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Abstract. Numerical approximation of the long time behavior of a stochastic differential equa-
tion (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used
to show that the stationary behavior of the numerical method converges to that of the SDE. The
error analysis is based on using an associated Poisson equation for the underlying SDE. The main
advantages of this approach are its simplicity and universality. It works equally well for a range of
explicit and implicit schemes, including those with simple simulation of random variables, and for
hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the
SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach
can be applied more widely. An analogy between our approach and Stein’s method is indicated.
Some practical implications of the results are discussed.
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1. Introduction. In many applications one is interested in estimating the in-
variant measure of a stochastic differential equation (SDE) by running a numerical
scheme which approximates the time dynamics of the SDE. Two common approaches
are to use the numerical trajectories to construct an empirical measure by the time-
averaging trajectories or by averaging many different realizations to obtain a finite
ensemble average (see, for example, [30]). In either case one produces an approxi-
mation to the numerical method’s invariant measure and is immediately presented
with a number of questions, including the following: (i) Does the numerical scheme
have a stationary measure to which it converges quickly as time goes to infinity? (ii)
How close is the numerical method’s stationary measure to the stationary measure
of the underlying SDE? (iii) How close is the time-averaging estimator to the sta-
tionary measure of the underlying SDE? This article mainly focuses on questions (ii)
and (iii).

The first question is addressed in many papers, including [39, 43, 27, 23, 20]. There
are also a number of works where the second question has been considered. In [43]
it was shown that several numerical methods for SDEs, including the forward Euler—
Maruyama scheme, have unique stationary measures which converge at the expected
rate to the unique stationary measure of the SDE. Moreover, in [45] an expansion of
the numerical integration error in powers of time step was obtained which allows one
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to use the Richardson—-Romberg extrapolation to improve the accuracy. These works
discuss the convergence in the case of relatively smooth test functions. In [2, 3], the
authors use techniques from Malliavin calculus to establish smoothing properties of
the discretization scheme. This allows one to prove the convergence of the averages of
test functions which are only bounded. In turn, this shows that the distance between
the numerical method’s stationary measure is close to the stationary measure of the
SDE in the total-variation norm. In [41], a general method of deducing closeness of
the stationary measure from an error estimate on a finite time interval is proposed,
though in general it does not provide optimal estimates of the convergence rate. In
the earlier works a global Lipschitz assumption was imposed on the coefficients of the
SDE which was lifted in [40, 27, 44, 7]. The papers [43, 45] deal with elliptic SDEs,
while the hypoelliptic case is treated in [2, 3, 44, 27, 26, 7].

In this paper we obtain error estimates for time-averaging estimators. The error
estimates are given in terms of a term of the same order of magnitude as the weak finite
time error of the numerical integrator used and the length of the simulation. Control of
the time-averages is then used to prove closeness of the numerical method’s stationary
measure to the stationary measure of the SDE. The convergence rate obtained is the
same as the weak convergence rate obtained on a finite time interval. This highlights
the general principle that, for time-dependent problems, finite time approximation
properties can be transferred to infinite time approximation properties in the presence
of suitable stability. Here the underlying stability is the geometric ergodicity of the
SDE.

The main tool in our analysis is an associated Poisson equation for the underlying
SDE. In this error analysis, the Markov chain generated by the numerical method need
not be uniquely ergodic. It is shown that any stationary measure of the numerical
method will be close to the unique stationary measure of the underlying SDE. We see
the main advantages of the current analysis as being its simplicity and universality.
In particular, we obtain the error estimates in the case of numerical schemes with any
reasonable simple random variables (including the discrete random variables used in
weak Euler schemes [29]). Furthermore, our approach works equally well for a range of
explicit and implicit schemes, and, perhaps more importantly, it works for hypoelliptic
SDEs. It is comparatively short, and the analysis leverages classical results on PDEs.
It should be possible to extend this approach to methods with adaptive step-sizes (see
[22, 26]). It should also be adaptable to the stochastic PDE (SPDE) setting using the
Poisson equation in infinite dimensions (see related applications of Poisson equations
in [8, 10]).

Our goal here has not been to give the most general results. We have picked the
simplifying setting of a compact phase space, namely, the d-dimensional torus, and
relatively smooth test functions. The extension to the whole space requires control of
the time spent outside of the center of the phase space. Under additional assumptions
in the spirit of [27], we believe that versions of the present results can be proven in R

In section 2, we introduce the basic setting for the underlying SDE and discuss
the hypoellipticity assumptions. In section 3, we describe the class of numerical
approximations we consider. We give examples of explicit and implicit methods which
fit our framework. In section 4.1, we discuss the auxiliary Poisson equation which will
be used to prove the main results, and we give properties of its solution. In section 4.2,
we warm up by showing how to prove a law of large numbers, for the SDE, using an
auxiliary Poisson equation. Section 5.1 contains the main results of the article which
give a number of senses in which the numerical time-averaging estimators are close
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to the corresponding stationary time-average of the SDE. In section 5.2 we extend
the results of section 5.1 to numerical methods of higher orders, and in section 5.3
the Richardson-Romberg (Talay—Tubaro) error expansion is considered. Section 6
uses the results of section 5 to give a quantitative estimate on the distance of the
numerical stationary measures from the underlying stationary measure for the SDE.
In section 6.2 we make some general comments about analogies with Stein’s method for
proving the convergence of distributions to a limiting law. Some practical implications
of the results of section 5 are discussed in section 7, where we classify the errors of the
numerical time-averaging estimators and, in particular, pay attention to the statistical
error.

2. SDE setting. Let (2, F,F,P), t > 0, be a filtered probability space and
W(t) = (Wi(t),...,Win(t))" be an m-dimensional {F;};>o-adapted standard Wiener
process. Consider the Markov process X (¢) on the torus' T whose time evolution is
governed by the It6 SDE

(2.1) dX(t) = f(X(t))dt + g(X(t)) dW (t),

where f = (f1,...,f4a)": T¢ - R% and g: T? — R¥>™. We assume that f and
g are Lipschitz continuous (and hence uniformly bounded) functions on T¢. Under
these assumptions, (2.1) has a unique pathwise global solution. The generator of the
Markov process X (¢) is

. 1
(2.2) L= fV+ 5@:VV

- Zflaxl t3 Z i 8:1018%

4,j=1

where a(z) = g(z)g' (z). For a twice differentiable function ¢: T¢ — R and x € T¢
we have

(L)) = F(@).V <>+;a<>:vv¢<x>

d Ll 8%
Z file 83:1 2 Z 3%83:]- ().

i=1 j=1

The operator £ generates a strong Markov semigroup P; for ¢ > 0, which maps
smooth bounded functions to smooth bounded functions. It can also be defined by
(Po)(z) = Ex¢(Xy), where Xo = z. By duality, P; also induces a semigroup which
acts on probability measures. In the name of notational economy, we will also denote
this semigroup by F;.

The kth column of ¢, which we denote by ¢(*), can be viewed as a function from
T? — R% Hence {f,¢gV,..., g™} is a collection of vector fields on T¢ and (2.1)
can be rewritten as

dX(t) = ) dt + Zg““’ ) AW (t).

