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REMARKS ON DRIFT ESTIMATION FOR DIFFUSION PROCESSES∗

YVO POKERN†, ANDREW M. STUART‡ , AND ERIC VANDEN-EIJNDEN§

Abstract. In applications such as molecular dynamics it is of interest to fit Smoluchowski
and Langevin equations to data. Practitioners often achieve this by a variety of seemingly ad hoc
procedures such as fitting to the empirical measure generated by the data and fitting to properties of
autocorrelation functions. Statisticians, on the other hand, often use estimation procedures, which fit
diffusion processes to data by applying the maximum likelihood principle to the path-space density
of the desired model equations, and through knowledge of the properties of quadratic variation. In
this paper we show that the procedures used by practitioners and statisticians to fit drift functions
are, in fact, closely related and can be thought of as two alternative ways to regularize the (singular)
likelihood function for the drift. We also present the results of numerical experiments which probe
the relative efficacy of the two approaches to model identification and compare them with other
methods such as the minimum distance estimator.
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1. Introduction. In many applications (such as molecular dynamics, econo-
metrics, atmospheric sciences, and signal processing) it is of interest to fit a diffusion
process to a time-series. The data may come from experiments, or from the numeri-
cal simulation of larger and more complex models, either deterministic or stochastic.
The objective of the present paper is to discuss some issues that arise when apply-
ing a maximum likelihood inference method to this problem. In so doing, we will
highlight some connections between this approach, favored by statisticians, and other
approaches used in the physics and chemistry literature.

To introduce the maximum likelihood inference framework and some of the issues
that we will discuss, it is useful to consider first the specific case when it is known
that the data is consistent with an Itô stochastic differential equation of the form

(1.1) Ẋt = −∇V0(Xt) +
√
2β−1 Ẇt.

This equation is often referred to as the Smoluchowski or overdamped Langevin equa-
tion in the chemical-physics literature. Precise statements of the observations about
this problem that we make in this introductory section will be provided in section 2.1.
In section 2.2 we consider general reversible diffusions and in section 3 the (nonre-
versible) second order Langevin equation.

In (1.1), Wt is a standard d-dimensional Brownian motion in Rd, β > 0 is a
constant playing the role of the inverse temperature, and V0 : Rd → R is a potential,
which we assume C2, bounded from below and with a growth condition at infinity to
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guarantee that e−βV0 is integrable. In this case, the process defined by (1.1) is ergodic
with respect to the Boltzmann–Gibbs measure associated with V0 whose density is

(1.2) ρ0(x) = Z−1e−βV0(x), where Z =

∫

Rd

e−βV0(x)dx.

We assume that β is known and that we wish to estimate the potential V0 from the
data, i.e., from a sample path {Xt}t∈[0,T ] for some T > 0. For the time being we
assume that a continuous sample of the path is available; later on in the paper, we
will also discuss the problem when Xt is sampled at discrete times. To see how the
problem of estimating V0 given β can be cast into a maximum likelihood inference
problem, let Zt solve (1.1) for V0 ≡ 0 so that

(1.3) Żt =
√
2β−1 Ẇt,

and let P and Q be the path-space measures generated on [0, T ] by (1.1) and (1.3),
respectively. Then these measures are absolutely continuous with Radon–Nikodym
derivative

(1.4)
dP
dQ = exp(−TIT (X)),

where

(1.5) IT (X) =
β

4T

∫ T

0

(
|∇V0(Xt)|2dt+ 2〈∇V0(Xt), dXt〉

)
;

the angle brackets 〈·, ·〉 denote the Euclidean inner product on Rd and |·| the Euclidean
norm, and the integral with respect to dXt is to be understood in the Itô sense.
The functional IT (X) given by (1.5) is proportional to the negative logarithm of the
probability density of the path {Xt}t∈[0,T ] with respect to the measure on path-space
generated by (1.3). When a single path {Xt}t∈[0,T ] is given, if we evaluate (1.5) with
potential V rather than V0, this object becomes a functional of V . This functional is
the negative of the log likelihood function for V :

(1.6) IT (V ) =
β

4T

∫ T

0

(
|∇V (Xt)|2dt+ 2〈∇V (Xt), dXt〉

)
.

Thus, it is natural to try to minimize (1.6) over V to obtain the maximum likelihood
estimator (MLE) for this function. Indeed, using (1.1), (1.6) can be written as

IT (V ) =
β

4T

∫ T

0

(
|∇V (Xt)|2 − 2〈∇V (Xt),∇V0(Xt)〉

)
dt

+

√
2β

2T

∫ T

0
〈∇V (Xt), dWt〉.

(1.7)

Letting T → ∞, the stochastic integral in this expression tends to 0 almost surely
(a.s.), whereas the time integral converges a.s. toward an expectation with respect
to the equilibrium measure with density (1.2). In other words, as T → ∞, IT (V )
converges a.s. to the functional I∞(V ) given by

(1.8) I∞(V ) =
β

4

∫

Rd

(
|∇V (x)|2 − 2〈∇V (x),∇V0(x)〉

)
ρ0(x)dx.
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This functional is quadratic and convex in ∇V and, by completing the square, it is
clearly minimized when ∇V = ∇V0, i.e., when V = V0 + C, where C is an arbitrary
(and irrelevant) constant. Thus the MLE for −∇V0 given by maximizing the limiting
functional (1.8) is indeed the actual drift in (1.1).

The problem, however, is that the data {Xt}t∈[0,T ] is finite, T < ∞, i.e., we are
obliged to work with (1.6) and have no access to its infinite time limit (1.8). To
see what problems this creates, let us first put (1.6) in a more convenient form by
converting the Itô stochastic integral 〈∇V (Xt), dXt〉 into the Stratonovich integral
using

〈∇V (Xt), ◦dXt〉 = 〈∇V (Xt), dXt〉+ β−1∆V (Xt)dt.

Since 〈∇V (Xt), ◦dXt〉 = dV (Xt), this gives

(1.9) IT (V ) =
β

2T

(
V (XT )− V (X0)

)
+
β

4T

∫ T

0

(
|∇V (Xt)|2 − 2β−1∆V (Xt)

)
dt.

The time integral in (1.9) can be transformed into a configuration integral using the
occupation measure µT defined such that, for any Borel set B ⊂ Rd, one has

(1.10) µT (B) =
1

T

∫ T

0
1B(Xt)dt,

where 1B(x) is the indicator function of the set B. The measure µT is the finite time
equivalent of the equilibrium measure ρ0(x)dx entering (1.8). Using µT , we can write
(1.9) as

(1.11) IT (V ) =
β

2T

(
V (XT )− V (X0)

)
+
β

4

∫

Rd

(
|∇V (x)|2 − 2β−1∆V (x)

)
µT (dx).

This expression (1.11) makes it apparent why an attempt to directly minimize this
functional over V is a bad idea. When d = 1, the occupation measure µT has the
scaled local time Lx

T/T of the process {Xt}t∈[0,T ] as a density, but Lx
T is only Hölder

continuous up to C0, 12 (R). Indeed, Lx
T has the fine-scale properties of a diffusion

process (cf. the Ray–Knight description of Brownian local times [15]). In the appendix,
we show that (1.11) evaluated with µT (dx) = w(x)dx, where w(x) is a one-dimensional
Brownian motion, is not bounded from below. When d > 1, the situation is even
worse, as µT is singular with respect to the Lebesgue measure since it is supported on
{Xt}t∈[0,T ]. Thus IT (V ) must be regularized in some way to become useful. There
are at least three obvious ways to perform such a regularization.

