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We study the problem of parameter estimation for time-series possessing two, widely
separated, characteristic time scales. The aim is to understand situations where it is de-
sirable to fit a homogenized single-scale model to such multiscale data. We demonstrate,
numerically and analytically, that if the data is sampled too finely then the parameter fit
will fail, in that the correct parameters in the homogenized model are not identified. We
also show, numerically and analytically, that if the data is subsampled at an appropriate
rate then it is possible to estimate the coefficients of the homogenized model correctly.

The ideas are studied in the context of thermally activated motion in a two-scale
potential. However the ideas may be expected to transfer to other situations where it is
desirable to fit an averaged or homogenized equation to multiscale data.

KEY WORDS: parameter estimation, multiscale diffusions, stochastic differential
equations, homogenization, maximum likelihood, subsampling

1. INTRODUCTION

Parameter estimation for continuous time stochastic models is an increasingly
important part of the overall modeling strategy in a wide variety of applications.
It is quite often the case that the data to be fitted to a diffusion process has a
multiscale character. One example is the field of molecular dynamics, where it
is desirable to find effective models for low dimensional phenomena (such as
conformational dynamics, vacancy diffusion and so forth) which are embedded
within higher dimensional time-series. Another example is the ocean-atmosphere
sciences where it is desirable to find effective models for large-scale structures,
whilst representing the small-scales stochastically. The multiscale structure of the
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data in these problems renders the problem of parameter estimation very subtle,
and great care has to be taken in order to estimate the coefficients correctly. The
aim of the paper is to shed light on this estimation problem through the study of
a simple class of model problems, typical of those arising in molecular dynamics.
In particular, we will work under the assumption of scale separation.

Suppose that we are presented with data (either real or from a computational
model) from a physical system which possesses many characteristic length and
time scales. There are two important questions which then arise naturally:

• Question 1. Is the data compatible with the assumption of scale separation;
if yes, what is the size of the small parameter ε whose inverse measures
this scale separation?

• Question 2. Given knowledge of ε, how should the data be used to facilitate
parameter estimation in a single-scale, coarse grained model which does
not contain the small scale separation parameter ε?

Question 1 is a hard and challenging problem which we leave for future study.
In this paper we study Question 2. To generate the data we employ multiscale
diffusion processes. We use this data to fit a single-scale homogenized equation,
investigating how to use the data to obtain the correct effective or single-scale
model. The key issue is that the data is only compatible with the effective model
if it is subsampled at an appropriate rate. On fine scales the underlying multiscale
character of the data dominates.

There are two forms of multiscale diffusions which are of particular interest
in the context of parameter estimation. The first gives rise to averaging for SDEs,
and the second to homogenization for SDEs. For averaging one has, for ε � 1,

dxε(t) = f (xε(t), yε(t)) dt + α (xε(t), yε(t)) dU (t), (1.1a)

dyε(t) = 1

ε
g(xε(t), yε(t)) dt + 1√

ε
β(xε(t), yε(t)) dV (t), (1.1b)

with U, V standard Brownian motions. Averaging f and ααT over the invariant
measure of the yε equation, with xε viewed as fixed, gives an averaged SDE for x .
The fast process y, with timescale ε, is eliminated. For homogenization one has

dxε(t) =
(

1

ε
f0(xε(t), yε(t)) + f1(xε(t), yε(t))

)
dt

+α(xε(t), yε(t)) dU (t), (1.2a)

dyε(t) = 1

ε2
g(xε(t), yε(t)) dt + 1

ε
β(xε(t), yε(t)) dV (t), (1.2b)

where it is assumed that f0 averages to zero against the invariant measure of the
fast process yε with xε fixed. Now yε has time-scale ε2 and is eliminated. The
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fluctuations in f0, suitably amplified by ε−1, induce O(1) effects in the homog-
enized equation for xε . In both cases (1.1) and (1.2) it is possible to show (5) that
the process xε(t) converges in law, as ε → 0, to the solution of an effective SDE
of the form

dx(t) = F(x(t)) dt + A(x(t)) dU (t). (1.3)

Explicit formulae can be derived for the effective coefficients F(x) and A(x)
in the above equation.(5,25) A natural question that arises then is how to fit an SDE
of the form (1.3) to data generated by a multiscale stochastic equation of the form
(1.1) or (1.2), under the assumption of scale separation, i.e. when ε � 1. This
paper is a first attempt towards the study of this interesting problem, for a specific
class of SDEs of the form (1.2).

Our basic model will be the first order Langevin equation

dxε(t) = −∇V

(
xε(t),

xε(t)

ε
; α

)
dt +

√
2σdβ(t), (1.4)

where β(t) denotes standard Brownian motion on R
d and σ is a positive constant.

The two-scale potential V ε (x, y; α) is assumed to consist of a large-scale and a
fluctuating part:

V (x, y; α) = αV (x) + p(y). (1.5)

As we show explicitly in (5.4) this set-up puts us in the framework of homoge-
nization for SDEs.

Under (1.5), the SDE (1.4) becomes

dxε(t) = −α∇V (xε(t)) dt − 1

ε
∇ p

(
xε(t)

ε

)
dt +

√
2σ dβ(t). (1.6)

If p is a sufficiently smooth periodic function, which, for simplicity, we take to
have the same period L in all directions, then it is well known (see e.g. Refs. 5,
24) that, as ε → 0, the solution xε (t) of (1.4) converges in law to the solution of
the SDE

dx(t) = −αK∇V (x(t)) dt +
√

2σ K dβ(t), (1.7)

with

K =
∫

[0,L]d

(I + ∇yφ(y)) (I + ∇yφ(y))T µ(dy) (1.8)

and

µ(dy) = ρ(y) dy = 1

Z
e−p(y)/σ dy, Z =

∫
[0,L]d

e−p(y)/σ dy. (1.9)
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Fig. 1. V ε (x, x/ε) = 1
2 x2 + sin ( x

ε
) with ε = 0.1 and averaged potential V (x) = 1

2 x2.

The field φ(y) is the solution of the Poisson equation

−L0φ(y) = −∇y p(y), L0 := −∇y p(y) · ∇y + σ�y, (1.10)

on [0, L]d with periodic boundary conditions. The function ρ(y) spans the null-
space of L∗

0, the L2-adjoint of L0. The effective diffusion tensor K is positive
definite and the diffusivity is always depleted.(23) Physically this occurs because the
homogenized process must represent the cost of traversing the many small energy
barriers present in the original multiscale problem but which are not explicitly
captured in the homogenized potential. In Fig. 1 we plot the potential V ε(x, x/ε),
as well as the average potential V (x), illustrating this phenomenon. In fact, the
effective diffusivity � = σ K decays exponentially fast in σ as σ → 0. See Ref.
7 and the references therein. Thus the original and homogenized diffusivities are
exponentially different at small temperatures.

To illustrate these facts explicitly, consider the problem in one dimension,
d = 1. In this case the limiting equation takes the form

dx(t) = −AV ′(x(t)) dt +
√

2�dβ(t). (1.11)

The effective coefficients are

A = αL2

Z Ẑ
and � = σ L2

Z Ẑ
, (1.12)
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where

Ẑ =
∫ L

0
ep(y)/σ dy, Z =

∫ L

0
e−p(y)/σ dy. (1.13)

Notice that L2 ≤ Z Ẑ by the Cauchy-Schwarz inequality. This explicitly shows
that the homogenized equation in one dimension comprises motion in the average
potential V (x), at a new slower time-scale contracted by A/α.

The main results of the paper can be summarized as follows. Assume that
we are given a path {xε(t)}t∈[0,T ] of Eq. (1.6) and that we want to fit an SDE of
the form (1.11) to the given data, estimating the parameters A, � as Â, �̂. Then
the following is a loose statement of our main results; these will be formulated
precisely, and proved, below.

Theorem 1.1. If we do not subsample, then the estimators Â and �̂ are asymp-
totically biased – they converge to α, σ .

Theorem 1.2. If the sampling rate is between the two characteristic time scales
of the SDE (1.4) then the estimators Â and �̂ are asymptotically unbiased – they
converge to A, �.

