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1 Outline

In this article we give an overview of the application of theories from
dynamical systems to the analysis of numerical methods for initial-value prob-
lems. We start by describing the classical viewpoints of numerical analysis
and of dynamical systems and then indicate how the two viewpoints can be
merged to provide a framework for both the interpretation of data obtained from
numerical simulations and the design of efficient numerical methods. This is done
in Section 2.

In addressing the question of how to interpret data, we will show in Section 3
how the concept of convergence can be generalized to the numerical approxima-
tion of dynamical systems. The main theory is developed for one-step methods
for ordinary differential equations and extensions to the study of multistep meth-
ods, adaptive time-stepping algorithms and partial differential equations are then
outlined. '

In addressing the question of designing efficient schemes we will show in
Section 4 how the concept of stability can be generalized to dynamical systems.
Stability theory is developed for both one-step and multistep methods for ordi-
nary differential equations; extensions to adaptive time-stepping and to partial
differential equations are also outlined.

A variety of surveys of this field already exist: see [13] for a complete study,
see [9] for a discussion of convergence in the dynamical systems context, [12]
for a discussion of stability in the dynamical systems context and see [5] for
a discussion of both issues in relation to discretization of partial differential
equations. Since these surveys contain fairly exhaustive bibliographys we refer
to them for detailed references.

The impetus for the work described here is the fact that the classical conver-
gence and stability theories do not apply to many dynamical systems of interest
in science and engineering. Whilst the classical theories can be usefully developed
at a very general level, new theories of convergence and stability are tied in a
very strong way to particular classes of problems. This article concerns equations
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arising from physical systems where an energy loss mechanism, or dissipation, is
present. For a discussion of similar issues in the context of conservative physical
systems see [6].

2 Background

The problem which we wish to solve is

du
5= f(u), u(0)=U. (2.1)

Here f : IR? — IR? satisfies sufficient smoothness and structural assumptions to

ensure the existence of a dynamical system on IR?: that is, a unique solution
u(t) € C'([0,00),IR?) of Equation 2.1 exists for all U € IR?. Thus we define the
one-parameter semigroup S(¢) : IR — IR? for each t € IR by

u(t) = S(t)U.

For one-step methods generating a sequence {U,}\_, ~ {u(nAt)}Y_, we
define, for At sufficiently small, S}, : IR” — IR to be the solution operator for
one step of the numerical method. Thus

Uoav=8 00, Us=¥. (2.2)
We may then define SR, : IR? — IR? by

U= =8 0...08,100

The primary objectives in solving Equation 2.1 numerically are:

1. to get quantitative and qualitative information about solutions to the
equation; and

2. to obtain the information as quickly or cheaply as possible.

The concepts of convergence and stability have arisen in the theory of numerical
analysis to enable these issues to be addressed. See [2,3] for example.

Classical convergence theory in numerical analysis is concerned with the
following question. Fix 7' > 0 and U € B(0,R) and find the maximal real
number 7 such that

<cC 2.3
nAt=T,At—0 Atr % (2.3)

for some constant C' = C(R,T). Typically C — oo as T' — oo. Thus a conver-
gent scheme yields quantitative information about Equation 2.1 on time-intervals
sufficiently small that CAt" is small. Roughly speaking, the important concepts
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required to analyse the convergence of numerical methods are those of truncation
error and well-posedness.

Classical (practical) stability theory in numerical analysis is concerned with
the following question. Fix At > 0 and U € IR? and find conditions which ensure
that

lim SR,U =0, (2.4)
for the problems:
f(u) = Au, Re()) <O, (2.5)
and
Fp>0:(f(u) = f(v),u—v) < —pllu—1|?, Vu,v. (2.6)

Note that, for Equation 2.6 we may assume without loss of generality that 0 is
the unique equilibrium point. A non-autonomous version of Equation 2.5 is also
important, namely:

f(u) = At)u, Re(A(t))<—-p<0 Vt>0. (2.7)

(Note that, for this class of problems a semigroup does not exist since the equa-
tion is not time-translation invariant). For all the problems Equations 2.5-2.7,
the true solution converges exponentially to a unique equilibrium point which,
without loss of generality, we may assume to be (. Useful concepts in addressing
stability for Equations 2.5-2.7 are A—stability (for Equation 2.5 and both Runge-
Kutta methods (RKM) and linear multistep methods (LMM)), AN —stability (for
Equation 2.7 and both Runge-Kutta and multistep methods), B—stability (for
Runge-Kutta methods applied to Equation 2.6) and G—stability (for multistep
methods applied to Equation 2.6). See [1,3] for example. These stability the-
ories catergorize methods which preserve property Equation 2.4 for all values
of At > 0 and all initial data U. It is interesting to note that, roughly speak-
ing, AN— and B-stability are equivalent for Runge-Kutta methods and that
A— and G'—stability are equivalent for multistep methods. Thus, intuition from
linear problems is useful in the understanding of nonlinear problems. However,
Equations 2.5-2.7 all have the same, essentially trivial, asymptotic behaviour.
Nonetheless, the attendant stability concepts developed for them will turn out to
be invaluable in many of the more recent stability theories for numerical approx-
imation of dynamical systems with decidedly nontrivial asymptotic behaviour.

