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Summary. Hypoelliptic diffusion processes can be used to model a variety of phenomena in
applications ranging from molecular dynamics to audio signal analysis. We study parameter
estimation for such processes in situations where we observe some components of the solution
at discrete times. Since exact likelihoods for the transition densities are typically not known,
approximations are used that are expected to work well in the limit of small intersample times
Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads
to ill conditioning requiring a judicious combination of approximate likelihoods for the various
parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternat-
ing between missing data in the unobserved solution components, and parameters. Numerical
experiments illustrate asymptotic consistency of the method when applied to simulated data.
The paper concludes with an application of the Gibbs sampler to molecular dynamics data.

Keywords: Gibbs sampler; Hypoelliptic diffusion; Numerical methods; Parameter estimation;
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1. Introduction

In many application areas it is of interest to model some components of a large deterministic
system by a low dimensional stochastic model. In some of these applications, insight from the
deterministic problem itself forces structure on the form of the stochastic model, and this struc-
ture must be reflected in parameter estimation. In this paper, we study the fitting of stochastic
differential equations (SDEs) to discrete time series data in situations where the model is a
hypoelliptic diffusion process, meaning that the covariance matrix of the noise is degenerate, but
the probability densities are smooth, and also where observations are only made of variables that
are not directly forced by white noise. Such a structure arises naturally in various applications.

One application is the modelling of macromolecular systems; see Grubmüller and Tavan
(1994) and Hummer (2005). In its basic form, molecular dynamics describe the molecule by
a large Hamiltonian system of ordinary differential equations. As is commonplace in chem-
istry and physics, we shall refer to data that are obtained from numerical simulation of such
models as molecular dynamics data. If the molecule spends most of its time in a small number
of macroscopic configurations then it may be appropriate to model the dynamics within, and
in some cases between, these states by a hypoelliptic diffusion. Although this phrasing of the
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question is relatively recent, under the name of the ‘Kramers problem’ it dates back to Kramers
(1940) with a brief summary in section 5.3.6a of Gardiner (1985). Another application, audio
signal analysis, is referred to in Giannopoulos and Godsill (2001) where a continuous time
auto-regressive moving average model is used; see also Godsill and Yang (2006) for more on the
type of methodology that is used.

We consider SDE models of the form

dx=Θ A.x/dt +C dB,

x.0/=x0
.1/

where B is an m-dimensional Wiener process and x a k-dimensional continuous process with
k > m. A : Rk → Rl is a set of (possibly non-linear) globally Lipschitz force functions. The par-
ameters which we estimate are the last m rows of the drift matrix (the first k −m rows of which
are assumed to be known), Θ∈ Rk×l, and the diffusivity matrix C which we assume to be of
the form

C =
(

0
Γ

)
∈Rk×m:

where Γ∈Rm×m is a constant non-singular matrix. Thus, we are estimating drift and diffusion
parameters only in the co-ordinates which are directly driven by white noise.

It is known that, under suitable hypotheses on A and C, a unique L2-integrable solution x.·/
exists almost surely for all times t ∈R+; see for example theorem 5.2.1 in Øksendal (2000). We
also assume that the process that is defined by model (1) is hypoelliptic as defined in Nualart
(1991). Intuitively, this corresponds to the noise being spread into all components of the system
(1) via the drift.

The structure of C implies that the noise acts directly only on a subset of the variables which
we refer to as rough. It may then be transmitted, through the coupling in the drift, to the
remaining parts of the system which we refer to as smooth (we do not mean C∞ here, but they
are at least C1). To distinguish between rough and smooth variables, we introduce the notation
x.t/T = .u.t/T, v.t/T/ where u.t/∈Rk−m is smooth and v.t/∈Rm is rough. It is helpful to define
projections P : Rk →Rk−m by Px=u and Q : Rk →Rm by Qx=v.

We denote the sample path at N +1 equally spaced points in time by {xn =x.n Δt/}N
n=0, and

we write xT
n = .uT

n , vT
n / to separate the rough and smooth components. Also, for any sequence

.z1, . . . , zN/, N ∈N, we write Δzn =zn+1 −zn to denote forward differences. We are mainly inter-
ested in cases where only the smooth component u is observed and our focus is on parameter
estimation for all of Γ and for entries of those rows of Θ corresponding to the rough path, on the
assumption that {un}N

n=0 are samples from a true solution of system (1); such a parameter es-
timation problem arises naturally in many applications and an example is given in Section 7.
We shall describe a deterministic scan Gibbs sampler to approach this problem, sampling
alternatingly from the missing path {vn}N

n=0, the drift parameters Θ and the covariance ΓΓT. It
is natural to consider NΔt =T �1 and Δt �1.

Given prior distributions for the parameters, p0.Θ, ΓΓT/, the posterior distribution can be
constructed as follows:

P.v, Θ, ΓΓT|u/∝L.u, v|Θ, ΓΓT/ p0.Θ, ΓΓT/: .2/

Here, L.u, v|Θ, ΓΓT/ has been introduced as a measure equal to the probability density P.u,
v|Θ, ΓΓT/ up to a constant of proportionality. When u and v are fixed and L.u, v|Θ, ΓΓT/ is
thought of as a function of Θ and ΓΓT it is a likelihood.
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Similarly, the probability densities P.v|Θ, ΓΓT, u/, P.Θ|v, ΓΓT, u/ and P.ΓΓT|v, Θ, u/ are
replaced by corresponding expressions using L when omitting constants of proportionality that
are irrelevant to estimation of the posterior probability. The probability density P.u, v|Θ, ΓΓT/

gives rise to the transition density P.un+1, vn+1|un, vn, Θ, ΓΓT/, which we shall write as L.un+1,
vn+1|un, vn, Θ, ΓΓT/ when omitting constants of proportionality.

In principle, expression (2) can be used as the basis for Bayesian sampling of .Θ, ΓΓT/, view-
ing v as missing data. However, the exact probability of the path, P.u, v|Θ, ΓΓT/, is typically
unavailable. In this paper we shall combine judicious approximations of this density to solve
the sampling problem.

The sequence {xn}N
n=0 that is defined above is generated by a Markov chain. The random

map xn �→xn+1 is determined by the integral equation

xn+1 =xn +
∫ .n+1/Δt

nΔt

ΘA{x.s/} ds+
∫ .n+1/Δt

nΔt

C dB.s/:

The Euler–Maruyama approximation of this map gives

Xn+1 ≈Xn +ΔtΘ A.Xn/+√
Δt R.0, Θ/ξn .3/

where Xn, ξn ∈Rk, ξn is an independent and identically distributed (IID) sequence of normally
distributed random variables, ξn ∼N .0, I/, and

R.0, Θ/=
(

0 0

0 Γ

)
∈Rk×k

is not invertible. (Here, as throughout, we use upper-case letters to denote discrete time approxi-
mations of the continuous time process.) This approximation corresponds to retaining the terms
of order O.Δt/ in the drift and of O.

