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SUMMARY

The bulk of this paper contains a concise mathematical overview of the subject of data assimilation,
highlighting three primary ideas: (i) the standard optimization approaches of 3DVAR, 4DVAR and weak
constraint 4DVAR are described and their interrelations explained; (ii) statistical analogues of these
approaches are then introduced, leading to filtering (generalizing 3DVAR) and a form of smoothing
(generalizing 4DVAR and weak constraint 4DVAR) and the optimization methods are shown to be
maximum a posteriori estimators for the probability distributions implied by these statistical approaches;
and (iii) by taking a general dynamical systems perspective on the subject it is shown that the incorporation
of Lagrangian data can be handled by a straightforward extension of the preceding concepts.

We argue that the smoothing approach to data assimilation, based on statistical analogues of 4DVAR
and weak constraint 4DVAR, provides the optimal solution to the assimilation of space–time distributed
data into a model. The optimal solution obtained is a probability distribution on the relevant class of
functions (initial conditions or time-dependent solutions). The approach is a useful one in the first instance
because it clarifies the notion of what is the optimal solution, thereby providing a benchmark against
which existing approaches can be evaluated. In the longer term it also provides the potential for new
methods to create ensembles of solutions to the model, incorporating the available data in an optimal
fashion.

Two examples are given illustrating this approach to data assimilation, both in the context of Lagrangian
data, one based on statistical 4DVAR and the other on weak constraint statistical 4DVAR. The former
is compared with the ensemble Kalman filter, which is thereby shown to be inaccurate in a variety of
scenarios. Copyright q 2007 John Wiley & Sons, Ltd.
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1034 A. APTE ET AL.

1. INTRODUCTION

Data assimilation is concerned with the incorporation of observational data into mathematical
models. It is essential to do so in any fields that are data rich and for which well-founded
predictive mathematical models exist. Geophysical applications [1], the atmospheric sciences [2]
and oceanography [3] provide important application areas of this type. Here, we adopt a Bayesian
view of data assimilation in which prior information (background velocity field and model error)
is combined with data to provide a posterior distribution [4].

We study time-dependent problems in which the desired unknown is either the initial condition
(a function of space alone) or a time-dependent function (a function of both space and time) [5].
The desired posterior probability measure is formulated on function space, without resorting to
discretization in space or time. On the assumption that observational and model error statistics are
known, this posterior distribution provides the optimal solution to the assimilation of space–time
distributed data into a model. The approach is statistical and the optimal solution obtained is a
probability distribution on the relevant class of functions (initial conditions or time-dependent
solutions). Sampling from this probability distribution thus yields a representative ensemble of
solutions. The approach introduced is a useful one for three main reasons. First it clarifies the
notion of what is the optimal solution, thereby providing a benchmark against which existing
approaches can be evaluated. Secondly, it provides a framework for the development of new
methods for the creation of ensembles of solutions to the model, incorporating the available data
in an optimal fashion; for problems where the posterior distribution is far from Gaussian, such new
methods are very much required. Thirdly, by formulating the problem in function space, before
discretization, a clear mathematical view of the subject is obtained, and the flexibility of using
different discretization techniques for different parts of any sampling algorithm allows for optimal
algorithm design.

In Section 2 we outline the general framework in which we will discuss data assimilation.
Section 3 describes the optimization approaches of 3DVAR, 4DVAR and weak constraint 4DVAR.
Statistical analogues of these approaches are introduced in Section 4 and related to the notions
of filtering and smoothing from the signal processing literature. The optimization approaches
are shown to give rise to maximum a posteriori estimators for these statistical approaches (the
analogue of maximum likelihood estimators when a prior distribution is incorporated [4].) We
show how Lagrangian data can be viewed in a general framework, subsuming both Eulerian
and Lagrangian data assimilation, in Section 5. Section 6 contains two examples, based on the
statistical analogues of 4DVAR and weak constraint 4DVAR. We summarize in Section 7. The
majority of the material in Sections 2–5 constitutes a review, setting the context for our recent
research, which is overviewed in Section 6, and where references to relevant publications are
given.

