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Periodic homogenization for inertial particles
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Abstract

We study the problem of homogenization for inertial particles moving in a periodic velocity field, and subject to molecular
diffusion. We show that, under appropriate assumptions on the velocity field, the large scale, long time behavior of the inertial
particles is governed by an effective diffusion equation for the position variable alone. To achieve this we use a formal multiple
scale expansion in the scale parameter. This expansion relies on the hypo-ellipticity of the underlying diffusion. An expression
for the diffusivity tensor is found and various of its properties studied. In particular, an expansion in terms of the non-dimensional
particle relaxation timeτ (the Stokes number) is shown to co-incide with the known result for passive (non-inertial) tracers in
the singular limitτ → 0. This requires the solution of a singular perturbation problem, achieved by means of a formal multiple
scales expansion inτ Incompressible and potential fields are studied, as well as fields which are neither, and theoretical findings
are supported by numerical simulations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the transport properties of particles moving in fluid flows and subject to molecular diffusion is
a problem of great theoretical and practical interest[11,23]. For the purposes of mathematical analysis, the fluid
velocity is assumed to have some statistical or geometrical structure which mimics features of real fluid flows, and
yet is such that the resulting equation describing the motion of the particle is amenable to both analysis and efficient
numerical investigations. For example the velocity may be assumed steady and periodic in space, or may be assumed
to be a Gaussian random field in space–time. This is the problem of turbulent diffusion[7,23].
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It is often the case that the velocity field of interest is active at various length and time scales. Consequently, the
equations which govern the particle motion are very hard to analyze directly. In such cases an effective equation
which governs the behavior of the particles at long times and large scales compared to those of the fluid velocity is
sought. The derivation of such an effective equation is based on multiscale/homogenization techniques[4].

This problem has been studied extensively over the last thirty years for passive tracers, i.e. massless particles. It
has been shown that, for periodic or random velocity fields with short range correlations, the particles perform an
effective Brownian motion. The covariance matrix of this Brownian motion – theeffective diffusivity– is computed
through the solution of an auxiliary equation, thecell problem. In the case of steady periodic velocity fields the cell
problem is a linear elliptic PDE with periodic coefficients. Various properties of the effective diffusivity have been
investigated. In particular, it has been shown that the diffusivity is always enhanced (over bare molecular diffusion)
for incompressible flows[12,23,29]and always depleted for potential flows[46]. Extensions of the above results
to the case where the molecular diffusivity is modelled as colored noise have also been analyzed[5].

However, there are various applications where the particles cannot be modelled as tracers and inertial effects have
to be taken into account. The need for adequate modelling and analysis of the motion of inertial particles in various
applications in science and engineering has been recognized over the last few years with a number of publications
in this direction[8,10,38]. As well as bringing important physical features into the problem, the presence of inertia
also renders the mathematical study of the resulting equations more delicate. The purpose of the present paper
is to study the long time, large scale behavior of inertial particles moving in periodic velocity fields, under the
influence of molecular diffusion. Both analytical and numerical techniques are used. From a physical standpoint
the main interest in this work is perhaps the enormous enhancement in diffusion which can be introduced through
relatively small inertial effects; see Section6. From the mathematical standpoint, the main interest is perhaps (i)
the hypo-elliptic structure of the differential operators arising in the multi-scale expansions (Section3) and (ii) the
elucidation of the passive tracer limit, from within the inertial particles framework, again by use of multiple scales
expansions (Section5).

We consider the diffusive behaviour of trajectories satisfying the equation

τẍ = v(x) − ẋ+ σβ̇, (1)

whereβ(t) is a standard Brownian motion inRd, d ≥ 1. In Fig. 1we plot a sample trajectory of(1) with dimension
d = 2, τ = 1 andσ = 1; the velocityv(x) is given by the Taylor–Green field:

v(x) = ∇⊥ψTG(x), ψTG(x) = sin(x1) sin(x2). (2)

This figure strongly suggests that the long time behavior of the particles is diffusive. Our goal is to make this type
of observation precise. We provide a mathematical formula for the effective diffusivity, and study its properties
by a combination of analysis and Monte Carlo simulations. The results raise a number of interesting questions of
physical interest, regarding behaviour of the effective diffusivity, and also provide a framework for mathematical
analysis to further probe questions of physical interest.