√
Δt/ in the noise when performing an Itô–Taylor expan-

sion (see chapter 5 of Kloeden and Platen (1992)). Owing to the non-invertibility of R.0, Θ/, this
approximation is unsuitable for many purposes and we extend it by adding the first non-zero
noise terms arising in the first k −m rows of the Itô–Taylor expansion for Xn+1. This results in
the expression

Xn+1 ≈Xn +ΔtΘ A.Xn/+√
Δt R.Δt;Θ/ξn .4/

where Xn ∈Rk, ξn ∈Rk, is distributed as N .0, I/ and R.Δt;Θ/∈Rk×k. Because of the hypoellip-
ticity, R.Δt;Θ/ is now invertible, but the 0s in C mean that it is highly ill conditioned (or near
degenerate) for 0 <Δt �1. Specific examples for the matrix R will be given later.

Ideally we would like to implement the following deterministic scan Gibbs sampler.

(a) Sample Θ from P.Θ|u, v, ΓΓT/.
(b) Sample ΓΓT from P.ΓΓT|u, v, Θ/.
(c) Sample v from P.v|u, Θ, ΓΓT/.
(d) Restart from step (a) unless sufficiently equilibrated.

In practice, however, approximations to the densities P will be needed. We refer to expressions
of the form (4) as auxiliary models and we shall use them to approximate the exact density
on path space, P.u, v|Θ, ΓΓT/, of the path u, v for parameter values Θ and ΓΓT. The resulting
approximations are denoted PE.U, V |Θ, ΓΓT/ for the Euler–Maruyama approximation found
from expression (3) and PIT.U, V |Θ, ΓΓT/ for the Itô–Taylor approximation found from expres-
sion (4). We again use LE and LIT in the same way as for the exact distribution P above when
omitting constants of proportionality.
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The questions that we address in this paper are as follows.

(a) How does the ill conditioning of the Markov chain {xn}N
n=0 affect parameter estimation

for ΓΓT and for the last m rows of Θ in the regime Δt �1, N Δt =T �1?
(b) In many applications, it is natural that only the smooth data {un}N

n=0 are observed, and
not the rough data {vn}N

n=0. What effect does the absence of observations of the rough
data have on the estimation for Δt �1 and N Δt =T �1?

(c) The exact likelihood is usually not available; what approximations of the likelihood should
be used, in view of the ill conditioning?

(d) How should the answers to these questions be combined to produce an effective Gibbs
loop to sample the distribution of parameters Θ, ΓΓT and the missing data {vn}N

n=0?

To tackle these issues, we use a combination of analysis and numerical simulation, based on
three model problems which are conceived to highlight issues that are central to the questions
above. We shall use analysis to explain why some seemingly reasonable methods fail, and simu-
lation will be used both to extend the validity of the analysis and to illustrate good behaviour
of the new method that we introduce.

For the numerical simulations, we shall use either exact discrete time samples of system (1)
in simple Gaussian cases, or trajectories that are obtained by Euler–Maruyama simulation of
the SDE on a temporal grid with a spacing that is considerably finer than the observation time
interval Δt.

In Section 2 we shall introduce our three model problems and in Section 3 we study the
performance of LE to estimate the diffusion coefficient. Observing and analysing its failure in
the case with partial observation leads to the improved statistical model yielding LIT which
eliminates these problems; we introduce this in Section 4. In Section 5 we show that LIT is inap-
propriate for drift estimation, but that LE is effective in this context. In Section 6, the individual
estimators will be combined into a Gibbs sampler to solve the overall estimation problem with
asymptotically consistent performance being demonstrated numerically. Section 7 contains an
application to molecular dynamics and Section 8 provides concluding discussion.

We introduce one item of notation to simplify the presentation. Given an invertible matrix
R∈Rn×n we introduce a new norm using the Euclidean norm on Rn by setting ‖x‖R =‖R−1x‖2
for vectors x∈Rn.

1.1. Two classical estimators
From previous work on hypoelliptic diffusions, we note a classical estimator for the covariance
matrix and for the drift matrix in the linear fully observed case which will be useful for reference
later in the paper.

Firstly, it is straightforward to estimate the covariance matrix ΓΓT from the quadratic varia-
tion: noting that

1
T

N−1∑
n=0

.vn+1 −vn/.vn+1 −vn/T →ΓΓT as N →∞, .5/

with T =N Δt fixed; see Durrett (1996).
The Girsanov formula gives rise to a maximum likelihood estimator for the lower rows of

Θ, and in the linear case, where A is just the identity, the maximum likelihood estimate for the
whole of Θ is given by

Θ̂=
(∫ T

0
dxxT

)(∫ T

0
xxT dt

)−1

: .6/
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For the hypoelliptic case, this was proved to be consistent as T → ∞ in Breton and Musiela
(1985).

2. Model problems

To study the performance of parameter estimators, we have selected a sequence of three model
problems ranging from simple linear stochastic growth through a linear oscillator subject to
noise and damping to a non-linear oscillator of similar form. All these problems are second
order hypoelliptic and they have a physical background, so we use q (position) and p (momen-
tum) to denote smooth and rough components in the model problems instead of u and v which
we used in the general case. Their general form is given as the second-order Langevin equation

dq=p dt,

dp={−γp+f.q; D/}dt +σ dB
.7/

where f is some (possibly non-linear) force function parameterized by D and the variables q and
p are scalar. The parameters γ, D and σ are to be estimated.

2.1. Model problem I: stochastic growth
Here, x= .q, p/T satisfies

dq=p dt,

dp=σ dB:
.8/

The process has one parameter, the diffusion parameter σ, that describes the size of the fluctu-
ations. In the setting of model (1) we have

A.x/=x,

Θ=
(0 1

0 0

)
,

C =
(

0
σ

)

and u=q and v=p. The process is Gaussian with mean and covariance

μ.t/=
(1 t

0 1

)(
q0

r0

)
,

Σ.t/=σ2
(

t3=3 t2=2

t2=2 t

)
:

The exact discrete samples may be written as

qn+1 =qn +pn Δt +σ
.Δt/3=2
√

12
ζ.1/

n +σ
.Δt/3=2

2
ζ.2/

n ,

pn+1 =pn +σ
√

Δtζ.2/
n ,

.9/

with

ζ0 ∼N
{

0,
(

1 0

0 1

)}

and {ζn}N
n=0 being IID; individual components of ζn are referred to as ζ.1/

n and ζ.2/
n respectively.

The matrix R from approximation (4) is given here as
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R=σ

( 1√
12

Δt
1
2
Δt

0 1

)
:

In the case of this model problem, the auxiliary model (4) is actually exact.