Tn physical applications, a process on the torus can be of interest when periodic boundary
conditions are imposed on the problem. A typical example is a noisy gradient system which may
be used to sample from the Gibbs distribution with a periodic potential [38]. We also note that
our results can potentially be applied to approximating Lyapunov exponents on compact smooth
manifolds [14].
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This form of (2.1) makes it clear that there is a deterministic drift in the direction
of f and independent random kicks in each of m directions {g™"),... g™ }. We will
require that the randomness injected into the dynamics in the ¢(*) directions affects
all directions sufficiently to produce a “smoothing” effect at the level of probability
densities. Uniform ellipticity is the simplest assumption which ensures “sufficient
spreading” of the randomness. However, it is far from necessary, and many important
examples are not uniformly elliptic. For our purposes, it is sufficient that the system
is hypoelliptic.

The conditions given in our standing Assumption 1, given below, are enough to
ensure hypoellipticity. To state them, we need to recall the definition of the Lie-
bracket (or commutator) of two vector fields. In our setting, given two vector fields
h,h on T¢ with h = (hy,...,hq)" and h = (hy,...,hq)", one defines the Lie-bracket
as [h, h](z) = (h.Vh)(z)— (h.Vh)(x). Hence the jth component of [h, h](z) is given by
Zle (hl(x)g—};(x) - Bz(x)g—};(x)) The vector [h, h](z) may be thought of as the new
direction generated by infinitesimally following h, then h, then —h, and finally —h.
Our most general assumption will be that the collection of all the brackets generated
by the randomness spans the tangent space at all points. To track how the noise
spreads, we introduce the following increasing set of vector fields:

Ao = span{f, g, ....g™}, Apsy =span{h, [i,h]: he A, h€ Ao}

The following is our basic assumption governing the stationary measure of the
system and its smoothness.

Assumption 1. We assume that one of the following two assumptions hold:

(i) Elliptic setting. The matrix-valued function a(z) = g(x)g" (z) is uniformly
positive definite: there exists o > 0 so that, for all z € R? and = € T¢,
alz|? < a(x)z.z.

(ii) Hypoelliptic setting. The functions f and g are C*°(T? R%) and such that,
for some n and all x € T, A, = A, (z) = R? and (2.1) possesses a unique
stationary measure.

In either case in Assumption 1, we have that (2.1) has a unique stationary mea-
sure, henceforth denoted by p, which has a density with respect to Lebesgue measure
on T<.

As was already mentioned, the goal of this paper is to give a simple, yet robust,
proof that time-averages obtained using a class of numerical methods for simulating
(2.1) is close to the corresponding ergodic limits of (2.1). To this end, we now describe
the class of numerical methods we will consider.

3. Numerical approximations. We will begin by considering a class of simple
numerical approximation of (2.1) given by the generalized Euler-Maruyama method
on the torus T¢,

(3.1)

Xpi1 = Xn + F(Xn, A) A + G(Xn, A)ps1 VA,
Xo=2o,

where A is the time increment, F': T¢x(0,1) — R%, G: T9x(0,1) — R¥™ and n,, =
(Mnts- s Mnm) | is an R™-valued random variable and {1, ; : n € N,i € {1,...,m}}
is a collection of independent and identically distributed (i.i.d.) real-valued random
variables satisfying

Enn,: = Enf;z =0, Eﬁi,i =1, Enrzlrl <00

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



556 J. MATTINGLY, A. STUART, AND M. TRETYAKOV

for a sufficiently large r > 2.2 More general methods will be considered in section 5.2.
For example, 11 ~ N(0,1) satisfies these assumptions as well as 7, ; with the
law

(3.2) P(ma=+1)=1/2.

We also note that the above two choices of n; 1 guarantee existence of finite moments
of 1,1 of any order. Further, we assume that 7,,, n € N, is defined on the probability
space (Q, F,P) and is {F,, }-adapted for ¢, = nA.

Since we want the dynamics of (3.1) to be “close” to those of (2.1), we make the
following assumption on the “local error” of (3.1).

Assumption 2. For some C > 0, all z € T, and all A sufficiently small,

(3.3) [F(z, A) = f(2)| +[G(z, A) = g(z)] < CA.

Under this assumption we expect that X, ~ X(t,), where as before ¢, = nA.
In fact, it follows from the general theory [29] that such numerical schemes have
first-order weak convergence on finite time intervals.

In analogy to (2.2), we define an operator associated to (3.1) by

LA(-):F(~,A).V+%A(-,A):Vv,

where A(z,A) = G(x, A)GT (2, A). While not the generator of the Markov process
(3.1), it is the generator’s leading order part since

(3.4) E(¢(X1) - ¢(x0)) = (L) (x0)A + O(A?)  as A 0.
Since (by Assumption 2) we have that
(3.5) L2 — Lo < CAID* ¢,

where D?¢ is the second derivative, we deduce that
(3.6) E(qS(Xl) - ¢(x0)) = (L) (x0)A +O(A2) as A —0.

It is reasonable to expect that the distribution of the dynamics of the SDE and its
approximation will be close to one another since the leading part of the generator of
the approximation (3.1) is close to that of the original process (2.1).

We close this section by giving two approximation methods which satisfy Assump-
tion 2.

Ezample 3.1 (explicit Euler-Maruyama). We define

(3-7) Xpy1 =X, + f(Xn)A + g(Xn)nn+l\/Za

and hence F'(z,A) = f(x) and G(z,A) = g(z).
Ezample 3.2 (implicit split-step). We define

X;Jrl =X, + f(X;;H)A,
Knt1 = X;Jrl + g(X;+1)77n+1\/Za

2We do not specify 7 in the statements of the forthcoming theorems since common numerical
schemes use random variables with bounded moments up to any order. At the same time, in each
proof in section 5.1 it is not difficult to recover the number of bounded moments required.
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and hence F(x,A) = f(y) and G(z,A) = g(y), where y is an element of {y € TY :
y=x + f(y)A}, which is closest to .

Remark 3.3. From (3.6) and the backward Kolmogorov equation for (2.1), As-
sumption 2 is equivalent to

(3.8) Ej(X1) — E¢(X(A)) = O(A?)

for all sufficiently smooth ¢, provided that Xy = X (0). In the language of consis-
tency and stability of a numerical method used in the introduction, (3.6) and (3.8)
provide an appealing way to characterize the degree of local consistency of a numerical
method. This will be the starting point for our discussion of higher order methods in
section H.2.

4. Poisson equation.

4.1. Background. It is a “meta-theorem” in averaging, homogenization, and

ergodic theory that if one can solve the relevant Poisson equation, then one can prove
results about the desired limit of a time-average. A central theme of this paper is
to show how an appropriate Poisson equation can be used to analyze the long time
average of a given function ¢: T¢ — R, evaluated along a numerical approximation of
(2.1), and obtain information about its closeness to the corresponding ergodic limits.

In this section, for motivation, we illustrate key ideas related to the Poisson
equation, purely in the continuous time setting. To this end, recalling that p is the
unique stationary measure of (2.1) and L its generator, given ¢: T? — R, we define
the stationary average of ¢ by

(4.1) o= | ¢(z)p(de)

Td

and let ¢ solve the Poisson equation
(4.2) Ly=6-4.

Under Assumption 1, (4.2) possesses a unique solution which is at least as smooth as
¢. For k € N, we denote by W#> the space of functions from T¢ to R such that the
function and all of its partial derivatives up to order k are essentially bounded. We
then have the following result whose proof we sketch.

THEOREM 4.1. Under Assumption 1(i), given any ¢ € W5 with k € N U {0}
there exists a unique solution ¢ € WkT2:°° to (4.2). Under Assumption 1(ii) there
exists a & > 0 so that given any ¢ € W* with k € N U {n > 2}, there exists a
unique solution ¢ € Wk+92 to (4.2).

