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CONVERGENCE PROOFS FOR NUMERICAL IVP
SOFTWARE*

HARBIR LAMBA! AND ANDREW STUART?

Abstract. The study of the running times of algorithms in computer science can
be broken down into two broad types: worst-case and average-case analyses. For many
problems this distinction is very important as the orders of magnitude (in terms of some
measure of the problem size) of the running times may differ significantly in each case,
providing useful information about the merits of the algorithm. Historically average-
case analyses were first done with respect to a measure on the input data; to counter
the argument that it is often difficult to find a natural measure on the data, randomised
algorithms were then developed.

In this paper similar questions are studied for adaptive software used to integrate
initial value problems for ODEs. In the worst case these algorithms may fail completely
giving O(1) errors. We consider the probability of failure for generic vector fields with
random initial data chosen from a ball and perform average-case and worst-case analyses.
We then perform a different average-case analysis where, having fixed the initial data,
it is the algorithm that is chosen at random from some suitable class. This last analysis
suggests a modified deterministic algorithm which cannot fail for generic vector fields.

Key words. Error control, adaptivity, random algorithms, convergence, tolerance
proportionality.

AMS(MOS) subject classifications. 34C35, 65L07, 65L20, 65L50.

1. Introduction. Consider the initial value problem

(1.1) % = f(u), u(0) =U where f : R™ - R™
which is to be numerically integrated over some finite time-interval [0, 7).
The simplest algorithms for solving this problem advance the solution with
a fixed timestep At using, say, a Runge-Kutta method of order p. The’
classical numerical analysis theory then ensures that as At — 0 the global
error is bounded by C(B,T)AtP for all initial data U in some compact set
B. This convergence to the exact solution at a well-defined rate as some
user-defined quantity, in this case At, tends to zero should be a fundamental
requirement of any algorithm to solve (1.1). :
However, most software used to solve (1.1) adaptively changes the
timestep as the integration progresses, trying simultaneously to maximise
the timesteps (for efficiency) and ensure that the error committed on each
step is always less than some user-defined tolerance 7 (for accuracy). Nu-
merous comparisons have shown that such adaptive methods almost always
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outperform fixed timestepping methods, reaching a comparable level of ac-
curacy with significantly less computational work. However, although these
algorithms have been used for many years they are difficult to analyse be-
cause they can fail for certain initial data, because of their discontinuous
nature and also because there are also many possible differences in imple-
mentation. Recent rigorous convergence results [13, 9] show that conver-
gence to the exact solution as 7 — 0 may not occur, or occur at a reduced
rate, if the exact solution passes through certain, typically small, neigh-
bourhoods of phase space. We shall regard such events as a ‘failure’ of the
algorithm and it is our intention to quantify these cases and determine an
‘average’ overall behaviour of the algorithms.

In §2 we describe a class of typical adaptive timestepping algorithms
(based upon the routine ode23 from MATLAB Version 4.2) and state finite-
time convergence results. We also define exactly what we mean by ‘fail-
ure’ of an algorithm. Then in §3 we briefly outline random analyses from
other fields of computer science and numerical analysis in order to moti-
vate our study. In §4 we present our probabilistic analysis for the adaptive
algorithms in §2. We show that for a fixed algorithm and random initial
conditions the probability of failure is small in dimensions m > 1 and the
algorithm performs ‘well’ on average. This is not the case however for
m = 1. We then show that if the initial condition is fixed and an algo-
rithm is chosen at random then the same situation occurs. Finally in §5
we outline a proof demonstrating that alternating between two different
algorithms can eliminate the possibility of failure for generic vector fields.

2. Convergence results for adaptive timestepping algorithms.

2.1. The algorithm. An adaptive algorithm for solving (1.1) gener-
ates a sequence (U, At,) where the At,, are the timesteps and (hopefully)
U, ~ u(t,) where t, = Z;:Ol At;. The algorithms that we shall analyse
consist of two basic components not present in fixed timestep methods: a
local error estimate and a timestep selection strategy.