1. The first way, which we will not discuss in this paper, is to adopt a Bayesian
nonparametric approach in which a prior measure on V is introduced that is supported
only on sufficiently regular functions. By sampling from this measure and using the
exponential of the negative of (1.6) or, equivalently, (1.11) as reweighting density, it
is possible to sample the posterior distribution of V given the data {Xt}t∈[0,T ]. This
approach is discussed in [19], and we refer the reader to that paper for details.

2. A second way to regularize (1.11) is to assume a parametric form for V , e.g.,
as a linear combination of smooth basis functions fi(x),

(1.12) V (x, θ) =
N∑

j=1

θifi(x),
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where θ1, . . . , θN are weights. By substituting (1.12) into (1.6), one is left with a
quadratic function of θ = (θ1, . . . , θN ) ∈ RN ,

(1.13) IT (θ) =
β

4T

∫ T

0

(∣∣∣
N∑

i=1

θi∇fi(Xt)
∣∣∣
2
dt+ 2

N∑

i=1

θi〈∇fi(Xt), dXt〉
)
.

For an appropriate choice of fi(x), this quadratic function of θ is convex and therefore
has a unique minimum θ̂ which can be found by solving a linear algebraic system. This
approach is the one often adopted in the statistics literature to identify a parametric
approximation to the MLE of V . We will refer to it as the parametric approach.
Notice that for this approach to work it is crucial that the sum in (1.12) be finite,
since it is this which regularizes the functional (1.6); the actual (nonparametric) MLE
for V will not exist in general.

3. A third way to regularize (1.11) is to regularize the measure µT (dx) and replace
it by ρT (x)dx, where ρT (x) > 0 is a smooth probability density function. With this
substitution, (1.11) becomes

(1.14) IT (V ) =
β

2T

(
V (XT )− V (X0)

)
+ ĨT (V ),

where

(1.15) ĨT (V ) =
β

4

∫

Rd

(
|∇V (x)|2 − 2β−1∆V (x)

)
ρT (x)dx.

If T is large enough, it is reasonable to neglect the first term on the right-hand side
of (1.14), i.e., approximate IT (V ) by ĨT (V ). To identify the minimizer of ĨT (V ),
note that if ρT (x) > 0, and for potentials V such that limx→∞ ∇V (x)ρT (x) = 0, an
integration by parts yields

ĨT (V ) =
β

4

∫

Rd

(
|∇V (x)|2 + 2β−1〈∇V (x),∇ log ρT (x)〉

)
ρT (x)dx

=
β

4

∫

Rd

(
|∇V (x) + β−1∇ log ρT (x)|2 − β−2|∇ log ρT (x)|2

)
ρT (x)dx.

(1.16)

This last expression shows that the minimizer of ĨT (V ) is unique up to a constant
and given by

(1.17) V̂ (x) = −β−1 log ρT (x) + C′,

where C′ is an arbitrary constant. This expression for V is the one usually adopted in
the physics and chemistry literature and we will refer to it as the nonparametric ap-
proach since (1.16) and, hence, (1.17) involve no direct parametrization of V . Notice,
however, that this approach leaves as an auxiliary problem the issue of determining
ρT (x). Thus, rather than removing the issue of parametrization, it merely displaces
it to ρT (x). This density can itself be obtained by minimization of some appropriate
functional (see (4.10) in section 4.1 containing numerical results).

The calculations above show some of the issues that arise when a maximum likeli-
hood inference method is applied to estimate the drift (here −∇V0(Xt)) in a diffusion
(here (1.1)). They also uncover a connection between the maximum likelihood infer-
ence method often adopted by statisticians and the procedure of fitting V to some
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empirical equilibrium density which is used by chemists and physicists. In the re-
mainder of this paper we will generalize this connection. Specifically we note the
following:

1. In section 2, we will clean up the calculations above and prove the facts that
we just listed. We will also outline how these calculations could be generalized to a
generic time-reversible diffusion and indicate that a connection between the maximum
likelihood inference and the procedure of fitting the drift to some empirical equilibrium
density may exist in this case as well.

2. In section 3, we will generalize these conclusions to a specific nonreversible
diffusion of great practical importance, namely, the Langevin equation, a hypo-elliptic
diffusion process found by coupling a Hamiltonian system to a heat bath via white
noise and damping.

3. In section 4, we will perform a series of numerical experiments to illustrate our
results and discuss the following series of remaining issues: What is the influence of
neglecting the boundary terms in (1.14)? What happens when the data is sampled at
discrete times (in this case (1.6) and (1.9), and hence (1.6) and (1.11), are no longer
equivalent)? What are the options to estimate ρT (x) in (1.14)?

Section 5 contains some concluding remarks.

2. Drift inference for time-reversible processes.

2.1. Smoluchowski equation. In this section we make precise the results in
the introduction.

First we analyze some properties of the log likelihood function IT (V ), written
either as in (1.6) or (1.11). We start by stating a theorem which indicates that
attempting to minimize (1.11) directly may be ill advised. We do this in the special
case d = 1 and where the domain of integration is restricted to [0, 1] and boundary
terms are neglected, i.e., we consider the functional

(2.1) IB(b) =
∫ 1

0

(
b2(x)− b′(x)

)
µ(dx)

for b ∈ H1(0, 1).
Theorem 2.1. If µ(dx) in (2.1) is absolutely continuous with respect to Lebesgue

measure with density given by a realization of the Brownian bridge, then the functional
IB(b) is a.s. not bounded below for b ∈ H1(0, 1).

Proof. See the appendix.
While singular in the sense above when T < ∞, the log likelihood function IT (V )

has a nice limit as T → ∞. To show this, we first make the following assumption
which summarizes all the assumptions made so far on the SDE (1.1).

Assumption 1.
1. There exist C1, C2 > 0 such that for all x ∈ Rd,

C1 + 〈x,∇V0(x)〉 ≥ C2|x|2.

2. V0 : Rd → R is of class C∞, bounded from below and polynomially bounded
from above for |x| →∞ .

3. The inverse temperature is β > 0.
Theorem 2.2. Let Assumption 1 hold, and also assume that V (x) is polynomially

bounded and measurable. Then as T → ∞, the functional IT (V ) in (1.6) converges
a.s. to the functional I∞(V ) defined in (1.8).
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This theorem is a consequence of the following lemma.
Lemma 2.3. Under the assumptions of Theorem 2.2, (1.1) is ergodic with respect

to the equilibrium measure with the density (1.2) and

(2.2) lim
T→∞

√
2β

2T

∫ T

0
〈∇V (Xt), dWt〉 = 0 a.s.

Proof. The ergodicity follows from [16]. Thus, all the assumptions needed to
apply Lemma 6.1 given in the appendix are satisfied.

Next we analyze the parametric log likelihood function (1.13) used in the para-
metric approach. We have the following.

Theorem 2.4. Let Assumption 1 hold, and let F = {fij} be the matrix with
entries

(2.3) fij =
1

T

∫ T

0
〈∇fi(Xt),∇fj(Xt)〉dt, i, j = 1, . . . , N,

and assume that F is positive definite. Then (1.13) has a unique minimizer. In
addition, this minimizer is then given by

(2.4) θ̂ = F−1h,

where h is the vector with components

(2.5) hi = − 1

T

∫ T

0
〈∇fi(Xt), dXt〉, i = 1, . . . , N.

Furthermore, if the ∇fi are polynomially bounded, then limT→∞ F exists and is
a.s. invertible.

Proof. The proof is immediate.
Finally, we analyze the properties of the approximate log likelihood function

ĨT (V ) in (1.14) used in the nonparametric approach. Note that Theorem 5.5 of
Chapter 2 in [14] implies that

(2.6) lim sup
t→∞

|Xt|√
log t

≤
√

2e

C2β
a.s.