Problems of this type have already been studied in a variety of situations:

1. Whenσ = 0, ∇ · U(x) ≡ 0 and

v(x) = U(x) + δτU(x) · ∇U(x) (3)

we obtain the following model for the motion of a particle in an incompressible steady velocity field[27,28]:

ẍ = δU(x) · ∇U(x) + 1

τ
(U(x) − ẋ). (4)

Here x(t) denotes the particle position andU(x) is the fluid velocity. The parameterδ = ρf/ρp is the ratio
between the fluid density and the particle density andτ denotes the Stokes number. Eq.(4) becomes Stokes’



G.A. Pavliotis, A.M. Stuart / Physica D 204 (2005) 161–187 163

Fig. 1. The two components of the solution of(1) and (2)with τ = σ = 1.0.

law whenδ = 0, i.e. when the particles are much denser than the surrounding fluid. The model(4) was analyzed
numerically for two-dimensional steady incompressible cellular flows by Crisanti et al.[6]. Their numerical
experiments showed that for particles slightly denser than the surrounding fluid (1− δ ≈ 0 andδ < 1), and for
τ = 1, the particles perform an effective Brownian motion with a well defined diffusion coefficient The term
inertial diffusion was introduced to describe this phenomenon. InFig. 2 we present a sample trajectory of(4)
with U(x) given by the Taylor–Green velocity field(2), for τ = 2.0 andδ = 0.7. The figure again suggests long
time behavior of the particle trajectories which is diffusive. This phenomenon has been observed and analyzed
– mostly numerically – by various authors[6,26,37,47,48]. The range ofδ in which Brownian motion behaviour
is observed appears to be connected to the linear stability properties of the equilibria of(4); see the discussion
in Section6.

2. Whenσ = 0, ∇ · U(x) = 0 andv(x) = U(x) (i.e. δ = 0 in (4)) a similar investigation was carried out by Wang
et al. in[47] in the cased = 3. They studied Eq.(4) numerically for the three-dimensional ABC flow. It is well
known that the streamlines of this flow are chaotic[2]. It was exhibited numerically that, for sufficiently small

Fig. 2. The two components of the solution of(4), for U(x) given by(2), with δ = 0.7 andτ = 2.0.
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τ, the particles perform Brownian motion. The resulting diffusion coefficient was evaluated numerically and its
dependence onτ was investigated.

3. Whenσ > 0 andv(x) = −∇V (x) it is possible to study the effective behavior of particles moving in a periodic or
random potential flow, under the influence of molecular diffusion. This has been addressed by various researchers
[15,22,31,35]. In this case the particle motion is governed by the Langevin equation:

ẍ = −∇V (x) − ẋ+ σβ̇, (5)

whereβ(t) is the standard Brownian motion inRd , σ > 0 andV (x) is a potential which can be either periodic or
random. It was shown by Papanicolaou and Varadhan[31] that, for sufficiently smooth random potentialsV (x),
the particles perform an effective Brownian motion, at long length and time scales, with a nonnegative-definite
effective diffusivity. A similar result was proved for periodic potentials in[35] and various refinements were
analyzed in[15,22]. The analysis of Eq.(5) is greatly simplified by the fact that the explicit form of the invariant
distribution associated to the particle position and velocity is known.

4. The problem of averaging for equations of the form(1) with periodic coefficients was studied by Freidlin in[13].
He considered the equation

τẍ = v
(x
ε

)
− ẋ+ σ

(x
ε

)
β̇,

wherev(x), σ(x) are smooth, 1-periodic functions and the matrixa(x) = σ(x)σ(x)∗ is non-degenerate. It was
shown in[13] that asτ, ε tend to 0, the particle positionx converges to the solution of a first order SDE with
constant coefficients, leading to linear in time mean flow, with superimposed Brownian fluctuations. The averaged
coefficients of the limiting SDE depend on how fastε tends to 0 relative toτ and two different cases have to be
distinguished.

The purpose of the present paper is to study the long time, large scale behavior of inertial particles satisfying1
when the velocity field is periodic with period 1:v(x+ êj) = v(x), j = 1, . . . , d, where{êj}dj=1 are the unit vectors

in R
d . We show, by applying multiscale techniques to the backward Kolmogorov equation associated to(1), that,

provided the drift term is centered with respect to the invariant distribution of the stochastic process corresponding
to (1), the long time, large scale behavior of the inertial particles is governed by an effective Brownian motion. The
effective diffusivity tensorK is computed through the solution of the cell problem which is an equation posed on
R
d × T

d , whereTd is thed-dimensional unit torus. It is shown that this tensor is nonnegative and that, consequently,
the effective dynamics is well-posed. We emphasize that our analysis does not assume any specific structure on
the drift term and that, in particular, it is valid for both divergence free as well as potential flows, provided that a
centering condition onv(x) is satisfied. However, in the case of potential flows, the effective diffusivity is shown to
be depleted, for all Stokes’ numbers, when compared with bare molecular diffusion; this generalizes a known result
for passive tracers.

Our theoretical findings are supported by numerical simulations which probe the dependence of the effective
diffusivity on parameters such asτ and, when the velocity field is given by(3), δ. The equations of motion(1) are
solved for the Taylor–Green flow(2) and the long time behavior of the particle trajectories is shown numerically to
be that of a Brownian motion. The numerically computed effective diffusivity is compared with the enhancement
for passive tracers, i.e. whenτ = 0, and it is shown that the presence of inertia enhances the diffusivity beyond the
enhancement for the passive tracers. The problem is also analyzed through a smallτ expansion of the effective dif-
fusivity. We show that, to leading order inτ, the effective diffusivity is equal to that arising from the homogenization
of passive tracers. We also compute theO(τ) correction to the effective diffusivity for one-dimensional gradient
flows of the type(5) and show that it is always negative. Thus, in the one-dimensional case and forτ sufficiently
small but positive, the diffusivity is depleted over bare molecular diffusion even further than the depletion which
occurs whenτ = 0.
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Here we analyze the problem of homogenization of inertial particles and derive the formula for the effective
diffusivity using formal multi-scale calculations. We emphasize that the basic homogenization result derived in this
paper can be proved rigorously using techniques from stochastic analysis, in particular the martingale central limit
theorem[18]; we refer to[16] for the rigorous proof of the homogenization theorem.