In econometrics and finance, the problem of estimating parameters for contin-
uous time diffusion processes in the presence of small scale fluctuations (market
microstructure noise) has been considered by Aı̈t-Sahalia and collaborators(1,2)

and more recently in Ref. 3. In that work the microscale is input as an independent
white observational noise that is superimposed on-top of a single-scale diffusion
process. We have a somewhat different framework: we work in the context of
coupled systems of diffusions exhibiting multiple scales. Our aim is to fit a single-
scale homogenized diffusion to data. Models similar to the ones considered in
this paper have been studied extensively in finance, see Ref. 12 and the references
therein. In that book there is discussion of parameter estimation for multiscale dif-
fusions, with emphasis on the estimation of the rate of mean reversion of volatility
from historical asset price data; see Ref. 12, Chap. 4. Despite differences from
the framework used in Refs. 1–3 to study problems arising in econometrics and
finance, similarities with our work remain. Indeed, as we will see later on, trying
to fit the models on the basis of data sampled at too high a frequency leads to
incorrect parameter inference; furthermore, there is an optimal subsampling rate
for the data to obtain correct inference.

Various numerical algorithms for diffusions with multiple scales have been
developed(17,27) and analyzed.(10,14) Those papers are finely honed to optimize
the fitting of the homogenized diffusion in situations where the multiscale model
is known explicitly. In contrast, in this paper we introduce multiscale diffusions
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primarily as a device to generate multiscale data; we do not assume that the
multiscale model is available to us when doing parameter estimation. This enables
us to gain understanding of parameter estimation in situations where the multiscale
data is given to us from experiments, or comes from a model where the scale-
separation is not explicit. Two recent papers contain numerical experiments relating
to the extraction of averaged or homogenized diffusions from data generated by a
multiscale diffusion; see Refs. 6, 9.

The rest of the paper is organized as follows. In Sec. 2 we present the
estimators that we will use. In Sec. 3 we present the main results of this paper. In
Sec. 4 we present various numerical experiments illustrating the theoretical results
presented in the previous section. Section 5 contains some technical results that are
needed for the proofs of our theorems. Section 6 contains the proofs of two central
propositions concerning the behavior of the multiscale diffusion when observed
on time-scales long compared with the fast time-scales of the process, but small
compared with the slow time-scales of the process. Section 7 is devoted to the
proofs of our theorems. Finally, in Sec. 8 we present some concluding remarks.

2. THE ESTIMATORS

In this section we describe various estimators for the parameters arising in
Eq. (1.7). We use 〈·, ·〉 to denote the standard inner-product on R

d and | · | the
induced Euclidean norm.

We assume that we are given a path x = {x(t)}t∈[0,T ], or samples from such
a path, x = {xn}N

n=0, with xn = x(nδ). For simplicity we aim to fit the equation in
the form

dx(t) = −A∇V (x(t)) dt +
√

2�dβ(t), (2.1)

where A and � are scalars. In one dimension this reduces to the form (1.11). Note
that in general this is only the correct form for the homogenized equation in one
dimension since, typically, the average potential has a matrix as a pre-factor, as in
(1.7). However it suffices to exemplify the main ideas in this work, and simplifies
the presentation.

The standard way to estimate the diffusion coefficient is via the quadratic
variation of the path:

�̂N ,δ(x) = 1

2Nδd

N−1∑
n=0

|xn+1 − xn|2. (2.2)

The standard way to estimate drift coefficients is via the path-space likelihood of
(2.1) with respect to a pure diffusion with no drift, namely (see, for example, Refs.
4, 20)

L(x) ∝ exp{−I (x)/4�}
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where

I (x) =
∫ T

0
(|A∇(x(t))|2dt + 2A〈∇V (x(t)), dx(t)〉).

Maximizing the log-likelihood then gives the estimate Â of A given by

Â(x) = −
∫ T

0 〈∇V (x(t)), dx(t)〉∫ T
0 |∇V (x(t))|2dt

. (2.3)

If the data is given in discrete but finely spaced increments, as often happens in
practice, then this estimator can be approximated to yield

ÂN ,δ(x) = −
∑N−1

n=0 〈∇V (xn), (xn+1 − xn)〉∑N−1
n=0 |∇V (xn)|2δ . (2.4)

A key issue in this paper is to understand how to chose δ as a function of ε to ensure
that data generated by (1.4) can be effectively fit to obtain the correct homogenized
drift coefficients in equations such as (2.1), via the estimators (2.2) and (2.4).

The gradient structure of the SDE (2.1) can be used to obtain a second
estimator for the drift coefficients. This second estimator, which we now derive, is
of interest for two different reasons: firstly it may be useful in practice as it may lead
to smaller variance in estimators; secondly it highlights the fact that working out
how to sample the data to obtain the correct estimation of the diffusion coefficient
alone will lead to correct estimation of the drift parameters, at least for the class
of gradient-structure SDEs that we consider in this paper; see Theorem 3.8. The
second estimator requires the input of an estimator �̂ for the diffusion coefficient
and is

Ã(x) = �̂

1
T

∫ T
0 �V (x(t)) dt

1
T

∫ T
0 |∇V (x(t))|2dt

. (2.5)

Approximating to allow for the input of discrete-time data gives

ÃN ,δ(x) = �̂

∑N−1
n=0 �V (xn)δ∑N−1

n=0 |∇V (xn)|2δ . (2.6)

In Proposition 3.3 below we show that, under appropriate assumptions on the
potential V (x), Ã(x) is a natural approximation to Â(x). This is because Ã follows
from Â by an application of the Itô formula to the numerator of (2.3).

3. STATEMENT OF MAIN RESULTS

In this section we present the main results of our paper. Throughout the paper
we make the following standing assumptions on the drift vector fields:
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Assumptions 3.1. The potentials p and V satisfy:

• p(y) ∈ C∞(Rd , R
d );

• V (x) ∈ C∞(Rd , R);
• |∇V (x1) − ∇V (x2)| ≤ CLip|x1 − x2| ∀x1, x2 ∈ R

d ;
• ∃a, b > 0 : 〈−∇V (x), x〉 ≤ a − b|x |2 ∀x ∈ R

d ;
• e− α

σ
V (x) ∈ L1(Rd , R

+).

Notice that we have taken the field p(y) to have period 1 in all directions. This
assumption is made only for notational simplicity. In the numerical experiments
reported in Sec. 4 we actually use 2π -periodic functions.

Remark 3.2. The third assumption will be used primarily to deduce that, by
choice of origin for V ,

|∇V (x)| ≤ CLip|x |. (3.1)

This assumption could be relaxed and replaced by a polynomial growth bound;
however this complicates the analysis without adding new insight. Similarly it is
not necessary, of course, that V and p are C∞. The fourth condition, however, is
essential: it drives the ergodicity of the process which we use in a fundamental
way in the analysis of the drift parameter estimators; it would not, however, be
fundamental for estimation of diffusion coefficients alone. The fourth condition
implies the fifth, which is simply the requirement that the invariant measure is
indeed a probability measure; we state the two conditions separately for clarity of
exposition.

The first result shows that the second estimator for the drift coefficient, defined
in (2.6), is asymptotically equivalent to the maximum likelihood estimator.

Proposition 3.3. Let x = {x(t)}t∈[0,T ] satisfy (2.1). If �̂ = � then the estimator
Ã(x) defined in (2.6) is asymptotically equivalent to the maximum likelihood
estimator Â:

lim
T →∞

Ã(x) = Â(x), a.s.

The next result shows that, without subsampling, the parameter estimators for
the homogenized model will be asymptotically biased: they recover the parameters
from the unhomogenized equations.
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Theorem 3.4. Let xε(t) be the solution of (1.6) with xε(0) distributed according
to the invariant measure of the process. Then the estimator (2.3) satisfies

lim
ε→0

lim
T →∞

Â(xε) = α a.s. (3.2)

Fix T = Nδ in (2.2). Then for every ε > 0 we have

lim
N→∞

�̂N ,δ(xε) = σ a.s. (3.3)

Now consider the one dimensional problem

dxε(t) = −αV ′(xε(t)) dt − 1

ε
p′

(
xε(t)

ε

)
dt +

√
2σdβ(t). (3.4)

The next two results show that, with appropriate subsampling, the estimators
recover the correct drift and diffusion coefficients for the homogenized model
(1.11) when taking data from the unhomogenized Eq. (3.4).

Theorem 3.5. Let xε(t) be the solution of (3.4) with xε(0) distributed according
to the invariant measure of the process. Further, let δ = εζ , ζ ∈ (0, 1) and N =
[ε−γ ], γ > ζ , where [·] denotes the integer part of a number. Then

lim
ε→∞ ÂN ,δ(xε) = A in law, (3.5)

where A is given by (1.12).

Theorem 3.6. Let xε(t) be the solution of (3.4) with xε(0) distributed according
to the invariant measure of the process. Fix T = Nδ with δ = εζ and ζ ∈ (0, 1).
Then

lim
ε→0

�̂N ,δ(xε) = � in law , (3.6)

where � is given by (1.12).