An immediate consequence of this is that the boundary term in (1.14) is negligible.
Theorem 2.5. Under Assumption 1 we have, for any ε > 0, that

(2.7) lim sup
t→∞

V (Xt)

tε
= 0 a.s.

The next theorem shows that the minimization problem associated with (1.15)
has a unique solution as long as the density ρT in this functional satisfies some re-
quirements. To be able to state it more neatly, we introduce the space V as follows.
For any open and bounded subset U ⊂ Rd, define

V(U) =

{
V ∈ H1(U) :

∫

U
V (x)dx = 0

}
.

Theorem 2.6. Let ρT : Rd → R be smooth, ρT ∈ C∞(Rd). Furthermore, let U
be a bounded open subset of Rd, and let ρT be bounded below on U : ∃ε > 0 for all
x ∈ U : ρT (x) > ε. Then the minimizer of

(2.8) inf
V ∈V(U)

β

4

∫

U

(
|∇V (x)|2 − 2β−1∆V (x)

)
ρT (x)dx
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is unique and given by

(2.9) V̂ (x) = −β−1 log ρT (x) + C, where C = β−1

∫

U
ρT (x)dx.

The theorem can be proved using results from [5], but the proof can also be carried
out by directly completing the square. The basic idea was given in the developments
made in (1.16).

2.2. The generic time-reversible diffusion process. In this section, we as-
sume that the data {Xt}t∈[0,T ] has been generated by the following Itô SDE:

(2.10) dXt = b0(Xt)dt+ σ0(Xt)dWt,

where b0 : Rd → Rd is the drift coefficient, σ0 : Rd × Rd → Rd is the diffusion coeffi-
cient, and Wt is a standard d-dimensional Brownian motion. The diffusion coefficient
σ0(x) is assumed to be known and we wish to estimate the drift b0(x). Additionally,
we make the following assumption.

Assumption 2.
• Both σ0 and b0(x) are C1(Rd) and globally Lipschitz.
• We have

(2.11) ∃C > 0 ∀x, η ∈ Rd : 〈η,σ0σT0 (x)η〉 ≥ C|η|2.

• The process Xt is ergodic with invariant measure with density ρ0(x) with
respect to Lebesgue measure; i.e., for every polynomially bounded measurable
f : Rd → R, we have that

lim
T→∞

1

T

∫ T

0
f(Xt)dt =

∫

Rd

f(a)ρ0(a)da a.s.

• Expected values of functions of the sample path converge to the invariant av-
erage exponentially; i.e., for every measurable polynomially bounded function
f there is a function Φ(·) > 0 and λ > 0 so that for almost any starting value
X0, we have

∣∣∣∣E[f(Xt)]−
∫

Rd

ρ0(a)f(a)da

∣∣∣∣ ≤ Φ(x(0))e−λt.

• The process Xt is time reversible.
We also proceed on the basis of the following conjecture, which is true under

Assumption 1 as shown in Theorem 2.5, but in the more general context of Assumption
2 this is more difficult to establish.

Conjecture 1. For the process Xt and under Assumption 2 the Stratonovich
integral is a correction term which vanishes as T → ∞:

(2.12) lim
T→∞

1

T

∫ T

0
〈b(Xt), ◦dXt〉a0(Xt) = 0 a.s.

A formal argument exploiting reversibility leads us to believe that this is true.
This follows from the fact that the time reversibility assumption means that

{Xt−T/2}t∈[−T/2,T/2] and {XT/2−t}t∈[−T/2,T/2] are equivalent in law

in the limit as T → ∞.
(2.13)
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However, proof of Conjecture 1 appears nontrivial and is beyond the scope of this
paper. The time reversibility also implies that b0(x), a0(x) = σ0σT0 (x), and ρ0(x) are
related as

(2.14) 0 = b0ρ0 −
1

2
div(a0ρ0),

which expresses the fact that a time-reversible process has no probability current at
equilibrium. Note that since ρ0 is unknown to us (only σ0 and hence a0 = σ0σT0
are assumed to be available), (2.14) cannot be used a priori to determine b0. Never-
theless, the nonparametric approach would be to simply approximate ρ0 in (2.14) by
some empirical density ρT and thereby obtain an estimate for b. Next we show that
this approach is closely related to the parametric approach in that both approaches
correspond to minimizing a different regularization of the likelihood functional for b0.

Proceeding as in the introduction, we can derive the negative of the log likelihood
functional for the unknown drift b given the data {Xt}t∈[0,T ]. Up to an irrelevant
constant, this functional is

(2.15) IT (b) =
1

T

∫ T

0

(
|b(Xt)|2a0(Xt)

dt− 2〈b(Xt), dXt〉a0(Xt)

)
,

where we introduced the following inner product and norm on the tangent space at
x ∈ Rd:

(2.16)
〈η, ξ〉a0(x) = 〈η, a0−1(x)ξ〉 ∀η, ξ ∈ Rd,

|η|2a0(x) = 〈η, η〉a0(x) ∀η ∈ Rd.

This inner product and the norm are well defined since a0(x) is invertible at every
x ∈ Rd by assumption (2.11).

As in (1.6), the log likelihood function (2.15) for b is unbounded below in general
if the data is finite, T < ∞. We can, however, proceed as for the Smoluchowski
equation (1.1) along the following lines:

1. If we let T → ∞, (2.15) tends to a functional whose unique minimizer is b0.
2. If we parametrize b by the following form suggested by (2.14),

(2.17) b(x) =
1

2
div a0(x) −

1

2
a0(x)∇V (x, θ),

with V (x, θ) as in (1.12) (thus V (x, θ) is approximating − log ρ0), (2.15) becomes a
quadratic and convex function for θ = (θ1, . . . , θN ) whose unique minimizer can be
determined by solving a linear algebraic problem. This is the parametric approach.

3. There is an alternative way to regularize (2.15) which involves transforming
the time integral in (2.15) into an expectation with respect to the occupation measure
(1.10) and approximating µT (dx) by ρT (x)dx, where ρT (x) is some smooth density.
Then the minimizer of this regularized log likelihood function is unique and related
to ρT in the same way as b0 is related to ρ0 in (2.14). This is the nonparametric
approach.

Let us analyze in more detail the statements made in these three points. The
statement made in point 1 is a simple consequence of using (2.10) to rewrite (2.15) as

IT (b) =
1

T

∫ T

0

(
|b(Xt)|2a0(Xt) − 2〈b(Xt), b0(Xt)〉a0(Xt)

)
dt

− 2

T

∫ T

0
〈b(Xt),σ0(Xt)dWt〉a0(Xt).

(2.18)
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Under Assumption 2, Lemma 6.1 given in the appendix guarantees that the stochastic
integral converges a.s. to zero; this is exactly what happens for the Smoluchowski
equation (see Lemma 2.3). By ergodicity, the first integral converges a.s. toward an
expectation with respect to the equilibrium distribution with density ρ0. Thus, IT (b)
is expected to converge a.s. toward the functional I∞(b) given by

(2.19) I∞(b) =

∫

Rd

(
|b(x)|2a0(x) − 2〈b(x), b0(x)〉a0(x)

)
ρ0(x)dx.

If ρ0(x) > 0, completing the square shows that the minimizer of this functional is
unique and given by b(x) = b0(x), as needed. Of course, (2.19) is unavailable in
practice since the data is finite.