Proof. Let A denote the Laplacian on the d-dimensional torus. In either the
hypoelliptic or elliptic case, one knows that for some positive & and C

1(=2)%¢ll> < C(I1£¢] L2 + 1]l 22)

for all smooth ¢. (See [18] and recall that our space is compact.) This implies that £
has compact resolvent and discrete spectrum (consisting of isolated points). Thus £
has a spectral gap and is invertible on the complement of the span of the eigenfunctions
with zero eigenvalue. The space is nothing other than the functions which have zero
mean with respect to an invariant measure for the corresponding semigroup P; (i.e.,
w such that P, = p or, in terms of the generator, £*u = 0). Since the system has a
unique invariant measure due to Assumption 1, we see that ¢ — ¢ has zero projection
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onto the space spanned by eigenfunctions with eigenvalue zero. Hence we know there
exists a function u which solves (4.2) weakly, by the Fredholm alternative.

This leaves the regularity. In the uniformly elliptic case, see [17, 21, 42]. In the
hypoelliptic case, the results follow from Theorem 7.3.4 of [42] or [18]. This states
that there is 6 > 0 such that, if ¢ € W*P, then u € W**oP for p € [2,00) and k € N.
Since our ¢ € W*P for all p > 2, we know that u € ﬂPZl Wk+d:p - Since our space
has finite measure, we know that W*toe =) _ Wwhtor @

Remark 4.2. One of the principal technical issues that must be addressed in
order to extend the results in this paper from the T case to a general ergodic SDE
on R? is proof of the existence of nice, well-controlled solutions to the above Poisson
equation. Many of the needed results can be found in [35, 36, 37].

4.2. A strong law of large numbers: An illustrative example. We now
show how to use the Poisson equation to prove a law of large numbers for (2.1). This
idea appears frequently in the literature [6, 13, 34, 31, 38]. Nonetheless, since this
technique is central to our investigation of discrete time approximations to diffusions,
we first highlight the main ideas in continuous time. However, before we begin, it
is worth noting that, at least formally, the solution to the Poisson equation can be
written as

(4.3) () %~ / " Pu(é— @) (a)ds.

This can be interpreted as the total fluctuation over time of P,¢ from ¢; and hence,
it is not surprising that ¢) can be used to control convergence to equilibrium.

As stated in Theorem 4.1, when Assumption 1 holds, given any ¢: T¢ — R
with ¢ € W2 there exists a unique 1»: T?¢ — R which solves (4.2). Furthermore,
1 € W2, and hence Ité’s formula then tells us that

(4.4) ¢(X(t))—w(wo)=/o (6(X(5)) - ¢) ds+/0 (V) (X (s)) - g(X(5))dW (s).

Rearranging this, we obtain that

t )

(4.5) ; / H(X(s))ds — 6 = t

where M (t) = fOt(Vw)(X(s)) .g(X (s))dW(s). Since 9 is bounded, the first term on
the right-hand side goes to zero as t — co. To see that the last term also goes to zero

as t — 0o, observe that

SE(M(?) = ZBON() <

==

for some K > 0 independent of time since V¢ and g are both bounded on T¢. More
precisely, we have shown that for any initial xg

- 2
(4.6) E <%/0 d(X(s))ds — (b) <

which is a quantitative version of what is often called the mean ergodic theorem.

)

N =
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We can view + fOT #(X(s)) ds as an estimator for ¢, and it follows from (4.5) that

(4.7) Bias <% /OT ¢(X(s))ds> =E ( / p(X ds—¢> =0 (%) .

One can also show that

(4.8) Var (% /OT H(X(5)) ds) ~0 (%) .

The estimate (4.8) easily follows from (4.6) and (4.7) but can also be obtained directly
from (4.5) using an additional mixing condition.

To obtain an almost sure (a.s.) result,® for any € > 0 we introduce A(T;e) =
{+ sup,<p |M(t)] > T<=3}. By the Doob inequality for continuous martingales and
the fact that E|M(T)|?> < KT, we get

E|M(T)|? K
P(ATe) < P < B

Hence

Z P(A(2"¢)) < o0,

neN

and the Borel-Cantelli lemma implies that there exists an a.s. bounded random vari-
able C(w) > 0 and ng so that for every n € N with n > ng one has
1 C(w)

3 S MO < Soap

Hence, with probability one, for every ¢ € [27,2"T1) with n > ng one has

1 2 20 (w) 20 (w)
|M( )| on sSup | ( )| < gn+1 sup | ( )| = 9(n+1)(1/2—¢) < t1/2— °

2" gn<g<ont s<2nt

By combining this estimate with (4.5) and the fact that ¢ is bounded, we see that for
any € > 0 and for every ¢ > 2™ one has

(4.9) ‘% /OT d(X(s))ds — ¢‘ 2|1/)|oo Tlf? )E a.s.

for some a.s. bounded C'(w) > 0. We note that (4.9) implies that for any initial

(4.10) tlggo ; / d(X(s))ds=¢ a.s.
In other words, the strong law of large numbers holds starting from any initial x.
Our assumptions are sufficient to ensure that (2.1) has a unique stationary measure
u. Hence, it follows from Birkoft’s ergodic theorem that (4.10) holds for u-a.e. initial
2zo. The above argument not only shows that the result holds for all zy but also gives
quantitative estimates on the rate of convergence.

3This result can also be obtained using Kronecker’s lemma (see, e.g., [12]), though the approach
we follow gives explicit error estimates which can be useful.
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5. Error analysis for the numerical time-average.

5.1. First-order accurate schemes. We now wish to generalize the calcula-
tions in the previous section to prove the closeness of the time-averages obtained via
the Euler approximation (3.1) to the stationary averages of (2.1). We consider sam-
ple path estimates in this section and then convert these to distance estimates in an
appropriate metric in section 6. A

Let T = NA. Introduce the estimator (discrete time-average) ¢ for the station-
ary average ¢,

N-1

(5.1) on = % > o(Xn),

n=0

where X, is the SDE approximation defined in (3.1).
We start by proving a mean convergence result, followed by L? and a.s. theorems.
THEOREM 5.1. Let Assumptions 1 and 2 hold. Let H denote W2 in the elliptic
setting and W in the hypoelliptic setting. Then, for any ¢ € H, one has

(5.2) B — 3] SC(A+%>,

where T'= NA and C is some positive constant independent of A and T. Further-
more, the constant C is a linear function of |¢|xg and otherwise independent of ¢.*
Proof. Under either of the conditions from Assumption 1, we know from Theo-
rem 4.1 that the solution 1 of (4.2) is in W4°°. In the interest of clarity and definite-
ness, we will proceed under the first condition in Assumption 1 (the elliptic setting),
where |D*)]ec < C|D*¢loo, |D*loc < C|Dloos [D*Yloc V [Dlo V [hlos < Cldloc.

In the hypoelliptic setting, the kth derivative of ¢ is bounded by the same derivative
of ¢, necessitating the change in definition of H between the elliptic and hypoelliptic
cases in the statement of the theorem.