Remarks 3.7.

• The two previous results require ε/δ → 0 as ε → 0. In view of the fact
that the fast time-scale is O(ε2) (see Eq. (5.4b)) it might be expected that
this could be relaxed to ε2/δ → 0 as ε → 0. However we have not been
able to prove this, and serious obstructions appear to prevent this.

• The value of ζ which optimizes the error in Theorem 3.5 is ζ = 2/3.
This appears to be a tight estimate, if the Euler approximation (2.4) to the
estimator (2.3) is used to estimate the data.
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• The value of ζ which optimizes the error in Theorem 3.6 is ζ = 1/2. This
may not be a tight estimate. Indeed if a conjectured improvement can be
made on one of our estimates, then ζ = 2/3 becomes the optimal choice.

See Remark 5.9 for further discussion of all of these points.

The final result concerns the second drift estimator and again concerns input
of data from the unhomogenized Eq. (3.4) into the parameter estimator for the
homogenized Eq. (1.11). It requires an estimate of the diffusion coefficient, �̂. If
�̂ = σ , then we estimate the drift coefficient incorrectly with Ã(xε); on the other
hand, if �̂ = �, then the estimator Ã(xε) gives the drift of the homogenized equa-
tion. (To see the last result recall that A/� = α/σ , see (1.12)). Consequently, for
multi-scale gradient systems, it is sufficient only to subsample in a fashion which
leads to the correct diffusion coefficient. This offers a clear computational advan-
tage: the rate of subsampling does not need to be considered for drift parameter
estimation, provided the second estimator Ã is used.

Theorem 3.8. Let xε(t) be the solution of (3.4) with xε(0) distributed according
to the invariant measure of the process. Assume that the diffusion coefficient has
been estimated to be �̂. Then

lim
ε→0

lim
T →∞

Ã(xε) = �̂

σ
α a.s.

The proofs of our theorems are based on a combination of limit theorems
for continuous time ergodic Markov processes together with results from
homogenization theory. We quite often employ the gradient structure of the SDE,
in particular the fact that the invariant measure is a Gibbs measure. It is not
immediately clear how to extend the results to non-gradient SDE. For the proof
of Theorems 3.5 and 3.6 we need to perform a careful asymptotic analysis of
solutions to (1.6) for two small parameters ε and δ. We accomplish this by using
quantitative versions of the ergodic theorem and of the martingale central limit
theorem; see Propositions 5.7 and 5.8.

4. NUMERICAL RESULTS

In all cases we solve the multiscale SDE (1.4) using the Euler-Marayama
scheme(19) for a single realization of the noise, with a time-step �t sufficiently
small so that the error due to the discretization is negligible; this requires that
the time-step is small compared with ε2, the fastest scale in the problem. We
also employ a sufficiently long time interval so that the invariant measure is well
sampled by the single path. Since the convergence to the invariant measure is
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uniform in ε → 0, this is not prohibitive. We then use the data generated from
the multiscale process as input to the estimators for the homogenized diffusion
(1.7). We present numerical results for three model problems: a one dimensional
polynomial potential of even degree, a one dimensional bistable potential and a
two dimensional quadratic potential. In all three cases we perturb the large-scale
part of the potential V by small-scale fast oscillations, usually in the form of a
cosine potential p.

We present two types of numerical results. Note that δ, the time interval
between two consecutive observations, is the inverse sampling rate. In the first
we use δ = �t as the time interval between two consecutive observations in
the estimators. In the second we subsample the data, using δ > �t and study
how the estimated coefficients behave as a function of the subsampling. We use
the data generated from our simulation in the estimators (2.4) and (2.6) to es-
timate the drift coefficient and in (2.2) to estimate the diffusion coefficient of
(1.11). For the most part we work in one dimension and fit a single drift and
diffusion parameter so that (1.7) becomes (1.11). When we work in more than
one dimension, or estimate more than just a single drift or diffusion param-
eter, we use natural generalizations of the estimators defined in the previous
section.

Let us summarize the main conclusions that can be drawn from the numerical
experiments; recall that �t � ε2. First, if we choose δ = �t , that is, if we don’t
subsample, then the resulting estimators do not generate the correct estimates of
the homogenized coefficients. If, on the other hand, we subsample with ε2 � δ �
O(1), then the estimators generate the values of the parameters of the homogenized
equation. Furthermore, there is an optimal sampling rate: there exists a δ∗ which
minimizes the distance between the homogenized value of the parameter and the
value generated by the estimator. The optimal sampling rate depends sensitively
on σ . It is also of interest that, in higher dimensions, the optimal sampling rate
can be different for different parameters.

The above observations appear to hold independently of the detailed form of
the large-scale part of the potential V (provided, of course, that it satisfies appro-
priate convexity conditions to ensure ergodicity). In addition, the performance of
the estimators seems to be the same irrespective of the dimension of the problem.

Another interesting observation is that the second estimator for the drift
coefficient (2.6) performs at least as well as the maximum likelihood estimator
(2.4), and in some instances outperforms it.

4.1. Failure without Subsampling

In this section we study the estimators Â and �̂ when the data is given from
the solution of Eq. (1.6) with ε � 1 and �t = δ–no subsampling is used. We use



752 Pavliotis and Stuart

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

ε

A

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

ε
Σ

a. A b. Σ

Fig. 2. Estimation of the drift and diffusion coefficients vs ε for the potential (4.1). Solid line: estimated
coefficient. Dashed line: homogenized coefficient. Dotted line: unhomogenized coefficient.

the potential

V (x) = 1

2
αx2 (4.1)

The small-scale part of the potential is

p(y) = cos(y). (4.2)

In Fig. 2 we plot the estimators Â and �̂ for various values of ε. For comparison
we also plot the homogenized coefficients A and � and the unhomogenized
coefficients α and σ . We observe that the estimators always give us the coefficients
α and σ of the original SDE (1.6). In particular, the performance of the estimators
does not improve as ε → 0. In Fig. 3 we plot the estimators for various values of
the diffusion coefficient σ . We notice that the estimators give the values of the
coefficients α and σ , for all values of σ . Since the homogenized coefficients decay
to 0 exponentially fast in σ , the results of Fig. 3 indicate that the estimators give
exponentially wrong results when σ � 1.

These results indicate the need to subsample – i.e. to choose δ appropriately
as a function of ε.

4.2. Success with Subsampling

Now, rather than using all the data that were generated from the solution of
Eq. (1.4) we use only a fraction of them. We choose δ in the estimators (2.2), (2.4)
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Fig. 3. Estimation of the drift and diffusion coefficients vs σ for the potential (4.1) with ε = 0.1.
Solid line: estimated coefficient. Dashed line: homogenized coefficient. Dotted line: unhomogenized
coefficient.

and (2.6) as follows:

�tsam = δ = 2k�t, k = 0, 1, 2, . . . ,

and we study the performance of the estimators as a function of the sampling rate.
We investigate this issue for three different model problems.

4.2.1. OU Processes in 1D

We study the problem in one dimension with the large-scale part of the
potential given by (4.1) and with the fluctuating part being the cosine potential
(4.2). The two estimators Â and Ã for the drift coefficient produce almost identical
results and we only present results for the maximum likelihood estimator Â. In
Fig. 4 we present the estimated values of the drift and diffusion coefficients as a
function of the inverse sampling rate δ = �tsam when ε = 0.1, α = 1.0, σ = 0.5.
We observe that, provided that we subsample at an appropriate rate, we are able
to estimate the parameters of the homogenized equation correctly. Notice also
that the estimators for the drift and the diffusion coefficient show very similar
dependence on the sampling rate. This is in accordance with our theoretical results;
see Theorem 3.8. In Fig. 5 we plot �̂ as a function of the sampling rate for two
different values of σ . We observe that the estimator of the diffusion coefficient is a
decreasing function of the sampling rate, as expected. In addition to this, there is a
well defined optimal sampling rate, which depends sensitively on σ . In particular
the optimal δ is a decreasing function of σ . This is to be expected, since when



754 Pavliotis and Stuart

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A

∆ t
sam

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

∆ t
sam

Σ
a. A b. Σ

Fig. 4. Estimation of the drift and diffusion coefficients vs �tsam for the potential (4.1) with ε = 0.1.
Solid line: estimated coefficient. Dashed line: homogenized coefficient. Dotted line: unhomogenized
coefficient.