The paper is organized as follows. In Section2 we review homogenization for passive tracers. The derivation of
the homogenized equation for the general second order stochastic differential Eq.(1) with periodic velocity field
v(x) is discussed in Section3. Various properties of the effective diffusivity are derived and analyzed in Section
4. The homogenization result for the Eq.(4), subject to molecular diffusion, is also presented there. The smallτ

expansion forK is studied in Section5. Numerical experiments for the Taylor–Green flow are presented in Section
6. Section7 contains our conclusions. Finally, some technical results which are needed for the rigorous justification
of the multi-scale method employed in this paper are proved inAppendix A.

2. Homogenization for passive tracers

In this section we review the homogenization result for passive tracers – i.e. massless particles – advected by a
velocity fieldv(x) and subject to molecular diffusion:

ẋ = v(x) + σβ̇. (6)

We do this in order to emphasize the structural similarities between this case and the inertial case(1) which is the
focus of the paper.

The velocity fieldv(x) is assumed smooth and periodic with period 1. We will takeσ > 0. This problem has
been extensively analyzed, cf.[4,23,29,46]. Here we merely outline the main steps in the derivation of the ho-
mogenized equation. Notice that we do not assume that the flow is either incompressible or potential. We also
remark that we have chosen to base our analysis on the backward Kolmogorov equation as opposed to for-
ward Kolmogorov, i.e. the Fokker–Planck-equation, which is more customary. Of course, the two approaches
are equivalent, provided that the fieldv(x) is sufficiently smooth. We feel, however, that the analysis based on
the backward Kolmogorov equation is cleaner than that based on the Fokker–Planck equation. Furthermore, the
backward Kolmogorov equation is the starting point for the rigorous justification of the results reported here, see
[16,18].

The processx(t) whose evolution is governed by(6) is ergodic on the torusTd , [4, ch. 3] for details. This in
particular implies the existence of a unique, smooth, invariant densityπ0(x) which is the unique solution to the
stationary Fokker–Planck equation. We will assume that the drift term averages to 0 with respect to this invariant
densityπ0:

∫
Td
v(x)π0(x) dx = 0. (7)

The above centering condition ensures that the long time, large scale behavior of the particle is diffusive and, in
particular, excludes the possibility of the existence of an effective drift. It is automatically satisfied for potential
flows (for which the invariant densityπ0(x) is the Boltzmann distribution) and it reduces to the condition that the
average of the drift over the unit cell vanishes for incompressible flows, since in this caseπ0(x) = 1.1

1 It would seem more natural from a physical point of view to impose the condition
∫
Td
v(x) dx = 0, rather than condition(7), since the

invariant density itself depends on the driftv(x). But, as we will see, condition(7) is natural from a mathematical point of view. If, instead, the
condition

∫
Td
v(x) dx = 0 is imposed, then an effective drift can appear and then a Galilean transformation with respect to this effective drift

can bring the problem to the form that we consider.
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2.1. The rescaled process

We use the scaling property of Brownian motionβ(ct) = √
cβ(t) in law [17, Lemma 2.9.4]to deduce that, under

the re-scalingt → t/ε2, x→ x/ε we obtain

ẋ = 1

ε
v
(x
ε

)
+ σβ̇.

Settingz = x/ε gives the system of SDEs

ẋ = 1

ε
v(z) + σβ̇, (8a)

ż = 1

ε2
v(z) + σ

ε
β̇, (8b)

with the understanding thatz ∈ T
d andx ∈ R

d. This clearly exhibits the fact that the problem possesses three time
scales ofO(1),O(ε) andO(ε2). We now average out the fastest scale, given byz.

2.2. Mutiscale expansion

The backward Kolmogorov equation for(8) is

∂u

∂t
=

(
1

ε2
L0 + 1

ε
L1 + L2

)
u, (9)

with

L0 = v(z) · ∇z + σ2

2
�z,

L1 = v(z) · ∇x + σ2∇z · ∇x,

L2 = σ2

2
�x.

HereL0 is a uniformly elliptic operator with periodic boundary conditions onT
d . We look for a solution of Eq.(9)

which has the form:

u = u0 + εu1 + ε2u2 + · · ·

with ui = ui(x, z, t), i = 1,2, . . .. Substituting the above ansatz into(9) we obtain the following sequence of equa-
tions:

L0u0 = 0,

L0u1 = −L1u0,

L0u2 = −L1u1 − L2u0 + ∂u0

∂t
.