In the theory of dynamical systems, interest is focussed on the limit ¢ — oo
and on the evolution of sets of initial data. Useful concepts include:

1. Invariant sets [ :

SWHI=1 Vt>0.
2. Positively invariant sets I :

SHIcl vt
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3. w—limit sets w : for points U € IR?,

w(U) = {z|3t; — 00 : S(t;)U — =z},

or, for sets B € IR?,

w(B) = {z|3y; € B,t; — o0 : S(t;)y; — z}.
Here t; € R* for Equation 2.1 or t; € Z% for Equation 2.2 (with S(n) =
SRt)-
4. Basin of attraction B of I :

B = {y|w(y) CI}.

5. Attractor A : a compact invariant set .4 whose basin of attraction contains
an open neighbourhood of A itself.

6. Global attractor: an attractor A for which every bounded set B is in its
basin of attraction. Thus for all bounded B C IR? :

dist(S(t)B,A) - 0 as t— oo.

Here xl e
dist(A,B) < e A C N(B,c),

so that
diSt(A, B) =0 A C B.

To illustrate these concepts we consider some examples. Figure 1 shows the
solution of the scalar equation
du 3
—=u-—u", u(0)=10.
It is clear that u — 1 as t — oo and hence that w(10) = 1. Thus the w—limit set
is the point u = 1, representing a steady state.
Figure 2 shows the solution of the pair of coupled equations

dz
dt
dy
dt

= a+g-—a(+y®), =2(0)=3,

= —z+y—y®+y?), y(0)=-3.
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10

u(t)

Figure 1. Approach to equilibrium point

In Figure 2 (c) we define R(t)? = z(t)? + y(¢)°. Clearly the solution converges
to a limit cycle as ¢ — oo. Thus the omega limit set in this case is the set
{(z,y) : 22 + y? = 1}, representing a periodic solution.

To illustrate a more complicated limit set, consider Equation 2.1 in IR?, p > 2,

with solution u(t) = (uy(t),...,u,(¢))T. Assume that the first two solution
components satisfy

ur(t) = e”' +sin(t), uz(t) =e~! + cos(at),

and that the remaining solution components approach 0 as t — co. Then, if
a is irrational, as ¢ — oo the limiting solution is known as a quasi-periodic
solution. Figure 3 (a) illustrates this type of behaviour in the case a = 107/31;

the notation z(t) = u1(t), y(t) = uy(t) is used. The omega limit set here is the
set

{fu=(u1,...,up) ERP: -1 <u; <1,i=1,2and w; = 0,7 > 2}.

In Figure 3 (b) a similar phenomenon is illustrated: the function u(t) = e~* +
sin(t) + cos(8t) is shown with § = /2.
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(a) (b)

_20 t 20 0 ¢ 20
(c) (d)
5 2
R(t) y(t)
0 -3
0 ¢ # < z(t) F
Figure 2. Periodic solution
(b)
2 5
y(t) u(t)
it 2(t) . - t .

Figure 3. Quasi-periodic behaviour
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(b)
0.5 (a) 0.5
Yn = Yn
—
0.5 -0.5
=9 Xn 2 -2 Xn 2
(d)
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% Y
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Figure 4. Strange attractor of modified Hénon map. Note that o marks the initial
value, (Xo, Yo)

Figure 4 shows an omega limit set for the modified Hénon map

Xnt1 = 1+Yn+1_%Xr2u
Yast = £X.

To produce this figure, four different starting points are chosen (marked with
circles) and the map iterated. The transients are not shown so that what remains
represents the omega-limit set. The important point illustrated by this figure is
that the omega-limit set has a very complicated structure which is the same for
all four initial conditions. This is an example of a strange attractor.

Strange attractors are also found in differential equations. Figure 5 shows
various plots of the strange attractor for the Lorenz equations

dz

— = =

dy

r e 280 —y—zz,
dz

R 8z/3.
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(a)

50

40

Tzy(t)

-10

Figure 5. Lorenz attractor

In Figure 5 (d) we have defined r;y(t)? = z?(t) + y*(t). For these equations the
attractor is in fact a global attractor. It is contained inside an ellipsoid which
is a positively invariant set for the semigroup and which S(¢)U enters at some
time t = T'(U) for every U € IR?.