We consider algorithms where the local error estimate is defined as
the difference between two explicit Runge-Kutta approximations, S™) and
S| of orders p and p — 1 respectively. For computational efficiency these
are usually generated using the same intermediate stages and together form
an embedded Runge-Kutta pair. Thus they can be written as

1—1

(2.1) mzu—}—AtZaijf(nj), 40 IO
g=1

(2.2) SO, Aty =u+ At 6V f(ny),
9=1

(2.3) S®(u,At) = u+ At > 6P f(ny)

=1
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where s is the number of stages, A is a lower-triangular matrix, with entries

aij, and b(i), 1 = 1,2 are two different sets of weights, one for each method,

)

with entries bg-i . From now on we set p = s = 3 giving

SM (u, At) — S(u, At) = O(At?)
and
S (u, At) — S(u, At) = O(AL®)

where S(u,t) is the semigroup defined by the vector field f. We can now
define the local error estimate as

(2.4) E(u, At) := ||SM) (u, At) — SP (u, At)|| = O(AL).

There is in fact a 2-parameter family of such embedded pairs (that includes
the pair used in MATLAB ode23) but for simplicity we shall only choose
from the following 1-parameter family, written in Butcher notation as:

0 0 O

c 0 B A
1— = = 0 b

5 20c 3 b1)

4 4

where the parameter ¢ € [3, 2].

The timestep selection mechanism operates as follows. Set Uy = U
and let At;,;; be an initial estimate for the first timestep. The other input
is the tolerance 7. At each step n the algorithm generates a monotone

decreasing (in k) sequence of possible timesteps At%k) stopping at £ = [ only

when the local error estimate E(U,, Atg)) is sufficiently small compared
to 7. This At{ is then taken to be the timestep A¢, and the solution
U, is advanced with this timestep to give U,,1. The process repeats until
tn, = T. The precise mechanism that we shall analyse is based upon the

MATLAB Version 4.2 ode23 routine:
(2.5) Upp1 = SO(U,, At,), Uy =U,

where At%o) = 8o f n=00r

_ rmax(L, [|[Un—1lleo) \ ¥ ,
(2.6) min (D,G ( EUn—, Atuy) At, 1, T —t, | if n >0,

s

il ||Un||oo)) . 5 s

E(U,, At

(2.7)  AtF) =min D,9<
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(2.8) and At, = At where l:r}cn>i(r)1{k:E(Un,At£f)) < rmax(1, ||Unlleo) }-

The parameter D is the maximum allowable timestep and is not reduced
as 7 — 0, while 6 € (0,1) is a safety factor that aims to reduce the number
of (computationally wasteful) rejected steps. We shall not consider here
how these parameters may be chosen in practice although the values used
in MATLAB Version 4.2 ode23 are § = 0.9 and D = T'/16. The exponent
% in (2.6) and (2.7) appears since E(u, At) = O(At®) — this ensures that,
at least for small timesteps, the estimates in the sequence At%k) are of
the correct order. Note also that the local error estimate is not compared
against 7 directly but against 7 max(1, ||U,||«) giving an absolute error for
small U,, and a relative error for large U,,. This feature is very common
in software for ODEs and causes no difficulty in the analysis. Finally note
that the higher-order method S() is being used to update the solution (i.e.
the algorithm is operating in extrapolation mode).

2.2. Convergence results. A convergence result for the above class
of algorithms was proved in [9] and we now give a brief outline of the proof
and statement of the result (as a similar proof for a modified algorithm will
be used in §5).

The local error estimate can be expanded as

(2:9)  Blu, A = AR f@)] |(b(w) + Atllf(w) B2, AD)) |

where by (u) and by (u, At) are bounded on bounded sets and depend upon
both the vector field f and the Runge-Kutta coefficients. Also, since the
algorithm is operating in extrapolation mode, the truncation error (i.e. the
error made on one step) can be written as

(2.10) T(u, At) := SM (u, At) — S(u, At) = f(u)O(At?).

The crucial step is an induction argument using (2.9) proving that, for
sufficiently small 7 and sufficiently small At;,;;, the accepted timesteps are
bounded from above by

KlT
~ IF U’

where K; = K;(T) is some constant and

(2.11) A < Vn:0<t, <T

(212) e=,inf[lbi(S@ ).

Thus, the truncation error at each step satisfies

KzTAtn

€

(2.13) T (Un, Atn)H- <
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for Kz = Kz(T)

A weak assumption on the set where b;(u) vanishes is also needed,
namely that this set does not intersect the set of equilibria of f.