In the following we use |·| to denote the standard finite dimensional Euclidean norm, and
|·|A=|A−1/2 ·| for any symmetric positive-definite matrix A. Likewise we use ‖·‖ to denote
the standard L2-norm on functions, and ‖·‖A=‖A−1/2 ·‖ for any symmetric positive-definite
operator A. We will mainly use these weighted norms with A being a covariance matrix or
operator, and we will largely follow the notational conventions for such covariance matrices
established in [6]. We will also use other conventions from that paper, such as the use of h
(and H , H) for observation functions and y for observations. We use the letter v to denote a
velocity field, the letter z to denote passive tracer positions and the subscript 0 to denote initial
conditions.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1033–1046
DOI: 10.1002/fld

 10970363, 2008, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fld.1698 by C

alifornia Institute O
f T

ech, W
iley O

nline L
ibrary on [11/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ENSEMBLE DATA ASSIMILATION 1035

2. DATA ASSIMILATION

2.1. The model

In the context of models from fluid mechanics we consider the problem of finding, given obser-
vations, the velocity field v(x, t) for a partial differential equation of the form‡

�v

�t
=F(v)+�

v(x,0)=v0(x)

where � is some noise process. We start by considering the perfect model scenario where there is
no noise, and the objective is to find the optimal initial velocity field v0(x) in the model

�v

�t
= F(v)

v(x,0) = v0(x)

(1)

We return to the noisy case later in the paper.

2.2. The observations

We assume that we are given data in the form of observations (direct or indirect) of the velocity field
v(x, t). The objective of data assimilation is to find an optimal trade-off between the information
available in the data and in the model. We say that the observations are Eulerian if they are of
the velocity field itself and Lagrangian if they are of particles transported by the velocity field. In
both cases the observations are at times tk ∈[0,T ], k=1, . . . ,K .

In the Eulerian case the observations are

{y j,k =h(v(x j , tk))+noise}, j =1, . . . , J and k=1, . . . ,K

The noise model can have various forms, but is assumed to be known. In the Gaussian case,
assuming that correlations across space and time are known, noting that v0 determines v uniquely,
and concatenating the data, we may express

y=H(v0)+
√
R� (2)

where � is a standard Gaussian vector and R the covariance matrix. When model error is present
it will be useful to view the observations as a function of v and to express

y=H(v)+√
R� (3)

in place of (2).
In the Lagrangian case we have

{y j,k = z j (tk)+noise}, j =1, . . . , J and k=1, . . . ,K

‡We are rather loose here, and the notation is meant to incorporate a range of problems including the incompressible
Navier–Stokes equation, shallow-water models, atmospheric models or ocean models.
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1036 A. APTE ET AL.

where

dz j
dt

(t)=v(z j , t), z j (0)= z j,0

The noise model can have various forms, but is assumed to be known. Note that the initial conditions
for z j , together with the initial condition for v, uniquely determines z j at later times. Thus, in
the Gaussian case, assuming correlations across space and time are known, and concatenating the
data, we may express

y=H(v0, z0)+
√
R� (4)

where � is a standard Gaussian vector, z0=(z1,0, . . . , z J,0) and R the covariance matrix.

3. 3DVAR VERSUS 4DVAR

Here we describe the various variants of 3DVAR and 4DVAR, which underlie the statistical
approaches to data assimilation outlined in the next section. In both this and the next section we
confine our attention to the Eulerian case. The Lagrangian situation will be considered thereafter.

3.1. 3DVAR

This method simply incorporates observations of a velocity field at time t=� into a current
estimated (or background) state v�(x,�) at time t=� [7]. It thus corresponds to the special case
tk ≡� for all k. Define

J3(v) =
J∑

j=1

1

2r j
|h(v(x j ,�))− y j |2+ 1

2
‖v(x,�)−v�(x,�)‖2B

= 1

2
|H(v)− y|2R+ 1

2
‖v(x,�)−v�(x,�)‖2B (5)

where R and B are the covariance matrix/operator for the observations and background state. (In
the first line we have assumed a diagonal form for R but this is not necessary.)

Now choose v̂ to minimize J3(v):

v̂=argmin
v

J3(v) (6)

This constitutes 3DVAR and produces an improved state v̂(x,�) at t=�, which incorporates
observations into the current estimate from the model. Note that J3 is quadratic if the observation
operators h are linear.