The Figures 1-5 illustrate the wealth of dynamical behaviour that is present
in differential equations and mappings when studied over long time intervals.
It is clearly desirable that any theory of numerical analysis should encompass
this variety. Classical numerical analysis however is somewhat defective in this
regard. The focus is on individual solutions — S(t) is applied to a single ini-
tial data point U. Convergence on finite time intervals is studied and stability
theory is developed for problems with trivial asymptotic behaviour — exponen-
tial convergence to a unique equilibrium point. In contrast, dynamical systems is
focussed on famalies of solutions: S(t) is applied to sets B of initial data points.
Much of the interest is in infinite time intervals and non-trivial omega limit sets
(as seen in Figures 1-5.) Note that, in many applications of interest, the exact
mitial condition is not known in practice. In such a situation it is natural to
study all possible limit sets and their basins of attraction.

Whilst the classical theories of convergence and stability have been invaluable
in the development of accurate and efficient algorithms for initial-value problems,
they are far from being the last word in the subject. As an example, consider
again the Lorenz equations. These equations have interesting long-time dynamics
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b
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Figure 6. “Unpredictable” nature of the Lorenz equations

(see Figures 5 and 6; in Figure 6 (d) we have defined r(¢)% = z(¢)? +y(t)? + 2(¢)?)
and, to fully investigate this phenomenon, it is necessary to integrate the equa-
tions past the time at which the classical error bound Equation 2.3 is small.
(Improved approximate error estimates can be obtained by estimating the con-
stant multiplying At” numerically, rather than majorizing it by an exponential,
but nonetheless, the fact remains that for any given At there is a time after
which the error in the approximation of an individual trajectory will be O(1)).
Furthermore, the equations do not satisfy Equation 2.6 and so the stability
theories alluded to are of no direct use here — this is manifest in the fact that
the asymptotic behaviour is far from trivial.

In this paper we outline some of the theories which help in the design and
analysis of appropriate algorithms for equations with complicated long-time dy-
namics. For instance, the Lorenz equations have unstable periodic solutions and
hyperbolic equilibria with stable and unstable manifolds; we will quote theories
which show that these periodic solutions persist as unstable invariant curves in
any convergent one-step numerical method and that similar results hold for the
stable and unstable manifolds. The Lorenz equations have a strange (global)
attractor A; we quote a theory which indicates that any convergent numerical
method also has a local attractor A, and that dist(Aa:,.A) — 0 as At — 0.
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Finally we will quote stability theories showing that, for certain particular Runge-
Kutta and multistep methods, the numerical attractor is actually a global at-
tractor as for the differential equation.

Taking this discussion of the Lorenz equation as prototypical, we now outline
how the theories of convergence and stability might be usefully generalized to
dynamical systems.

Note that a solution {S(¢)U};>0 of Equation 2.1 is a positively invariant set.
Thus standard convergence of trajectories corresponds to studying the existence
and closeness of a nearby positively invariant set (a single trajectory) for S}, as
At — 0. This suggests that, in the context of dynamical systems, convergence
should correspond to studying the existence of nearby (positively) invariant sets
of SR, as At — 0 given the existence of an invariant set for S(t). We pursue
this approach in Section 3. (Actually more than this is shown when standard
convergence of trajectories is considered, namely that the dynamics on the sets
agree; in general it is not possible to extend such results to more complicated
invariant sets. For example, phase error prevents this for periodic solutions).

For the problems Equations 2.5-2.7, the global attractor is the origin 0 (with-
out loss of generality). Thus 0 has basin of attraction IR?. Stability is concerned
with finding conditions under which the basin of attraction is preserved for all
At > 0, or for At independent of stiffness. This suggests that, in the context of
dynamical systems, stability might usefully be defined to encompass the study
of preservation of basins of attraction of (positively) invariant sets of S(t) un-
der discretization, for all At > 0, or for At independent of initial data and/or
stiffness. This approach to numerical stability is pursued in Section 4.

3 Convergence

We will make the following basic assumption for all the one-step methods con-
sidered in this paper: given any bounded B C IR?, there is At, = At,(B) and
K = K(B) such that, for all (At,U,V) € [0,At.) x B x B,

IS(AYU — 54, Ul < K(B)At+1,
IDu[S(A)U — S3,UN - < K(B)Atr+1,
158U = Sa. VI < [+ K(B)AY|U -V,

IDu[Sa Ul = Dv[Sa VIl < KE(B)AU - V.

Here Dy denotes the derivative (Jacobian) with respect to U. If this assumption
holds we will say that S(At) and S}, are C1—close. All Runge-Kutta methods,
for example, satisfy this assumption under sufficient smoothness on f.
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Using this it is straightforward to prove the following result:

Result 1. There are constants C; = C;(B),t = 1,...,4 such that, for all U € B
and At € [0, At,) with nAt =T

IS(T)U = SZ, Ul

IN

Cie> T AP 5

|Du[S(TYU — SR, U]l < CseTAt.

O

Clearly such a result is of no direct use in the dynamical systems context where
long time-intervals are considered. Thus we consider instead the effect of numer-
ical approximation on invariant sets. The unifying feature of the convergence
theory we describe is that the existence theory for both the invariant sets of
Equation 2.1 and of Equation 2.2 is formulated in the same way. To achieve this
we need to consider solutions of Equation 2.1 as iterates of a map over a time
interval of length At.