ASSUMPTION 1. There exist §,€ > 0 such that Vu € J, ||f(u)|| < § =
@l >e

Finally, using Assumption 1 and a straightforward Gronwall argument,
the global error may be shown to satisfy

B, = llult) = Ul BEE ¥:1,<T
€

for some K = K(T).

We therefore have the following convergence theorem, paraphrased
from [9].

THEOREM 2.1. Consider the numerical approximation of (1.1) over
the time interval [0,T] generated by the algorithm (2.1)—(2.8) for any
choice of c. Let Assumption 1 hold and assume in addition that
|61 (S(U,t)|| > € for t € [0,T] and that Atinis is sufficiently small. Then
there exists a constant K = K(T') such that for all sufficiently small T,

2.'4 1;11 = u tn = ‘)n < ‘( = \VI’L » tn < I.

The theorem states that if the exact solution stays away from the set
of points where the leading term b;(u) in the expansion of the local error
estimate, scaled by ||f(u)||, vanishes then the global error decreases like
some power of 7 (in this case linearly). This highly desirable property
is known as Tolerance Proportionality (TP) [2, 11, 12] and will be our
criterion for ‘success’. If b;(u) does vanish along the exact trajectory then
the inductive upper bound on the timestep sequence breaks down since thie
local error estimate is now O(At*) but the actual local error is still O(A#3).
This allows the timesteps to increase in the neighbourhood of these points.
When this occurs then global convergence is often still observed but at a
reduced rate, although the loss of control of the timestep sequence means
that convergence can no longer be guaranteed. ’

Because b; (u) is a function from R™ to R™, for generic vector fields f
it only vanishes at isolated points. For generic vector fields in R™, m > 1,
and random initial data (using any measure that is absolutely continuous
with respect to Lebesgue measure) it is therefore a measure-zero event for
b1(u) to vanish along any finite time segment of the exact trajectory; note,
however, that this is not the case for m = 1. The probability that the
exact trajectory enters some neighbourhood where b; (u) < € will form an
important part of our analysis in §4.

The induction argument used to prove (2.13) relies crucially upon the
existence of the function by(u,t), i.e. that the higher-order terms of the
local error expansion in (2.9) are O(||f(u)||?). This is automatically true
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for all Runge-Kutta pairs of order p and p — 1 that use precisely p stages
and hence holds for the 1-parameter family of methods in §2. If such a pair
is not used then the analysis of [13] can be applied and the convergence
statement (2.14) becomes

E, = ”u(tn) = Un“ < K(Sl Vn:t, <T.
€

where § = infico 77| f(S(U,1))||- Hence loss of TP (or even convergence)
can now also occur in the neighbourhood of equilibria (a numerical example
is presented in [9] and a different analysis near f(u) = 0 can be found in [6]).
In fact these convergence results hold for a very wide class of algorithms
under minimal assumptions on the timestep selection algorithm [8]. Thus
the convergence properties of an algorithm are solely determined by the
Runge-Kutta pair used and the resulting form of the local error estimate
expansion.

3. Probabilistic analyses of algorithms. The results from §2.2
show that TP can be lost close to points where b; (u) vanishes and this can
be regarded as a worst-case analysis. However, for most IVPs, adaptive al-
gorithms appear to work very well, being far more efficient computationally
than fixed timestepping algorithms. Therefore some kind of ‘average-case’
analysis is appropriate. Before re-examining the results of §2 from a prob-
abilistic point of view we shall give a very brief review of some previous
probabilistic analyses for other computational algorithms.

The Quicksort algorithm of Hoare [7] for sorting a string of n numbers
is a good example of the difference between average-case and worst-case
results. In the worst case the ‘work’ required is O(n?) while for the ‘aver-
age’ case the expected amount is E(Work) = O(nlnn). This average-case
analysis assumes that all permutations of the input string ordéring are
equally likely; a valid objection is that this is almost certainly not the case
in many applications. However, by fixing the input sequence and instead
introducing randomness into the algorithm itself, the same average-case
results hold for any input, overcoming the previous objection. A more
detailed discussion can be found in [3]. '

A second example is Smale’s analysis of a (modified) Newton method
[10, 1] for a polynomial of degree d; in the worst case this algorithm fails.
However in the average case, with probability 1 — u, the amount of work
to obtain an approximate zero (precisely defined in [10]) is polynomial in
d and p~!. The analysis is for all monic polynomials of degree d using
Lebesgue measure on the unit ball for the remaining co-efficients.