For brevity, we write ¢, = &(X,), F, = F(X,,A), G, = G(X,,A), ¢, =
¥(X,,), and D¥1p, = (D*)(X,,), where (D*)(z) is the kth derivative. We write
(D*4)(2)[h1, .. ., hy] for the derivative evaluated in the directions h;. Defining 8, =
Xnt1 — X, =AF, + \/ZG,anrl, we have

_ 1 o 1 o
(53) ¢n+1 = ¢n + Dwn [571] + §D2¢n[6na 571] + 6D3¢n[5n7 51’“ 6n] + Rn+1,
where
e <
Ryt = <E/ 3D (s X, + (1 — S)Xn+1)d8> [0n,, Oy Oy O]
0
is the remainder given by the Taylor theorem. Hence,

(5-4) ¢n+1 =n + A»’SA% =+ A%Dwn[Gnnn+l] + A%D2¢n[Fn; Gnnn—i-l]

1 1 -
+ §A2D2¢n[FnaFn] + E-D?)wn[&na&naén] + Tn+1 + RnJrla

4We indicate the dependence of constants on ¢ since this dependence is used in section 6. Ob-
viously, all the constants appearing in the statements of this and forthcoming theorems also depend
on the coefficients of the SDE (2.1) and on the numerical method used.
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where
A 2
Tn4+1 = 5 (D wn [GnnnJrla GnnnJrl] - A(xa A) vv¢n) .

Summing (5.4) over the first N terms, dividing by NA, and using (4.2) produces

N—-1 N—-1 3
1 1 1 A 1
D) A~ %) = = n — -~ — L)Y+ —+ M; N ),
(5:5) 7z (¥~ o) N;w ¢)+Nn§(£ Lye +NA;( NFSiv)
where
N-1 L N-1
My = Z Tnyl, Mo n = A2 Z Dipy, [Gring],
n=0 n=0
N—-1
M37N = A2 Z D2wn[Fn7Gn77n+l]a
n=0
A2 N—-1 N-1 1N_1 —_ _ _
Sl,N = 7 Z D2¢n[Fn;Fn]a S2,N = Z Rn+1; SS,N = E Z D3¢n[5n75n;5n]
n=0 n=0 n=0

We will find it convenient to further decompose

S3 N = Mo,n + So,n,

where
N-1
3 3 3
MO,N - A2 Z (D wn [Gnnn+1; Gn"]n+l; Gn"]n+l] + BAD ¢n[Fn; Fru Gn"]n+l]) .
n=0

Notice that E[r,1|F:,] = 0, E[nny1|F,] = 0, and E[npq1,i Tnt1,j Dokl Fe,] = 0.
Then it is not difficult to see that M;x, i =0,...,3, are martingales with respect to
{F%,} and, in particular, EM, ;, = 0 for any k.

Since f and g are uniformly bounded, (3.3) implies that F,, and G,, are uniformly
bounded in n. Recall that we also know that ¢ and its first four derivatives are
uniformly bounded. Hence the S;  are bounded as follows:

(5.6)
N—-1 N-1
S1v] < A% Cildloe = C1IgloAT, ElSon| < Y BlRpi| < Co| D¢l AT,
n=0 n=0
N—-1
E|So n| < A? Z Co|D¢loo = Co|DP|oc AT,
n=0

where the C; are positive constants which we have labeled for future reference. Simi-
larly, we have (cf. (3.5))

N-1 N-1
D (LA = L)hn| <Y Culdloc = Cul @ AN.
n=0 n=0

Notice that this bound and the above bound in 57,y are a.s. bounds with deterministic
constants. Finally, observe that |¢)n — ¥g] < 2|¢|e. Applying all of the preceding
estimates to (5.5) produces the quoted result. O
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Theorem 5.1 implies that (cf. (4.7))

- 1
We now consider an L? convergence result related to the mean ergodic theorem
(4.6) in the continuous case.
THEOREM 5.2. In the setting of Theorem 5.1, for any ¢ € H, one has

(5.8) E(Qf;N_¢)2§C<A2+%>a

where T'= NA and C is some positive constant independent of A and T. Further-
more, C depends on ¢ only through |¢|g and does so linearly.

Proof. As in the proof of Theorem 5.1, we provide details in the elliptic case;
in the hypoelliptic case the only change is that higher derivatives of ¢ appear in the
constants. We begin with (5.5) from the proof of Theorem 5.1 and obtain

1N71 ) 2 (1/)N—¢0)2 1 N-1 R 2
(590 E an:%(qﬁn—aﬂ <CB{ At nz:%(,c — L)vn

2 3
1 2 1 2
t7z ) Sintmm > Min g,
=0 =0

where C is an ever-changing constant. Observe that it follows from (5.6) that
|S1 n|* < CFl¢|2, A?T?. Further, by reasoning similar to that used in getting (5.6),
we have

N
ES; v < Y E[R,||Ry| < C|D*¢|2 A*T?,
n,k=1

N—-1
ES; v <A* Y C|D¢|2 = C|Dg|% A*T?.
k,n=0

Since M n is a martingale, we get

N-—1 N-—1
EM!y=> Erl,, <) Cl¢]2A% < C|g]2A’N = C|¢[2 AT.
n=0 n=0

Similar reasoning and the bound on En?,n give

N-1 N-1
EM;y <AY Clp2=Clo2T,  EM;y <A Clgl2 = Clg|2 AT,
n=0 n=0
N—-1
EM;y < A% CID[2, = C|D¢|2 AT
n=0

Using the bounds on | 21127:—01 (LA —L)y,| and |1 —1)o], from the proof of Theorem 5.1
and all the above inequalities, we estimate the right-hand side of (5.9) and arrive at
the quoted result. a
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We now prove an a.s. version of the preceding two results. Its relation to Theo-
rem 5.2 is the same as the relation of (4.9) to (4.6).

THEOREM 5.3. In the setting of Theorem 5.1, fizing an L > 0 there exists a
deterministic constant K (depending linearly on L) so that for all ¢ with ||¢||lg < L,
A sufficiently small, positive € > 0, and T sufficiently large one has

C(w)

(5.10) ‘¢N ¢‘ < KA+ o

a.s.,
where T'= NA and C(w) > 0 is an a.s. bounded random variable depending on € and
the particular ¢.

Proof. As in the proof of Theorem 5.1, we provide details in the elliptic case;
in the hypoelliptic case the only change is that higher derivatives of ¢ appear in the
constants. Starting from (5.5), we have

Z% j| < 1 ol Z| Lyl + Z|51N|+ Z|M1N|

Recall that (see the proof of Theorem 5.1)

N-1
lvN — ol < 2[¢]oo, Z |(L2 = L)n| < Culdloo AN, |S1n] < Cildloc AT

n=0
N-1 N-1
|So,n| < KA? Z M|+ KA'N, [Son| < KA? Z Ds1|” + KAPN
n=0 n=0

where K is an ever-changing positive deterministic constant independent of A and N.
Due to the strong law of large numbers, the sum + Eg;ol |77n+1|4 a.s. converges® to
E |771|4, and thus for almost every sequence 1y, 19, ... and all sufficiently large N we
have + Zfl\f;ol Immi1]* < K for some deterministic K > 0. Hence

lel B
AT (bn_(b
v

def 3
where @N = % i=0 |Mi,N|-

Now we analyze © . We have for r > 1

3
Bo < & > EIM; N[
N —= T2r i, N
1=0

(here K depends on r). Recall that M, are martingales. If we can prove that
E|M; n|*" < CNT for all r sufficiently large, then the proof can be completed with
the aid of the Borel-Cantelli lemma as in section 4.2.

We will provide the argument for estimating E|M; n
estimated analogously. We rewrite

1
(5.11) <K (A + T) +Oy  as,

|?; the other terms are

N-1
My y = VA Z D [Gntins1] E VAM, .
n=0

5Note that in the case of 7y, ;, from (3.2) this sum is equal to m?.
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We have 1\7[2,1 = 0 and for an integer r > 0

~ ~ 2r
(5.12) EM3,,, =E (MQ,k + Dy, [Gknk+1])
= B (N3, + 201 Dy [Gras] + (DY [Grne1))?)