2.2. Model problem II: harmonic oscillator
As our second model problem we consider a damped harmonic oscillator that is driven by a
white noise forcing where x= .q, p/T:

dq=p dt,

dp=−Dq dt −γp dt +σ dB:
.10/

This model is obtained from the general SDE (1) for the choice

A.x/=x,

Θ=
(

0 1
−D −γ

)
,

C =
(

0
σ

)

and u=q and v=p. The process is Gaussian and the mean and covariance of the solution can
be explicitly calculated. The matrix R is the same as in model problem I.

2.3. Model problem III: oscillator with trigonometric potential
In the third model problem, x= .q, p/T describes the dynamics of a particle moving in a potential
which is a superposition of trigonometric functions and in contact with a heat bath obeying
the fluctuation–dissipation relation; see Lasota and Mackey (1994). This potential is sometimes
used in molecular dynamics in connection with the dynamics of dihedral angles—see Section 7.
The model is

dq=p dt,

dp=
{

−γp−
c∑

j=1
Dj sin.q/cosj−1.q/

}
dt +σ dB:

.11/

This equation has parameters γ, Di, i=1, . . . , c, and σ. It can be obtained from the general SDE
(1) for the choice

A

{(
q

p

)}
=

⎛
⎜⎜⎜⎜⎝

sin.q/

sin.q/cos.q/
:::

sin.q/cosc−1.q/

p

⎞
⎟⎟⎟⎟⎠,

Θ=
(

0 . . . 0 1
−D1 . . . −Dc −γ

)
,

C =
(

0
σ

)

and u=q and v=p. No explicit closed form expression for the solution of the SDE is known
in this case; the process is not Gaussian. The matrix R in the statistical model (4) is the same as
that obtained in model problem I.
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3. Euler auxiliary model

As discussed in Section 1, we need to find appropriate approximations for P in steps (a)–(c)
of the desired Gibbs loop. The purpose of this section is to show that use of PE in step (c),
to sample the missing component of the path, leads to incorrect estimation of the diffusion
coefficient. The root cause is the numerical differentiation for the missing path which is implied
by the Euler approximation.

3.1. Auxiliary model
If the force function A.·/ is non-linear, closed form expressions for the transition density are in
general unavailable. To overcome this obstacle, we can use a discrete time auxiliary model. The
Euler model (3) is commonly used and we apply it to a simple linear model problem to highlight
its deficiencies in the case of partially observed data from hypoelliptic diffusions.

The Euler–Maruyama approximation of the SDE (1) is

Xn+1 =Xn +ΔtΘ A.Xn/+√
ΔtCξn .12/

where ξn ∼N .0, I/ is an IID sequence of m-dimensional vectors with standard normal distribu-
tion. This corresponds to approximation (4) with R.Δt;Θ/ replaced by R.0;Θ/ from approxi-
mation (3). Thus we obtain

Un+1 =Un +ΔtPΘ A.Xn/,

Vn+1 =Vn +ΔtQΘ A.Xn/+√
ΔtΓξn

.13/

where now each element of the IID sequence ξn is distributed as N .0, I/ in Rm. This model gives
rise to the density

LND.U, V |Θ, ΓΓT/=
N−1∏
n=0

exp
{− 1

2 ‖ΔVn −ΔtQΘA.Xn/‖2
Γ
}

√
.2π|ΓΓT|/ δ

{
Un+1 −Un

Δt
−PΘ A.Xn/

}
:

.14/

The Dirac mass insists that the data are compatible with the auxiliary model (12), i.e. the
V -path must be given by numerical differentiation of the U -path in the case of expression (7),
and similar formulae in the general case. To estimate parameters we shall use the expression

LE.U, V |Θ, ΓΓT/=
N−1∏
n=0

exp
{− 1

2 ‖ΔVn −ΔtQΘA.Xn/‖2
Γ
}

√
.2π|ΓΓT|/ : .15/

In the case when the Euler model is used to estimate missing components we assume that {Un}
and {Vn} are related so that the data are compatible with the auxiliary model—i.e. numerical
differentiation is used to find {Vn} from {Un}.

3.2. Model problem I
The Euler auxiliary model for this model problem is

Qn+1 =Qn +Pn Δt,

Pn+1 =Pn +σ
√

Δtξn:
.16/

Here, {ξn} is an IID N .0, 1/ sequence. The root cause of the phenomena that we discuss in this
paper is manifest in comparing expressions (9) and (16). The difference is that the O{.Δt/3=2}
white noise contributions in the exact time series (9) do not appear in the equation for Qn.
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We shall see that this plays havoc with parameter estimation, even though the Euler method is
pathwise convergent.

We assume that observations of the smooth component only, Qn, are available. In this case
the Euler method for estimation (16) gives the formula

Pn = Qn+1 −Qn

Δt
.17/

for the missing data. In the following numerical experiment we generate exact data from expres-
sion (9) by using the parameter value σ=1. We substitute Pn given by equation (17) into equation
(15) and find the maximum likelihood estimator for σ in the case of partial observation. In the
case of complete observation we use the exact value for {Pn}, from expression (9), and again
use a maximum likelihood estimator for σ from equation (15).

Using N = 100 time steps for a final time of T = 10 with σ = 1 the histograms for the esti-
mated diffusion coefficient that are presented in Figs 1(b) and 1(e) are obtained. Figs 1(a)–1(c)
contain histograms that were obtained in the case of complete observation where good agree-
ment between the true σ and the estimates is observed. Figs 1(d)–1(f) contain the histograms
that were obtained for partial observation by using equation (17). The observed mean value
of E.σ̂/ = 0:806 indicates that the method yields biased estimates. Increasing the final time to
T =100 (see Figs 1(a) and 1(d)) or increasing the resolution to Δt =0:01 (see Figs 1(c) and 1(f))
does not remove this bias.

Thus we see that, in the case of partial observation, σ̂ contains O.1/ errors which do not
diminish with decreasing Δt and/or increasing T =N Δt.
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Fig. 1. Maximum likelihood estimates of σ by using the Euler model for model problem I: (a) complete
observation, T D100, Δt D0:1 (�, hσiD1:0001); (b) complete observation, T D10, Δt D0:1 (�, hσiD0:9942);
(c) complete observation, T D10, Δt D0:01 (�, hσiD0:99921); (d) partial observation, T D100, Δt D0:1 (�,
hσi D 0:81607); (e) partial observation, T D 10, Δt D 0:1 (�, hσi D 0:80636); (f) partial observation, T D 10,
Δt D0:01 (�, hσiD0:81491)
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3.3. Analysis of why the missing data method fails
Model problem I can be used to illustrate why this method fails. We first argue that the method
works without hidden data. Interpreting equation (15) as a log-likelihood function with respect
to σ, we obtain the following expression in the case of stochastic growth:

log{LE.σ|Q, P/}=−2N log.σ/− 1
σ2 Δt

N−1∑
n=0

.ΔPn/2

where Δ is the forward difference operator. The maximum of the log-likelihood function gives
the maximum likelihood estimate,

σ̂2 = 1
N Δt

N−1∑
n=0

.ΔPn/2: .18/

In the case of complete data, expression (9) gives

σ̂2 = σ2

N

N−1∑
n=0

.ζ.2/
n /2: .19/

By the law of large numbers, σ̂2 →σ2 almost surely as N →∞. This shows that the method
works when the complete data are observed.