3.1 The ODE as a map

Near an equilibrium point (v = 0 without loss of generality) we may write:

L = fu) = —Autg(w), u(0)=U.

Here A := Dy f(u)|lu=0 and g(u) is O(||u||?) as ||u|| — 0. Then we have the

variation of constants formula
t
u(t) = e-A’U+/ e~ AU=T)g(S(r)U)dr.
0
If u, = u(nAt) then

Unt1 = S(At)un := Lu, + N(up), (3.1)

where

At
L=e"2 and Nis)= / e~ ABI=T)g(S(1)e)dr.
0

We now introduce Na¢(e) : IR? — IR? so that the numerical method may be
written

Un41 = Sk Un := LU, + Nag(Uy). (3.2)

By C'—closeness of S(At) and S}, we have

IN(¢) = Nac(o)ller = O(AL™H).
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Hence any results proving the existence of an invariant set for Equation 3.1
(and hence for Equation 2.1) which relies on the smallness of N(u) and D, N(u)
relative to properties of L can also be translated into results for Equation 3.2.
(A seperate argument is needed to show that the invariant sets of the mapping
Equation 3.1 are also invariant under Equation 2.1.) In this manner equilibria,
local phase portraits near equilibria and local unstable and stable manifolds of
equilibria can all be shown to persist, under numerical approximations satisfying
our basic assumptions, provided the equilibrium point is hyperbolic. Similar
ideas work in the vicinity of periodic solutions and quasi-periodic solutions. We
now outline the general framework in which all these objects may be studied.

3.2 Hyperbolic invariant sets

In this subsection we study equilibria, stable and unstable manifolds, local phase
portraits, periodic solutions and quasi-periodic solutions all of which we denote
by M. We will make suitable hyperbolicity assumptions but do not detail these
here: see [9] or [12] for details. Roughly speaking it is these conditions which
place us in the realm of problems where an energy loss mechanism is present
and outside that of the conservative physical systems treated in [6]. In all these
cases M can be constructed as a fixed point of a contraction mapping 7 :

MM = T M¥,

in an appropriate closed subset X of a Banach space B. For equilibria the Banach
space is the set of points in IR?; for unstable and stable manifolds B is a set of
Lipschitz graphs C(PIR?, (I — P)IR?) where P is an appropriate projection; for
construction of the phase portrait B is a set of sequences in IR?.

The mapping 7 is constructed from the mapping Equation 3.1. The deriva-
tion of 7 from Equation 3.1 is different for each of the invariant sets under
consideration and will not be elaborated here. The abstract formulation is cho-
sen to show a unifying framework for the analysis. Given 7 we may construct a
mapping 7a; by following, for each of the invariant sets mentioned, the deriva-
tion of 7 but using Equation 3.2 instead of Equation 3.1. This leads to the
mapping

M =T ME .

For all the invariant sets described two important facts follow from
C'—closeness, namely

sup ||T® — 7a:®||p = O(At™T), (3.3)
PeX

Lip{7a:} = Lip{7 } + O(At™*}); (3.4)

thus 7 is O(At"*1) close to T, as an operator from X into X and the Lipschitz
constants are similarly close. The following type of result may be proved using
this fact:
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Result 2. Consider all the invariant sets of Equation 3.1, and hence Equation
2.1, mentioned at the start of this subsection. Under suitable hyperbolicity
assumptions on them there exists Ma;, invariant for Equation 3.2 and hence
Equation 2.2, satisfying
IMa: — M||p = O(AL").

O
Sketch Proof Existence is proved as follows: 7 is set up to be a contraction
and, because it is constructed from Equation 3.1, it follows that 7 approaches
the identity as At — 0. This is because L = I and N = 0 if At = 0. Hence it
turns out that

Lip{T}=A=1-CAt< 1.
By Equation 3.4 we have
CAt

Lip{Ta:} = Lip{T} + O(At" ) < Ap; =1 - Tk
for At sufficiently small. Thus by Equation 3.3 we have
IM—=Masllp = |1 TM — TasMaillB,

< |ITM = TaM||g + || TatM — TarMad||B,

< KAt 4 Aad M — Mad||B,
2K At"

O

Thus we have outlined a very general approach to proving convergence of
hyperbolic invariant sets. The general technique shown in the proof is known as
the uniform contraction principle. See [9] and Chapter 6 of [13], for detailed ref-
erences to the use of this idea in the context of numerical analysis and dynamical

systems. The central individual in the development of the approach outlined is
W .-J. Beyn.