3.2. 4DVAR

This method aims to incorporate data, concerning the velocity field, which is distributed in time
on the interval [0,T ] [8]. This is used to improve the current estimate of the initial velocity field
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ENSEMBLE DATA ASSIMILATION 1037

v0(x)=v(x,0). Specifically, given a background initial state v�
0(x), we define

J4(v0) =
J,K∑

j=1,k=1

1

2r j,k
|h(v(x j , tk))− y j,k |2+ 1

2
‖v0(x)−v�

0(x)‖2B

= 1

2
|H(v0)− y|2R+ 1

2
‖v0(x)−v�

0(x)‖2B (7)

(In the first line we have again assumed a diagonal form for R but this is not necessary.) Here
v(x, t) is the velocity field with initial state v0(x); that is, the solution of (1). This is sometimes
termed a hard constraint: it is assumed that the model dynamics are obeyed exactly. Note that,
even if the observation operator h is linear, the functional J4 is not quadratic unless the dynamics
of (1) are also linear.

We choose v̂0 to minimize J4(v0) :
v̂0=argmin

v0

J4(v0) (8)

This method can be varied so that, for example, the background information consists not only of
the initial velocity field v�

0 but also v�(x, t), the velocity field at later times t .
Note that 4DVAR is considerably more complex than 3DVAR because the function H depends

on v0 through the solution v of (1). For this reason it is hard to use 4DVAR on systems that are
sensitive to initial conditions (for example chaotic) and over long time intervals compared with the
typical separation time of trajectories. In this situation weak constraint 4DVAR is more natural.

3.3. 4DVAR (weak constraint)

This method is similar to 4DVAR except that the model dynamics of (1) is now no longer
incorporated as a hard constraint. Instead satisfaction of the model dynamics is imposed weakly
through an additional term in the cost function to be minimized [9]. Specifically we define

Jw(v) =
J,K∑

j=1,k=1

1

2r j,k
|h(v(x j , tk))− y j,k |+ 1

2
‖v0(x)−v�

0(x)‖2B

+1

2

∫ T

0

∥∥∥∥�v

�t
(x, t)−F(v(x, t))

∥∥∥∥2
Q
dt

= 1

2
|H(v)− y|2R+ 1

2
‖v0(x)−v�

0(x)‖2B

+1

2

∫ T

0

∥∥∥∥�v

�t
(x, t)−F(v(x, t))

∥∥∥∥2
Q
dt

Here Q is a covariance matrix that quantifies the level of confidence in the model equations.
We choose v̂ to minimize Jw(v) :

v̂=argmin
v

Jw(v) (9)
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1038 A. APTE ET AL.

This minimization is now more complex than for 4DVAR as it involves finding an entire approx-
imate trajectory {v(x, t)}t∈[0,T ] of (1), not just an initial condition. (In other words a function of
space–time, not just of space.) However, for reasons detailed at the end of the last subsection, it
is desirable to impose the weak constraint when the dynamics is sensitive to initial conditions and
long time intervals, and the additional complexity is thus sometimes necessary.

Various variants are possible concerning the manner in which the weak constraint is imposed.
For instance the cost function above corresponds to an error model that is uncorrelated in time; it
is possible (and indeed sometimes natural) to add time–correlation information. Furthermore, the
background state may be distributed in time, not just on the initial conditions.

4. STATISTICAL PERSPECTIVE

The perspective in the previous section is to pose data assimilation as an optimization problem to
estimate the best possible velocity field. Instead, since the observations, and possibly the model
itself, are subject to noise, our statements about the velocity field also have a natural probabilistic
interpretation [4]. This leads to a Bayesian perspective on data assimilation in which observations
are used to convert a prior distribution on velocity fields into a posterior. See [10, 11], for example,
in the context of the atmospheric sciences and, in the context of applications to oil reservoir
simulation, see [1].

4.1. 3DVAR and filtering

We may take a probabilistic view of the problem by sampling from the probability density function
(pdf) for v(x,�) proportional to

exp(−J3(v)) (10)

The background v�(x,�) is the mean of a prior Gaussian distribution with covariance B. The
posterior probability density given by (10) is found by applying Bayes rule and incorporating the
observations, assuming that the error in them is Gaussian with covariance R. The posterior is
Gaussian only if H is linear.

The velocity field v̂ found from (6) is the maximum a posteriori estimator. If the updated pdf
of the velocity field is updated sequentially with � : tk �→ tk+1 then we obtain a filter: a method that
alternates between model updates in time and incorporation of data. Assuming that the prior is
Gaussian, in general, an approximation since the underlying Liouville equation that propagates the
density between tk and tk+1 will not preserve Gaussianity unless the dynamics is linear. Making
the Gaussian approximation leads to Kalman filters and their variants such as the extended Kalman
filter and the ensemble Kalman filter (EnKF). Non-Gaussian problems are typically approximated
via particle filters [12].