Let us consider what happens when P is hidden. In this case, Pn is estimated by

P̂n = Qn+1 −Qn

Δt
:

But since qn is generated by expression (9) we find that

P̂n = Pn+1 +Pn

2
+σ

√
Δt√
12

ζ.1/
n

and

ΔP̂n = ΔPn+1

2
+ ΔPn

2
+σ

√
Δt√
12

.ζ
.1/
n+1 − ζ.1/

n /

= σ
√

Δt

2

(
ζ

.2/
n+1 + ζ.2/

n + 1√
3
ζ

.1/
n+1 − 1√

3
ζ.1/

n

)
:

When ΔP̂n is inserted in equation (18) it follows that

σ̂2 = σ2

4N

N−1∑
n=0

(
ζ

.2/
n+1 + ζ.2/

n + ζ
.1/
n+1 − ζ.1/

n√
3

)2

= σ2

4N

{
N−1∑
n=0

(
ζ

.2/
n+1 + ζ

.1/
n+1√

3

)2

+
N−1∑
n=0

(
ζ.2/

n − ζ.1/
n√
3

)2

+2
N−1∑
n=0

(
ζ.2/

n − ζ.1/
n√
3

)(
ζ

.2/
n+1 + ζ

.1/
n+1√

3

)}
:

The random variables {ζn}N
n=0 are IID with ζ0 ∼ N.0, I/. So, by the law of large numbers,

σ̂2 → 2
3σ2 almost surely as N →∞. Furthermore, the limits hold in either of the cases where

N Δt =T or Δt are fixed as N →∞. This means that, independently of what limit is considered,
a seemingly reasonable estimation scheme based on Euler approximation results in O.1/ errors
in the diffusion coefficient. There is similarity here with work of Gaines and Lyons (1997) show-
ing that adaptive methods for SDEs get the quadratic variation wrong if the adaptive strategy
is not chosen carefully.
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4. Improved auxiliary model

The Euler auxiliary model fails to propagate noise to the smooth component of the solution
and thus leads to estimating missing paths v with incorrect quadratic variation. A new auxiliary
model is thus proposed which propagates the noise by using what amounts to an Itô–Taylor
expansion, retaining the leading order component of the noise in each row of the equation. The
model is used to set up an estimator for the missing path by using a Langevin sampler from path
space which is then simplified to a direct sampler in the Gaussian case. Numerical experiments
indicate that the method yields the correct quadratic variation for the simulated missing path.

The model is motivated by using our common framework for the model problems I–III,
namely expression (7). The improved auxiliary model is based on the observation that in the
second row of an Itô–Taylor expansion of expression (7) the drift terms are of size O.Δt/ whereas
the random forcing term is ‘typically’ (in root mean square) of size O.

√
Δt/. Thus, neglecting

the contribution of the drift term in the second row on the first row leads to the following
approximation of expression (7):

(
Qn+1

Pn+1

)
=
(

Qn

Pn

)
+Δt

(
Pn

f.Qn/−γPn

)
+σ

(∫ .n+1/Δt

nΔt

{B.s/−B.n Δt/}ds

B{.n+1/ Δt}−B.n Δt/

)
:

The random vector on the right-hand side is Gaussian and can be expressed as a linear com-
bination of two independent normally distributed Gaussian random variables. Computation
of the variances and the correlation is straightforward, leading to the following statistical
model: (

Qn+1

Pn+1

)
=
(

Qn

Pn

)
+Δt

(
Pn

f.Qn/−γPn

)
+σ

√
ΔtR

(
ξ1

ξ2

)
: .20/

Here, ξ1 and ξ2 are independent normally distributed Gaussian random variables and R is given
as

R=
(

Δt=
√

12 Δt=2

0 1

)
:

This is a specific instance of approximation (4). It should be noted that this model is in agree-
ment with the Itô–Taylor approximation up to error terms of order O.Δt2/ in the first row and
O.Δt3=2/ in the second row and that higher order hypoelliptic processes can be approximated
by using a similarly truncated Itô–Taylor expansion. The key important idea is to propagate
noise into all components of the system, to leading order.

If complete observations are available, this model performs satisfactorily for estimation of
σ. This can be verified analytically for model problem I in the same fashion as in Section 3.3.
Numerically, this can be seen from Figs 2(a)–2(c) (referring to complete observation) for model
problem I and from Figs 3(a)–3(c) for model problem II. In both cases the true value is given
by σ =1. See Section 4.2 for a full discussion of these numerical experiments.

If only partial observations are available, however, a means of reconstructing the hidden com-
ponent of the path must be procured. A standard procedure would be the use of the Kalman
filter or smoother (Kalman, 1960; Catlin, 1989), which could then be combined with the expec-
tation–maximization algorithm (Dempster et al., 1977; Meng and van Dyk, 1997) to estimate
parameters. In this paper, however, we employ a Bayesian approach sampling directly from the
posterior distribution for the rough component p without factorizing the sampling into forward
and backward sweeps.
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Fig. 2. Estimates of σ by using the LIT model for model problem I: (a) maximum likelihood estimates,
complete observation, T D 100, Δt D 0:1 (�, hσi D 1:0002, standard deviation 0.016077); (b) maximum like-
lihood estimates, complete observation, T D 10, Δt D 0:1 (�, hσi D 0:99637, standard deviation 0.05272);
(c) maximum likelihood estimates, complete observation, T D10, Δt D0:01 (�, hσiD1:0002, standard devia-
tion 0.016538); (d) mean Gibbs estimates, partial observation, T D100, Δt D0:1 (�, hσiD0:99932, standard
deviation 0.02416); (e) mean Gibbs estimates, partial observation, T D10, Δt D0:1 (�, hσiD0:99333, stan-
dard deviation 0.07741); (f) mean Gibbs estimates, partial observation, T D 10, Δt D 0:01 (�, hσi D 1:0002,
standard deviation 0.024443)

4.1. Path sampling
The logarithm of the density on path space for the missing data induced by the auxiliary model
(4) can be written as

log{LIT.p|q, Θ, ΓΓT/}=−1
2

N∑
l=0

‖ΔXl −Θ A.Xl/Δt‖2
R + constant: .21/

We shall apply this in the case (20) which is a specific instance of model (4).
One way to sample from the density on path space, LIT.P/, for rough paths {Pi}N

i=0 is via the
Langevin equation (see section 6.5.2 in Robert and Casella (1999)) and, in general, we expect
this to be effective in view of the high dimensionality of P. Other Markov chain Monte Carlo
approaches may also be used.

