y(1)(t) is the solution to the IVP ẏ = g(y), y(0) = η. Define
Wn(t) = n−

1
2

∫ nt
0 f0(y

(1)(τ)) dτ , for t ∈ [0, T ]. By the WIP, Wn →w

√
ΣW in

C([0, T ],Rd) as n→∞.
Now y(ε)(t) = y(1)(tε−2). Hence

x(ε)(t) = ε−1
∫ t

0
f0(y

(ε)(s)) ds = ε

∫ tε−2

0
f0(y

(1)(τ)) dτ.

Writing n = ε−2, we obtain x(ε)(t) = Wn(t) and the result follows.

Proof of Theorem 1.1 To prove weak convergence on [0,∞), it suffices to establish
weak convergence on [0, T ] for each fixed T > 0.

Write W (ε)(t) =
∫ t
0

1
εf0(y

(ε)(s)) ds. By integrating the x(ε) equation we have

x(ε)(t) = ξ +

∫ t

0

1

ε
f0(y

(ε)(s)) ds+

∫ t

0
f(x(ε)(s), y(ε)(s)) ds

= ξ +W (ε)(t) +

∫ t

0
F (x(ε)(s)) ds+ Z(ε)(t)

where

Z(ε)(t) =

∫ t

0

(
f(x(ε)(s), y(ε)(s))− F (x(ε)(s))

)
ds.

We show below that Z(ε) → 0 in probability in C([0, T ],Rd). (That is, for any
c > 0 there exists ε0 > 0 such that µ(max[0,T ] |Z(ε)|) > c) < c for all ε ∈
(0, ε0). By Proposition 2.1, W (ε) →w

√
ΣW in C([0, T ],Rd). It follows that

W (ε) + Z(ε) →w

√
ΣW in C([0, T ],Rd). Now consider the continuous map G :

C([0, T ],Rd) → C([0, T ],Rd) given by G(u) = v where v is the unique solution
to the integral equation

v(t) = ξ + u(t) +

∫ t

0
F (v(s)) ds.

Define v(ε) = G(W (ε) + Z(ε)). Since continuous maps preserve weak conver-
gence, it follows that v(ε) →w G(

√
ΣW ) = X . But v(ε) = x(ε) by uniqueness of

solutions, so x(ε) →w X as required.
It remains to show the convergence in probability of Z(ε) to 0 in C([0, T ],Rd).

Define g(x, y) = f(x, y) − F (x) and note that |g|∞ ≤ 2|f |∞ and Lip(g) ≤ 2L.
Then Z(ε)(t) =

∫ t
0 g(x(ε)(s), y(ε)(s)) ds. Let N = [t/ε3/2] and write Z(ε)(t) =

Z(ε)(Nε3/2) + I0 where I0 =
∫ t
Nε3/2 g(x(ε)(s), y(ε)(s)) ds. We have

|I0| ≤ (t−Nε3/2)|g|∞ ≤ 2|f |∞ε3/2. (2.1)
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We now estimate Z(ε)(Nε3/2) as follows:

Z(ε)(Nε3/2) =
N−1∑
n=0

∫ (n+1)ε3/2

nε3/2
g(x(ε)(s), y(ε)(s)) ds

=
N−1∑
n=0

∫ (n+1)ε3/2

nε3/2

(
g(x(ε)(s), y(ε)(s))− g(x(ε)(nε3/2), y(ε)(s))

)
ds

+
N−1∑
n=0

∫ (n+1)ε3/2

nε3/2
g(x(ε)(nε3/2), y(ε)(s)) ds

= I1 + I2.

For s ∈ [nε3/2, (n + 1)ε3/2], we have |x(ε)(s) − x(ε)(nε3/2)| ≤ (|f0|∞ +

|f |∞)ε1/2. Hence

|I1| ≤ Nε3/2 Lip(g)(|f0|∞ + |f |∞)ε1/2 ≤ 2L(|f0|∞ + |f |∞)Tε1/2. (2.2)

Next,

I2 =

N−1∑
n=0

∫ (n+1)ε3/2

nε3/2
g(x(ε)(nε3/2), y(ε)(s)) ds = ε3/2

N−1∑
n=0

Jn,

where

Jn = ε−3/2
∫ (n+1)ε3/2

nε3/2
g(x(ε)(nε3/2), y(ε)(s)) ds

= ε1/2
∫ (n+1)ε−1/2

nε−1/2

g(x(ε)(nε3/2), y(1)(s)) ds.