< EM22Tk +2rE (Mng;;_l D¢k[Gk7]k+1])
2r

+ K3 E ([N DGl
=2

Note that the second term is equal to zero. Indeed,
(5.13) B (M DUnlGunen]) = E (N E (Db [Game] 1)) = 0.

Using the elementary inequality

1 1 faP?  bINT 1 1
ab=—(abN) < — | — ,a,b>0, pg>1, —4+—-=1,

v (N =y <p > P q
we get
(5.14)

Y 2r—1 l 1 2r—1, -~ 2r ! 2r nr2r /1
E (|30 7D [Gimi]|') < T B (N 2" 4 o= | D[ G| PN )
N 2r 2r
[=2,...,2r

The relations (5.12)—(5.14) imply
“r2r “r2r K r—1
whence
EM;7y < KN

Note that by Jensen’s inequality this inequality holds for noninteger » > 1 as well.
Therefore,

1 o AT - 12r K
Tar B |Ma n|™ = Tar B ‘MZ,N < T
Analogously, we obtain
1 o K 1 o o K 1 o o K
E|M <A"—, —E|M. <AT— —E|M < ATT—.
T2 |My N[ < Tro T |M3 n|™" < Tro Tar | Mo n|™ < Tr
Thus,
K
(5.15) EO% < T

The Markov inequality together with (5.15) implies

) < ATINTYVESY) < KT,

1
P <@N > AN
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Then, for any v = 1/2 — ¢, with € > 0, there is a sufficiently large » > 1 such that
(recall that A is fixed here and T'= AN)

i P (@N > %) <K i T =1 <« .

N=1 N=1

Hence, by the Borel-Cantelli lemma, the random variable ¢ < Supp~o 170N is a.s.
finite, which together with (5.11) implies (5.10). O

We note that Theorems 5.1-5.3 do not require the Markov chain X, to be ergodic.
It is, of course, possible under some additional conditions on the numerical method
to prove its ergodicity (see, for example, [43, 44, 27]). If the limit limy_,o ¢n exists
and is independent of X (i.e., if the Markov chain X, is ergodic), then it follows from
Theorem 5.3 that limy_, s |q§N — é‘ < KA a.s., which is consistent with the results
of, for example, [43].

Remark 5.4. In the series of papers [23, 24, 25, 26, 32, 33] the authors consider
the following weighted estimator for the stationary average ¢:

where X, are obtained by an Euler-type scheme with a decreasing time step A,, such
that A, — 0 as n — oo while positive weights w,, are such that Zi:;l w, — 00 as
N — o0. In particular, they proved that for some Euler-type schemes and w,, = A,, =
Agn™*, o € [1/3,1),

Bios (3x) = { o/, “e L1

(i) =0 ()

i.e., roughly speaking, the error of the estimator <;~SN under the optimal choice of the
parameters is

~ - 1

¢N_¢NO<N1/3> .
We also note that the authors of [23, 24] proved a.s. convergence of weighted empirical
measures based on Euler-type schemes with decreasing time step to the invariant
measure of the corresponding SDE exploiting the Echeverria—Weiss theorem, which
differs from the approach used in this paper. A R

Let us briefly compare the estimators ¢ and ¢n. For the estimator ¢n from

(5.1) with equal weights w,, = 1 and with X, obtained by an Euler-type scheme with
constant time step A, we can say that the error is (cf. Theorems 5.2 and 5.3)

N - 1

If we fix the computational costs (i.e., N and an Euler-type scheme), then the asymp-
totically optimal choice of A for ¢ is N~1/3, in which case O (A +1 /N/2A1/?) =
0] (1/N1/3). It is interesting to note that these optimal orders of errors of both esti-
mators are the same. At the same time, we should emphasize that the term with A
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in (5.16) (see also KA (5.7) and (5.10)) is related to the numerical integration error
while the term with 1/v/T = 1/N*/2A'/2 is related to the statistical error (see also
section 7). In the case of large scale simulations (like those in molecular dynamics)
the numerical error is usually relatively small thanks to the existing state-of-the-art
numerical integrators, and the statistical error prevails. In such common situations
one chooses A and N to appropriately control the corresponding errors (see further
discussion in section 7).

5.2. Higher order schemes. We now consider a more general approximation
than (3.1). In addition to the assumptions made in section 2, we assume in this section
that the coefficients of the SDE (2.1) and the function ¢ are sufficiently smooth.

Given a function 6 : T¢ x (0,1) x R™ — T% and a sequence of R™-valued i.i.d.
random variables {£, = (§n1,...,&n,m) : n € N}, we define a general numerical
method

Xn :Xn+5XnaAan ’
(5.17) { +1 ( nt1)

X0:$.

We assume that the &, have sufficiently high finite moments. Clearly our previous
class of methods fits into this framework as well as a number of new methods such
as implicit Euler. Guided by (3.8), we make the following general assumption about
(5.17), after which we will state some easier-to-verify conditions which are equivalent.

Assumption 3. For all A € (0,1) sufficiently small and all ¢ € W2P+T1.o0 if
Xo = X(0), then

(5.18) E¢(X1) — Eg(X(4)) = O(A"),

where the constant in the error term is uniform over all ¢ with ||@|| 241,00 < 1.

To complement the increments of the numerical method § defined above, we
now define the ¢ increments of the SDE. Namely, for any x € T¢, we define § :
T x (0,1) x Q — T? by

(5.19) 8z, Asw) = X(A;w) —

where X (0;w) = = and X (t;w) solves (2.1). The following proposition, whose proof
is given at the end of this section, enables Assumption 3 to be verified.

PROPOSITION 5.5. Assume that for some p € N there exists a positive constant
K so that for all A € (0,1) sufficiently small

(5.20) sup B | [[0a. = [0 || < EAPT, s=1,...,2p+1,
(a1,...,as) i=1 =1
i€{L,.n, d}
2p+2
(5.21) sup  E [ [da| < KAPF
(a1, 02p42) i=1

Ozie{l,...,d}

Then the method satisfies Assumption 3 with the same p.

We note that examples of second-order weak schemes (p = 2) which satisfy As-
sumption 3 can be found in many places, including [29, p. 103] and [1]. Higher order
methods also exist [29]. We also note that it follows from the general theory [29, p.
100] that the numerical schemes considered in Proposition 5.5 have weak convergence
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of order p on finite time intervals. Now we prove a mean convergence result, which is
analogous to Theorem 5.1 in the case of Euler-type methods (3.1).

THEOREM 5.6. Let Assumptions 1 and 3 hold. Let H denote W?2P:>° in the elliptic
setting and W2P+T1):2 in the hypoelliptic setting. Then for any ¢ € H with lplr <1

consider gZA)N defined by (5.1), where X,, is generated by the numerical method from
(5.17) rather than (3.1) as previously. Then

(5.22) ‘EqﬁN - q@‘ <C <AP + %) :

where T'= NA and C is some positive constant independent of A and T. Further-
more, the constant C is a linear function of |¢|g and otherwise independent of ¢. In
other words,

(5.23) Bias(¢n) = O <AP + %) .

Proof of Theorem 5.6. As before, let ¢ be the solution to the Poisson equation
associated to ¢ given in (4.2). Define v,, = ¥(X,,), and let X (z,t) be the solution to
(2.1) at time ¢ with initial condition 2. From our assumptions, we have that

(5.24) En i1 = EY(X(X,, A)) + O(APT).