However, when the joint distribution of {Pi}N
i=1 is Gaussian it is possible to generate indepen-

dent samples as follows: note first that in the Gaussian case, whenLIT in equation (21) is quadratic
in P, the derivative of log.LIT/ with respect to the rough path P can be computed explicitly, which
was carried out in Pokern (2007). For our oscillator framework, the derivative can be expressed
by using a tridiagonal, negative definite matrix Pmat with highest order stencil −1 −4 −1 acting
on the P-vector plus a possibly non-linear contribution Q.Q/ acting on the Q-vector only:
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Fig. 3. Estimates of σ by using the LIT model for model problem II: (a) maximum likelihood estimates, com-
plete observation, T D100, Δt D0:02 (�, hσiD1:0591, standard deviation 0.014348); (b) maximum likelihood
estimates, complete observation, T D 10, Δt D 0:02 (�, hσi D 1:0768, standard deviation 0.04359); (c) max-
imum likelihood estimates, complete observation, T D 10, Δt D 0:002 (�, hσi D 1:0085, standard deviation
0.0082836); (d) mean Gibbs estimates, partial observation, T D100, Δt D0:02 (�, hσiD1:114, standard devi-
ation 0.024739); (e) mean Gibbs estimates, partial observation, T D10, Δt D0:02 (�, hσiD1:1538, standard
deviation 0.073624); (f) mean Gibbs estimates, partial observation, T D 10, Δt D 0:0002 (�, hσi D 1:0163,
standard deviation 0.013044)

∇p log{LIT.Q, P/}=PmatP +Q.Q/:

Then, the suggested direct sampler for P-paths is simply

P =−P−1
mat Q.Q/+U−1ξ: .22/

Here UTU =−Pmat is a Cholesky factorization and ξ is a dimension N vector of IID normally
distributed random numbers.

4.2. Estimating diffusion coefficient and missing path
The approximation LIT.P , Q|σ, Θ/ can be used to estimate both the missing path p and the
diffusion coefficient σ for our model problems I–III.

To estimate σ, the derivative of the logarithm of LIT

log{LIT.σ|P , Q, Θ/}= log{LIT.P , Q|σ, Θ/}+ log{p0.Θ, σ/}+ constant

(where priors p0.Θ, σ/ are assumed to be given and constants in σ have been omitted) with
respect to σ is computed:
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@

@σ
log.LIT/=−2N

σ
+ 1

σ3 Z + @

@σ
log{p0.Θ, σ/}:

Here, we have used the abbreviation

Z :=
N−1∑
n=0

∥∥∥∥
(

Qn+1

Pn+1

)
−
(

Qn

Pn

)
−Δt

(
Pn

f.Qn/−γPn

)∥∥∥∥
2

R

:

In this case no prior distribution was felt necessary as, when N →∞, its importance would
diminish rapidly. Thus we set p0 ≡1.

We use a Langevin-type sampler for this distribution. To avoid the singularity at σ = 0 we
use the transformation ζ.σ/ = σ4. Using the Itô formula, this yields the following Langevin
equation which we use to sample ζ and hence σ:

dζ ={.12−8N/
√

ζ +4Z} ds+4
√

2ζ3=4 dW: .23/

A simple explicit Euler–Maruyama discretization in s is used to simulate paths for this SDE.
The time step Δs needs to be tuned with N to ensure convergence of the explicit integrator.
Since this is a one-dimensional problem, conservatively small time steps and long integration
times can be afforded. With such a choice of time step Δs the theoretically possible transient
behaviour (see Roberts and Tweedie (1997)) was not observed and we expect accurate samples
from the posterior in σ.

This Langevin-type sampler (23) can then be alternated in a systematic scan Gibbs sampler
(as described on page 130 of Liu (2001)) using NGibbs iterations with the direct sampler for the
paths, equation (22). This yields estimates of the missing path and the diffusion coefficient which
is estimated by averaging over the latter half of the NGibbs samples. We illustrate this with an
example using model problem I with the parameters σ = 1, T ∈{10, 100}, Δt ∈{0:1, 0:01} and
NGibbs =50. The sample paths that were used for the fitting are generated by using a subsampled
Euler–Maruyama method with temporal grid Δt=k where k = 30. The resulting histogram of
mean posterior estimators is given in Fig. 2 where Figs 2(a)–2(c) correspond to the behaviour
when complete observations are available and Figs 2(d)–2(f) correspond to only the smooth
component being observed and missing data being sampled according to equation (22). For
model problem II we use the parameters σ =1, D=4, γ =0:5, T ∈{10, 100}, Δt ∈{0:02, 0:002}
and NGibbs = 50. The sample paths that are used for the fitting are generated as for model
problem I and the experimental results are given in Fig. 3.

It appears from Figs 2 and 3 that the estimator for this joint problem performs well for model
problems I and II for Δt sufficiently small and T sufficiently large. A more careful investi-
gation of the convergence properties is postponed to Section 6 when drift estimation will be
incorporated in the procedure.

5. Drift estimation

5.1. Overview
With the approximations LE and LIT in place, the question arises which of these should be
used to estimate the drift parameters. Using model problem II we numerically observe that
an LE-based maximum likelihood estimator performs well. In contrast, ill conditioning due
to hypoellipticity leads to error amplification and affects the performance of the LIT-based
maximum likelihood estimator.

5.2. Drift parameters from LE
To simplify analysis, we illustrate the estimator by using model problems II, expression (10),
and III, expression (11). For the latter, the Euler auxiliary model is
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Qn+1 =Qn +ΔtPn,

Pn+1 =Pn −Δt
c∑

i=1
Di fi.Qn/−ΔtγPn +√

Δtσξn,
.24/

where we abbreviated the trigonometric expressions using fj.q/ = sin.q/ cosj−1.q/. The func-
tional LE in this case is given by

LE.γ, D|Q, P , σ/∝ exp

⎡
⎢⎢⎢⎣−

N−1∑
n=0

{
ΔPn +Δt

c∑
i=1

Di fi.Qn/+ΔtγPn

}2

2 Δtσ2

⎤
⎥⎥⎥⎦, .25/

Clearly, this posterior is Gaussian with distribution

Θ̂∼N .M−1
E bE, M−1

E /, .26/

where the matrix ME and the vector bE can be read off from expression (25).