(10)

The ergodicity of the process generated byL0 implies that the null space of the operatorL0 consists of functions
which are constants inz. We letπ0 be the invariant density which satisfies the equation

L∗
0π0(z) = 0. (11)
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Thus the equationL0f = g has a solution if and only ifg averages to 0 overTd with respect toπ0(z):

〈g〉π0 :=
∫
Td
g(z)π0(z) dz = 0. (12)

We refer to[4, ch. 3]for proofs of these results.
In view of the discussion in the previous paragraph, from the first equation in(10)we deduce thatu0 = u0(x, t).

Furthermore, the centering condition on the drift termv(x) implies that

∫
Td
L1u0(x, t)π0(z) dz =

(∫
Td
v(z)π0(z) dz

)
· ∇xu0 = 0,

and consequently the second equation in(10)is well-posed. We can solve this equation using separation of variables:

u1(x, z, t) = χ(z) · ∇xu0(x, t)

where the corrector fieldχ(z) satisfies thecell problem:

L0χ(z) = −v(z). (13)

Notice that, in view of the centering condition on the drift term, the cell problem is well-posed and it admits a unique
solution.

Now we proceed with the final equation in(10). We apply the solvability condition to obtain:

0 =
∫
Td

(
L1u1+L2u0 − ∂u0

∂t

)
π0(z) dz

= −∂u0

∂t
+ σ2

2
�xu0 +

(∫
Td

[v(z) ⊗ χ(z) + σ2∇zχ(z)]π0(z) dz

)
: D2

xu0

= −∂u0

∂t
+K : D2

xu0.

We have used the notationD2
xu0 for the Hessian ofu0:

D2
xu0 =

(
∂2u0

∂xi∂xj

)d
i,j=1

andA : B for the product of the matricesA andB. Moreover,⊗ stands for the tensor product between two vectors.
From the above equation we deduce that:

∂u0

∂t
= Kij ∂

2u0

∂xi∂xj
, (14)

where the summation convention has been used. Theeffective diffusivityK is

Kij = σ2

2
δij +

∫
Td
vj(z)χi(z)π0(z) dz+ σ2

∫
Td

∂χi

∂zj
(z)π0(z) dz. (15)

Eq. (14) is the backward Kolmogorov equation associated to a Brownian motionX(t) with covariance matrixK.
We remark that these formal calculations can be justified rigorously using either energy estimates[4], the method
of two-scale convergence[1] or probabilistic methods[3,32].
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2.3. Well-posedness of the limiting equation

The limiting backward Kolmogorov Eq.(14) is well-posed, i.e. the effective diffusivity is a nonnegative matrix.
To see this, we first observe that

L∗
0(fπ0) = −π0L0f + σ2(�zf )π0 + σ2∇zf · ∇zπ0 = −π0L0f + σ2∇z · {(∇zf )π0}, (16)

for every smooth periodic functionf (z). Consequently:

∫
Td
f (L0f )π0 dz = −σ

2

2

∫
Td

|∇zf |2π0 dz, (17)

in view of (16) and an integration by parts. Now leta be an arbitrary vector inRd and letχ0 = a.χ whereχ is the
solution of the cell problem(13). The scalar quantityχ0 satisfies the equation

L0χ0 = −a · v. (18)

We consider the effective diffusivity along the directiona. We use(17) to obtain:

a ·Ka = σ2

2
|a|2 +

∫
Td

(a · v)χ0π0 dz+ σ2
∫
Td

(∇zχ0 · a)π0 dz

= σ2

2
|a|2 −

∫
Td

(L0χ0)χ0π0 dz+ σ2
∫
Td

(∇zχ0 · a)π0 dz

= σ2

2
|a|2 + σ2

2

∫
Td

|∇zχ0|2π0 dz+ σ2
∫
Td

(∇zχ0 · a)π0 dz

= σ2

2

∫
Td

|∇zχ0 + a|2π0 dz. (19)

Using the notation(12), the penultimate line in(19)may be written as

a ·Ka = σ2

2
|a|2 + σ2

2
〈|∇zχ0|2〉π0 + σ2〈∇zχ0 · a〉π0. (20)

From (19) we deduce that the effective diffusivity is indeed nonnegative and the well posedness of the effective
equation14 is demonstrated.

2.4. Incompressible flows

Whether the diffusivity is enhanced or depleted depends on the specific properties of the periodic drift term. For
the case where the flow is steady and either divergence free or potential more detailed information can be obtained.
In particular, for incompressible flows we have thatπ0(z) = 1. Consequently the last integral on the right hand side
of the penultimate line in(19)vanishes on account of the periodicity ofχ0(z). Thus, the effective diffusivity along
the vectora becomes:

a ·Ka = σ2

2
|a|2 + σ2

2

∫
Td

|∇zχ0|2π0(z) dz. (21)

This shows that transport is always enhanced over bare molecular diffusion, for incompressible flows[29].
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2.5. Potential flows

Whenv(z) = −∇V (z), the invariant densityπ0(z) is the Boltzmann distribution:

π0(z) = 1

Z
exp

(
− 2

σ2
V (z)

)
, Z =

∫
Td

exp

(
− 2

σ2
V (z)

)
dz.