Finally we consider an example from linear algebra which is Demmel’s
1987 analysis [4] (then Edelman [5]) of the condition number x(A) of a
random n X n matrix A. In the worst case k(A) = oo while, on aver-

age, Prob(k(4) > z) =~ ’;—2 This result assumes Lebesgue measure on all
matrices with Frobenius norm equal to 1.
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a) b)

F(e)

u(0) u(T)

Initial Conditions

FiG. 1. Figure (a) shows that typical trajectories avoid bad points in dimension
m > 1 while Figure (b) shows that this is not the case for m = 1. Figures (c) and (d)
show typical situations for random initial conditions and random algorithm parameter
¢ respectively in m > 1 dimensions.

From the above analyses it can be seen that an average-case analysis
often yields more information about an algorithm than a worst-case study
— for example Quicksort would not be used if only the worst-case were
relevant since there are other algorithms that have only O(nlnn) worst-
case behaviour. Also, the objection to placing a measure on the set of input
data, usually chosen just to make the analysis simpler, can be overcome by
instead randomising the algorithm itself and applying a probability measure
to the set of algorithms instead.

4. Probabilistic analysis and examples. Theorem 2.1 shows that
convergence is non-uniform with respect to initial conditions for trajectories
that pass through neighbourhoods of points in R™ where b;(u) vanishes
and it was noted in §2.2 that for generic vector fields this set will consist
of isolated points. There are two cases to consider, m = 1 and m > 2.

Let us define

U(e) == {u € R™ : [|by (w)]] < ).

Figure 1(a) shows the typical case for m > 2. The shaded region denotes
VU (e) for some small e and most trajectories will not enter it, implying TP
with error constant at most K /e. Figure 2 shows a numerical example of
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FiG. 2. The plotted curves are seen to converge as T — 0, implying Tolerance
Proportionality.

this situation. The initial value problem

d

d—Il: =u(l-u—v), u(0)=2,

d

?itt‘) =v, v(0)=0.1
was solved over the time interval [0,2] using the algorithm (2.1)—(2.8)
with ¢ = 1. The quantity E, /T = |Un — u(t,)||/7 is plotted against ¢, for

7 =10"%,10"%,10"8 and 10719, If TP is occurring then the curves should
converge to a limit as 7 — 0 which is indeed seen to be the case.

For m = 1 however, the situation is much worse (see Figure 1(b)).
Whole neighbourhoods of initial conditions will pass through ¥(0) resulting
in TP failure. Figure 3 shows the convergence behaviour for the IVP

over the time interval [0, 5] again using ¢ = % TP is lost at ¢ ~ 0.8 when
the solution passes through a value of u for which b; (u) = 0 and the results
are similar for all nearby initial conditions. For other numerical examples
and a more detailed analysis, see [2].

We now start our average-case analysis for dimensions m > 2 by con-
sidering trajectories chosen at random from a ball in R™ with m > 2 (see
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Fic. 3. Tolerance Proportionality does not occur since the ezact solution passes
through a point where bi(u) =0 at t ~ 0.8.

Figure 1(c)). It is clearly important to estimate the probability that a tra-
jectory remains outside ¥(e) since Theorem 2.1 states that the global error
constant is then bounded by K/e for some constant K (7'). Mathematically
this may be done by estimating the probability that the image of ¥(e) un-
der S(e,—t), t € [0,7] intersects the ball of initial conditions. To do this
it is simplest to assume that the set ¥(¢) can be inscribed in finitely many
disjoint balls of O(¢) which are all disjoint from the set of equilibria. This
holds for generic f(u) within the class of sufficiently smooth functions [13]
but we now state it as an assumption.