4.2. 4DVAR and smoothing

In the context of 4DVAR we may also take a statistical perspective. We view observations as noisy
and, hence, the initial condition is only known to us probabilistically. We sample from the pdf for
v0(x) proportional to

exp(−J4(v0)) (11)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1033–1046
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ENSEMBLE DATA ASSIMILATION 1039

The background v�
0(x) is the mean of a prior Gaussian distribution with covariance B. The

posterior probability density given by (11) is found by applying Bayes rule and incorporating
the observations, assuming that the error in them is Gaussian with covariance R. The posterior
distribution on u is non-Gaussian unless the dynamics of (1) and the observation operator are
linear. The velocity field v̂0 found from (8) is the maximum a posteriori estimator.

Unlike the previous subsection, there is no efficient sequential update available here: the posterior
pdf on the initial data depends on data at all {tk}Kk=1 from [0,T ]. This is referred to as smoothing
rather than filtering. See [5] for a perspective on this version of smoothing as a form of data
assimilation, and methods for sampling from the posterior distribution. If the distribution on v0
is pushed forward to final time tK then the resulting distribution on v at time tK agrees with the
filtering distribution calculated recursively as outlined at the end of the previous subsection. Thus,
an accurate sampling of the smoothing distribution can be used to benchmark various approximate
filters such the extended and EnKFs.

4.3. 4DVAR (weak constraint) and smoothing

We may also consider weak constraint 4DVAR as the basis for a statistical viewpoint in which we
have a pdf for the solution v(x, t). In this context we no longer have the model dynamics (1) but
rather the stochastic dynamics given by

�v

�t
= F(v)+√

Q
�W
�t

v(x,0) = u(x)

(12)

where �W/�t is a space–time white noise and Q is the covariance of the noise in space.
The posterior pdf for v(x, t) is now proportional to

exp(−Jw(v)) (13)

Again v�
0(x) is the mean of a Gaussian prior on initial conditions. The model stochastic dynamics

given by (12) defines a prior on the solution v(x, t) trajectory. The posterior distribution is again,
as for 4DVAR, non-Gaussian unless the dynamics and observations are linear.

The field v̂(x, t) found from (9) is the maximum a posteriori estimator. To sample from the
distribution (13), sophisticated sampling is required: there are boundary values in space and time.
See [5] for a perspective on this version of smoothing as a form of data assimilation, and methods
for sampling from the posterior distribution.

5. LAGRANGIAN DATA

Here we show how the preceding optimization and statistical perspectives can be applied to the
problem of assimilating Lagrangian data into models. We achieve this by extending the Eulerian set-
up to incorporate Lagrangian data. The basic idea we outline is useful because, once the viewpoint
is understood, it becomes clear that, mathematically, Eulerian and Lagrangian data assimilations
are both specific cases of a single framework concerning the assimilation of data into a dynamical
system and, in principle, Lagrangian data assimilation may be tackled by all the methods we have
already outlined for the Eulerian case. However, in practice of course, the structure of the posterior
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1040 A. APTE ET AL.

distributions may be affected considerably by the type of observations. The papers [13, 14] were
the first to extend data assimilation to Lagrangian data in a systematic fashion.

5.1. The problem

The aim is to find v0(x) the initial velocity field and z j,0 the initial particle positions satisfying

�v

�t
=F(v)

v(x,0)=v0(x)

dz j
dt

=v(z j , t), j =1, . . . , J

z j (0)= z j,0, j =1, . . . , J

We observe

{y j,k = z j (tk)+noise}, j =1, . . . , J and k=1, . . . ,K

5.2. Lagrangian data assimilation as standard data assimilation

We concatenate z=(z1, . . . , z J ) and z0=(z1,0, . . . , z J,0) and define the observation function
h(v, z)= z. The data assimilation problem then looks identical to the Eulerian case, extended from
a dynamical model for the velocity field v alone to a dynamical model for the pair v, z, and with a
particular observation function that corresponds to projection onto particle positions z. Everything
that we have said about Eulerian data assimilation may now be generalized to this case [13, 14].