An integration by parts, together with the periodicity ofχ0(z), π0(z) and Eq.(17), gives:

σ2
∫
Td

∇zχ0(z) · aπ0(z) dz = −σ2
∫
Td

|∇zχ0(z)|2π0(z) dz,

and consequently, from the penultimate line in(19), we find that

a ·Ka = σ2

2
|a|2 − σ2

2

∫
Td

|∇zχ0|2π0(z) dz = σ2

2
|a|2 − σ2

2
〈|∇zχ0|2〉π0 (22)

with π0(z) being the Boltzmann distribution. This shows that transport is always depleted, compared with bare
molecular diffusion, for potential flows[46].

3. Homogenization for inertial particles

In this section we will derive the homogenized equation which describes the motion of inertial particles at long
times and large scales using multi-scale techniques. The equation of motion for the inertial particles is(1).

3.1. The rescaled process

We start by performing a diffusive rescaling to the equations of motion(1): t → t/ε2, x→ x/ε. Using the fact
thatβ(c, t) = √

cβ(t) in law we obtain:

τε2ẍ = 1

ε
v
(x
ε

)
− ẋ+ σβ̇.

Introducingy = √
τεẋ andz = x/ε we write this equation as a first order system:

ẋ = 1√
τε
y,

ẏ = 1√
τε2
v(z) − 1

τε2
y + σ√

τε
β̇,

ż = 1√
τε2
y

(23)

with the understanding thatz ∈ T
d andx, y ∈ R

d. This clearly exhibits the fact that the problem possesses two time
scales ofO(ε) andO(ε2).We now average out the fastest scales, on which (y, z), evolve, and show that the fast and
large fluctuations inx induces diffusion on time-scales ofO(1).
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3.2. Multiscale expansion

The backward Kolmogorov equation associated to Eq.(23) is

∂uε

∂t
= 1√

τε
y · ∇xuε + 1

ε2

(
1√
τ
y · ∇z + 1√

τ
v(z) · ∇y + 1

τ
LOU

)
uε :=

(
1

ε2
L0 + 1

ε
L1

)
uε, (24)

where

LOU = −y · ∇y + σ2

2
�y,

L0 = 1√
τ

(
y · ∇z + v(z) · ∇y

) + 1

τ
LOU,

L1 = 1√
τ
y · ∇x.

Note thatLOU is the generator of a standardd-dimensional Ornstein–Uhlenbeck process[14, ch. 3]. This process
is ergodic with Gaussian invariant density satisfying

(LOU)∗ρOU = 0. (25)

In order to carry out the analysis which follows we will make use of the ergodic properties of the solution to
(1) with x→ z. Using the tools developed in[25] one can prove that the processz(t), y(t) with y(t) = √

τż(t)
is ergodic onTd × R

d .2 The analysis implies that there exists a unique invariant densityρ(y, z) with support of
positive measure onTd × R

d. The hypo-ellipticity ofL∗
0 established in[25] shows that the density is smooth and

is hence the unique solution to the stationary Fokker–Planck equation associated to the process(1) [21, ch. 11]:

L∗
0ρ(y, z) := − 1√

τ

(
y · ∇zρ + v(z) · ∇yρ

) + 1

τ

(
∇y · (yρ) + σ2

2
�y

)
ρ = 0. (26)

The Fokker–Planck operatorL∗
0 is the adjoint of the generator of the processL0. The null space of the generatorL0

consists of constants inz, y. Moreover, the equationL0f = g, has a unique (up to constants) solution if and only if

〈g〉ρ :=
∫
Rd

∫
Td
g(y, z)ρ(y, z) dy dz = 0. (27)

In Appendix Awe prove the ergodicity of the process{z, y}, together with the fact thatL0 satisfies the Fredholm
alternative.

We will assume that the average of the velocity with respect to the invariant densityρ vanishes:

〈v(z)〉ρ = 0. (28)

From the identity
∫
Td

∫
Rd
yL∗

0ρ(y, z) dy dz = 0 and after an integration by parts using(26), it follows that condition
(28) is equivalent to

〈y〉ρ = 0.

We assume that the following ansatz for the solutionuε holds:

uε = u0 + εu1 + ε2u2 + · · · (29)

2 This pairz, y is the same asz, y solving(23)up to a rescaling in time which is irrelevant to the ergodicity discussion here.
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with ui = ui(x, y, z, t), i = 1,2, . . .. We substitute(29) into (24)and obtain the following sequence of equations:

L0u0 = 0,

L0u1 = −L1u0,

L0u2 = −L1u1 + ∂u0

∂t
.

(30)

From the first equation in(30)we deduce thatu0 = u0(x, t), since the null space ofL0 consists of functions which
are constants iny andz. Now the second equation in(30)becomes:

L0u1 = − 1√
τ
y · ∇xu0.