ASSUMPTION 2. There is a constant €. > 0 such that, for each € €
[0,€.), the set ¥ (e) is the disjoint union of a countable set of neighbourhoods
{U}M . with M < oo each containing a point z; € R™ at which bi(z;) = 0.
Thus, for each € € [0,¢.),

M

U(e)=|Jw:, @[)¥=0 Vi#£j

=1

Furthermore, for any finite integer My there exists a constant Cy such that,
for all € € [0, ¢.)

‘I’i g B(ZZ',OlE), § = 1,...,M0.

Based upon the analysis in [13, 9] we can state the following result.
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THEOREM 4.1. Let Assumptions 1 and 2 hold and suppose that U is
chosen randomly with respect to Lebesgue measure from a ball in R™ and
m > 1. Then, for sufficiently large R, there exists C(T) > 0 such that

1
i >—=)>1-CR'"™.
Prob(tel[r(;,fT]Hbl(S(U, iz 2> 1~0R

Combining this with Theorem 2.1 gives a probabilistic convergence result
— essentially the global error is O(R7) with probability greater than 1 —
O(R'~™). Note that the probability decreases as the dimension m of the
problem increases. This average-case situation is (crudely) reflected in
Figure 4 where for each value of 7 the IVP

du s o
— =u+v—u(u°+v
; ( )
dv & 9
——=—u+v—vu +v
is numerically integrated (once again using ¢ = :,12—) over the time interval

[0, 2] for 100 different initial conditions chosen randomly from the square
0.3 < u,v < 0.7. For each run a piecewise-linear numerical solution U(t)
is generated by interpolation of the output from the algorithm and the
quantity [|U(t) — u(t)||/7, averaged over all the runs, is plotted against ¢.
Tolerance Proportionality, in some average-case sense, clearly occurs.

However, the objection to this average-case approach is the same as
for the Quicksort analysis — initial data are not usually chosen at random
from some mathematically convenient measure. Thus we instead consider
the average-behaviour for a fized initial condition if the algorithm is chosen
randomly from some class. The class we shall choose is given by picking ¢ €
[3,2] at random. As is shown in Figure 1(d), for generic vector fields, the
points z; in ¥(0) will move transversely to the vector field as c varies. For
simplicity we shall also require that the quantities dz;(c)/dc exist, leading
to the following assumption.

ASSUMPTION 3. Assumption 2 holds for each c € [%, %] Furthermore,

for all c € [%, 2] each 51%51 exists and

373
20 f(ae)

e

A similar analysis to that for the case of random initial conditions gives
the following theorem.

THEOREM 4.2. Let Assumptions 1 and 3 hold and suppose also that c
15 chosen randomly from the uniform distribution on [%, %] with the corre-
sponding algorithm used to integrate (1.1) for m > 2. Then, for sufficiently

large R, there exists C(T) > 0 such that

1
' i TS Ty Tl [ =i
Pmb(tel[%fﬂ||b1(5(U,t))|| i 1 -0
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FiGc. 4. The errors averaged over 100 runs with random initial conditions are
plotted and Tolerance Proportionality appears to hold.

Together with Theorem 2.1 this gives a second probabilistic convergence
result. As a numerical example, the same IVP used in Figure 4 with fixed
initial condition (U, V) = (0.4,0.3) was integrated 100 times with ¢ chosen
uniformly from [$,%]. The same averaged quantity ||U(t) — u(t)||/7 is
plotted against time in Figure 5 and again averaged TP occurs.

5. A modified deterministic algorithm. The results of the last
section have shown that adaptive algorithms may fail, in the sense of not
obeying TP, but that the probability is small for problems of dimension
m > 1. However, the random algorithm analysis suggests a deterministic
modification that guarantees TP for all trajectories for a generic class of
vector fields for problems of all dimensions, including m = 1.

The basic idea is to choose two different embedded Runge-Kutta pairs
(that is, to choose two different values of ¢) and switch between them at
each timestep. For typical vector fields, the sets ¥(e), ¢ <« 1 for each
pair will not intersect each other and as we prove below, this leads to
significantly stronger convergence results.

The proof is essentially the same as was outlined in §2.2: an induction
provides an upper bound on the timestep sequence and then a Gronwall
argument gives the desired convergence result. We shall concentrate on
proving the upper bound on the timesteps since this is the key step and
simply refer the reader to the proofs of the other necessary lemmas. For
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Fi1G. 5. The errors for a fized initial condition but with random c are averaged over
100 runs and Tolerance Proportionality appears to hold.

clarity, we only prove the convergence result for modifications of the algo-
rithms defined in §2; but the proof can easily be extended to modifications
of other existing algorithms.