For expository purposes let us consider an analogue of 4DVAR for this Lagrangian problem.
Note that all particle positions may be viewed as functions of the initial velocity field and the
initial particle positions. Define

Jl(v0, z0) =
J,K∑

j=1,k=1

1

2ri, j
|z j (tk)− y j,k |2+ 1

2
‖v0(x)−v�

0(x)‖2B

+
J∑

j=1

1

2� j
|z j,0−z�j,0|2

= 1

2
|H(v0, z0)− y|2R+ 1

2
‖v0(x)−v�

0(x)‖2B + 1

2
|z0−z�0|2� (14)

Here both v0 and z0 are assumed to have background values v�
0, z

�
0, and B (resp. �) quantifies

the uncertainty in the former (resp. latter). Then the analogue of 4DVAR consists of solving the
following minimization problem:

( v̂0, ẑ0)=argmin
v0,z0

Jl(v0, z0) (15)

The statistical analogue is to sample from

exp(−Jl(v0, z0)) (16)
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ENSEMBLE DATA ASSIMILATION 1041

Again we have assumed that the covariance in the observations is diagonal, but this may be relaxed.
We may also incorporate model error into both the evolution of the velocity field and the evolution
of the passive tracers.

6. APPLICATIONS

We give two examples of the statistical variant on 4DVAR, both in the Lagrangian context. The
first corresponds to the perfect model scenario of (1) [15] and the second to a situation where the
model is imposed as a weak constraint which, in the statistical viewpoint, corresponds to a model
of the form (12), driven by noise [5].
6.1. Perfect model scenario

We are interested in finding Fourier coefficients of (v,h)|t=0 the initial conditions for the linearized
shallow-water equations:

�v

�t
= Jv−∇h, (x, t)∈�×[0,∞)

�h
�t

=−∇ ·v, (x, t)∈�×[0,∞)

Here � is the unit square and J is a skew-symmetric matrix. We impose periodic boundary
conditions on v and h.

We assume that we are given observations y j,k = z j (tk)+� j,k of the passive tracers

dz j
du

=v(z j ,u)

where z j ∈R2. Here the noise is Gaussian with mean zero. Figure 1 shows a typical flow field and
the trajectories of three passive tracers.

The posterior distribution function given in (16) was sampled using five different Monte-Carlo
Markov Chain (MCMC) methods of Metropolis–Hastings (MH) type, based on Langevin (MALA)
and random walk (RWMH) proposals, in one case using adaptive preconditioning based on learning
the covariance structure during the course of the computation. MCMC is a methodology whereby a
given target probability distribution is sampled by constructing a Markov chain for which the target
is invariant. Such a Markov chain can be constructed by taking a given Markov chain that is easy
to sample, and accepting or rejecting proposals from this chain according to the MH criterion [4].
Assuming that the resulting Markov chain is ergodic, the time series from it will have a histogram
that converges to the desired target distribution.

The results from these sampling methods are shown in Figure 2. The first two columns show
samples from the posterior of two components of the velocity field, and the third column the
posterior on the first coordinate of the particle position. A detailed description and comparison of
the different methods may be found in [15]. For the purposes of this short paper, it suffices to note
that the final row, which uses an adaptive MCMC method, may be viewed as providing the exact
posterior distribution, and does so in the most efficient fashion. We will now compare such exact
posteriors for the smoothing distribution with the output of some frequently used Kalman-based
filters, all compared at the final time tK .
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1042 A. APTE ET AL.

Figure 1. Snapshot of flowfield and particle trajectories.

Figure 2. Five different sampling methods for the posterior. The last row may be viewed
as giving the ‘exact’ posterior.

Figure 3 shows a comparison with the exact posterior on the coordinates of the observed
particle in blue (found by using resolved samples from the adaptive MALA method) and its
approximation by the EnKF algorithm [16] in green. The true solution is marked with a blue
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ENSEMBLE DATA ASSIMILATION 1043

Figure 3. EnKF (green) and MALA (blue) approximations of the true posterior.

circle and the observation by a red asterix; the ellipse is of size two (observational) standard
deviations around the asterix. We see that in this highly nonlinear dynamical model, the EnKF
fails to accurately approximate the exact posterior distribution, due to the inappropriate Gaussian
assumptions underlying it. A detailed discussion of this issue may be found in [15].