The centering condition that we have imposed on the vector fieldv(y, z) implies that〈y〉ρ = 0. Hence the above
equation is well-posed. We solve it using separation of variables:

u1 = Φ(y, z) · ∇xu0

with

L0Φ(y, z) = − 1√
τ
y. (31)

This is the cell problem which is posed onT
d × R

d . Now we proceed with the third equation in(30). We apply the
solvability condition to obtain:

∂u0

∂t
= 〈L1u1〉ρ = 1√

τ
〈yiΦj〉ρ ∂

2u0

∂xi∂xj
= 1√

τ
〈y ⊗Φ〉ρ : D2

xu0.

This is the backward Kolmogorov equation which governs the dynamics on large scales. We write it in the form

∂u0

∂t
= Kij ∂

2u0

∂xi∂xj
(32)

where the effective diffusivity is

Kij = 1√
τ
〈yiΦj〉ρ. (33)

The calculation of the effective diffusivity requires the solution of the cell problem(31). Notice that the cell problem
is not elliptic—it is, however, hypo-elliptic. This follows from the calculations inLemma A.1.

Before studying various properties of the effective diffusivity, let us briefly present the basic ingredients of the
rigorous proof of the homogenization theorem presented in[16]. The basic idea is to apply Itô formula to the solution
Φ(y, z) of the cell problem to obtain, from(23),

x(t) = x(0) + 1

ε
√
τ

∫ t

0
y(s) ds = x(0) − ε(Φ(y(t), z(t)) −Φ(y(0), z(0))) + σ√

τ

∫ t

0
∇yΦ (y(s), z(s)) dβ(s).

It is straightforward to show that the bracketed terms on the right hand side of the above equation converge to 0,
asε→ 0. By using the fact that the (y, z) process is fast, the martingale central limit theorem facilitates proof that
the stochastic integral which appears in the above equation converges to a Brownian motion whose covariance is
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given by the limit of the quadratic variation of the stochastic integral[18], [9, Thm. 7.1.4]. The application of this
theorem automatically provides us with the well-posedness of the limiting backward Kolmogorov equation. In the
next section we establish this well-posedness directly, through the multiple-scales framework.

4. Properties of the effective diffusivity tensor

4.1. Well-posedness of the limiting equation

In the previous section we showed that the dynamics of the inertial particles at large scales is governed by the
backward Kolmogorov Eq.(32). In this subsection we prove that this equation is well-posed, i.e. that the effective
diffusivity is nonnegative. To see this, we first observe that

L∗
0(fρ) = −ρL0f + σ2

τ
ρ�yf + σ2

τ
∇yρ · ∇yf,

for every periodic functionf (y, z) which is sufficiently smooth. We use this equation, together with an integration
by parts and some algebra to obtain:

∫
Rd

∫
Td
f (L0f )ρ dy dz = −σ

2

2τ

∫
Rd

∫
Td

|∇yf |2ρ dy dz = −σ
2

2τ
〈|∇yf |2〉ρ. (34)

This is the analogue of(17) for passive tracers. Now letφ = a ·Φ whereΦ is the solution of the cell problem(31)
anda is a constant vector inRd . The scalar quantityφ satisfies the equation

L0φ = − 1√
τ
a · y. (35)

From the formula for the effective diffusivity, together with equation(34), we obtain:

a ·Ka = 1√
τ

∫
Rd

∫
Td

(a · y)(a ·Φ)ρ dy dz = −
∫
Rd

∫
Td
φL0φρ dy dz = σ2

2τ

∫
Rd

∫
Td

|∇yφ|2ρ dy dz

= σ2

2τ
〈|∇yφ|2〉ρ ≥ 0.

4.2. Alternative representation of the effective diffusivity

The aim of this subsection is the derivation of an alternative representation for the effective diffusivity along
the direction of the vectora in R

d . To this end, we define the fieldχ throughφ = √
τy · a+ χ with φ = Φ · a, Φ

being the solution of the cell problem(31). Substituting this expression in(31) we obtain the following modified
cell problem:

L0χ = −a · v. (36)

The effective diffusivity along the direction of the vectora expressed in terms ofχ is:

a ·Ka = σ2

2
|a|2 + σ2

2τ
〈|∇yχ|2〉ρ + σ2

√
τ
〈∇yχ · a〉ρ (37)
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Eqs.(36) and (37)have the same structure as the corresponding Eqs.(18) and (20)for the first order dynamics. We
will exploit this in the next section when we consider theτ → 0 limit of (37).

4.3. Incompressible flows

We are unable to prove the analogue of what is known for passive tracers, namely that diffusion is always
enhanced for incompressible flow fields. Numerical evidence, however, suggests that this enhancement is seen in
a wide variety of situations and that, furthermore, the presence of inertia further enhances the diffusivity over the
passive tracer enhancement. See Section6.