3.3 Non-hyperbolic invariant sets: Attractors

For non-hyperbolic objects results as strong as those just quoted for hyperbolic
objects do not hold in general. Nonetheless, for attractors it is still possible to
say something about the effect of numerical approximation. To illustrate this,
consider the Rossler equations

dz

e = —y— 2z, #0)= X,
dy B
E > z + y/5: y(O) == Y)
dz

= 1/5+2(z-5), z(0)=2Z.

dt
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Figure 7 shows numerically computed attractors for this system with initial data
(X,Y,Z) = (—8.0578,0.6288,0.0154). This point is chosen to be close to the
attractor so that transients are not present; the numerical attractors are thus
computed simply by running the numerical method from this point over a long
time interval and plotting a projection onto the z — y plane. The step size is
At = 0.00005 in (a) and is halved succesively for each subsequent figure. It is
clear that some form of convergence of the attractor is occuring as At is refined.

Nonetheless, the trajectories calculated in each figure are not close. This is
illustrated in Figure 8 where the solution leading to Figure 7 (d) is taken as
“exact” and the errors in trajectories from Figures 7 (a) — (c) calculated. Note
that the errors are O(1) by the end of the interval. Thus Figures 7 and 8 indicate
that there is something more to interpreting data from numerical simulations of

chaotic systems than simply asking that trajectories remain close. We now try
to make this precise.

11 il

y(t) y(t)
=5 -11
=1 31 =1 11
g o | 11
y(t) y(t)
=11 = |
=il | 11 <11 11

Figure 7. The Rossler attractor with four different At
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Figure 8. Errors in trajectories for the Rossler system

Result 3. Let Equation 2.1 have an attractor A. For any ¢ there is At.(¢€) such
that Equation 2.2 has an attractor .Aa; and

Aat CN(Ae) VAL < At,.
Thus

dist(Aas, A) — 0 as At — 0.
O

This shows that every computed point on the numerical attractor is close
to a point on the true attractor, for At sufficiently small. However A is not
contained in N(Aa¢,€) in general — it is necessary to make further assumptions
about the dynamics on A to obtain this implication. The most general of these
is contained in the following result, where W*"(e) denotes the unstable manifold
of an equilibrium point.

Result 4. Let Equation 2.1 have an attractor .4 and assume that
A =i w ),
veE

where £ is a set of hyperbolic equilibria. For any e there is At.(¢) such that
Equation 2.2 has an attractor Aa; and

AC N(Aai,€) VAL < At,.
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Thus
dist(A, Aa:) = 0 as At — 0.

See [9] and Chapter 7 of [13] for further elaboration of these results and for
a complete bibliography. The study of attractors under numerical perturbatign
has been led by P.E. Kloeden and J. Lorenz and by J.K. Hale and co-worker
important further developments along the lines of Result 4 have been made by
A.R. Humphries and I. Kostin.

3.4 Multistep methods as one-step methods

Multistep methods generate a dynamical system on IR*” where k is the numbe
of steps of the method. One way of doing this is as follows: define

sty ... 0

Then, for At sufficiently small, we may define §}M . R*? — IRFP by

~ ~

Vs =al 0, =0 (3.5)
Composing this map over several steps yields
[7n = ~gt(7 = §Zto...o§zt(~].

To apply the ideas we have developed for one-step methods we need to extract
a map on IR?. For strictly stable multistep methods this can be done, using
invariant manifold theory.

We illustrate this by considering the second order backward-differentiation

formula (BDF):
4 1 2Atf(Un+-2)
Uny2 — =Up =U, = —————=.
o el 3
We can write this as a one-step method as just described. However, an alternative
choice of variables for the one-step formulation is particularly helpful here: we

introduce the new variables W,, and V,, by

2 1
g n = n+1_§Un7 V= n+1_Un'

Then a short calculation reveals that

Vari = §Va+ 3Atf(Woy1 — 1Vas)

Wn+1 == Wn H Atf(Wn.-f-l S %Vn-{-l)-
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The existence of an exponentially attractive invariant manifold, which is repre-
sentible as a graph h : IR? — IR? on which v = At h(w), may be proved. To
be precise, if f is sufficiently smooth and with compact support then there is a
function h : IR? — IR? such that

Yaq1 = At h(Wn+1) e — AL h(Wn),

IVa — At h(Wy)| < C(Vo, Wo)(1/6)".

On the manifold we have

At
Wn+1 = Wn + Atf(Wn+1 " ?h(Wnﬁ—l))

and so we have defined a one-step method on IR?, namely:
Wn+1 = Sit Wn.

The map S}, on IR? is C? close to S(At). Hence the foregoing one-step theories
can be applied to the multistep method. (Note that, provided we are consid-
ering compact invariant sets, smooth modification of f outside a bounded set
can always be made to yield a function with compact support; in this way the
invariant manifold ideas can be used).

The ideas we have outlined were first introduced by U. Kirchgraber. They
may be generalized to all strictly stable multistep methods and to an appropriate
class of general linear methods. See Chapter 4 of [13] for further details and for
references to the literature.