We begin by precisely stating the modified ‘switching’ algorithm We
define the first embedded Runge-Kutta pair, corresponding to ¢ = ¢, as
Sfl) and S£2) and the second pair, corresponding to ¢ = ca, as Sél) and
Séz). The methods Sl(l) , 1 = 1,2 are the ones used to advance the solution.
For definiteness the first pair of methods will be used on odd numbered
timesteps and the second pair on even steps. We shall define 7,, =1 if n is
odd and ¢, = 2 if n is even.

We write the two sets of local error estimates as E; (u, At) and E»(u,
At) and so

(5.1) E;, (u, At,) = |88 (u, Atn) — S (u, Aty)]].

in

From [9] the local error estimates E; (u, At) and Es(u, At) can be expanded
as

(5.2) Ei(u, At)=A¢3||f (w)]| ||{bi,1(u) + At (w)]]Bs 2 (u, At)}”, i=1,2

Rather than use the mixed relative/absolute error function 7 max(1,
|Un|loo) from §2 we generalise (as in [9]) and instead test the local error
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estimate against a more general function o (7, U,,) where, for every compact
set J C R™, there exist constants Cy(J) and C3(J) such that

(5.3) 0<Ci(J) <o(r,u)/T1 <C3(J) <oo Vr >0 and Yu € J.
Integration timesteps At, are now chosen by the following algorithm:

(5.4) Uny1 = Sfj)(UmAtn), Uo =T,

where Atslo) = At if n =0 or

0'(7', Un—l)
B o (U 1)

%
(5.5) min <D,aAtn_1,9 ( ) Atn,_1,T — tn> if n >0,

1

3
O'(T; Un) ) Atglk—l),T —t,| for

E; (Un, At$Y)

(5.6) At®) =min D,aAtn_1,0<

k=1,

(5.7) and At,=At") where | = min{k : E;, (Un, At < o(1,Uy)}.

Note that we have now introduced a maximum stepsize ratio @ > 1 which
ensures that At,,;/At, < a and is a common feature of many codes.
While its introduction into the algorithm (2.1)—(2.8) does not lead to
improved convergence properties, it will be essential to the improved con-
vergence results that we shall prove for the switching algorithm in this
section.

We assume that the exact solution lies inside some compact set J C
R™. We also make the following assumption which holds for generic f(u).

ASSUMPTION 4. The zeros of the continuous functions by 1(u) and
bz,1(u) in the compact set J are distinct and

e = 3 min(max(|ls (I} b2 @)])) > 0.

Note that €*, which will appear in our global error estimate, depends only
upon f, ¢; and c; and not upon the initial conditions.
We define the constants

Cia= sup Hl-)z-,z(u,t)ll Lo, 1=1.2
(u,t)€J x[0,D]

for 1 = 1,2. We then set Cy = max(Ci4,C3 4). The finiteness of the C; 4
uses the fact that we are only considering Runge-Kutta pairs of order 2
and 3 with precisely 3 stages. The proof can be found in [9].
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We also define the sets
Vi(e*) :={ueR" :||bi1(u)]| <€}, i=1,2
and
Jioo = I\, i=1,2.

From Assumption 4 it follows that

1
’ = — inf —_ 0.
(5.8) 1= uewl(e*l)l,lve%(e*)(|lu v||) >

We will need the following lemma, proved in Lemma 3.8 of [9].

LEMMA 5.1. For U, € J,||f(Uns1)|l < K||f(U,)|| for some K(J, D) >
0.

We also need the following lemma which proves that for sufficiently
small timesteps At it is impossible to move between the sets ¥;(¢) in a
single step. The proof is given in the Appendix.