σ � 1 the process xε(t) loses its multiscale character and becomes effectively a
standard Brownian motion. Consequently, when σ is sufficiently large, the optimal
δ becomes �t , the integration time step. Notice furthermore that the slope of the
�̂ − δ curve depends on σ . In Fig. 6 we plot the estimators of the drift and diffusion
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Fig. 5. Estimation of the diffusion coefficient vs �tsam for the potential (4.1) with ε = 0.1, for two
different values of σ . Solid line: estimated coefficient. Dashed line: homogenized coefficient. Dotted
line: unhomogenized coefficient.
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Fig. 6. Estimation of the drift and diffusion coefficient vs σ for the potential (4.1) with ε = 0.1, α =
1.0, for three different sampling rates. Solid line: �tsam = 0.128. Dash-dotted line: �tsam = 0.256.
Dotted line: �tsam = 0.512. Dashed line: homogenized coefficient.

coefficients versus σ , for three different sampling rates. For comparison we also
plot the homogenized coefficients. We observe that all three sampling rates lead to
reasonably accurate estimates for A and �, when σ is not too small. On the other
hand, the estimators become less accurate as σ → 0. This is also to be expected:
when σ � 1, the accurate simulation of (1.4) requires a very small time step;
moreover, the equation has to be solved over a very long time interval in order for
the invariant measure of the process to be well represented. Hence, our hypothesis
that the errors due to discretization and finite time of integration are small, is
not valid. In addition, as σ tends to 0, the optimal sampling rate increases, and
becomes much larger than the coarser sampling rate that we use in the simulations.
In Fig. 7 we plot the estimators versus ε, for three different values of the sampling
rate. As expected, the deviation of the estimated values of the drift and diffusion
coefficients from the homogenized values is an increasing function of ε. On the
other hand, the optimal sampling rate does not appear to depend sensitively on ε:
when it is small, a range of sampling rates give similar parameter estimates.

4.2.2. A Bistable Potential

We consider Eq. (1.4) in one dimension with a mean potential of the bistable
form

V (x ; α, β) = −1

2
αx2 + 1

4
βx4. (4.3)
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Fig. 7. Estimation of the drift and diffusion coefficient vs ε for the potential (4.1) with α = 1.0, σ =
0.5, for three different sampling rates. Solid line: �tsam = 0.128. Dash-dotted line: �tsam = 0.256.
Dotted line: �tsam = 0.512. Dashed line: homogenized coefficient.

The fluctuating part of the potential is given by (4.2). The homogenized equation
is

d X (t) = (AX (t) − B X (t)3) dt +
√

2�dβ(t), (4.4)

where the homogenized coefficients are given by

A = αK , B = βK , � = σ K , K = 4π2

Z Ẑ
,

where Z and Ẑ are given by (1.13) with L = 2π and p(y) = cos(y). We estimate
the diffusion coefficient using formula (2.2) with d = 1. For the two parameters
of the drift we use generalizations of the maximum likelihood estimator Â.

In Figs. 8 and 9 we present the estimators for the two drift coefficients versus
the sampling rate, for two different values of σ . We observe that the performance of
the estimators is qualitatively similar to the OU case. Notice also that the optimal
sampling rate is approximately the same for both coefficients.

In Fig. 10 we plot the estimator for the diffusion coefficient versus the sam-
pling rate, for two different values of σ . The conclusions reached from the numer-
ical study of �̂ for the one dimensional OU process carry over almost verbatim to
this case.
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Fig. 8. Estimation of the parameters of the bistable potential (4.3) as a function of the sampling rate
for σ = 0.5, ε = 0.1. Solid line: estimated coefficient. Dashed line: homogenized coefficient. Dotted
line: unhomogenized coefficient.
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Fig. 10. Estimation of the diffusion coefficient for the bistable potential (4.3) as a function of the sam-
pling rate for α = 1.0, β = 2.0, ε = 0.1. Solid line: estimated coefficient. Dashed line: homogenized
coefficient. Dotted line: unhomogenized coefficient.

4.2.3. A Quadratic Potential in 2D

We consider now (1.4) in two dimensions with a separable fast potential p(y):

dxε(t) = −∇V (xε(t), B) dt − 1

ε
∇ p1

(
xε

1 (t)

ε

)

−1

ε
∇ p2

(
xε

2 (t)

ε

)
dt +

√
2σdβ(t), (4.5)

where B is the set of the drift parameters that we wish to estimate. The homogenized
equation reads

d X (t) = −K∇V (X (t), B) dt +
√

2σ K dβ(t), (4.6)

where

K =
(

L2

Z1 Ẑ1
0

0 L2

Z2 Ẑ2

)
(4.7)

and

Zi =
∫ L

0
e− pi (yi )

σ dyi , Ẑi =
∫ L

0
e

pi (yi )
σ dyi , i = 1, 2.

In the above L denotes the period of p(y).
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We will consider the case of a general quadratic potential in two dimensions:

V (x, B0) = 1

2
xT B0x, (4.8)

with B symmetric and positive-definite. For the fluctuations we will use a simple
two-dimensional extension of the cosine potential (4.2):

p1(y1) = cos(y1), p2(y2) = 1

2
cos(y2).

With these choices for the large and small scale parts of the potential the homog-
enized Eq. (4.6) can be written in the form

d X (t) = −∇Vh(X (t)) dt +
√

2�dβ(t),

with

Vh(x) = 1

2
xT Bh x, Bh = K Bo and � = σ K .

Our goal is to estimate the diffusion tensor and the components of the matrix
Bh . We will estimate the diffusion tensor through the quadratic variation:

�̂N ,δ(x(t)) = 1

2Nδ

N−1∑
n=0

(xn+1 − xn) ⊗ (xn+1 − xn), (4.9)

where ⊗ stands for the tensor product. For simplicity we will assume that the
diffusion tensor in our model is diagonal. This is consistent with the homogenized
diffusion tensor, see Eq. (4.7). We will use generalizations of the maximum like-
lihood estimator Â in order to estimate the parameters of the quadratic potential.
In the experiments we use the matrix

Bo =
(

2 2
2 3

)
. (4.10)

In Fig. 11 we present the estimated values of the two non-zero components of
the diffusion tensor versus the sampling rate.3 The performance of the estimator
for the diffusion tensor is, qualitatively at least, similar to its performance in the
one dimensional problems considered in the previous two subsections. Notice,
however, that the optimal sampling rate is quite different for the two non-zero
components of the diffusion tensor.

In Fig. 12 we present the estimated values of the four drift coefficients. The
results are in accordance with the one dimensional theory developed in this paper,
as well as with the numerical experiments shown in one dimension. We remark

3 The estimated value of the off-diagonal elements is almost 0 for all values of the sampling rate, in
accordance with the theoretical result (4.7).
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Fig. 11. Estimation of the non-zero elements of the diffusion tensor for the 2d quadratic potential (4.8)
as a function of the sampling rate for Bo given by (4.10) and σ = 0.5, ε = 0.1. Solid line: estimated
homogenized coefficient. Dashed line: true homogenized coefficient. Dotted line: unhomogenized
coefficient.

that the estimators capture successfully the fact that the homogenized matrix Bh ,
is not symmetric. Notice furthermore that, as for the diffusion matrix, the optimal
sampling rate is different for different components of Bh .

Thus, in this simple two dimensional multiscale model, the optimal sampling
rate is different in different directions. This suggests that extreme care has to
be taken when estimating parameters for multidimensional, multiscale stochastic
processes.

4.3. The Second Estimator for the Drift Coefficient

In this section we compare between the performances of the two estimators
for the drift coefficient, namely Â and Ã given by Eqs. (2.4) and (2.6) respectively.
In (2.6) we use the quadratic variation estimator for the diffusion coefficient,
Eq. (2.2).

We estimate the drift parameter of (1.4) in one dimension for a quartic and a
sixth-degree large-scale potential V (x):

V (x) = 1

4
αx4 (4.11)

and

V (x) = 1

6
αx6. (4.12)
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Fig. 12. Estimation of the parameters of the 2d quadratic potential (4.8) as a function of the sampling
rate for Bo given by (4.10) and σ = 0.5, ε = 0.1. Solid line: estimated homogenized coefficient.
Dashed line: true homogenized coefficient. Dotted line: unhomogenized coefficient.