Rewriting E¢(X (X, A)) in (5.24) via the Taylor expansion of expectations of SDE
solution (see [29, Lemma 2.1.9, p. 99] or [19]), we arrive at

(5.25) Et, 11 = B, + Z —E (LFy) (X5) +O(APT).

Summing (5.25) over the first N terms and dividing by NA, we obtain

_ bl N-1 P Ak—1
(5.26) M:éz B (L)) (X,) + Y 2 Qi+ 0(Y),

T
n=0 k=2

where Qy = & S0 E (£*)) (X,,). Using (4.2) and the boundedness of ¢, we have
after rearrangement of (5.26)

1 N-1 B
¥ O Bo(Xn) -
n=0

Applying arguments to £F~14, k = 2,...,p, analogous to those we applied to 7 in
(5.26), we have

p

< Z Ak—l

k=2

(5.27)

K
KAP 4 —.
| + + 7

Eﬁkillﬁ(X ) Ek 1¢ zp: At~k

T =~ (1+1-k)!

Qz + O(Ap+1 k)

Therefore (cf. (5.27)),

p Ai—k Lk K
Qi < Y m@ﬂ‘FKAH* to k=2....p
i=k+1 ’
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and, in particular, |Q,| < KA+ K/T. Hence |Qx| < KAPT1=F + K/T, which together
with (5.27) implies (5.22).6 O

Remark 5.7. If we substitute X,, from the method (5.17) into ¢y from (5.1), it
is also possible to prove (analogously to Theorem 5.3) that

Cw)
T1/2—¢

(5.28) }éSN - é‘ < KAP +

Proof of Proposition 5.5. We note that under the assumptions made the solution
¥ of the Poisson equation (4.2) is sufficiently smooth. Expanding ¢, +1 = ¥(X,11)

in powers of &, £ n+1 — X, and taking expectation, we get
_ 1 o
(5.29) Evyi1 = E¢y, + EDY,[6,] + 5ED%n[én, Sl + -+

L1
(

——  _ED*,[0,,...,0,] + O(APTY),

2p+1

where the remainder |O(AP*!)| < KAPT! with K independent of A and n. If we
replace 0, by d,, defined in (5.19), in (5.29), then, using the conditional version of
(5.20), we obtain (with a different remainder O(AP*1) than in (5.29))

(5.30) EYn11 = Evy, + EDy,[05] + %ED%pn[gn, On] 4+ -

1
+ ————ED?*® 4, [6,, ..., 00] + O(APTL).
S TiED |+ o(@art)
2p+1
It is not difficult to see that the right-hand side of (5.30) coincides with expectation
of the Taylor expansion of ¥ (X (X,,A)) around X,, up to a remainder of order AP+!,
Hence

E¢n+1 = E’lr/)(X(XTLa A)) + O(A;D-Fl)’
and the proof is complete. O

5.3. The Richardson—Romberg (Talay—Tubaro) error expansion. In this
section we consider an expansion of the global error EgZA) ~ —¢ in powers of the time step
A analogous to the Talay—Tubaro result [45]. As in the previous section, we assume
here that the coefficients of the SDE (2.1) and the function ¢ are sufficiently smooth.
Note that we obtain the expansion both in the elliptic and hypoelliptic settings.

THEOREM 5.8. Let Assumptions 1 and 3 hold. Let q be a positive integer and H
denote W2(Pta+1):00 4 the elliptic setting and W2 ta+2).20 4 the hypoelliptic setting.
For any ¢ € H with |¢p|g < 1, consider ¢n defined by (5.1), where X, is generated
by the numerical method from (5.17). Then

(5.31) Edy — ¢ = CPAP 4+ ... + C,AP 1+ O (AW“ + %) :
where T = NA,;
1 1
p+q+1 — < pt+q+1 I
p(A +TNK<A 1)

6To help with intuitive understanding of the proof, we remark that [ L£¥(z)du(z) = 0, which
is approximated by Qj with sufficient accuracy.
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and the constants Co,...,Cq, K are independent of A and T, and they are linear
functions of |¢|g and otherwise independent of ¢. In other words,

Bias(qASN) =CPAP + .. + Cqu+‘1 +0 <Ap+q+1 + %) '

Proof. Here we make use of the Poisson equation again and also exploit an idea
used in the proof of the Talay—Tubaro expansion in the finite time case from [29, pp.
106-108]. We prove the theorem in the case of p = 1 (i.e., for Euler-type schemes)
and ¢ = 0 for the clarity of the exposition. It is not difficult to extend the proof to
arbitrary p,q > 0.

In the case of p =1 for a particular Euler-type scheme, we can write (cf. (5.25))

(5.32) Eti1 = By, + AE (£9) (X,)) + AZEA(X,)+0(A%),

where A(z) is the coefficient at A? in the corresponding expansion of Et); at X = .
For instance, in the case of the explicit Euler-Maruyama scheme (3.7),

oy 1 o4
Z fzfj@ Z fza]kax Ox;0zy, 24 Z a”aklﬁxl@xjaxkaxl’

1]_ 7,k,0l=1

where all the coefficients and the derivatives of the function 1 are evaluated at x. We
do not need the explicit form of A(z) for the proof.

Summing (5.32) over the first N terms, dividing by NA, using (4.2), and rear-
ranging the terms, we obtain

N 1
(5.33) Ejy — ¢ = (EwN o) — = Z EA(X,)+0(A?)
A , 1
=-¥ nz:;) EA(X,)+0 (A + T) .
Due to Theorem 5.1, we have
1= _ 1
(5.34) E RZ:O AX,)—A=0 <A + ?) :

where the constant A is the stationary average of A (see (4.1)). The expansion (5.31)
with p =1, ¢ = 0, and Cy = —A follows from (5.33) and (5.34). O

6. Error analysis for the numerical stationary measures.

6.1. Distances between true and approximate stationary measures. We
now use the results of the previous section to prove that any stationary measure of the
numerical method is close to that of the underlining SDE. The existence of stationary
measures for the numerical method follows by the Krylov-Bogoliubov construction.”
We have assumed in (3.4) and (3.6) or Assumption 3 that the finite time dynamics
of our method and SDE are close. This can be seen as a form of “consistency.” It is

"The fact that our state space is compact ensures that the time-averaged transition measure
forms a tight family of probability measures [17].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



570 J. MATTINGLY, A. STUART, AND M. TRETYAKOV

reasonable to expect that the long time behavior will be close since our setting of the
torus provides the necessary “stability” through ergodicity.

We begin by giving a metric in which we will measure the distance between
measures. If p® is a stationary measure of the numerical method, then for any
bounded function ¢ : T — R and n € N,

(61) | Eoout@) = [ ol @),

where E, denotes the expectation conditional on X (0) = z. Fixing an integer p > 1,
we define the metric p between two probability measures on T¢ by

p(vi,v2) _ilelgt(/(b Jvi(dz) — /¢> V2d2>

where H = {¢ : T¢ - R : |¢p|g < 1} and H = W2 in the elliptic setting
and H = W2@+1):%° in the hypoelliptic setting. Observe that since ¢ € H implies
—¢ € H, one also has the equivalent, and slightly more standard, characterization of

p given by
/ o(2)r1(dz) / d(2)va(dz)

THEOREM 6.1. Define the metric p as above for some integer p > 1, and assume
that either

(i) p =1 and Assumptions 1 and 2 hold; or

(ii) Assumptions 1 and 3 hold.