Consider now the statement made in point 2. If we insert (2.17) into (2.15) and
neglect all the irrelevant terms independent of θ, as well as an overall multiplicative
constant, we arrive at

(2.20) IT (θ) = θT F̄θ − 2θT h̄,

where F̄ = {f̄ij} is the matrix with entries

(2.21) f̄ij =
1

T

∫ T

0
〈∇fi(Xt), a0(Xt)∇fj(Xt)〉dt, i, j = 1, . . . , N,

and h̄ is the vector with components

(2.22) h̄i =
1

T

∫ T

0
(〈∇fi(Xt), div a0(Xt)〉dt− 2〈∇fi(Xt), dXt〉) , i = 1, . . . , N.

This is a quadratic function in θ which is strictly convex iff the matrix F is positive
definite. If this is the case, (2.20) has a unique minimizer given by

(2.23) θ = F̄−1h̄.

These results are equivalent to Theorem 2.4 except that they concern the process
specified by (2.10) rather than the one specified by the Smoluchowski equation (1.1).
Note that these results remain true even if the process defined by (2.10) is not time
reversible, since (2.20) remains the parametric approximation via (2.17) of the nega-
tive log likelihood function for b irrespective of whether the process is time reversible
or not.

To establish the statements made in point 3 above, we will use the following
relation between the Itô integral in (2.15) and the corresponding Stratonovich integral:

∫ T

0
〈b(Xt), dXt〉a0(Xt) =

∫ T

0
〈b(Xt), ◦dXt〉a0(Xt)

+
1

2

∫ T

0

(
〈b(Xt), div a0(Xt)〉a0(Xt) − div b(Xt)

)
dt.

(2.24)

Using this relation, as well as the occupation measure µT of the process {Xt}t∈[0,T ],
(2.15) can be written as

IT (b) =
∫

Rd

(
|b(x)|2a0(x) + div b(x) − 〈b(x), div a0(x)〉a0(x)

)
µT (dx)

− 2

T

∫ T

0
〈b(Xt), ◦dXt〉a0(Xt).

(2.25)
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The stochastic integral in this expression is a correction term which we expect will
vanish in the limit as T → ∞, as stated in Conjecture 1. Thus, if we assume that
T is large enough so that we can neglect the stochastic integral term in (2.25), and
we approximate the occupation measure µT (x) by ρT (x)dx, where ρT (x) is a smooth
density with bounded support, we can approximate the log likelihood function (2.25)
by

(2.26) ĨT (b) =
∫

Rd

(
|b(x)|2a0(x) + div b(x)− 〈b(x), div a0(x)〉a0(x)

)
ρT (x)dx.

This functional is the equivalent of the expression (1.15) when considering (2.10)
instead of the Smoluchowski equation (1.1). Given the smoothness of the density, we
can perform the following partial integration:

(2.27) ĨT (b) =
∫

Rd

(
|b(x)|2a0(x)

ρT (x)−b(x)·∇ρT (x)−〈b(x), diva0(x)〉a0(x)ρT (x)
)
dx,

where the boundary terms vanish since ρT (·) has bounded support. This functional
has much nicer properties than the original IT (b) in (2.15), as shown by the following
result.

Theorem 2.7. Let Assumption 2 hold. Also, let U be a bounded open subset of
Rd, and assume that ρT ∈ C∞(U) is bounded below on U : ∃ε > 0 : ρT (x) > ε for all
x ∈ U . Then for the functional

(2.28) ˜̃IT (b) =
∫

U

(
|b(x)|2a0(x)ρT (x)−b(x) ·∇ρT (x)−〈b(x), div a0(x)〉a0(x)ρT (x)

)
dx,

the minimizer of

inf
b∈L2(U)

˜̃IT (b)

is unique and given by

(2.29) b̃ =
1

2
div(a0ρT )/ρT (x ∈ U).

Proof. Rewrite the functional ˜̃I, introducing an extra factor of ρT and a0 in the
middle term to recognize it as a quadratic form in b:

˜̃I(b) =
∫

U

(
|b(x)|2a0(x)

−
〈
b(x), a0(x)

∇ρT (x)
ρT (x)

〉

a0(x)

− 〈b(x), diva0(x)〉a0(x)

)
ρT (x)dx.

Now complete the square to obtain

˜̃I(b) =
∫

U

(∣∣∣∣b(x)−
a0(x)

2

∇ρT (x)
ρT (x)

− 1

2
diva0(x)

∣∣∣∣
2

a0(x)

−
∣∣∣∣
a0(x)

2

∇ρT (x)
ρT (x)

− 1

2
diva0(x)

∣∣∣∣
2

a0(x)

)
ρT (x)dx.

Since ρT (·) is strictly positive on U , this functional is minimized when

(2.30) 0 = b− a0(x)

2

∇ρT
ρT

− 1

2
diva0 (x ∈ U).
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This is an algebraic equation for b whose solution is (2.29).
Relation (2.29) is the equivalent of (1.17) for a generic time-reversible process

and shows how the nonparametric approach of deducing the drift coefficient from the
equilibrium density and the diffusion coefficient can be generalized to this case.

An interesting consequence of the calculations above is that the time-ordering
of the data is not very relevant for time-reversible processes. This is clear for the
nonparametric approach based on (2.26) and leading to (2.29) in which only the
empirical density ρT (x) plays a role. Similarly, we expect that time-ordering plays
only a small role in the parametric approach based on regularizing the maximum
likelihood function leading to (2.20) via parametrization of the drift b. This conjecture
will be verified in the numerical experiments of section 4.

3. Nonreversible processes: The Langevin equation. The calculations in
section 2 rely heavily on the property that the process is time reversible. In particular,
for a nonreversible process, we would not expect Conjecture 1 to hold in general; hence
we will not be able to approximate the log likelihood function by (2.26) (in which the
contribution from the stochastic integral term in (2.25) is missing). Another way to
look at the problem is to realize that, for a nonreversible process, relation (2.14) is
replaced by

(3.1) j0(x) = b0ρ0 −
1

2
div(a0ρ0),

where j0(x) is a divergence-free vector field accounting for the nonzero equilibrium
probability current of the nonreversible process. Equation (3.1) implies that it is not
straightforward to generalize the nonparametric approach to nonreversible processes
since, on top of the diffusion tensor a0 and the equilibrium density ρ0 (or some ap-
proximations thereof), we need an approximation of the current j0 to deduce the drift
b0. This approximation of j0 will not be available in general. Despite all this, in this
section we show that the nonparametric approach can be generalized to a specific
type of nonreversible process which frequently arises in applications, and that this
approach is again closely connected to the parametric approach for these processes.
The specific type of nonreversible process is that governed by the Langevin equation:

(3.2) Q̈t + β0D0Q̇t +∇V0(Qt) =
√
2D0Ẇt,

where β0 is the inverse temperature, D0 is the diffusivity, and Wt is a standard
Brownian motion. (Thus the friction coefficient γ is related to β0 and D0 via the
Einstein relation: D0 = γ/β0.) We assume that D0 is known, and we wish to find the
potential V0 and the inverse temperature β0.

If we set Pt = Q̇t (Qt is referred to as position, Pt as momentum), then from
(3.2) we obtain the following system of equations:

(3.3)

{
Q̇t = Pt,

Ṗt = −β0D0Pt −∇V0(Qt) +
√
2D0 Ẇt.

Note that since the noise enters the equation only for Pt, (3.3) does not define an
elliptic diffusion; it is, however, hypo-elliptic; see [16]. If one assumes that V0 satisfies
the assumptions in Theorem 2.2, the process generated by (3.3) is ergodic with respect
to the equilibrium distribution with density

(3.4) ρ0(q, p) = ρ0(q)g0(p),
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where

(3.5) ρ0(q) = Z−1e−β0V0(q), g0(q) = (2πβ0)
−d/2e−

1
2β0|p|2 .