In both cases the small scale fluctuations are represented by the cosine potential
(4.2) In Fig. 13 we present the estimated values of the drift coefficient as a function
of the sampling rate for two different σ for the quartic potential (4.11). We also
plot the effective and the unhomogenized values of the drift coefficient. Similar
results for the sixth-degree potential (4.12) are presented in Fig. 14. In both cases
we observe that the alternative estimator Ã performs better than Â in this situation
where the data is subsampled.
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Fig. 13. Estimation of the drift coefficients for the quartic potential (4.11) as a function of the sampling
rate for ε = 0.1. Solid line: Â. Dash-dot line: Ã. Dashed line: homogenized coefficient. Dotted line:
unhomogenized coefficient.
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Fig. 14. Estimation of the drift coefficients for the sixth-degree potential (4.12) as a function of the
sampling rate for ε = 0.1. Solid line: Â. Dash-dotted line: Ã. Dashed line: homogenized coefficient.
Dotted line: unhomogenized coefficient.
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5. PRELIMINARY RESULTS

The rest of the paper is devoted to the proofs of our main results. For the
convenience of the reader we have broken the material into three sections. In this
section we collect various results that will be used in the proofs. We start by inves-
tigating some of the properties of the invariant measures of the unhomogenized
and of the homogenized equation. We then introduce some tools useful in the
study of homogenization for SDEs.

Proposition 5.1. The invariant measure of the homogenized Eq. (1.7) is the
Gibbs measure

µ(dx) = ρ(x) dx = 1

Z
e−αV (x)/σ dx, Z =

∫
R

d
e−αV (x)/σ dx . (5.1)

The Markov process x(t) given by (1.7) is geometrically ergodic: there are C,
λ > 0 such that, for every measurable f (x) satisfying

| f (x)| ≤ 1 + |x |p,

for some integer p > 0, we have, for µ-a.e. x(0),∣∣∣∣E f (x(t)) −
∫

R
d

f (x)ρ(x) dx

∣∣∣∣ ≤ C(1 + |x(0)p|)e−λt ,

where E denotes expectation with respect to Wiener measure.

Proof: Assumptions 3.1, together with the formulae for the effective drift and
the effective diffusion coefficient, Eq. (1.8), imply that the solution x(t) of the
homogenized Eq. (1.7) has a unique invariant measure with smooth density. The
Gibbs measure (5.1) satisfies

α∇Vρ + σ∇ρ = 0

and hence

K (α∇Vρ + σ∇ρ) = 0.

Because K is constant we deduce that

αK∇Vρ + ∇ · (σ Kρ) = 0.

Thus

∇ · (αK∇Vρ + ∇ · (σ Kρ)) = 0.

This is the stationary Fokker-Planck equation for (1.7) showing that the Gibbs
measure p is indeed an invariant measure. For the geometric ergodicity we use
[Ref. 22, Theorem 5.3]. �
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Proposition 5.2. The invariant measure of the unhomogenized Eq. (1.6) is the
Gibbs measure

µε(dx) = ρε(x) dx = 1

Z ε
e− α

σ
V (x)− 1

σ
p( x

ε
), Z ε =

∫
R

d
e− α

σ
V (x)− 1

σ
p( x

ε
) dx . (5.2)

For every ε > 0 the Markov process (1.6) is geometrically ergodic: there are C,
λ > 0 such that, for every measurable f (x) satisfying

| f (x)| ≤ 1 + |x |p,

for some integer p > 0 we have, for µε-a.e. xε(0),∣∣∣∣E f (xε(t)) −
∫

R

f (x)ρε(x) dx

∣∣∣∣ ≤ C(1 + |xε(0)p|)e−λt ,

where E denotes expectation with respect to Wiener measure.
Furthermore, the measure µε converges weakly to the invariant measure of

the homogenized dynamics µ given by (5.1).

Proof: Assumptions 3.1 imply that xε(t) is an ergodic Markov process. Di-
rect calculation with the Fokker-Planck equation shows that the unique invariant
measure of the process is the Gibbs measure

ρε(x) dx = 1

Z ε
e− 1

σ
V (x, x

ε
α)dx

= 1

Z ε
e− α

σ
V (x)− 1

σ
p( x

ε
)dx,

with Z ε given by (5.2). For the geometric ergodicity we use [Ref. 22, Theorem
5.3].

Now let

u(x, y) := e− α
σ

V (x)− 1
σ

p(y).

Since u(x, y) ∈ L1(Rd ; Cper(T
d )), by [Ref. 8, Lemma 9.1] we have that

u
(
·, ·

ε

)
⇀

∫
T

d
u(·, y) dy, weakly in L1(Rd ).

In particular, since 1 ∈ L∞(Rd ),

lim
ε→0

Z ε =
∫

R
d

∫
T

d
e− α

σ
V (x)− 1

σ
p(y)dy.

We combine the above two results to conclude that

ρε(x) ⇀
1

Z
e− α

σ
V (x), weakly in L1(Rd ), (5.3)
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where Z is given by (5.1). The weak convergence of the densities in L1(Rd ) implies
the weak convergence of the corresponding probability measures. �

Remark 5.3. The assumption of stationarity of the process xε(t) is not necessary
for the proof of the theorems stated in the previous section is made only for
simplicity. This follows because xε(t) is geometrically ergodic and consequently
it converges to its invariant distribution exponentially fast for arbitrary initial
conditions. Furthermore, the fact that the invariant measure of the process xε(t)
converges weakly, as ε → 0, to the invariant measure of the homogenized process
is important for us as many of our results will be deduced by taking expectations
with respect to the invariant measure µε(dx) of the multiscale dynamics (1.6). The
weak convergence alluded to demonstrates that the measure µε behaves uniformly
in ε → 0.

An immediate corollary of the above proposition is that xε(t) has bounded
moments of all orders. We will use the notation E

µε

to denote expectation with
respect to the stationary measure of (3.1) on path space, when initial data is
distributed according to the Gibbs measure (5.2).

Corollary 5.4. Let xε(t) be the solution of (1.4) with the potential given by (1.5)
and assume that conditions (3.1) are satisfied. Assume furthermore that xε(0) is
distributed according to µε . Then, for all p ≥ 1, there is a constant C = C(p),
uniform in ε → 0, such that

E
µε |xε(t)|p ≤ C ∀t ≥ 0.

It is convenient for the subsequent analysis to introduce the auxiliary variable

yε(t) = xε(t)

ε
.

We can then write Eq. (1.6) in the form

dxε(t) = −α∇V (xε(t)) dt − 1

ε
∇ p(yε(t)) dt +

√
2σdβ(t), (5.4a)

dyε(t) = −1

ε
α∇V (xε(t)) dt − 1

ε2
∇ p(yε(t)) dt +

√
2σ

ε2
dβ(t). (5.4b)

Notice that both processes xε(t) and yε(t) are driven by the same Brownian motion.
Written in this fashion it is clear that we are in a situation where homogenization
applies. The homogenized equation is found by eliminating yε(t) from the scale
separated system for {xε(t), yε(t)}. Note that L0 defined in (1.10) is the generator
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of the process

dy(t) = −∇ p(y(t)) dt +
√

2σdβ(t),

on the unit torus, which governs the dynamics of yε(t) to leading order in ε. The
generator of the joint process {xε(t), yε(t)} reads

Lε = 1

ε2
L0 + 1

ε
L1 + L2,

where

L0 = −∇y p(y) · ∇y + σ∇y,

L1 = −∇y p(y) · ∇x − α∇x V (x) · ∇y + 2σ∇x · ∇y,

L2 = −α∇x V (x) · ∇x + σ�x .

The following result can be found in, e.g. [Ref. 5, Chap. 3].

Lemma 5.5. Assume that p(y) ∈ C∞
per(T

d , R) and that H (y) ∈ C∞
per(T

d , R
d ). Let

µ(dy) be the Gibbs measure (1.9) and assume that H (y) is centered with respect
to µ(dy): ∫

T
d

H (y)µ(dy) = 0. (5.5)

Then the Poisson equation

−L0χ = H (y), (5.6)

has a unique mean-zero solution in L2
per(T

d , µ(dy); R
d ). This solution, together

with all its derivatives, is bounded.

We will need an estimate on integrals whose integrand is centered with respect
to the invariant measure µ(dy).

Lemma 5.6. Let H (y) ∈ C∞
per(T

d ; R
d ) satisfy condition (5.5). Assume that xε(0)

is distributed according to (5.2). Then the following estimate holds for any p > 1
and T > 0:

E
µε

∣∣∣∣
∫ T

0
H (yε(s)) ds

∣∣∣∣
p

≤ C
(
ε2p + ε pT p + ε pT

P
2
)
.

Proof: Consider the Poisson Eq. (5.6) with periodic boundary conditions. Since
H (y) satisfies (5.5), Lemma 5.5 applies and we have that χ (y) is smooth and
bounded, together with all its derivatives. We now apply the Itô formula to χ (yε(t)),
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where yε(t) is the solution of (5.4b), and use (5.6) to obtain

∫ T

0
H (yε(s)) ds = −ε2(χ (yε(T )) − χ (yε(0)))

+ ε
√

2σ

∫ T

0
〈∇yχ (yε(s)), dβ(s)〉

−αε

∫ T

0
〈∇V (xε(s)),∇yχ (yε(s))〉ds.