5.3. Drift parameters from LIT
As the approximate model based on LIT is observed to resolve the difficulty with estimating
σ for hidden p-paths, it is interesting to see whether it can also be used to estimate the drift
parameters.

The logarithm of the density on path space up to an additive constant is given by equation
(21). To illustrate the problems arising from the use of LIT we use model problem II, so that
equation (21) becomes

log{LIT.Θ|Q, P , σ/}= 1
2 Δt

N−1∑
n=0

‖.ΔXn −ΔtΘ A.Xn//‖2
R + constant .27/

where

R=σ

(
Δt=

√
12 Δt=2

0 1

)
,

irrelevant constants have been omitted and we have

A

{(
Qn

Pn

)}
=
(

Qn

Pn

)
,

Θ=
( 0 1

−D −γ

)
:

To obtain a maximum likelihood estimator from this, we take the derivative with respect to the
parameters D and γ and equate to 0. This yields the following linear system:( ∑

n
Q2

n Δt
∑
n

PnQn Δt

∑
n

PnQn Δt
∑
n

P2
n Δt

)(
D̂

γ̂

)
=
(−∑

n
Qn ΔPn

−∑
n

Pn ΔPn

)
+
⎛
⎝
∑
n

3
2 Qn

(
ΔQn

Δt
−Pn

)
∑
n

3
2 Pn

(
ΔQn

Δt
−Pn

)
⎞
⎠: .28/

Comparing this linear system with the mean of the successful estimator (26) we note the presence
of an additional term on the right-hand side. This term leads to the failure of the above estimator.
Thus, LIT is not an appropriate approximation for use in step (a) of the Gibbs sampler.
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Fig. 4. Maximum likelihood drift estimates for model problem II, by using LIT: (a) T D 1000, Δt D 0:01
(�, hDiD�1:0989); (b) T D 100, Δt D 0:01 (�, hDiD�1:0993); (c) T D 100, Δt D 0:001 (�, hDiD�1:1015);
(d) T D 1000, Δt D 0:01 (�, hγi D �0:13925); (e) T D 100, Δt D 0:01 (�, hγi D �0:15268); (f) T D 100, Δt D
0:001 (�, hγiD�0:14457)

5.4. Numerical check: drift
There are two factors influencing convergence: T and Δt. To illustrate their influence, consider
the following series of numerical tests. All the tests share the parameters D=4, γ =0:5, σ =0:5
and k = 30. Data for the tests are again generated by using an Euler–Maruyama method on a
finer temporal grid with resolution Δt=k. Figs 4(a)–4(c) contain histograms for the maximum
likelihood estimate for the drift parameter D whereas Figs 4(d)–4(f) contain histograms for the
drift parameter γ in any case using the full sample path for maximum likelihood inference, i.e.
formula (28). It is clear from the experiments summarized in Fig. 4 that both D and γ are grossly
underestimated by D̂ and γ̂ from equation (28). This problem does not resolve for smaller Δt

(see Figs 4(c) and 4(f)); it does not disappear for longer intervals of observation, either, as can
be inferred from Figs 4(a) and 4(d).

5.5. Why the LIT model fails for the drift parameters
The key is to compare equation (28) with the mean in distribution (26). This reveals that the
last term in equation (28) is an error term which we now study.

Using the second-order Itô–Taylor approximation

Xn+1 =Xn +ΔtAXn +
(

1 0

−γ 1

)
R

(
ξ1

ξ2

)
+ 1

2
Δt2A2Xn +O.Δt5=2/
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we can compute the second term on the right-hand side of equation (28):⎛
⎝
∑
n

3
2

Qn

(
ΔQn

Δt
−Pn

)
∑
n

3
2

Pn

(
ΔQn

Δt
−Pn

)
⎞
⎠=

⎛
⎝−3

4
γ
∑
n

QnPn Δt − 3
4

D
∑
n

Q2
n Δt

−3
4

D
∑
n

QnPn Δt − 3
4
γ
∑
n

P2
n Δt

⎞
⎠+ Is +O.Δt/: .29/

Here, D and γ refer to the exact drift parameters that are used to generate the sample path,
whereas D̂ and γ̂ in equations (28) and (29) are the drift parameters that are estimated by using
the improved auxiliary model. The term Is on the right-hand side contains stochastic integrals
whose expected value is 0.

As the mean error terms can be written in terms of the matrix elements themselves, equation
(29) can be substituted in equation (28) to obtain

E.D̂/= 1
4 D+O.Δt/, .30/

E.γ̂/= 1
4γ +O.Δt/: .31/

This seems to be corroborated by the numerical tests.

5.6. Conclusion for drift estimation
We observed numerically but do not show here that LE associated with an Euler model for
the SDE (1) yields asymptotically consistent Langevin and maximum likelihood estimators for
model problem II.

Although it is aesthetically desirable to base the estimation of all parameters as well as the
missing data on the same approximation LIT of the true density (up to multiplicative constants)
L and, although this approximation was found to work well for the estimation of missing data
and the diffusion coefficient, it does not work for the drift parameters.

It is possible to trace this failure to the fact that only the second row of Θ is estimated where
O.Δt/ errors in the first row become amplified to O.1/ errors in the second row. Estimating all
entries of Θ, although being outside the specification of the problem under consideration, also
yields O.1/ errors if LIT is used and so does not remedy the problem. This problem is not shared
by the discretized version of the diffusion-independent estimator (6), but this is not a maximum
likelihood estimator for LIT.

In summary, for the purposes of fitting our model problems to observed data we employ the
Euler auxiliary model (25) for the drift parameters.

6. The Gibbs loop

In this section, we combine the insights that were obtained in previous sections to formulate
an effective algorithm to fit hypoelliptic diffusions to partial observations of data at discrete
times. We apply a deterministic scan Gibbs sampler alternating between missing data (the rough
component of the path, v), drift parameters and diffusion parameters.

We combine the approximations that were developed and motivated in previous sections in
the following Gibbs sampler.

(a) Sample Θ from PE.Θ|U, V , σ/.
(b) Sample σ from PIT.σ|U, V , Θ/.
(c) Sample v from PIT.V |U, Θ, σ/.
(d) Restart from step (a) unless sufficiently equilibrated.
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Our numerical results will show that this judicious combination of approximations results in an
effective algorithm. Theoretical justification remains an interesting open problem.

When applied to model problem III the detailed algorithm (algorithm 1) reads as follows.
Given observations Qi, i=1, . . . , N, the initial P-path is obtained by using numerical differ-

entiation:

P
.0/
i = ΔQi

Δt
: .32/

The initial drift parameter estimate is just set to 0: {D
.0/
j }c

j=1 =0; γ.0/ =0. Then start the Gibbs
loop.