4.4. Potential flows

From the representation(37)we can prove that, for potential flows, the diffusivity is depleted for allτ > 0, as is
true for the caseτ = 0 of passive tracers. As for passive tracers we use the fact that the explicit form of the invariant
measure is known for potential flows. From Eq.(34), with f = φ, the facts that〈|a · y|2〉ρ = (σ2/2)|a|2 and that
a · ∇yρ = −(2/σ2)ρy · a and an integration by parts we obtain:

σ2

2
√
τ
〈∇yχ · a〉ρ = a ·Ka− σ2

2
|a|2

We use the above formula in Eq.(37) to deduce that, for potential flows, we have〈a · ∇yχ〉ρ = −(1/
√
τ)〈|∇yχ|2〉ρ

which implies:

a ·Ka = σ2

2
|a|2 − σ2

2τ
〈|∇yχ|2〉ρ. (38)

Hence, transport is always depleted for potential flows. This formula should be compared with the formula22
arising in the caseτ = 0, passive tracers. We also remark that a more sophisticated analysis, based on the variational
formulation of the effective diffusivity for passive tracers, yields that for potential flows, and at least in one dimension,
the diffusivity for τ > 0 is depleted even beyond its depletion forτ = 0 [30, Thm. 5.1]:

K(τ) ≤ K(τ = 0) ≤ σ2

2
.

This is a sharper upper bound onK(τ) than the one that follows from(38). On the other hand, Eq.(38) has the
advantage that it provides us with an explicit expression for the difference between molecular diffusivity andK(τ)
in terms of the solution of Eq.(36).

4.5. Conditions for the centering hypothesis(28) to be satisfied

In this section we present some conditions which ensure that the centering condition(28). It is easy to check that
this condition is satisfied for potential flows. Indeed, the explicit form of the invariant density is known in this case
and this enables us to perform the following computation:∫

Td

∫
Rd
v(z)ρ(y, z) dy dz = − 1

Z

1

(πσ2)n/2

∫
Td

∫
Rd

∇V (z)e(−2/σ2)((1/2)y2+V (z)) dy dz

= σ2

2

1

Z

1

(πσ2)n/2

∫
Td

∫
Rd

∇
(
e(−2/σ2)((1/2)y2+V (z))

)
dy dz = 0.
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Fig. 3. Second moments of the particle position vs. time for the velocity field(40). The graphs oft andt2 are also included for comparison.

In the general case, for which the invariant density is not explicitly known, we have to study the symmetry properties
of the drift term in order to identify other classes of flows for which the centering condition is satisfied. Let us consider
the case of a parity invariant flow, i.e. a flow satisfying the condition

v(−z) = −v(z). (39)

It follows from (39) that the solution of Eq.(26)– i.e. the invariant density – satisfies

ρ(y, z) = ρ(−y,−z).

Hence(28) is satisfied.
As a concrete example which shows that condition(39) is necessary for the centering hypothesis(28) to be

satisfied, let us consider the two-dimensional velocity field

v(z1, z2) = (sin z1,− cosz1). (40)

We have that

v1(−z1) = −v1(z1) and v2(−z1) = v2(z1),

and hence we expect diffusive long time behavior along thez1 direction and ballistic motion along thez2 direction.
In Fig. 3we present the second moments〈x1(t)2〉, 〈x2(t)2〉 of solutions to Eq.(1) with v(x) given by(40).3

4.6. Homogenization when the centering hypothesis(28) is not satisfied

In the previous section we imposed the centering condition(28) in order to ensure that there is no mean drift and
that the motion of the inertial particles at long scales is diffusive. In the case where this condition is not satisfied,
then we expect that the effective behavior of the particles is described by a transport equation and that the diffusion
appears only as a higher order correction. Indeed, an analysis similar to the one presented in the previous section,

3 The moments are obtained through Monte Carlo simulations. The details of the numerical simulations presented in this paper are discussed
in Section6.



G.A. Pavliotis, A.M. Stuart / Physica D 204 (2005) 161–187 175

using the advective rescalingt = t/ε andx = x/ε, shows that in this case the particle motion at large scales is
governed by the following backward Kolmogorov equation

∂u

∂t
= 〈vi〉ρ

∂u

∂xi
+ εKij ∂

2u

∂xi
∂xj,

where〈v〉ρ = ∫
Td

∫
Rd
v(z)ρ(y, z) dy dz. Alternatively, the behavior of the particles is diffusive at the reference frame

moving with the mean flow.

4.7. The homogenization problem for Eq.(4)

Let us now consider the Eq.(4) in the presence of molecular diffusion. For steady flows this equation becomes

ẍ = δv(x) · ∇v(x) + 1

τ
(v(x) − ẋ+ σβ̇), (41)

whereδ is the ratio of fluid density to particle density. The techniques developed in[25] enable us to conclude
that there exists a unique, smooth, invariant density for the process{x(t), √

τẋ(t)}, which we denote byρδ(y, z). It
is straightforward to check that the assumptionv(−z) = −v(z) ensures that the drift termbδ(z) = δv(z) · ∇v(z) +
(1/τ)v(z) is centered with respect to this invariant density,〈bδ〉ρδ = 0. Hence, the multiscale techniques developed
in Section3 apply with (1/τ)v(z) → bδ(z) and we can conclude that the rescaled processxε = εx(t/ε2), with x(t)
being the solution of equation41, converges asε→ 0 to a Brownian motion. The covariance-effective diffusivity
of this Brownian motion is

Kδ = 1√
τ
〈Φδ ⊗ y〉ρδ

whereΦδ solves the cell problem

LδΦδ = − 1√
τ
y, (42)

with

Lδ =
(√
τbδ · ∇y + 1√

τ
y · ∇x

)
+ 1

τ
LOU.