Now, using the boundedness of χ and its derivatives, we have, for

I (T ) := Eµε

∣∣∣∣
∫ T

0
H (yε(s)) ds,

∣∣∣∣
p

,

I (T ) ≤C

(
ε2p+ε p

E
µε

∣∣∣∣
∫ T

0
|∇V (xε(s))|ds

∣∣∣∣
p

+ε p
E

µε

∣∣∣∣
∫ T

0
〈∇yχ (yε(s)), dβ(s)〉

∣∣∣∣
p
)

≤C

(
ε2p + ε pT p−1

∫ T

0
|xε(s)|pds + ε pT

p
2 −1

∫ T

0
E

µε |∇yχ (yε(s))|pds

)

≤C
(
ε2p + ε pT p + ε pT

p
2
)
,

from which the desired estimate follows. In deriving the above we used
Corollary 5.4 and the estimate [Ref. 18, Eq. (3.25), p. 163] on moments of stochas-
tic integrals. �

For the rest of this section we will restrict ourselves to the one dimensional
case. If we apply the Itô formula to φ(yε(s)), the solution of the Poisson Eq. (1.10),
then we obtain

xε
n+1 − xε

n = −α

∫ (n+1)δ

nδ

V ′(xε(s))(1 + ∂yφ(yε(s))) ds (5.7)

+
√

2σ

∫ (n+1)δ

nδ

(1 + ∂yφ(yε(s))) dβ(s)

− ε(φ(yε((n + 1)δ)) − φ(yε(nδ))). (5.8)

The proofs of Theorems 3.5 and 3.6 is based on careful asymptotic analysis of
the behavior of xε

n+1 − xε
n given by this formula when both ε and δ are small.

Specifically we will use the following two propositions. They show how the
effective homogenized behavior is manifest in the time-δ Markov chain induced
by sampling the path xε(t) from (1.6).
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Proposition 5.7. For ε, δ > 0 sufficiently small and n ∈ N there exists an i.i.d.
sequence of random variables ξn ∈ N (0, 1) such that

√
2σ

∫ (n+1)δ

nδ

(1 + ∂yφ(yε(s))) dβ(s) =
√

2�δξn + R1(δ, ε) (5.9)

in law. The remainder R1(δ, ε) satisfies, for every ι ∈ (0, 1
2 ) and p > 0, the estimate

(Eµε |R1(ε, δ)|p)1/p ≤ C(ε2ι + ει), (5.10)

where C is independent of ε and δ.

Proposition 5.8. For ε, δ > 0 sufficiently small and n ∈ N we have that

α

∫ (n+1)δ

nδ

V ′(xε(s))(1 + ∂yφ(yε(s))) ds = AδV ′(xε
n

) + R2(ε, δ) (5.11)

in law. The remainder R2(δ, ε) satisfies, for every p > 0, the estimate

(Eµε |R2(ε, δ)|p)1/p ≤ C
(
ε2 + δ

1
2 + δ3/2

)
, (5.12)

where C independent of ε and δ.

Remark 5.9.

• Estimate (5.10) is almost certainly not optimal. Indeed, informal calcula-
tions lead us to expect the estimate

(Eµε |R1(ε, δ)|p)1/p ≤ C
(
ε2ι + ειδι + ειδ

1
2
)
.

However, we have not been able to prove this.
• When estimating the diffusion coefficient in Theorem 3.6 and using esti-

mate (5.10) the leading error contributions are O(δ) and O(ε
1
2 ) suggesting

that ζ = 1
2 is optimal. However if the preceding improved estimate could

be proved then the optimal ζ in Theorem 3.6 is ζ = 2/3.
• When estimating the drift coefficient in Theorem 3.5 the leading error

contributions are O(δ3/2) and O(ε) suggesting that ζ = 2
3 is optimal. The

analysis leading to this result appears tight.
• Note that it is the presence of the terms of size εφ(yε(s)), where φ(y) is

the solution of (1.10), in (5.8) which necessitate taking steps δ which are
large compared to ε and not large compared with ε2, the fast scale in the
problem. It is hard to see how this issue can be avoided.
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6. PROOF OF PROPOSITIONS 5.7 AND 5.8

In this section we prove Propositions 5.7 and 5.8. These are central to the proof
of the two theorems concerning the behavior of the estimators with subsampled
data. We start with a rough estimate on xε

n+1 − xε
n that we will need for the proofs

of the propositions.

6.1. A Rough Estimate

Lemma 6.1. Let Assumptions 3.1 hold and assume that xε(t), the solution of
(3.4), is stationary. Then there exists a constant C, independent of δ and ε, such
that

E
µε |xε(s) − xε

nδ|p ≤ C
(
δ p + δ

p
2 + ε p

)
, (6.1)

for every s ∈ [nδ, (n + 1)δ] and every p ≥ 1.
Proof: Using the same derivation that leads to (5.8), but with (n + 1)δ replaced
by s, we have:

xε(s) − xε
n = −α

∫ s

nδ

V ′(xε(s))(1 + ∂yφ(yε(s))) ds

+
√

2σ

∫ s

nδ

(1 + ∂yφ(yε(s))) dβ(s) − ε(φ(yε(s)) − φ(yε(nδ)))

=: I 1
n,δ + I 2

n,δ + I 3
n,δ. (6.2)

We need to estimate the terms in (6.2). We start with I 3
n,δ . By Lemma 5.5 we have

‖ φ(y) ‖L∞≤ C.

Consequently

E
µε |I 3

n,δ|p ≤ C p
ε .

To estimate I 1
n,δ we use again Lemma 5.5 to conclude that

‖1 + ∂yφ‖L∞ . (6.3)

The above estimate, together with Assumptions 3.1, Corollary 5.4 and the station-
arity of the process xε(t), give

E
µε ∣∣I 1

n,δ

∣∣p ≤ Cδ p−1
∫ (n+1)δ

nδ

E
µε |V ′(xε(s))|pds

≤ Cδ p−1
∫ (n+1)δ

nδ

E
µε |xε(s)|pds

≤ Cδ p.
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Estimate [Ref. 18, Eq. (3.25), p. 163] on moments of stochastic integrals, together
with Eq. (6.3), enable us to conclude that

Eµε ∣∣I 2
n,δ

∣∣p ≤ Cδ
p
2 −1

∫ (n+1)δ

nδ

E
µε |1 + ∂yφ(yε(s))|pds

≤ Cδ
p
2 .

We combine the above estimates to obtain (6.1). �

6.2. Proof of Proposition 5.7

From Theorem [Ref. 13, Sec. 1.3], [Ref. 18, Theorem. 3.4.6] we know that
the martingale

M(t) :=
√

2σ

∫ t

0

(
1 + ∂yφ

(
yε

s

))
dβ(s)

is equal in law to a time-changed Brownian motion β̂:,

M(t) = β̂

(
2σ

∫ t

0
(1 + ∂yφ(yε(s)))2ds

)
.

Also the quadratic variation satisfies

〈M〉t = 2σ

∫ t

0
(1 + ∂yφ(yε(s)))2ds ≈ 2�t.

Indeed

E
µε 〈M〉t = 2σE

µε

∫ t

0
(1 + ∂φ(yε(s)))2ds

= 2�t, 11

where the last equality follows from Eq. (1.8) for d = 1. Using these observations
we write

Jn :=
√

2σ

∫ (n+1)δ

nδ

(1 + ∂yφ(yε(s))) dβ(s)

=
√

2σ

∫ (n+1)δ

nδ

(1 + ∂yφ(yε(s))) dβ(s) −
√

2σ

∫ nδ

0
(1 + ∂yφ(yε(s))) dβ(s)

= β̂(2�(n + 1)δ) − β̂(2�nδ) + rn+1 − rn

=
√

2�δξn + rn+1 − rn,
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where the ξn are i.i.d unit Gaussian random variables and

rn = β̂(〈M〉nδ) − β̂(2�nδ).

To estimate this difference we follow the proof of [Ref. 16, Theorem. 2.1].
We start by employing the Hölder continuity of Brownian motion, together with
Hölder inequality, to estimate:

E
µε |β̂(〈M〉nδ) − β̂(Eµε 〈M〉nδ)|p ≤ E

µε |Hölι(β̂)(〈M〉nδ − E
µε 〈M〉nδ)ι|p

≤ E
µε |Hölι(β̂)|p

(
Eµε |〈M〉nδ − Eµε 〈M〉nδ|ιq

) p
q

≤ C

(
E

µε

∣∣∣∣
∫ nδ

0
H (yε(s)) dz

∣∣∣∣
ιq
) p

q

,

with ι ∈ (0, 1
2 ). We have used the notation

H (y) := 2σ (1 + ∂yφ(y))2 − 2�.