Hence

|I2| ≤ ε3/2
[Tε−3/2]−1∑

n=0

|Jn|. (2.3)

For u ∈ Rd fixed, we define

J̃n(u) = ε1/2
∫ (n+1)ε−1/2

nε−1/2

g(u, y(1)(s)) ds = ε1/2
∫ (n+1)ε−1/2

nε−1/2

Au ◦ φs ds,

where Au(y) = g(u, y). Note that J̃n(u) = J̃0(u) ◦ φnε−1/2 , and so E|J̃n(u)| =

E|J̃0(u)|. By the ergodic theorem, E|J̃0(u)| → 0 as ε→ 0 for each u.
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Let Q > 0 and write I2 = KQ,1 +KQ,2 where

KQ,1 = I21Bε(Q), KQ,2 = I21Bε(Q)c , Bε(Q) =
{

max
[0,T ]
|x(ε)| ≤ Q

}
.

For any a > 0, there exists a finite subset S ⊂ Rd such that dist(x, S) ≤
a/(2L) for any x with |x| ≤ Q. Then for all n ≥ 0, ε > 0,

1Bε(Q)|Jn| ≤
∑
u∈S
|J̃n(u)|+ a.

Hence by (2.3),

Emax
[0,T ]
|KQ,1| ≤ ε3/2

[Tε−3/2]−1∑
n=0

∑
u∈S

E|J̃n(u)|+ Ta

= ε3/2
[Tε−3/2]−1∑

n=0

∑
u∈S

E|J̃0(u)|+ Ta

≤ T
∑
u∈S

E|J̃0(u)|+ Ta.

Since a > 0 is arbitrary, we obtain for each fixed Q that max[0,T ] |KQ,1| → 0 in
L1, and hence in probability, as ε→ 0.

Next, since x(ε) −W (ε) is bounded on [0, T ], for Q sufficiently large

µ
{

max
[0,T ]
|KQ,2| > 0

}
≤ µ

{
max
[0,T ]
|x(ε)| ≥ Q

}
≤ µ

{
max
[0,T ]
|W (ε)| ≥ Q/2

}
.

Fix c > 0. Increasing Q if necessary, we can arrange that µ{max[0,T ] |
√

ΣW | ≥
Q/2} < c/4. By the continuous mapping theorem, max[0,T ] |W (ε)| →d max[0,T ] |

√
ΣW |.

Hence there exists ε0 > 0 such that µ{max[0,T ] |W (ε)| ≥ Q/2} < c/2 for all
ε ∈ (0, ε0). For such ε,

µ
{

max
[0,T ]
|KQ,2| > 0

}
< c/2.

Shrinking ε0 if necessary, we also have that µ{max[0,T ] |KQ,1| > c/2} < c/2.
Hence µ{max[0,T ] |I2| > c} < c, and so max[0,T ] |I2| → 0 in probability. Com-
bining this with estimates (2.1) and (2.2), we obtain that max[0,T ] |Z(ε)| → 0 in
probability as required.
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3 Conclusions
The construction in this paper shows how some new ideas in the theory of dynam-
ical systems can be used to prove a homogenization principle in ODEs, leading to
emergent stochastic behaviour. The arguments are very straightforward, and are
given only in the case of additive noise. However in the situation where the lim-
iting SDE is one dimensional the ideas of Sussmann [28] can be used to derive a
limiting SDE in which noise appears multiplicatively. Generalizing these ideas to
skew product flows where the SDE is of higher dimension will require the theory
of rough paths [29] and is the subject of ongoing work.

Finally a comment on the differences between [27] homogenization and av-
eraging in ODE systems like (1.1). There is current interest [30] in the deriva-
tion of averaging principles for systems of ODEs exhibiting three time scales of
order O(ε−2),O(ε−1) and O(1). The motivation is the construction of efficient
numerical schemes for computation of the averaged solution, which is determinis-
tic. Theorem 1.1, which also concerns the limiting behaviour of a system contain-
ing three time-scales, corresponds to a homogenization principle with a stochastic
limit, rather than an averaging principle with deterministic limit. Thus our work
provides an example of a three scale system for which an effective deterministic
averaged equation cannot exist.
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