LEMMA 5.2. If U, € J then there exists \(J) > 0 such that if

Atng—A—

17 (Ul

then

|Un+1 — Unll < 7-

The next two lemmas prove the upper bound on the sequence of ac-
cepted timesteps At,. Once again the proofs are given in the Appendix.
LEMMA 5.3. Let U, € J;, +. Then all At,, € (0, D] satisfying

*

€

) A
Ei, (Un, Atn) < o(7,Un) and Aty < N TGATRTAGA]

)

also satisfy

20(t,Up)
5.9 A3 .
(5.9) S TPl

Also, if Upt1,Unt2 € J, then for all sufficiently small T,

*

€

p)
1 (Uns)II” 2Cal f (Un4a)l

(5.10) Atpy1 < min( 3
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2KCoa®a(1,Upny1)
Cillf (Uny1)lle*

and

(5.11) Atpyq <

A €*

(5.12) Bbin min(l|f(Un+2)||’ 2G4 f (Un2)ll

)

LEMMA 5.4. Let U, € J for alln = M(71),...N(7), and N > M + 2.
Then if Upr € Jipy e+ and

A €*
£ Ua)Il" 2C4|| f (Unr)l]

it follows that for T sufficiently small and for alln =M,... ,N

(5.13) Atpr < min(

)

A €*
.14 &t in N
e b < (G 26 AT
and
g . 2ol U,) alCoK
(515) Atn S W max(l, Cl )

To obtain a convergence result it is necessary to prove that the upper
bound (5.15) holds for all n > 0 and so we now consider the choice of the
initial timestep estimate Atn;;. If we choose Atinit — 0 as 7 — 0 it can
be seen that, for sufficiently small 7, the conditions of Lemma 5.4 must
hold with either M = 0 or M = 1. If it holds with M = 0 then (5.15)
does indeed hold for all n. If not then (5.15) holds for all n > 1 and for
sufficiently small 7,

6*

A
1£ (o)l 2C4ll £ (Uo)|

implying that (5.15) also holds for n = 0 by Lemma 5.3. We now have upper
bounds on the entire timestep sequence giving corresponding upper bounds
on the truncation errors at each step. A Gronwall argument identical to
that in [9] gives the following convergence result.

THEOREM 5.1. Consider the numerical approzimation of (1.1) over
the time interval [0,T] generated by the algorithm (5.4)-(5.7) and let As-
sumptions 1 and 4 hold. Then there exists a constant K = K (T'), such that
for all sufficiently small 7 and sufficiently small Atinis,

Aty < min(

)

En = |[u(tn) — Unll < K—.
€

The algorithm (5.4)—(5.7) is merely the simplest implementation of

the alternating methodology. We can in fact choose At%o) to be strictly
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0.18 T T T T T T T T T

0.14r

0.08f

0.06[

0.041

0.02|

Time ¢

FiG. 6. This figure should be compared with Figure 3. By alternating between ¢ =

N[

and ¢ = % Tolerance Proportionality has been recovered in accordance with Theorem 5.1.

TABLE 1
The number of accepted steps, rejected steps and number of flops are displayed for
the algorithm (2.1)—(2.8) with ¢ = -;— endicd= % separately and then when these values
are used together in the alternating algorithm.

c= 3 /z / Alternatingc = 1 and 1
T # steps ] # rej. steps [ flops
10~* 23 /24 /25 1/2/2 1329 / 1459 / 1556
10~8 93 /95 /99 2/2/3 5436 / 5648 / 6083
108 421 / 427 | 445 3/3/1 24554 [ 25332 / 26967
10710 |1 1942 / 1969 / 2054 312711 112772 / 116262 / 124311

less than the expression in (5.5) and the statements and proofs of Lemmas
5.3, 5.4 and Theorem 5.1 are unchanged. Efficiency considerations, such

as attempting to reduce the number of (computationally wasteful) rejected

timesteps, suggest other choices for Atﬁf’).

our numerical comparisons is

The one that we shall use for

.
: Un-1) X
5.16) At = min|D, aAtn_1, At 6 P Vs TN
( ) min y & 1, n—1? Ein_l(Un—l,Atn—l) At 11T t
it R

This choice should reduce the number of rejections that occur when the
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TABLE 2
The same statistics as Table 1 are displayed for a more typical problem where TP
holds individually for ¢ = % and ¢ = % The statistics for the alternating algorithm are

almost identical to those for the non-alternating algorithms.

c=z /% / Alternating c = 7 and 1
" 3 # steps T# rej. stepsw flops
T 32 32/ 33 0/0/0 3013 / 3044 / 3190

10~° 135 / 138 / 138 0/0/0 13068 / 13497 / 13703
108 619 / 629 / 630 0/0/0 60016 / 61615 / 62657
1010 || 2863 /2910/2911 | 0/0/0 | 277684 / 285153 / 289617

two error estimates F; and F, are significantly different in magnitude.