We have also used the fact that, for every β ∈ (0, 1
2 ) and every bounded time

interval, the ι-Hölder exponent of Brownian motion is uniformly bounded with
probability one. We have that ∫

T

H (y)µ(dy) = 0,

where µ(dy) is defined in (1.9). Since nδ ≤ T , Lemma 5.6 applies and we have
that, for q sufficiently large and for ε sufficiently small,

E
µε |Jn −

√
2�δξn|p ≤ C(ε2qι + εqι)

p
q

≤ C(ε2pι + ε pι).

This completes the proof of the proposition. �

6.3. Proof of Proposition 5.8

We have

E
µε |R2(ε, δ)|p = E

µε

∣∣∣∣
∫ (n+1)δ

nδ

αV ′(xε(s))(1 + ∂yφ(yε(s))) ds − δAV ′(xε
nδ

)∣∣∣∣
p

= E
µε

∣∣∣∣
∫ (n+1)δ

nδ

αV ′(xε
nδ

)
(1 + ∂yφ(yε(s))) ds − A

∫ (n+1)δ

nδ

V ′(xε
nδ

)
ds
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+ α

∫ (n+1)δ

nδ

V ′(xε(s)) − V ′(xε
nδ

))
(1 + ∂yφ(yε(s))) ds

∣∣∣∣
p

≤ CE
µε

∣∣∣∣V ′(xε
nδ

) ∫ (n+1)δ

nδ

(α(1 + ∂yφ(yε(s))) − A) ds

∣∣∣∣
p

+α pCE
µε

∣∣∣∣
∫ (n+1)δ

nδ

(
V ′(xε(s)) − V ′(xε

nδ

))
(1 + ∂yφ(yε(s))) dβ

∣∣∣∣
p

=: I 1
ε,δ + I 2

ε,δ,

where the constant C depends only on p. We use the Hölder inequality,
Assumptions 3.1, Lemma 6.1 and the uniform bound on ∂yφ(y) to obtain, for
ε, δ sufficiently small,

I 2
ε,δ ≤ Cδ p−1

∫ (n+1)δ

nδ

Eµε ∣∣xε(s) − xε
nδ

∣∣p
ds

≤ Cδ p−1
∫ (n+1)δ

nδ

(
δ

p
2 + ε p

)
ds

≤ C
(
δ

3p
2 + δ pε p

)
.

Consequently

(
E

µε ∣∣I 2
ε,δ

∣∣)1/p ≤ C(δ3/2 + δε). (6.4)

Consider now the function

H (y) := α(1 + ∂yφ(y)) − A,

From the definition of A we get that∫
T

(α(1 + ∂yφ(y)) − A)µ(dy) = 0.

Hence, Lemma 5.6 applies and we get

E
µε

∣∣∣∣
∫ (n+1)δ

nδ

(α(1 + ∂yφ(yε(s))) − A) ds

∣∣∣∣
p

≤ C(ε2p + ε pδ p + ε pδ p/2).

We combine the above estimate with (3.1) and Corollary 5.4 to obtain,

(
E

µε ∣∣I 2
ε,δ

∣∣p)1/p ≤ C(ε2 + εδ1/2), (6.5)



Parameter Estimation for Multiscale Diffusions 773

for ε, δ sufficiently small. The proof of the proposition follows from estimates
(6.4) and (6.5). �

7. PROOF OF MAIN THEOREMS

Here we combine the results from the preceding two sections to complete the
proofs of the main theorems and of Proposition 3.3.

7.1. Proof of Proposition 3.3

We apply the Itô formula to V (x(t)) for x(t) solving (2.1) and use formula
(2.3) to obtain

Â(x) = V (x(0)) − V (x(T )) + �
∫ T

0 �V (x(t)) dt∫ T
0 |∇V (x)|2dt

= (V (x(0)) − V (x(T )))∫ T
0 |∇V (x)|2dt

+
1
T �

∫ T
0 �V (x(t))dt

1
T

∫ T
0 |∇V (x)|2dt

=
1
T (V (x(0)) − V (x(T )))

1
T

∫ T
0 |∇V (x)|2dt

+ Ã(x).

Under the Assumptions 3.1 it follows from(21) that

lim
T →0

1

T
(V (x(0)) − V (x(T ))) = 0, a.s.

and hence, by ergodicity applied to deduce almost sure convergence of the de-
nominator,

lim
T →0

1
T (V (x(0)) − V (x(T )))∫ T

0
1
T |∇V (x(t))|2dt

= 0, a.s.

The result follows. �

7.2. Proof of Theorem 3.4

We combine Eqs. (2.3) and (1.6) to calculate

Â(xε) =
∫ T

0 −〈�V (xε(t)), dxε(t)〉∫ T
0 |∇V (xε(t))|2dt
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=
∫ T

0

〈−�V (xε(t)),−α∇V (xε(t)) dt − 1
ε
∇ p

( xε (t)
ε

)
dt + √

2σdβ(t)
〉

∫ T
0 |∇V (xε(t))|2dt

= α +
1
ε

∫ T
0

〈∇V (xε(t)),∇ p
( xε (t)

ε

)〉
dt∫ T

0 |∇V (xε(t))|2dt
−

√
2σ

∫ T
0 〈∇V (xε(t)), dβ(t)〉∫ T

0 |∇V (xε(t))|2dt

=: α + I1(T, ε) − I2(T, ε).

We will treat the terms I1(T, ε) and I2(T, ε) separately. We start with I2(t, ε).
Since the stochastic integral

MT :=
∫ T

0
〈∇V (xε(t)), dβ(t)〉

is a continuous martingale which is null at 0, the strong law of large numbers for
martingales [Ref. 26, p. 187] applies and we have that

lim
T →+∞

MT

〈M〉T
= 0 a.s.

Consequently

lim
T →+∞

I2(T, ε) = 0 a.s. (7.1)

Let us consider now the term I1(T, ε). We use the ergodic theorem to deduce
that

lim
T →∞

I1(T, ε) = lim
T →∞

1
εT

∫ T
0

〈∇V (xε(t)),∇ p
( xε (t)

ε

)〉
ds

1
T

∫ T
0 |∇V (xε(t))|2dt

= E
µε (〈∇V (x), 1

ε
∇ p

(
x
ε

)〉)
E

µε |∇V (x)|2 a.s.

Now we use Proposition 5.2 to compute

E
µε (〈∇V (x), 1

ε
∇ p

(
x
ε

)〉)
E

µε |∇V (x)|2 =
∫

R
d

〈∇V (x), 1
ε
∇ p

(
x
ε

)〉
ρε(x) dx

E
µε |∇V (x)|2

= −σ 1
Z ε

∫
R

d

〈∇V (x)e− α
σ

V (x),∇(
e− 1

σ
p(x/ε)

)〉
dx

E
µε |∇V (x)|2

= σ
E

µε

(∇V (x))

E
µε |∇V (x)|2 − α.
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In deriving the penultimate line we used an integration by parts. The weak con-
vergence of µε to µ (second part of Proposition 5.2), formula (5.1), together with
another integration by parts give

lim
ε→∞

E
µε

(∇V (x))

E
µε

(|∇V (x)|2)
= E

µε

(∇V (x))

E
µε

(|∇V (x)|2)

= E
µ(∇V (x))

− σ
α

1
Z

∫
R

d

〈∇V (x),∇(
e− α

σ
V (x)

)〉
dx

= α

σ
.

We combine the above calculations to conclude that

lim
ε→∞ lim

T →∞
I1(T, ε) = 0 a.s. (7.2)

The proof of the convergence of the maximum likelihood estimator, Eq. (3.2) now
follows from Eqs. (7.2) and (7.1).

The proof of the convergence of the estimator for the diffusion coefficient,
Eq. (3.3), follows from the definition of the quadratic variation, see e.g. Ref. 4. �

Remark 7.1. An immediate corollary of the proof of the above theorem is that

lim
T →∞

Â(xε) = E
µε

(�V (x))

E
µε |∇V (x)|2 a.s.

7.3. Proof of Theorem 3.5

We combine Proposition 5.8 and (5.8) to conclude that

xε
n+1 − xε

n = Jn − AδV ′(xε
n

) + R(ε, δ),

where Jn is as defined in the proof of Proposition 5.7 and, for ε, δ sufficiently
small and ζ ∈ (0, 1),

(Eµε |R(ε, δ)|p)1/p ≤ C
(
δ3/2 + ε

)
. (7.3)

Notice that

E
µε |Jn|2 = O(δ).