Then there exists a positive C so that if u® is any stationary measure of the
numerical method (3.1), then

p(v1,v2) = sup
PEH

p(p, 1) < CAP.

Proof. Since p® is stationary, we have that [ ¢(z)u?(dz) = [E,¢(X,)u?(dz2)
for any n > 0, and hence

N—-1
/ o) (d2) = / + 3 BL6(X0) ).

Then

[owra - [ otom = [ [ Z B.o(X ] A(dz)
< / ‘% nz__% E.¢(X,) — ¢| p®(dz) < C <N’ + ﬁ)

where in the last estimate we have invoked either Theorem 5.1 or Theorem 5.6 de-
pending on which assumptions hold. Now taking N — oo proves the result since the
right-hand side is uniform for any ¢ € H. 0

We re-emphasize that we have not assumed in this section that the numerical
method is uniquely ergodic. Rather, we have shown that any stationary measure of
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the numerical system is close to the true stationary measure in the p-distance. It is, of
course, possible in many settings to show that the numerical method is itself uniquely
ergodic (cf. [43, 44, 27]).

Remark 6.2. Tt follows from Theorem 5.8 that under its assumptions the error
p(u®, 1) can be expanded in powers of the time step:

P, 1) = CRAP + - + C,APHE 4 O (APFItHL)

Remark 6.3. It is also worth contrasting the result of Theorem 6.1 with a short
alternative proof. Let P; denote the Markov semigroup associated with the SDE and
P2 with n steps of a numerical method with step size A. Suppose one knows for some
metric d on probability measures that d(Psu1, Ppz) < Ke 7'd(u1, u2) holds for all
probability measures y; and that for any fixed n, d(P2u®, Poapu®) < C, AP for some
constant C,, all A sufficiently small, and any measure y® invariant for P2. Then if
one fixes an n so that Ke~ 7" < 1/2, then

d(PnAyﬂ PnA/J’A) S d(PnAM7 PnAMA) + d(PnAﬂAa PnAMA)

d(pi, 1) + Cr A,

d(u, p) =

1
< —
-2
and collecting the d(u, u®) produces the estimate d(u, ) < 2C, AP for all A suffi-
ciently small. The challenge in implementing such a seemingly simple program is ob-
taining the two estimates in the same metric d. Typically, the first estimate is available
in the total variation distance. On the other hand, the second estimate is usually es-
timated in distances requiring test functions with a number of derivatives. The recent
works [15, 16] allow one to obtain the first estimate in the 1-Wasserstein distance which
simplifies matching the two norms. Using this strategy, one can obtain a bound in a
stronger norm (such as total variation or 1-Wasserstein metric), but the d(P> 1, Panft)
convergence rate will often be suboptimal in these metrics. On the other hand, one
can obtain d(P,p1, Piuo) < Ke d(pu1, p2) with d defined as in the metric p above
with H = W2P+1):% by using the fact that |Pid||lg < C¢|ls from some C, and
hence ||Piy1¢ — éllg < CllPid — ¢lloc < CKe™ | — P|loc < CKe™|¢p— ¢|| . This
gives a result comparable to the hypoelliptic result in Theorem 6.1 though misses
the smoothing in the elliptic result which is embodied in the fact that one can use
H = W?P>°_ (Some partial smoothing could have been extracted in the hypoellip-
tic case in Theorem 6.1 with more care.) See [15] for this program executed in a
particular setting.

6.2. Relationship to Stein’s method. This section is devoted to outlining
the similarity between the current setting and Stein’s method.® This connection is
not fully explored in this work, but we believe that it is insightful to highlight the
main idea. Though our goals are different, there are some passing similarities between
the details in this paper and [9, 4].

Let us recall that Stein’s method is a generic tool for finding bounds on a dis-
tance between two distributions which then can give quantitative convergence results.
Denoting the target distribution as 7, the idea is to find an operator A and a de-
termining class of functions G so that if, for all g € G, one has [ Ag(x)d7w(z) = 0,

8When this work was nearing completion, a conversation with between JCM and Sourav Chatter-
jee prompted the authors to write this section reflecting on the relationship between their approach
and Stein’s method.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



572 J. MATTINGLY, A. STUART, AND M. TRETYAKOV

then this implies that 7 = 7.9 Given any h sufficiently nice, one next solves Stein’s
equation

(6.2) Ag=h

with the tacit assumption that the solution g exists and lies in G. Observe that a basic
solvability condition on the above equation requires that [ hdr = 0 when A*r = 0. In
this setting we can consider the equation Ag = h— [ hdr for more general, uncentered
h. In order to quantify the distance of a given measure 7 from 7, one tries to control
J(Ag)(2)dm(z) by some norm of g which can in turn be controlled by an appropriate
norm of h. For definiteness let us assume that

/ (Ag)(2)dF (=) < elglg < Ch]

if ¢ satisfies (6.2). Then

/hd% - /hdﬂ - /(Ag)(z)d%(z) < Chl.

By taking the supremum over all h in a given class with ||h|| < 1, one obtains control
over the distance of 7 from 7. In particular, if € is small, then 7 is close to .

This is essentially the methodology we have followed. Taking A to be the genera-
tor £ of the Markov process, we are assured that A*m = 0 if 7 is the Markov process’s
stationary measure.!® The basic idea of this note is to show that if £ is a generator
of another Markov process so that £ — £ is small, then any stationary measure of the
second Markov process will be close to m. We will further assume that 7 is ergodic.

While our paper concerns a mixture of continuous and discrete time, the idea can
be more easily demonstrated in a continuous time setting. Let P; and P; be strong
Markov semigroups on R¢ with generators £ and £ both defined on some common
domain D. Let m and 7 be stationary measures for P, and P;, respectively. Assume
that for some set of bounded functions G C D there exists an € > 0 so that

(6.3) / (£ — £ygdi < ellglo

for any g € G. Further assume that for some class of bounded, real-valued functions
H on R? one can solve Lg = h — [ hdr for h € H with a solution g € G and
llgllg < K||hl]|3 for a fixed constant K. Then, for all h € H,

/hd% _ /hdw _ /(/:g)d% _ /(Eg)d% + /(/: — D)gd < eK||hll,

where, in moving from the penultimate expression to the last, we have used L7 = 0.
Since the right-hand side is uniform in A, we can take the supremum over h. If H were
a rich-enough class to define a metric, we could obtain some estimate of the distance
between the two stationary measures in that metric.

9 As a referee correctly observed, the Echeverria—Weiss theorem is useful in identifying when such
a condition characterizes an invariant measure and identifying the limiting invariant measure for a
sequence measure with [ Ag(z)dmy, () — 0 as n — oo. However, here we are really interested in the
next order question—how to use the degree to which the characterizing equation is not satisfied to
obtain quantitative estimates of the convergence rate.

10This is done in some versions of Stein’s method. See [4].
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If one does not have good control over 7, then (6.3) can be difficult to obtain.
Instead it is often easier to replace (6.3) with

(6.4) lim sup — / P(L —L)g(x)dt < e||gllg

T—o0

for any g € G and 7T-a.e. x. As before, we assume that, for some class of functions
H from R? — R, one can solve Lg = h — [ hdm for h € H with a solution g € G
such that ||g|lg < K]||h||%. Observe that, if G is a class of bounded functions, then
the second assumption is always satlsﬁed

Continuing, since P;Lg(x) = P;h(z) — [ hdnr,

~ T ~ o~
Brg(z) - g(z) = / B, Lg(x)dt

_ /OT P(E ¢ )g(x)dt—f—/OT ﬁth(x)dt—T/Rd hr.