3.5 Sectorial evolution equations

We now indicate how the foregoing theories can be adapted to partial differential
equations. We consider the equation

= + Au=F(u), u(0)="U,

dt

where A is a sectorial operator in a Hilbert space H — the precise definition is
given in [10] as are many references to appropriate literature. For the purposes of
this survey it is sufficient to think of the example where A is —A with Dirichlet
boundary conditions so that D(A) = H2(Q) N H{(Q). We equip H with the
inner-product (e, e) and induced norm | e |. If we assume, for some v € (0, 1),

|F(u) — F(v)] < K(R)|A"(u — v)| VYu,v € Ba+(0, R),

then local existence and uniqueness follow for U € D(A?). For our illustrative
example of A we have D(A%) = HL(Q).
A dissipativity condition, such as

— [AY?uP? 4 (F(u),u) < o® — B2Juf?, (3.6)
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will ensure global existence. In this case we define the semigroup S(t) : D(A7) —
D(A7) so that
ult) = S(t),

and consider perturbations to the problem (numerical or otherwise) yielding an
approximate semigroup S*(t) : D(AY) — D(A"). If the discretization is in space
only then ¢ € IRT whilst if the discretization is in time alone or in space and
time then ¢t € AtZt. We let S denote IR* or AtZ* as appropriate.

There is no concept of truncation error in this abstract setting since the space
on which S(t) yields a dynamical system may not possess sufficient soothness.
Hence the approach to hyperbolic invariant sets outlined before cannot be used
without modification. However, one typically has finite-time error estimates of
the form (T, R)h

|A7(S(1)U — S| < m2n,
C(T, R)k(h)
{52 ’

V(t,U) € (0,T1( |8 x Bax(0,R).

Here k(h) — 0 as h — 0.

For hyperbolic objects contraction arguments can still be set up for the semi-
groups over fixed time-intervals [0, 7] rather than [0, At]. Again it is necessary
to use a variation of constants formula to write

|47 (Du[S()U — S*()U))] <

:
u(t) = s +/ C—A(t_T)F(S(T)U)dT
0

and hence to formulate a map on D(A7) for u, = u(nT). In fact

Un41 = Lup + N(up)
with "
L=e4T and N(e)= / e AT-TIF(S(1)e)dr.
0 _

The perturbed problem generates a map which is O(h) close to L e+N(e) in
C°(D(A™), D(A")) with the sup-norm topology and O(x(h)) close in C*(D(A?),
D(A")) with the induced sup-norm topology. For fixed T' the time singularity
integrates out of the error estimates between the two maps.

The basic method for studying hyperbolic invariant sets is similar to those
used before but with fixed 7" > 0. Now, since T is fixed independent of the
discretization constants, the contraction constant is O(1). Similar arguments
to those used for ODEs, employing the uniform contraction principle and now
using the finite time C?! error estimates instead of truncation error bounds, yield
convergence of hyperbolic invariant sets. To conclude the proofs it is simply
necessary to establish that the invariant sets of L e +N(e) are also invariant
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under S(t), and similarly for S*(t), for t # T. For attractors the same proofs
may be used as in finite dimensions.

References to the literature concerning perturbation of sectorial evolution
equations may be found in [10]. Central in the development of this subject area
has been the work of S. Larsson and co-workers.

3.6 Adaptive time-stepping algorithms

In real software codes the time-step is varied adaptively as part of the integration
procedure. Such methods, when based on one-step integration schemes, can often
be formulated as mappings on IR? x IR of the form

Un+1 = Sl(Un)Atn)) UO = U)

Bilgyg =T, My 1), Ao = Alinis:

Here 7 is a parameter, input by the user, which controls estimates of the local
error commited at each step. The function S}(U,t) = S}U defined before. We
will not go into the details of realistic models for I here. It suffices to say that
I' is chosen to ensure that an estimate of the local error committed at each
step 1s O(TAt,). Note that in practice I' is discontinuous due to step-rejections.
Further non-smoothness in derivatives of I is introduced by maximum step-size
and step-size ratio bounds.

Hi, = Z;l_—jol At; then the heuristics underlying the algorithm are such that
U, should approximate u(t,) to O(7). However, for a fairly realistic model T of
what is used in practice, the best available result concerning the convergence of
such schemes is probabilistic in nature:

Result 5. [11] Let f satisfy certain genericity and smoothness conditions, as-
sume that it has compact support and consider a certain choice of I “which
incorporates step-rejection, maximum step-size ratio and maximum step-size.
If U is chosen at random uniformly in B(0, R) with respect to Lebesque mea-
sure then, with probability one, there is At, sufficiently small such that, for all
Atinit € (O)Atc)v

U — u(tn)|| < C(T,U,R)r, 0<tn<T.

O

Thus there are initial data (of zero measure) in B(0, R) for which convergence
may not occur. These are initial data points for which the time-step may become
large, because the local error estimate is small, even when the true local error
is not small. Furthermore, the error constant C(7,U, R) is not uniform across
the bounded set B(0, R) — compare this with the classical case of Equation 2.3.
Hence it is not at all clear how to progress further with analysis of this problem
to encompass dynamical systems and long time intervals where sets of initial




164 A. Stuart

data must be considered, possibly including points for which no error bound
exists.