For k =1, . . . , NGibbs:

(a) estimate the drift parameters γ.k/ and {D
.k/
j }c

j=1 by using sampling based on LE given
{P

.k−1/
i }N

i=0 via distribution (26);
(b) estimate the diffusivity σ.k/ by using the Langevin sampler (23) based on LIT given

{P
.k−1/
i }N

i=0 and γ.k/, {D
.k/
j }c

j=1;
(c) obtain an independent sample of the P-path, {P

.k/
i }N

i=0 by using equation (22) derived from
LIT given parameters γ.k/, {D

.k/
j }c

j=1 and σ.k/.

We test this algorithm numerically where sample paths of expression (11) are generated by
using a subsampled Euler–Maruyama approximation of the SDE. The data are generated by
using a time step that is smaller than the observation time step by a factor of either k = 30 or
k = 60. Comparing the results for these two and other non-reported cases, they are found not
to depend on the rate of subsampling, k, if this is chosen sufficiently large. The parameters
that were used for these simulations are D0 =1, D1 =−8, D2 =8, γ =0:5, σ =0:7, T =500, Δt ∈
{1=2, . . . , 1=128} and NGibbs =50. The trigonometric potential resulting from this choice of drift
parameters is depicted in Fig. 5(a) and a typical sample path for q is given in Fig. 5(b). It should
be noted that all sample paths are started at .q, p/= .1, 1/.

The performance of the Gibbs sampler for the sample q-path that is given in Fig. 5 is shown
in Fig. 6 where 100 Gibbs steps sampling from the posterior distribution of drift and diffusion
parameters are shown for the set-up that is shown above except that here NGibbs = 100 and
Δt = 0:01. Mean posterior estimators are computed averaging over the latter half of NGibbs
iterations as before. This sampling is repeated up to 64 000 times and we label the repeated
sampling average of these mean posterior estimators as 〈D̂i〉 and 〈γ̂〉. We then compute their
deviation from the true values, ΔDi =〈D̂i〉−Di, and plot ΔDi and Δγ against Δt in a doubly
logarithmic plot given in Fig. 7.
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Fig. 5. Typical sample path for model problem III, T D500: (a) trigonometric potential; (b) typical q-path
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Fig. 6. Model problem III: burn-in of the Gibbs sampler

We seek to fit a straight line to the ΔDi in a doubly logarithmic plot to ascertain the order
of convergence. Since a standard least squares fit proves inadequate, we employ the following
procedure.

Given averaged numerically observed parameter estimates yi and their numerically observed
Monte Carlo standard deviations αi obtained at time steps Δti we fit b and c in the linear
regression

αiξi =yi −b− c Δti: .33/

Assuming that the errors ξi are normally distributed (which is empirically found to be so) a
maximum likelihood fit for the parameters b and c can be performed and yields the asymptotic
(for Δt →0) drift parameter values that are reported in Fig. 7. Note that this fit constrains the
slope of the fitted line in the doubly logarithmic plot to 1. This is to minimize the number of
parameters fitted and to improve the accuracy of the extrapolated value b which is the predicted
value for y at Δt = 0. It can be observed in Fig. 7 that this leads to good agreement with the
observed average parameter values yi, and this corroborates the estimator’s bias being of order
O.Δt/.

Comparing the results for the two final times tested, T = 50 and T = 500, we find that the
deviation of the asymptotic drift parameter (b in equation (33)) from the true parameter value
is consistent with it being O.1=T /. This error is attributed to all sample paths having been started
at .q, p/= .1, 1/ rather than from a point that was sampled from the equilibrium measure.

For the diffusion parameter σ, results analogous to those in Fig. 7, using the same parameter
values, are shown in Fig. 8 (although Fig. 8 displays results for k = 30 only). Asymptotic con-
sistency can be observed from Fig. 8 with a naive least squares fit yielding a slope of O.Δt0:93/.
This is consistent with an O.Δt/ error in the estimated diffusion parameter.
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From these considerations it is apparent that the numerical experiments’ outcome is consistent
with an O.Δt/+O.1=T / bias, so algorithm 1 is numerically observed to be an asymptotically
unbiased estimator of the drift and diffusion parameters in the cases that were studied.

7. Application to molecular conformational dynamics

As an application of fitting hypoelliptic diffusions by using partial observations we consider
data arising from molecular dynamics simulations of a butane molecule by using a simple heat
bath approximation.

By considering the origin of the data we demonstrate that it is natural to fit a hypoellip-
tic diffusion process which yields convergent results for diminishing intersample intervals Δt.
Also, stabilization of the fitted force function f.q/ =Σc

j=1Dj fj.q/ as the number of terms to
be included, c, increases, is observed. Thus algorithm 1 is shown to be effective on molecular
dynamics data. It is also clear, though, that the resulting fit has only limited predictive abilities
as it fails to fit the invariant measure of the data at all well. However, this is a modelling issue
which is not central to this paper.

7.1. Molecular dynamics
The data that are used for this fitting example are generated by using a molecular dynamics sim-
ulation for a single molecule of butane. To avoid explicit computations for solvent molecules,
several ad hoc approximate algorithms have been developed in molecular dynamics. One of the
more sweeping approximations that is nonetheless fairly popular, at least as long as electro-
static effects of the solvent can be neglected or treated otherwise, is Langevin dynamics. Here,
the time evolution of the Cartesian co-ordinates of the four extended atoms of butane (Fig. 9)
is simulated by using a damped driven Hamiltonian system; details of the force field that was
used can be found in Brooks (1983).

From a chemical point of view interest is focused on the dihedral angle ω, which is the angle
between the two planes in R3 that is formed by atoms 1, 2 and 3, and atoms 2, 3 and 4; see the
sketch in Fig. 9. Conformational change is manifest in this angle, and the Cartesian co-ordi-
nates themselves are of little direct chemical interest. Hence it is natural to try to describe the
stochastic dynamics of the dihedral angle in a self-contained fashion.

One molecular dynamics run is produced by using a time step of Δt =0:1 fs (throughout this
section, we use the time unit femtosecond; 1 fs = 10−15 s) and a Verlet variant (see page 435
in Schlick (2000)) covering a total time of T = 4 × 10−9 s (4 ns). A section of the path of the
dihedral angle as a function of time can be seen in Fig. 10(a); the corresponding histogram for
the whole of the path is depicted in Fig. 10(b).

It should be stressed that the Itô process governing the behaviour of the dihedral angle ω is not
of the form (11); in particular, it will have a non-constant diffusivity σ. So, fitting to these data

Fig. 9. Sketch of the dihedral angle
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Fig. 10. Molecular dynamics sample path for butane: (a) first 500 ps of the sample path; (b) histogram of
the whole sample path (�, N D4�106)

tests the robustness of the fitting algorithm in a way that the experiments in previous sections
did not.