6.2. Model error

Now consider a problem with noise: to find (v,h) solving the linearized noisy shallow-water
equations:

�v

�t
= Jv−∇h−Q�v+

√
2�Q

�
�, (x, t)∈�×[0,∞)

�h
�t

=−∇ ·v, (x, t)∈�×[0,∞)

given continuous time observation of passive tracers:

dz j
du

=v(z j ,u)+� j

Again � is a unit square and we impose periodic boundary conditions on v and h; the particles
z j ∈R2. Here � is a space–time white noise and the � j are time white noise. The operator Q
induces spatial correlations in the noise and it is natural to choose it so that it has constants in its
null space, thereby ensuring preservation of the mean velocity field under the dynamics. (However,
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1044 A. APTE ET AL.

Figure 4. Reconstruction of xi ; five tracers are used.

Figure 5. Reconstruction of xi ; 50 tracers are used.

in practice, we add a small amount of noise to the first Fourier coefficient and to the equation for
the height field h.)

Figures 4–6 show reconstruction of the first two Fourier coefficients of v (the first two panels
in each figure) and the first Fourier coefficient of the height field (the third panel in each figure).
The three figures correspond to 5, 50 and 500 tracer particles, respectively. The bands represent
one standard deviation about the mean of the posterior distribution, and the non-smooth curves the
underlying exact signal, or ‘truth’. Note that the velocity Fourier coefficients are well reconstructed
for large numbers of particles; uncertainty remains in the height field, however, because the
Lagrangian tracers do not probe it directly and because we include a small amount of noise in

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1033–1046
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ENSEMBLE DATA ASSIMILATION 1045

Figure 6. Reconstruction of xi ; 500 tracers are used.

the equation for its evolution. For more detailed discussion of the methods employed to find these
distributions see [5].

7. CONCLUSIONS

In this paper we have highlighted the following well-known points regarding data assimilation:

• 3DVAR and 4DVAR are minimization techniques that differ through whether time-distributed
data are incorporated into the cost function.

• 4DVAR and 4DVAR (weak) differ through whether the model is imposed exactly; in the latter
case, error in the satisfaction of the dynamical equations is incorporated as part of the cost
function.

• Adopting a Bayesian viewpoint shows that all of these variational methods have natural statis-
tical analogues: filtering and smoothing. The variational methods find a maximum a posteriori
estimator—the analogue of maximum likelihood estimators when a prior distribution is incor-
porated [4], typically as a regularizer.

• Lagrangian data assimilation can be framed as a generalization of the standard case of Eulerian
data assimilation; thus, there are natural analogues of 3DVAR, 4DVAR and 4DVAR (weak)
for the Lagrangian case.

The main new ideas that we have highlighted in this paper are as follows:

• It is insightful to formulate (smoothing) Bayesian data assimilation problems on function
space, without discretizing in space and/or time; this allows for a clearer understanding of
the mathematical structure, and allows discretizations to be optimized for the purposes of
sampling, once a probability measure on function space is defined.
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1046 A. APTE ET AL.

• The full power of MCMC methods should be brought to bear on sampling these Bayesian
(smoothing) posterior distributions arising in data assimilation. This allows for the calculation
of the ‘right’ answer and hence for the evaluation of various approximations.

• Approximate filters, such as the EnKF, can behave poorly; we illustrated this fact on a highly
non-Gaussian problem arising in Lagrangian data assimilation.

The primary challenges arising in this area are as follows:

• Sampling function space is extremely costly. (Typical discretizations of function space in
weather forecasting currently involve O(107) unknowns at each instance in time.) Carrying
out fully resolved MCMC simulations in this context is currently out of the question without
new ideas. However, it may be possible to marry some of the current methods used to make
4DVAR efficient, such as adjoint methods, low-rank approximations and so forth, with MCMC
proposals in such a fashion that useful ensemble information can be obtained efficiently and
in the context of highly non-Gaussian posterior distributions. Carrying out a research program
that effects this would be extremely valuable.

• An alternative to the Bayesian (smoothing) techniques that we use here and that, in principle,
capture the correct posterior, is the use of particle filters. These are very effective in low
dimensions, but suffer from severe computational problems in high dimensions. Understanding
the relative merits of attacking the smoothing problem by MCMC methods, and the use of
particle filters, provides an important research area in the study of high-(infinite) dimensional
data assimilation problems.
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