We combine this with formula (2.4) to obtain

ÂN ,δ(xε) = A −
∑N−1

n=0 V ′(xε
n

)
Jn∑N−1

n=1 |V ′(xε
n

)|2δ −
∑N−1

n=0 V ′(xε
n

)
R(ε, δ)∑N−1

n=0

∣∣V ′(xε
n

)∣∣2
δ

:= A − I1 − I2, (7.4)
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We need to control the terms I1 and I2. We start with I1, which we rewrite in the
form

I1 = ε
γ−ζ

2

1√
(Nδ)

∑N−1
n=0 V ′(xε

n

)
Jn

1
N

∑N−1
n=0

∣∣V ′(xε
n

)∣∣2
.

The central limit theorem for (discrete) martingales implies that

lim
N→+∞

1√
(Nδ)

N−1∑
n=0

V ′(xε
n

)
Jn = 1√

δ
N (0, E

µε

(|V ′(xε(0))|2|J0|2))

= 1√
δ
N (0, cδ) = cN (0, 1) in law,

for some c uniform in ε → 0. In the above we have used the fact that E
µε |J0|2 =

2�δ.
On the other hand, the ergodic theorem implies that

lim
N→+∞

1

N

N−1∑
n=0

∣∣V ′(xε
n

)∣∣2 = E
µε |V (x)|2, a.s. (7.5)

Hence, by Slutsky’s theorem, and remembering that N = [ε−γ ], we have that

lim
ε→0

I1 = 0 in law. (7.6)

Consider now the term I2. It can be written as

I2 = εγ−ζ
∑N−1

n=0 V ′(xε
n

)
R(ε, δ)

1
N

∑N−1
n=0

∣∣V ′(xε
n

)∣∣2
.

The ergodic theorem implies that the denominator in the above expression con-
verges a.s. to a finite value. To study the numerator of the above expression we use
estimate (7.3), together with Hölder inequality to estimate

E
µε

∣∣∣∣∣eγ−ζ

N−1∑
n=0

V ′(xε
n

)
R(ε, δ)

∣∣∣∣∣ ≤ εγ−ζ

N−1∑
n=0

(Eµε |V ′(xε
n

)|q )1/q (Eµε |R(ε, δ)|p)1/p

≤ Cεγ−ζ

N−1∑
n=0

(Eµε |R(ε, δ)|p)1/p

≤ C(εζ/2 + ε1−ζ ).

In the above we have used Corollary 5.4, together with Assumptions 3.1. The
above calculation shows that numerator of I2 converges to 0 in L1, and hence
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in law. This, together with the a.s. convergence of the denominator and Slutsky’s
theorem gives

lim
ε→0

I2 = 0 in law. (7.7)

Combining (7.4), (7.6) and (7.7) completes the proof of the theorem. �

7.4. Proof of Theorem 3.6

We combine Proposition 5.7 with (5.8) to write the difference xε
n+1 − xε

n in
the form

xε
n+1 − xε

n =
√

2�δξn + R̂(δ, ε) (7.8)

in law, where, for ε, δ sufficiently small,

(Eµε |R̂(ε, δ)|p)1/p ≤ C(δ + εβ). (7.9)

We substitute (7.8) into the formula for the estimator (2.2) with d = 1 to obtain

�̂N ,δ(xε) = �
1

N

N−1∑
n=0

ξ 2
n + 1

2Nδ

N−1∑
n=0

(R̂(δ, ε))2 + 1

Nδ

N−1∑
n=0

√
2�δξn R̂(δ, ε)

=: �
1

N

N−1∑
n=0

ξ 2
n + I1 + I2.

By the law of large numbers the first term tends almost surely to � as ε → 0
(which implies N → ∞.) Thus it suffices to show that the remaining terms tend
to zero in law. We do this by showing that they tend to zero in L1.

Note that

E
µε |I1| ≤ C

N−1∑
n=0

E
µε

(R̂(δ,+ε))2

= C N (δ + εβ)2

≤ C(δ + ε2βδ−1)

= C(ξ ζ + ε2β−ζ )

= o(1),

for ζ ∈ (0, 1), since β can be chosen arbitrarily close to 1
2 .
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Similarly

E
µε |I2| ≤ C

N−1∑
n=0

δ
1
2 (δ, εβ)

≤ C
(
δ

1
2 + εβδ− 1

2
)

= C
(
ε

ζ

2 + εβ− ζ

2
)

= o(1),

For ζ ∈ (0, 1), since β can be chosen arbitrarily close to 1
2 . This completes the

proof. �

7.5. Proof of Theorem 3.8

Taking the limit T → +∞ in (2.5) gives

lim
T →∞

Ã(xε) = �̂
E

µε

(�V (x))

E
µε |∇V (x)|2 a.s.

Proposition 5.2, Eq. (5.3) in particular, implies that

lim
ε→∞ �̂

E
µε

(�V (x))

E
µε |∇V (x)|2 = �̂

E
µ(�V (x))

E
µ|∇V (x)|2 ,

where E
µ denotes expectation with respect to the invariant distribution ρ(x) of the

homogenized process, given by formula (5.1). An integration by parts now gives
that

E
µ|∇V (x)|2 = σ

α
E

µ(�V (x)).

Thus, the final result of our considerations is that

lim
ε→0

lim
T →∞

Ã(X ε) = �̂

σ
α a.s.

�

8. CONCLUSIONS AND FUTURE WORK

The problem of parameter estimation for continuous time diffusion processes
is studied in this paper. In particular our goal is to accurately fit a homogenized
equation from data which has a multiscale character. In order to obtain theorems
and numerical insight we generate this data from continuous time diffusion pro-
cesses with two, widely separated, characteristic time scales. Our main conclusions
are as follows:
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• In order to estimate the drift and diffusion coefficients accurately it is
necessary to subsample.

• There is an optimal subsampling rate, between the two characteristic time-
scales of the multiscale data.

• The optimal subsampling rate may differ for different parameters.
• For gradient multiscale systems it is only necessary to estimate the diffusion

coefficient correctly, provided one uses the second estimator for the drift- Ã,
defined in Eqs. (2.5) and (2.6).

Both analysis and numerics are given to substantiate these claims. Many open
questions remain; we list those which seem important to us.

• Question 1 from the introduction: how can multiscale data be diagnosed
as such, and how can the parameter ε be estimated from the data in this
case. In this paper we have generated simulated multiscale data by using
a multiscale diffusion process. However this was done to provide a con-
venient analytical framework. In applications it is of interest to develop
tools for characterizing the multiscale structure of a time-series-to estimate
characteristic time-scales. Related work has been done in Ref. 11. Further
study would be of interest.

• Rough heuristics indicate that any subsampling rate which is between the
two characteristic time scales of the processes, namely O(ε2) and O(1),
should enable accurate estimation of the drift and diffusion coefficients.
However our analysis works only in the case where the subsampling is
between O(ε) and O(1). We suspect that this analysis is tight, but it would
be of interest to establish this rigorously.

• Analyze other parameter estimation problems for multiscale diffusions,
not necessarily of gradient form. In particular study both averaging and
homogenization set-ups, as outlined in the introductory section.

• Determine precisely the range of subsamplings which will give accurate
parameter estimates and optimize the subsampling rate for accuracy.

• Optimize the algorithm by combining estimates based on shifts of the
subsampled data so that information is not thrown away; this is done in
the context of econometrics and finance in Refs. 1, 2. More generally use
kernels to facilitate optimal use of data.

• Analyze questions analogous to those raised here for multidimensional
multiscale processes.

• Analyze questions analogous to those raised here for hypoelliptic multi-
scale diffusions; in particular the case where the homogenized equation
is a fully elliptic first order Langevin equation which is derived from an
overdamped second-order Langevin equation.

• Study whether there is any advantage in using random subsampling rates.
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• Study drift that depends non-linearly on the parameters to be estimated, or
where the noise of the model to be fitted is state-dependent.

• Parameter estimation for deterministic multiscale problems where the fast
process is a strongly mixing chaotic deterministic process.

• Our work is highly dependent on having strict scale separation. It would
be interesting to understand related issues for problems without such clear
scale separation, such as Kac-Zwanzig heat baths.(15) The approach in
Ref. 9 is potentially interesting in this context, although limited to low
dimensional state space. We anticipate that the ideas and methods from
our work will transfer to arbitrary dimensions.
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