A variety of other authors have considered finite-time convergence and dy-
namical systems analysis for adaptive time-stepping algorithms prior to
Result 5. Stetter [7] avoided the problems leading to the probablistic nature
of Result 5 simply by assuming that f and/or U are chosen so that the un-
desirable initial data points are avoided. This implies that, for some constant
K= KU, Al,),

At < KT. (3.7)

Stoffer and Nipp in [8] avoided the issue by modifying I' to enforce Equation 3.7;
they were then able to prove some very strong results about the effect of adaptive
time-stepping algorithms on periodic solutions. The assumption Equation 3.7
implies that, for some constant C' = C(Uy,41),

IS(Un+1, Atns1) = S'(Uns1, Atng1)|| < CTALay1. (3-8)

In [4] the assumption Equation 3.8 was made and the effect of discretization
studied on the long-time behaviour of dissipative and contractive dynamical
systems.

In summary the situation is this: for realistic models of I" only very weak
probabilistic finite-time convergence results exist. If certain assumptions (such as
Equations 3.7 and 3.8) are made then stronger results can be proved. However it
is unclear how to justify these assumptions in general. Thus a coherent analysis
of variable time-stepping has yet to emerge.

4 Stability

We discuss three classes of nonlinear problem, starting with the classical theory
of contractive systems which is surveyed in [1] and progressing to the dissipative
and gradient theories which are surveyed in [12] and Chapter 5 of [13]. The
results concerning contractive problems are straightforward modifications of the
work of G. Dahlquist and of K. Burrage and J. Butcher from the 1970’s. The
results concerning dissipative and gradient systems may be found in the work
of C.M. Elliott, of A.T. Hill, and of A.R. Humphries and A.M. Stuart. It is
often desirable that numerical methods mimic the gross asymptotic features of
Equation 2.1 (for example, ultimate boundedness) for intervals At € [0, At]
with At, independent of initial data. The fact that this does not occur for most
methods may be understood by studying spurious solutions; see Chapter 5 of
[13]. Active research into spurious solutions has died down, but the existing body
of papers provides important motivation for the construction of methods, such
as those detailed in Results 7,8,10,11,13 and 14, which avoid spurious behaviour.

The results now stated are all followed by the expression (ODE), (RKM) or
(LMM) depending upon whether they apply to the original problem
Equation 2.1, its Runge-Kutta approximation or its linear multistep approxi-
mation.
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4.1 Contractive problems

Let Equation 2.6 hold:
Jp>0:(f(u) — f(v),u—v) < —pllu—2||?, VYu,veR’.

Without loss of generality we assume that the unique equilibrium point of

fis 0.
Result 6. (ODE) w(U) = {0} for all U € IR”.
O

Result 7. (RKM) If the method is B—stable then, for any At > 0, w(U) = {0}
for all U € IRP.

O

Result 8. (LMM) If the method is A—stable then, for any At > 0, w(U) = {0}
for all U € R*.

&

Note that B—stability is essentially equivalent to AN —stability (for non-
confluent methods) [1] and thus that the preceeding three results show the re-
markable fact that linear stability theories give a satisfactory understanding of
a certain class of contractive nonlinear problems.

However, class Equation 2.6 admits only trivial limiting behaviour in Equa-
tion 2.1. To generalize Equation 2.6 it is natural to consider:

Je > 0: (f(u) — f(v),u—v) <cllu—2v|?, Yu,veIRP. " (4.1)

But this alone i1s too broad a class to work in — exponentially growing solu-
tions with unbounded limiting behaviour are admitted. Hence we consider other
possibilities.

4.2 Dissipative problems

The first such possibility is to consider dissipative problems where
Ja, 8 > 0: (f(u),u) < o® — B2||ul|?, VYueIRP. (4.2)

The Lorenz equations satisfy this condition showing that complicated limiting
behaviour is certainly present within this class — see Figures 5 and 6. The
Navier-Stokes equations also satisfy an infinite-dimensional analogue of this con-
dition. The following result holds for Equation 2.1 under Equation 4.2.
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Result 9. (ODE) The set B := B(0; § + ¢) is positively invariant and has basin
of attraction IR?. Hence w(B) is a global attractor.

a

Remarkably, the numerical stability theories appropriate for contractive non-
linear problems also turn out to be appropriate for this class of dissipative prob-
lems.

Result 10. (RKM) If the method is B—stable then there is a constant C' > 0
such that, for any At > 0, the set Ba: := B(0; % + CAUt) is positively invariant
and has basin of attraction IR”?. Thus w(Ba¢) is a global attractor.

O

Result 11. (LMM) If the method is A—stable then there are constants C, K > 0
such that, for any At > 0, the set Ba¢x := B(0; K §+CAt) is positively invariant

and has basin of attraction IRF?. Thus w(Ba¢k) 1s a global attractor.