7.2. Fitting
We aim to fit the process from model problem III, equation (11), to a subsampled trajectory of
ω.ti/ (viewed as the smooth component q) obtained from the molecular dynamics simulation
that was described previously. Subsampling is performed because we have a profusion of data
and because the hypoelliptic diffusion is expected to be a good fit only at some timescales.

The simulation that was used to obtain the dihedral angle data is such that ω.t/ will be a
C1-function of time assuming a suitable interpretation of the periodicity in ω, so it is natural to
fit a hypoelliptic process of damped driven Hamiltonian form.

The physical time units in seconds are minuscule and do not lead to estimated SDE par-
ameters of order 1. It transpires that, to obtain parameter values of order 1, rescaling time so
that the final time becomes T = 80000 is a good choice. This rescaling is useful in comparing
convergence properties with what was observed in Section 6. To assess consistency, the molec-
ular dynamics data are subsampled, at time steps Δt ∈{1 fs, 2 fs, 3 fs . . .} in physical time units,
corresponding to {0:02k}k∈N in the rescaled time units. Algorithm 1 is then run for NGibbs =40
outer iterations on each path, using a potential ansatz

V.ω;Θ/=
c∑

k=1
Θk cosk.ω/

which corresponds to the force functions in expression (11) setting Dk = kΘk and f = V ′; the
values c∈{3, 5, 7} are used in what follows. These periodic ansatz functions are a natural choice
for dihedral angle potentials; in fact, the dihedral angle potential that was given in Brooks (1983)
is of this form. The drift parameter estimates obtained under subsampling at time step Δt can
be seen from Fig. 11 in the case c = 5. In Fig. 11, the sampling time step Δt is the abscissa
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Fig. 11. Convergence for fitted molecular dynamics path with subsampling: mean Gibbs estimates of the
drift and diffusion parameters as a function of subsampling interval Δt

and the drift and diffusion parameter estimates (Θ1, . . . , Θ5, γ and σ) that are obtained from
fitting to the sample path subsampled at time step Δt are shown as the ordinate. Fig. 11 shows
the behaviour of the drift and diffusion parameter estimates averaged over NGibbs =100 Monte
Carlo samples θ1, . . . , θ5 and γ for various values of the subsampling rate. The behaviour as
k →0 indicates that the fitted parameter values converge to a well-defined limit; σ in particular
varies relatively little over a large range of subsampling rates. This suggests that the algorithm
proposed can fit model problem III to molecular dynamics data. The fact that different (espe-
cially drift) parameter values are obtained at different subsampling rates indicates limitations
in the fit to model problem III and this will be addressed in the next subsection.

7.3. Limitations
The desirable convergence properties of the algorithm in Δt and T should not be confused with
inference about whether fitting this kind of model to this kind of molecular dynamics data gives
a good or a bad fit; it merely indicates that, using the algorithm that is suggested in this paper,
it is possible to perform such fitting.

To show limitations of the model in this particular application we focus on the implied invari-
ant density of the fitted SDEs, since this object is of interest in computational chemistry. Thus,
we consider the push forward of the posterior measure for the parameters Di, γ and σ onto
the set of probability densities on the real line. We can then consider the mean and variance
of these densities at any point in R. To do this, we convert the posterior drift parameter sam-
ples {D

.m/
j }c

j=1 that are obtained at step m using input data subsampled at rate k = 1 to an
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Fig. 12. Probability density functions from fitted potentials for various orders of trigonometric potential
( , posterior variance; , empirical density; . . . . . . ., analytical density): (a) c D 3; (b) c D 5; (c) c D 7;
(d) empirical probability density function, butane

invariant density ρ.m/ which is specified by its values on an equidistant grid on the interval
[−π, π]. These densities for m∈{1, . . . , 1000} are then averaged and their standard deviation is
computed pointwise on the grid. This results in Fig. 12. There, we display results for three orders
of trigonometric potential c to be fitted. These are contrasted with the empirically observed
invariant density and the density arising from the classic canonical thermodynamic ensemble
which is proportional to exp{−V.ω/=kT} which are given in Fig. 12(d). For the force field that
was used in the molecular dynamics simulation, it is known that the latter two agree in the limit
T →∞; see Fischer (1997).

It should be stressed that, in each of these experiments, convergence diagnostics indicate
convergence of the Gibbs sampler and the posterior distributions for the drift and diffusion
parameters are very concentrated and hence posterior variances both for the drift and diffusion
parameters as well as the induced invariant densities are low.

With increasing polynomial order c we find some qualitative change in the resulting invari-
ant density and also (in particular moving from c = 5 to c = 7) a marked increase in posterior
variance. This goes hand in hand with a marked increase in the condition number of the drift
parameter matrix ME in distribution (26). It is simply an ill-conditioned problem to derive
increasingly higher order polynomial coefficients from a fixed length of observed path.

It is observed that, even though the empirically observed invariant density is smooth and
close to the thermodynamical expectation, the fitted potentials induce an SDE whose invariant
measure is not a good approximation of the empirical density. This may simply be attributed
to the fact that the SDE that is being fitted does not represent a good model of the dynamics of
the dihedral angle in the butane molecule with second-order Langevin heat bath model.
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8. Conclusions

A hybrid algorithm for fitting drift and diffusion parameters of a hypoelliptic diffusion pro-
cess, with constant diffusivity, from observation of smooth data at discrete times has been
described. The method combines a Gibbs sampler together with differing approximate likeli-
hoods employed in different steps of the Gibbs loop. Its performance has been validated numer-
ically for several test cases and an application to molecular dynamics data has been given.
Although parameter fitting can be viewed as an inverse problem for SDE solvers—and thus ill
conditioning of some kind is always to be expected—a detailed understanding of the particular
ill conditioning that is induced by hypoellipticity and partial observation has been attained.

Although only second-order hypoelliptic problems have been treated in this paper, the algo-
rithm’s applicability is expected to encompass order k hypoelliptic problems and it has been
tested successfully on a third-order example. Furthermore, non-linear p-dependence in exam-
ple (7) can be dealt with by using a Langevin sampler for the missing path and this has also
been tested. Additionally, observations that are not exactly equispaced can also be processed
provided that the maximal intersample time is sufficiently small.

Further avenues of investigation include the use of imputed data points between samples to
diminish O.Δt/ errors; however, there is a risk of bad mixing as σ is determined by the small-
scale behaviour of the process which would then be dominated by the imputed data points.
This has been analysed in the case of elliptic diffusion processes in Roberts and Stramer (2001)
and an application of standard estimators to this problem in the hypoelliptic case was given in
Godsill and Yang (2006).

Also, an extension to position-dependent diffusion coefficients may prove useful; in partic-
ular, it may render the algorithm more useful in molecular dynamics contexts such as those in
Hummer (2005).
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