We now return to the numerical example of Figure 3 where TP break-
down occured for ¢ = %; this breakdown also occurs for ¢ = % but at
different values of u. We now integrate using the switching methodology
with ¢ = -;—, B % and (5.17) in place of (5.5). The maximum timestep ra-
tio is set at @ = 5 and the convergence behaviour is plotted in Figure 6 and
shows that TP has indeed been restored. Table 1 records the number of
timesteps used in the numerical solution, the number of rejected steps and
the total number of flops (as calculated by the MATLAB flops variable)
for the alternating algorithm and the algorithm (2.1)—(2.8) using ¢ = %
and ¢ = % separately.

The above numerical integration represents a severe test for the new
algorithm. Nevertheless TP has been restored, with a corresponding im-
provement in accuracy, at the cost of just a few percent extra computational
effort.

Finally, we use the alternating algorithm to repeat the integration from
Figure 2 and in Table 2 make a similar comparison of the work done. In this
example the original algorithm exhibits TP for both ¢ = 1 (see Figure 2)
and ¢ = % and TP also occurs for the alternating algorithm. Again, the
increase in computational effort is small. More sophisticated alternatives
to (5.17), as well as a detailed investigation into possible choices for the

Runge-Kutta pairs, should lead to even more efficient algorithms.

APPENDIX
Lemma 5.2.

Proof. Let us consider the first advancing Runge-Kutta method Sfl).
From Lemma 4.2.6 in [14] there exist positive constants b;(J, D), c;(J, D),
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j=1,...,3 such that

1S (U, At,) — Us|l < Aty||f(U (Zb(lmm ))

7=

< Atp|| £ (Ul ij(1+ch)).

So there exists A1 (J) > 0 such that for all U,, € J,

A1 (1)
At = S Un,At Un S Y-
S @ = IS ) = Ul

There exists a similar constant A\, > 0 for the second advancing Runge-
Kutta method Sél) and choosing A = min(A;, A3) completes the proof. O

Lemma 5.3.
Proof. We first prove (5.9). If E(U,, At,) < o(1,U,) and U, € J;_ ¢
then

o(1,Un)

d GALE

(bt (Un) + AL F U 2 (U, A)) | <

But

[ (bio. @) + Atall @i, 2 (U, A) )|

161 (Un)l| = Atall £ (Un) b, 2(Un, Aty
> € — C4Aty|| f(Uy)]
> e ]2

Thus e*At2 < 71‘}((TUU)” and the result follows. The proof of (5.10) and

(5.11) uses the maximum timestep ratio a. We have from (5.9) that

A0 < (P >

( 20, Kr >%
1 f (Uns1)lle*

which proves (5.11) and finally this is
A €
1f Una)I” 2Call f (Un41)

for sufficiently small 7 using the fact that % 3 < 1 which proves (5.10). The
proof of (5.12) is precisely the same as for (5 10) but with a? replacing «. O

< min(

)
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Lemma 5.4.

Proof. By Lemma 5.3, (5.14) and (5.15) hold for n = M, M + 1 and
so we proceed by induction. We suppose that (5.14) and (5.15) hold for
n=MM+1,...,p < N and show that it holds for p + 1. Suppose first
that U, € J;, . Then by the inductive hypothesis and Lemma 5.3 with
n = p the result holds for n = p + 1. So suppose instead that U, € J;  -.
Then, by the inductive hypothesis and Lemma 5.2, ||Up—1 — Up|| < v and
so Up—1 € Ji,_,,e~- Thus by Lemma 5.3 with n = p — 1, for sufficiently
small 7,

AtpS—L

17 (Up)l

and so ||Upy1 — Up|| < . Therefore Upy; € J; ,, - and Lemma 5.3 applies
with n = p + 1, proving the result for p + 1. This completes the proof. O
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