Rearranging, dividing by T', and using |ﬁTg(x)| < |g|oo produces
2|90
hdw——/ Pyh(z)dt < ”g” / Py(L —L )g(z)dt.
Rd

By Birkoft’s ergodic theorem, we know that for 7-a.e. =

lim —/ P,h(z)dt = / hdr,
T%OO R4

so from (6.4) and ||g|lg < K||h||% we obtain

hdw—/ hd7 < K|l
R4

Rd

for any h € ‘H. Hence, in the language of section 6, one has p(7,7) < eK.

This argument can be modified in many ways; the restriction that G and H are
classes of bounded functions can be removed by assuming some control over P;g(x)
uniform in time. If that control can be maintained using a function which is integrable
with respect to 7, then the requirement that 7 be ergodic can be removed. Although
we do not fully explore these issues here, we believe that the connections made in this
subsection are useful.

7. Variance of the empirical time-average. Theorems 5.1 and 5.3 are im-
portant for implementing time-averaging in computational practice. There are three
types of errors arising in computing stationary averages: (i) the numerical integration
error (estimated by KA in (5.7) and (5.10) and by KAP in (5.23) and (5.28)); (ii)
the error due to the distance from the stationary distribution (i.e., the error due to
the finite time of integration T estimated by K/T in (4.7), (5.7), and (5.23)); (iii) the
statistical error. The first two errors contribute to the bias of the estimator ¢y (see
(5.7) and (5.23)). The error of numerical integration is controlled by the time step
and the choice of a method. It can be estimated in practice using the Talay—Tubaro
expansion (see section 5.3 and [45, 29]) in the usual fashion. The statistical error is
contained in the second term of (5.10) and related to the variance of the estimator
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én (see the details below and also (4.8)). Both the error due to the finite time of
integration T and the statistical error are controlled by the choice of the integration
time 7' (i.e., by the choice of the number of steps N under fixed time step A). They
correspond to properties of the continuous dynamics of the SDE (2.1), and they are
almost independent (assuming a sufficiently small A) of a method or time step A
used.

Let us consider the statistical error. Theorems 5.1 and 5.2 immediately imply that
Var(¢n) = O(A2+1/T). In order to get a more accurate estimate for the variance of
q@ ~, analogous to the one in the continuous case (4.8), i.e., to have the statistical error
of the estimator ¢E n controlled by T only, we need to use a mixing-type condition.

The Markov process X (t) defined on the torus T¢ by the SDE (2.1) is uniformly
ergodic, it has exponential mixing rates (see, e.g., [11, 28, 5]), and there are some
positive C' and +y such that for any ¢t > 0 and 6 > 0 the inequality

(7.1) [E¢(X (1)¢(X (t+6)) — E¢(X (1)) Ed(X (t +6))| < Ce

holds. Further, as has been mentioned before, it is possible in many settings to show
that the Markov chain X,, generated by a numerical method is also geometrically
ergodic (cf. [43, 44, 27, 20]). Then, due to the compactness of the phase space, the
chain is uniformly ergodic and has an exponential mixing such as in (7.1) [28, Chapter
16]. We note that in the cited papers one of the conditions ensuring the ergodicity of
X, is the requirement that the numerical method uses random variables with densities
positive everywhere. We do not address here the question about mixing rate for the
Markov chains X,, generated by more general numerical methods treated in this paper,
leaving it for further study, but instead we assume that the following relaxed mixing
condition is satisfied for X,,, ¢ € H, and [ > O:

K
(thy1 — tk)w

where K > 0is a constant independent of A, &, [. This condition is much weaker than
(7.1), but it is sufficient for the proof of the following proposition. At the same time,
a faster decorrelation than (7.2) does not improve the estimate (7.3).

PROPOSITION 7.1. In the setting of Theorem 5.1 and under the condition (7.2),
one has

(7.2) [Ed(Xk)d(Xit1) — Ed(Xi)ED(Xpy1)| <

(7.3) Var(én) < g

where T'= NA and K > 0 is a constant independent of A and T.
Proof. 1t follows from (5.5) that

2
(7.4) Var(¢n) < KEWN;—ngN'

=2
2

- B[ (£ L) — BILS — L)) ((C5 ~ L)y — BILS - L)) |

Nk
I
?~

2 3
1 , 1
+ 73 > "E|Si v —ESin*+ T2 > E|M;n|*.

i=0 i=0

We have used here that M; x are martingales. Using the estimates for E|M; y|? from
Theorem 5.1, we get that Z?:o E|M; n|* < KT.
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To estimate the terms with S; x and (L2 — £)¢ in (7.4), we exploit the condition
(7.2). For example, consider the term with Sy y. We have

2
Al N-1
E|Sin —ESin| = —E (Z (D [F, F) — ED%n[Fn,Fn]))
n=0

AL VD )
= - > B((D*0ulFu, Fu] ~ ED*0n[Fo, F]) )
n=0
A4 N—-1 N-1
+5 E( (D[P, F] - ED*Wi[F,, F))
i=0 j=i+1
x (D*;[Fy, Fy) — ED*y;[Fj, Fy]) )
N—-1 N-1 1
SKAT+KA'Y Y ——— < KAT.

i=0 j=i+1 (tj —ti)

Analogously analyzing the other terms in (7.4), we arrive at the stated re-
sult. 0

Although we proved Proposition 7.1 for the method (3.1), it is also valid for a
more general class of numerical methods from section 5.2.

In practice one usually estimates the statistical error of ¢E ~ as follows.'! We run a
long trajectory MT split into M blocks of a large length T'= AN each. We evaluate
the estimators m¢?N, m = 1,..., M, for each block. Since T is big and a time decay
of correlations is usually fast, ,,¢x can be considered as almost uncorrelated. We
compute the sampled variance

LS (i) - (%ﬁlmw)z.

m=1

For sufficiently large T and M, E qASN belongs to the confidence interval
E¢y € <¢NM - C\/_7¢NM + Cﬂ)

with probability, for example, 0.95 for ¢ = 2 and 0.997 for ¢ = 3. Note that E¢EN
contains the two errors forming the bias, as explained at the beginning of this sec-
tion. We also pay attention to the fact that D ~ 1/T (cf. (7.3)); i.e., it is inversely
proportional to the product AN.

Remark 7.2. Instead of the time-averaging considered in this paper, stationary
averages can be computed using ensemble averaging, i.e., by the following estimate
for the stationary average é:

h |

L
¢~ E¢(X(t) ~ E¢(X(t) ~ ¢ = Z

where t is a sufficiently large time, X is an approximation of X, and L is the number
of independent approximate realizations. The total error R; = § — ¢ consists of

LLOf course, better statistical estimators can be used to quantify the statistical error of the time-
averaging, but we restrict ourselves here to a simple one.
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three parts: the error € of the approximation ¢ by E¢(X (t)); the error of numerical
integration CAP (here p is the weak order of the method); and the Monte Carlo error
which is proportional to 1/ VL. More specifically,

|Bias(§)| = |Ed — ¢| < KAP +¢,  Var($) = O(1/L).

Here, in comparison with the time-averaging approach, each error is controlled by
its own parameter: sufficiently large ¢ ensures smallness of ¢; time step A (as well
as the choice of a numerical method) controls the numerical integration error; and
the statistical error is regulated by choosing an appropriate number of independent
trajectories L. For further details see [30].
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