Note in particular that the equilibrium distribution is Gaussian in the momentum
coordinate.

The Radon–Nikodym derivative of the measure on path-space for (3.3) with re-
spect to the measure generated by

(3.6) Ṗt =
√
2D0 Ẇt

is given by

(3.7) exp
(
− T

2D0
IT (Q,P )

)
.

Here

(3.8) IT (Q,P ) =
1

2T

∫ T

0

(
|β0D0Pt +∇V0(Qt)|2dt+ 2〈β0D0Pt +∇V0(Qt), dPt〉

)
,

where it is understood that Qt and Pt are related as Q̇t = Pt, as in (3.3). For fixed
data {Qt, Pt}t∈[0,T ], we may evaluate (3.8) at V and β differently from V0 and β0. The
resulting functional is then the negative of the log likelihood function for V and β:

(3.9) IT (V,β) =
1

2T

∫ T

0

(
|βD0Pt +∇V (Qt)|2dt+ 2〈βD0Pt +∇V (Qt), dPt〉

)
.

As in the Smoluchowski case, the log likelihood function (3.9) must be regularized
to be useful. The simplest way is to parametrize V (q) as in (1.12), in which case (3.9)
reduces to a function of β and θ = (θ1, . . . , θN ) which can then be minimized over
these parameters. This is the parametric approach. Next we investigate another type
of regularization of (3.9) leading to the equivalent of the nonparametric approach.

We begin by making a few transformations on (3.9). First, notice that an inte-
gration by parts using the Itô formula and Q̇t = Pt shows that

∫ T

0
〈∇V (Qt), dPt〉 = −

∫ T

0
〈Pt,∇∇V (Qt)Pt〉dt+

[
〈∇V (Qt), Pt〉

]T
0

and

∫ T

0
〈Pt, dPt〉 =

1

2

[
|Pt|2

]T
0
− dD0T.

Thus

IT (V,β) =
1

T

[
βD0|Pt|2 + 〈∇V (Qt), Pt〉

]T
0

− dD0
2β +

1

2T

∫ T

0

(
|βD0Pt +∇V (Qt)|2 − 2〈Pt,∇∇V (q)Pt〉

)
dt.

(3.10)

Under suitable conditions on the potentials V0 and V , the boundary contributions
from the two integrations by parts converge a.s. to zero as T → ∞, as made precise
in the following lemma.

Lemma 3.1. Assume that V ∈ C1(Rd,R+) and that ∃Ci > 0, i = 1, . . . , 5, where
C1 < 1 and m ∈ Z+ such that
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• 1
2 〈∇V0(q), q〉 ≥ C1V0(q) + C2|q|2 − C3 for all q ∈ Rd,

• |∇V (q)| ≤ C4

[
1 + |q|2m−1

]
for all q ∈ Rd,

• |∇V0(q)| ≤ C5

[
1 + |q|2m−1

]
for all q ∈ Rd.

Then there is a C > 0 such that

lim sup
t→∞

|Pt|2 + |Qt|2
log t

≤ C a.s.

and

lim sup
t→∞

|〈∇V (Qt), Pt〉|+ |Pt|2
t

= 0 a.s.

Proof. Let H(q, p) denote the following perturbed Hamiltonian:

H(q, p) =
1

2
|p|2 + V (q) +D0β0〈p, q〉+D2

0β
2
0 |q|2 + 1.

Then

H(q, p) ≥ 1 +
1

8
|p|2 + D2

0β
2
0

3
|q|2.

The arguments in section 3 of [16] show that there exist ξ6, ξ7, ξ8, ξ9 > 0 such that,
for the generator L of (3.3),

LH ≤ ξ6 − ξ7H

and
∣∣∣∣

〈
∇H,

(
0√

D0

)〉∣∣∣∣
2

≤ ξ8 [|p|+ |q|]2 ≤ ξ9H(q, p).

Thus, applying the Itô formula to eξ7tH(q(t), p(t)) and using arguments similar to
those in Theorem 5.5 of Chapter 2 in [14], but applied to H(q, p) instead of |p|2+ |q|2,
give the first result. The second result follows since ∇V (q) is assumed polynomially
bounded.

The ergodicity of the process, together with Lemma 3.1, implies that as T → ∞,
IT (V,β) converges a.s. to the functional I∞(V,β) given by

I∞(V,β) = −dD0
2β +

1

2

∫

Rd×Rd

(
|βD0p+∇V (q)|2 − 2〈p,∇∇V (q)p〉

)
ρ0(q, p)dqdp.

(3.11)

Using the fact that ρ0(q, p) is a product of two densities, ρ0(q, p) = ρ0(q)g0(p), and
that g0(p) is Gaussian, the integral over the momentum in (3.11) can be performed
explicitly. The result can be written as

(3.12) I∞(V,β) =
1

2

∫

Rd

(
|∇V (q)|2 − 2β0

−1∆V (q)
)
ρ0(q)dq + dD0

2

(
1

2
β2/β0 − β

)
.

The integral on the right-hand side is, up to an irrelevant constant, the same as the
one in (1.15) and it is the only term involving V . As a result, the minimum of (3.12)
over V is reached when V = V0+C, where C is an arbitrary constant, as in section 2.1.
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Similarly, the last term in (3.12) is minimized when β = β0. Thus we conclude that,
in the limit as T → ∞, the log likelihood function for V0 and β0 has these parameters
as unique maximizers.

When T is finite, however, we need to proceed differently. First, we can replace
the time integral in (3.10) by an expectation with respect to the occupation measure
of the process {Qt, Pt}t∈[0,T ]:

IT (V,β) =
1

T

[
βD0|Pt|2 + 〈∇V (Qt), Pt〉

]T
0

− dD0
2β +

1

2

∫

Rd×Rd

(
|βD0p+∇V (q)|2 − 2〈p,∇∇V (q)p〉

)
µT (dq, dp).

(3.13)

Assuming that T is large enough so that we can neglect the boundary terms in (3.10),
we are left with the terms on the second line in (3.13). To regularize them, we must
regularize µT (dq, dp) by some ρT (q, p)dqdp. Consistent with (3.4), we assume that the
empirical density ρT (q, p) factorizes as ρT (q, p) = ρT (q)gT (p), where ρT (q) and gT (p)
are densities which can be estimated separately by splitting the data into {Qt}t∈[0,T ]

and {Pt}t∈[0,T ]. Consistent with (3.5), we can further assume that gT (p) is a Gaussian
density of the form

(3.14) gT (p) = (2πβT )
−d/2e−

1
2βT |p|2 ,

where βT > 0 is a parameter which can be estimated from the data as

(3.15) β−1
T =

1

dT

∫ T

0
|Pt|2dt.

Substituting ρT (q, p)dqdp for µT (dq, dp) in the integral term in (3.13) and using (3.14),
the integral over the momentum can be performed explicitly. This gives the following
approximation for the terms on the second line in (3.13):

(3.16)
1

2

∫

Rd

(
|∇V (q)|2 − 2β−1

T ∆V (q)
)
ρT (q)dq + dD0

2

(
1

2
β2/βT − β

)
.

This functional is similar to (3.11), except that it involves the empirical ρT and
βT instead of the actual ρ0 and β0. The following theorem is thus analogous to
Theorem 2.6.