4.3 Gradient problems

Another important class of nonlinear problems are gradient systems. These arise
in many physical processes where dynamic energy minimization is present and
are also important in the theory of dynamical systems. We consider gradient
systems under the condition that all equilibria are hyperbolic and under the

well-posedness assumption Equation 4.1. Specifically let the following conditions
hold:

( JF € CY(IR?,IR) with F(u)> 0, 3
limjjy|~ o F(u) =400 and f(u)=—-VF(u)

> . (4.3)
The set &  of equilibria is hyperbolic

| Equation 4.1  holds

Note that, under Equation 4.3,

d 2
T Fu®) = —|If @)
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Using this fact, the following result follows:

Result 12. (ODE) For any U € IR? there is v € £ such that w(U) = {v}.

a

The stability theory for gradient systems is not as well-developed as for dissi-
pative problems. We consider only the one and two stage theta methods (which
are A—stable for § € [1/2,1]) and the BDF methods of order < 3 (which are
A(a)—stable.

Result 13. (RKM) If the one or two-stage method has 6 € [1/2,1] (A—stable)
then, for At € (0,1) and for any U € IR?, there is v € £ such that w(U) = {v}.

O

Result 14. (LMM) If the BDF methods of order < 3 are used (A(«)— stable)
then for At € (0,1) and for any U € IR*?, there is v € £ such that w(U) = {v®e},
where e is the unit vector in IR

O

Once again the preceeding results show important connections with the lin-
ear theory. Note that gradient systems necessarily have symmetric linearization
so that it is not entirely surprising that A(«) stability plays an important role.
Further work to generalize Results 13 and 14 to other schemes would be inter-
esting.

4.4 Sectorial evolution equations

For dissipative PDEs such as the Kuramoto-Sivashinksy equation, the Navier-
Stokes equation, various reaction-diffusion equations and the Cahn-Hilliard equa-
tion, the effect of a variety of space and time discretizations on dissipativity have
been investigated. For gradient PDEs such as the Cahn-Hilliard equation and
Allen-Cahn equation, the effect of space and time discretization on the gradi-
ent structure have been investigated. Much of these investigations have centred
around the work of C. Foais, R. Temam and co-workers and C.M. Elliott and
co-workers.

4.5 Adaptive time-stepping algorithms

An appropriate generalization of stability in this context is to seek numerical
methods which replicate basins of attraction for Equation 2.1 wunder
Equation 2.6, Equation 4.2 or Equation 4.3 for an interval of the tolerance 7
which is independent of initial data and/or stiffness. Thus 7 plays the role of At
in the fixed time-step theories.
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Such stability results do exist for some simple adaptive time-stepping schemes
although a complete theory has not emerged. It is an interesting fact that
for contractive, dissipative and gradient problems some schemes are stable in

adaptive implementations which are not stable in fixed-step mode. See [12] and
(14].

5 Summary

In summary, we have highlighted the differences in philosophy between the clas-
sical theories of numerical analysis and theories of dynamical systems. We have
shown that natural generalizations of the classical theories of numerical analysis
can be made to encompass the dynamical systems context, especially for equa-
tions with an energy loss mechanism. These generalizations build heavily on the
classical theories, especially in the case of stability. A very general approach
to perturbation theory for hyperbolic invariant sets and for attractors exists.
This theory applies to one-step and multistep methods for ordinary differential
equations and has been extended to a broad class of partial differential equations.

The primary limitation of the convergence theory is for non-hyperbolic attrac-
tors. However, this limitation exists even in the context of differential equations
where the effect of smooth perturbation to the vector field f is not completely
understood. The stability theory is fairly complete for most of the systems men-
tioned, with the exception of gradient systems where much remains to be done.

A major hole in the theory of numerical analysis for dynamical systems is
for adaptive time-stepping algorithms, both for convergence and stability. Some
1solated papers exist in this area but a coherent and general view has yet to
emerge. This area certainly presents hard mathematical challenges; it might
potentially influence software development, but this is difficult to predict.

Another area where interesting questions concerning the dynamics.of numer-
ical methods remains is that of conservative and Hamiltonian systems where,
typically, hyperbolicity does not hold for invariant sets. No satisfactory and
complete theory exists which enables us to interpret data from long-time sim-
ulations of these problems. In contrast to the convergence theory outlined in
this paper for dynamical systems of energy-loss type, that for conservative and
Hamiltonian systems will necessarily involve an interaction between structural
properties of the method — such as conservation of energy or symplectic two-
form — and its long-time dynamics.

A final area where further active or important research may be anticipated
1s that of backward error analysis and shadowing. A variety of scattered, but
important, results already exist in this field — see [6] and [13] for further refer-
ences — but a wider range of results, and consequently a more complete picture,
1s likely to emerge over the next few years.

Thus the formulation, and study, of new and interesting questions concerning
numerical approximation of initial-value problems has been an active research
area over the last decade and it seems likely that there are sufficient open, in-
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teresting and important questions that it will continue to be an active field over
the next decade.
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