Theorem 3.2. Let U ⊂ Rd be open and bounded. Suppose that ρT is bounded
below on U , i.e., ∃ε > 0 for all x ∈ U : ρT (x) > ε holds. Assume furthermore that
βT > 0. Then the functional

(3.17) ˜̃Ih(V,β) =
1

2

∫

U

(
|∇V (q)|2 − 2β−1

T ∆V (q)
)
ρT (q)dq + dD2

0

(
1

2
β2/βT − β

)

has a unique minimizer (V,β) in H̄1(U)×R, where the bar denotes functions of mean
zero. This minimizer is given by

(3.18) V̂ = −β−1
T log ρT (x) + C, β̂ = βT ,

where the constant C is such as to ensure that V̂ has mean zero.
Proof. First establish that β̂ = βT , which is straightforward as β occurs only in

the second term. The rest of the proof proceeds analogously to Theorem 2.6.
Thus, the nonparametric approach can be generalized to the Langevin equation

and leads to the fitting of V to the empirical measure, similarly to what we found in
the case of the Smoluchowski equation. Furthermore, the inverse temperature β is
estimated from the variance of the momentum in the empirical measure.
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4. Numerical experiments.

4.1. Setup. In this section we perform a series of numerical experiments on a
simple model system to illustrate the results obtained in the previous sections, in
particular the relationship between the practitioners’ and statisticians’ approaches to
drift estimation. These experiments will also allow us to investigate two issues that
we have left open so far. The first is the impact on the parametric approach of having
a data set sampled at discrete points in time rather than continuously. The second
issue is how to obtain the approximate density ρT (x) needed in the nonparametric
approach. The model system we will investigate is the one-dimensional diffusion

(4.1) Ẋt = −X3
t +

3

2
Xt +

3

2
Ẇt, X0 = 0.

This equation is a special case of the Smoluchowski equation (1.1) with

(4.2) V0(x) =
1

4
x4 − 3

4
x2

and β = 8/9. To generate the data, we integrate (4.1) using the Euler–Maruyama
scheme with time-step ∆t for NT = 1T/∆t2 steps, i.e., using

(4.3) X(j+1)∆t = Xj∆t −X3
j∆t∆t+

3

2
Xj∆t∆t+

3

2

√
∆t ξj , j = 0, . . . , NT − 1,

with X0 = 0 and where {ξj}j=0,...,NT−1 are independent Gaussian variables with
mean 0 and variance 1. The value of ∆t and T will be varied to measure the impact
of these parameters. The Euler–Maruyama scheme produces a discrete time sample
{Xj∆t}j=0,...,NT which we will use as data. For simplicity, we will denote this data
set as {Xj}j=0,...,NT .

In the parametric approach we use the following polynomial representation of the
force b0(x) = −V ′

0(x) = −x3 + 3
2x:

(4.4) b(x, θ) =
3∑

i=0

θix
i.

Equivalently, this means that we parametrize the potential V0(x) as

(4.5) V (x, θ) =
3∑

i=0

θixi+1

i+ 1
.

Based on this parametrization, and consistent with the time-discretization used in
(4.3), we adopt the following discretized version of the log likelihood function (1.13):

(4.6) IT (θ) =
1

T

N∑

j=0

(
|b(Xj , θ)|2∆t− 2b(Xj, θ) (Xj+1 −Xj)

)
.

The minimization of (4.6) gives rise to a linear algebraic system for θ = (θ0, . . . , θ3)
which is easy to solve (the solution is similar to (2.23) in the continuously sampled
case). We refer to this solution as the MLE θ̂.
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In the nonparametric approach the main issue is the evaluation of the empirical
density ρT (x) in (1.15) and (1.17). To obtain results that can be easily compared
with those of the parametric approach we will parametrize ρT as

(4.7) ρT (x, θ) = Z−1(θ)e−βV (x,θ), where Z(θ) =

∫

R
e−βV (x,θ)dx,

and β = 8/9 is given. To then determine ρT (x, θ), we test and compare three different
methods. The first method is based on estimating a discretization of the empirical
density obtained by a standard histogram method using an even number K of bins
centered at ck = 8k/K for k = −K/2, . . . , K/2. The bins are spaced equidistantly
and the small number of samples outside [−4, 4] is discarded. Denoting by ρ̂k this
empirical density, we then obtain θ = (θ0, . . . , θ3) by minimizing

(4.8)

K/2∑

k=−K/2

|log ρ̂k + βV (ck, θ)|2 .

This objective function is the discrete analogue of the L2 norm of the difference be-
tween−βV (x, θ) and the log of a (putative) continuous approximation of the empirical
density ρk. Note that this is a straightforward least squares problem of dimension
K, so this is easily solved by standard methods. We refer to optimizing (4.8) as the
practitioners’ method, and call θ̂ optimizing (4.8) the practitioners’ method estimator
(PME).

For the second method, note that in one dimension the occupation measure µT

has the scaled local time LT (x)/T as density, so one can search the minimizer of

(4.9)

∫

R
|ρT (x, θ)− LT (x)/T |2 dx,

which measures the L2 distance between ρT (x, θ) and the scaled local time LT (x)/T .
To adapt this to time-discrete observations, it is possible to expand the square

and then approximate the local time as

LT =
T

NT

NT∑

j=0

δXj .

This results in estimation via minimizing the following objective function over θ:

(4.10)

∫

R
ρ2T (x, θ)dx − 2

T

NT∑

j=0

ρT (Xj , θ).

The third method is based on a coarsened version of (4.10) in which we use ρ̂k to
replace (4.10) by

(4.11)
K∑

k=−K

ρ2T (ck, θ)− 2ρT (ck, θ)ρ̂k.

Minimizing (4.11) is slightly less accurate than minimizing (4.10), but it is computa-
tionally less expensive if the number of bins is significantly smaller than the number
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Fig. 4.1. Densities from one particular sample path.

of data points in the time-series, K 3 NT . The computational cost involved in min-
imizing (4.10) compels us to use (4.11), but we study its behavior for several choices
of K, the number of bins in the histogram. To optimize (4.11) we use steepest de-
scent together with a line search strategy and refer to the optimal θ̂ as the minimum
distance estimator (MDE).

More generally, using a histogram as a means of summarizing the data not only
smoothes the empirical density but also makes optimization easier. In the case of
the estimator (4.8), it is even unclear how this estimator could be used with the
unsmoothed discrete time empirical density. Various alternative ways of obtaining
a smoothed empirical density ρ̂ from the discrete time observations Xj are conceiv-
able. Established methods include kernel density estimators and even nonparametric
density estimation.

4.2. Connections via correlation. In order to establish that the link between
the MLE (obtained from (4.6)) and the PME (obtained from (4.8)) persists for dis-
cretely observed data, we wish to study the stochastic dependency between the PME
and the MLE understood as random variables.

Having verified that asymptotic unbiasedness and a suitable decay of variance are
indeed observed for our implementation of these estimators, we consider that these
results are standard at least for the MLE, so we do not show them here in detail.

Since applied interest resides in the invariant density and the empirical measure,
it seems interesting to first compare the MLE and density-based estimators at the
level of densities. To do this, we perform numerical simulations using K = 50 bins
for a final time of T = 100 (and ∆t = 0.01) and compute the invariant density ρ(θ̂, ·)
induced by MLE estimates θ̂ of {θi}3i=0. A typical case is shown in Figure 4.1, and
repeated experiments computing the binwise correlation of deviations from the true
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Fig. 4.2. Correlation coefficients α for deviations of MLE-induced and empirical densities from
the invariant density.

invariant density ρ (whose evaluation at ck we denote by ρk = ρ(ck)), namely,

α =

∑K/2
k=−K/2 (ρ̂k − ρk) ·

(
ρ(θ̂, ck)− ρk

)
√∑K/2

k=−K/2 (ρ̂k − ρk)2 ·
√∑K/2

k=−K/2

(
ρ(θ̂, ck)− ρk

)2 ,

show high correlations, as visible in the histogram in Figure 4.2. An MDE or PME
that now attempts to fit the empirical density ρ̂ or its logarithm using some least
squares method would hence be expected to yield drift parameter estimates θ̂, whose
deviations from θ are correlated with the MLE estimates’ deviations.

To investigate whether this is so, it is useful to note the experimental observation
that all three estimators display an approximately Gaussian distribution. We use
the final time T = 160 and the time-step ∆t = 0.002, and the MDE and PME each
use K = 50 bins throughout. We evaluate N = 1000 realizations each of the MDE,

MLE, and PME to produce estimates of {θ(k)3 }Nk=1 of θ3. We then standardize these
estimates, subtracting the mean and dividing by the standard error. Histograms and
quantile-quantile plots of these three parameter estimates are given in Figures 4.3, 4.4,
and 4.5, respectively. Furthermore, we apply a Kolmogorov–Smirnov test of normality
and report the obtained p-values in these figures. In all three cases, the observed p-
value is above p = 0.88 so that the observed evidence against normality using the
Kolmogorov–Smirnov test statistic is considered very weak. It should be pointed
out that for smaller final times, the distribution of parameter estimates does not
approximate a Gaussian as closely as this; theorems on (local) asymptotic normality
that can be found for the MLE and MDE in continuous time, e.g., in [12], suggest
only normality for large final times.
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N=1000, KS test: p−value=0.88232

Fig. 4.3. Test of normality for the MDE.
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N=1000, KS test: p−value=0.94725

Fig. 4.4. Test of normality for the MLE.
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N=1000, KS test: p−value=0.9881

Fig. 4.5. Test of normality for the PME.
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Fig. 4.6. Correlations of drift parameter deviations for MDE, PME, and MLE. The dotted
lines indicate 33% quantile bands.
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Fig. 4.7. Correlations of drift parameter deviations for MLE and PME. The dotted lines
indicate 33% quantile bands.

It is now appropriate to study correlations as a measure of independence, so we
consider the deviations of the three estimators of θ3 from their respective means as a
function of final time. Plotting their averaged correlations over at least Nav = 1000
realizations, each as a function of final time T , yields the plot in Figure 4.6. It seems
that the maximal obtainable correlation coefficient is around 0.9 for the MLE–PME
pair. As would be expected from the analytical link of these estimators, a decline of
correlation is observed as the final time T is decreased.

Consulting Figure 4.7, it can be seen that the number of bins has only a small
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Fig. 4.8. Correlations of drift parameter deviations for Ã versus MLE.

influence on the observed correlation of the correlation between MLEs and PMEs.
We view this as an indication that other smoothing methods arriving at ρ̂ would not
yield significantly lower correlations.

4.3. Influence of boundary conditions at finite T . The approximation of
ignoring boundary terms in going from (1.14) to (1.15) is good in the limit of large
final times, as was shown in Theorem 2.5. In this section, we will briefly sketch the
influence of ignoring these boundary terms for finite, and even small, final times.
To do this most easily, we introduce a variant of the maximum likelihood estimator
(abbreviated MLE2) obtained by minimizing the following objective function:

(4.12) I(2)
T [θ] =

N∑

j=0

(
|b(Xj , θ)|2∆t+ σ2b′(Xj , θ)∆t

)
.

Note that this is similar to a discretization of (2.22), but after having performed a
partial integration in the spirit of (2.24) to remove the stochastic integral and ne-
glecting the boundary terms arising from the evaluation of the resulting Stratonovich
integral (whereas the MLE would have been attained by discretizing straight away,
not performing any partial integrations). It should be compared with IT [θ] in (4.6).

In fact, the deviation of the correlation between MLE2 and MLE from 1 should
indicate the influence of the initial-condition (and final value) related term on the
parameter estimates. Using a similar experimental setup (with∆t = 0.0002 this time),
we compute the correlation of the MLE2 and the MLE which results in Figure 4.8.

The remarkably high degree of correlation indicates that the first term, which is
of order O( 1

T ), is of little influence for the final times considered in this plot. It does,
however, decline for small final times and the onset of this decline around T = 10 is
compatible with the decline of correlation observed in Figure 4.6.
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5. Conclusions and future work. By analyzing different procedures to reg-
ularize the likelihood function for the drift of a diffusion, we have highlighted some
links between the maximum likelihood principle, used widely in the statistical litera-
ture, and the practitioners’ estimator based on fitting the logarithm of the empirical
measure to the drift. These links have been further substantiated through selected
numerical examples. In the special case of gradient diffusions these estimators are
even more closely linked, as their deviations from the mean value satisfy the same
statistics to leading order.

At first glance the minimum distance estimator seems to be close to the non-
parametric approach, but our analysis shows that the link between the parametric
approach and the nonparametric approach is far closer.

This paper leaves open many avenues of further enquiry:

• Our work has been exclusively concerned with reversible problems with equilib-
rium distribution e−βV (q), or nonreversible problems with the equilibrium distribution
of the Boltzmann–Gibbs form e−βH(q,p), with H(q, p) = 1

2 |p|
2 + V (q) (separable and

quadratic in the momenta). This is natural for examples arising in molecular dynam-
ics. It would also be interesting to perform estimation for processes involving colored
noise such as

Q̈t +∇V (Qt) = BṘt,

where Rt is a suitable m-dimensional Ornstein–Uhlenbeck process involving Q̇t to
satisfy fluctuation dissipation. The process (Qt, Q̇t, Rt) then has marginal measure,
after integrating out R, of Boltzmann–Gibbs form.

• For problems arising in, e.g., the atmospheric sciences [13], more complex dis-
tributions will be required. A characterization of the class of stochastic processes for
which the link between the parametric approach and the nonparametric approach can
be established would be desirable.

• The option of regularizing the likelihood functional (1.11) by including a higher
order differential operator to ensure coercivity has been highlighted. This will be pur-
sued for the one-dimensional case in [19] in the framework of Bayesian nonparametric
drift estimation.

• Our results rely heavily on the fact that the diffusion coefficient is assumed
known. While it is statistical folklore that drift estimation is considerably harder
than diffusion estimation (see, e.g., [23], [12]), in that the quadratic variation in prin-
ciple reveals the diffusion coefficient, it is common practical experience with real data
that diffusion estimation is the harder problem. This is because the data is often
incompatible with a diffusion, or with the desired diffusion, at small time-scales; see,
e.g., [21] and [3]. To overcome this, practitioners often use time-correlation infor-
mation, or other information concerning O(1) time-scales, to estimate the diffusion
coefficient; see [8], [18], and [26], for example. Furthermore, multiplicative noise mod-
els are often appropriate. See [9] and [13], for example, in the context of molecular
dynamics and the atmospheric sciences, respectively, and see also the overview given
in [20]. A systematic nonparametric approach to the problem of diffusion matrix es-
timation in multiple dimensions and for O(1) spaced data would be very desirable.
See [25] for an overview of parametric diffusion estimation in this context.
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6. Appendix.

6.1. Lemma on stochastic integral averages.
Lemma 6.1. Let the continuous time stochastic process Xt be given by either (1.1)

satisfying Assumption 1 or (2.10) satisfying Assumption 2. Also, let f : Rd → R be
measurable and polynomially bounded. Then

lim
t→∞

1

t

∫ t

0
〈f(Xs), dWs〉 = 0 a.s.

We follow the proof given in [17].
Proof. Define the continuous time martingale

Mt =
1

t

∫ t

0
〈f(Xs), dWs〉

for t ∈ (0,∞). Let ε > 0. For the increasing sequence of times ti = 2i−1, i ∈ N, let
the probabilities pi be defined as

pi = P
(

sup
s∈[ti,ti+1]

|Ms| > ε
)
.

We can bound pi above using the Chebyshev inequality

pi ≤
1

ε2
E
[

sup
s∈[ti,ti+1]

(
|Ms|2

)
]
.

Now, | · |2 is convex and nonnegative and so |Ms|2 is a nonnegative submartingale,
whence Doob’s martingale inequality yields

pi ≤
C

ε2
sup

s∈[ti,ti+1]
E
[
|Ms|2

]

=
C

ε2
sup

t∈[ti,ti+1]

1

t2
E
[∫ t

0
|f(Xs)|2 ds

]

for some constant C > 0, where we have used the Itô isometry. Since f is polynomially
bounded by hypothesis, we can use this bound,

pi ≤
C

ε2
sup

t∈[ti,ti+1]

1

t2
E
[∫ t

0
1 + |Xs|2pds

]
=

C

ε2
sup

t∈[ti,ti+1]

1

t2

∫ t

0
1 + E

[
|Xs|2p

]
ds

for some p ∈ N and possibly using a larger constant C > 0.
For the gradient case, Theorem 5.3 from [16] ensures geometric ergodicity, i.e.,

∣∣∣∣Eg(Xt)−
∫

Rd

g(a)ρ0(a)da

∣∣∣∣ ≤ κ
[
1 + (V (X0)−min V )l

]
e−λt

for some λ(l),κ(l) > 0 and all measurable g such that |g| < 1+(V −minV )l. Choosing
l large enough so that |x|2p ≤ V (x)l for all x such that |x| > R for some R > 0, this
shows that the integrand is O(1), i.e., that there exists a constant C > 0 such that
for all times s ∈ [0,∞),

(6.1) E
[
|Xs|2p

]
< C.
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For the reversible case, geometric ergodicity is part of Assumption 2 so that (6.1)
follows.

Thus, for all ti > t∗ (hence i > i∗) for some t∗ > 0 we have

pi ≤ sup
t∈[ti,ti+1]

1

t

C

ε2
∀i ≥ i∗

≤ C

ε2
1

ti
∀i > i∗

again for a different constant C. From the summability
∑∞

i=i∗ pi < ∞ it follows by a
Borel–Cantelli lemma that

P
(

sup
s∈[ti,ti+1]

|Ms| > ε i.o.

)
= 0.

So that we have lim sups→∞ |Ms| ≤ ε a.s. Finally, use ε = 1
m , m ∈ N, and let m → ∞

to obtain the result.

6.2. Unboundedness from below of Brownian bridge functional. Let us
consider the random functional

(6.2) IB[b] =
∫ 1

0
b2(x)w(x) + b′(x)w(x)dx,

where b(·) ∈ H1(0, 1) and w(x) is a standard Brownian bridge. We claim that this
functional is not bounded below and state this as a theorem.

Theorem 6.2. There a.s. exists a sequence b(n)(·) ∈ H1(0, 1) such that

lim
n→∞

IB [b(n)] = −∞ a.s.

Proof. For the Brownian bridge we have the representation

(6.3) w(x) =
∞∑

i=1

sin(iπx)

i
ξi,

where the {ξi}∞i=1 are a sequence of independent and identically distributed normal
N (0, 1) random variables. This series converges in L2(Ω;L2((0, 1),R)) and a.s. in
C([0, 1],R); see [10].

Now consider the following sequence of functions b(n):

(6.4) b(n)(x) =
n∑

i=1

ξi
i
cos(iπx).

We think of a fixed realization ω ∈ Ω of (6.3) for the time being and note that
{w(x) : x ∈ [0, 1]} is a.s. bounded in L∞((0, 1),R), so if there exists a C > 0 (which
may depend on {ξi}∞i=0) such that

(6.5) ‖b(n)‖L2 < C ∀n ∈ N,

the first integral in (6.2) will stay finite. By Parseval’s identity, it is clear that for
the sequence of functionals (6.4) this will be the case if the coefficients ξi

i are square
summable.
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Computing the second summand in (6.2) is straightforward since the series ter-
minates due to orthogonality:

∫ 1

0

( ∞∑

i=1

sin(iπx)

i
ξi

)
·
(

n∑

j=1

ξj
j
cos(jπx)

)′

dx = −π
2

n∑

j=1

ξ2j
j
.

It can now be seen that (6.2) is unbounded from below if the following two conditions
are fulfilled:

lim
n→∞

n∑

j=1

1

j
ξ2j = ∞,(6.6)

lim
n→∞

n∑

j=1

1

j2
ξ2j < ∞.(6.7)

We finally allow ω to vary and seek to establish that the conditions (6.6) and (6.7) are
a.s. fulfilled. To do this, first note that the random variables being summed are inde-
pendent. Thus, by the Kolmogorov 0-1 law the probability for convergence is either
0 or 1. We proceed by applying Kolmogorov’s three-series theorem (Theorem 12.5
in [27]) to each of the two sequences to establish (6.6) and (6.7).

We start by treating (6.6). Denote byXj |K the truncation of the random variable
for some K > 0 in the following sense:

Xj |K (ω) =

{
Xj(ω) if |Xj(ω)| ≤ K,
0 if |Xj(ω)| > K.

To abbreviate notation, define the following two sequences of random variables:

Xj =
1

j
ξ2j ,

Yj =
1

j2
ξ2j .

Now consider the summability of expected values for the sequence Xj : since ξ2j follows
a χ-squared distribution with one degree of freedom, its expected value is one. For
the truncated variable Xj |K , for any K > 0, there will be some j∗ so that for all
j ≥ j∗ we have that

E(Xj |K) = E
[
1

j

(
ξ2 |jK

)]
>

1

2j
.

Therefore, the expected value summation fails as follows:

∞∑

j=1

E(Xj |K) =
∞∑

j=1

1

j
E
(
ξ2 |jK

)

≥
∞∑

j=j∗

1

2j
= ∞.

Therefore, the series
∑∞

j=1 Xj diverges to infinity a.s., and thus (6.6) is established.
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Now let us establish (6.7) using the three-series theorem. First check the summa-
bility of the expected values:

∞∑

j=1

E(Yj |K) ≤
∞∑

j=1

EYj =
∞∑

j=1

1

j2
< ∞.

Now let us establish the summability of the variances:

∞∑

j=1

Var(Yn |K) ≤
∞∑

j=1

VarYn

=
∞∑

j=1

1

j4
Varξ2j

= 2
∞∑

j=1

1

j4
< ∞,

where we used that ξ2j follows a χ-squared distribution with one degree of freedom
and hence has variance Varξ2j = 2. Finally, to establish the summability of the tail
probabilities we use the following argument for any K > 0:

∞∑

j=1

P (|Yj | > K) ≤
∞∑

j=1

1

K
E|Yj |

≤ 1

K

∞∑

j=1

1

j2
< ∞,

where we have used the Markov inequality and the previous calculation of the expected
value of Yj = |Yj |.

To put everything together, let us reconsider the functional I[b]:

I[b(n)] =

∫ 1

0

(
b(n)

)2
(x)w(x) +

(
b(n)

)′
(x)w(x)dx

≤
(

sup
x∈[0,1]

w(x)

)∫ 1

0

(
b(n)

)2
(x)dx − π

2

n∑

j=1

1

j
ξ2j

≤
(

sup
x∈[0,1]

w(x)

)
1

2

n∑

j=1

Xj −
π

2

n∑

j=1

Yj .

Now use the a.s. true convergence and divergence statements (6.6) and (6.7) to con-
clude that

lim
n→∞

I[b(n)] = −∞ a.s.
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