Now the effective diffusivity depends onδ as well as onτ andσ. We study the effect of varyingδ in Section6,
by means of numerical experiments. The main interest here stems from the fact that, forσ = 0, Eq.(4) exhibits
effective diffusive behaviour for certain cellular flows and choices ofδ. How this diffusive mechanism interacts
with molecular diffusion is a matter of some interest.

5. Smallτ asymptotics

In this section we show that the effective diffusivity tensorK = K(τ) reduces to the effective diffusivity tensor
from first order dynamics, asτ → 0. To this end we define

A0 = LOU, A1 = y · ∇z + v(z) · ∇y
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and then, by polarization, the effective diffusion tensorK(τ) is determined by(37) with χ solving(36), ρ solving
(26)and

L0 = 1

τ
A0 + 1√

τ
A1.

We wish to expandχ andρ in powers ofτ and show that the leading order behaviour ofK(τ) is given by20.
Higher order terms in the smallτ expansion of the effective diffusivityK(τ) will be computed only for the case of a
one-dimensional potential flow in Section5.4. Perturbation calculations similar to the ones presented in this section
were reported in[43,44] for linear shear flows.

5.1. Expansion forχ

We set

χ = χ0 + √
τχ1 + τχ2 + · · ·

in (36)and then find

A0χ0 = 0 (43)

A0χ1 = −A1χ0 (44)

A0χ2 = −a · v−A1χ1. (45)

The first of these equations implies thatχ0 = χ0(z) only and the second is soluble because

〈A1χ0〉ρOU = 〈y · ∇zχ0(z)〉ρOU = 0.

HereρOU is the mean zero Gaussian invariant density of the OD process, satisfying(25). Solving forχ1 gives

χ1 = y · ∇zχ0(z) + ψ1(z)

and the solvability condition for theχ2 equation yields

σ2

2
�zχ0 + v(z) · ∇zχ0 = −a · v(z).

Thusχ0 is the solution of the cell problem arising in the passive tracer case, Eq.(18). Furthermore∇yχ1 = ∇zχ0(z)
and hence

∇yχ = √
τ∇zχ0(z) +O(τ). (46)

Notice that the functionψ1(z) is undetermined at this point, but that it does not enter Eq.(46).

5.2. Expansion forρ

Now it remains to expandρ(y, z) from (26) in τ. Notice that

A∗
0ρ

OU(y) = 0, ∇yρOU(y) = −2yρOU(y)

σ2
.
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Then, by(16)with z→ y andL0 → A0 we find that

A∗
0(fρOU) = −ρOU[A0f − σ2�yf + 2y · ∇yf ] = ρOUA0f.

Let ρ = ρOUπ̂. Then

0 = L∗
0(ρOUπ̂) = 1

τ
A∗

0(ρOUπ̂) + 1√
τ
A∗

1(ρOUπ̂) = ρOU

τ
A0π̂ + ρOU

√
τ

(
y · ∇zπ̂ + v · ∇yπ̂ − 2

σ2
(v · y)π̂

)
.

SinceρOU > 0 everywhere we may divide through by it in the above expression. If we then set

π̂ = π0 + √
τπ1 + τπ2

we find that

−A0π0 = 0

−A0π1 = y · ∇zπ0 + v · ∇yπ0 − 2

σ2
(v · y)π0

−A0π2 = y · ∇zπ1 + v · ∇yπ1 − 2

σ2
(v · y)π1.

The first equation shows thatπ0 = π0(z) only and the second then gives

π1(y, z) = y ·
{
∇zπ0 − 2

σ2
π0

}
− µ1.

As with the second term in the dual expansion, the functionµ1 is undetermined at this point. However, as the
subsequent calculations will show, it is not needed in order to compute the first term in the smallτ expansion of the
effective diffusivity.

The negative of the right hand side of the third equation is

−y ⊗ y :

{
D2
zπ0 − 2

σ2
∇z{π0v}

}
− v ·

{
∇zπ0 − 2

σ2
π0v

}

+y ⊗ y :

{
∇zπ0 − 2

σ2
π0v

}
⊗ 2v

σ2
+ y ·

{
∇zµ1 − 2

σ2
vµ1

}
.

Now

〈y ⊗ y〉ρOU = σ2

2
I and 〈y〉ρOU = 0

and so the solvability condition forπ2 yields

−σ
2

2
�zπ0 + ∇z · {π0v} = 0
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and hence shows thatπ0 coincides with the passive tracer case, Eq.(11). In summary, we have shown that

ρ(y, z) = ρOU(y)π0(z) +O(
√
τ) (47)

whereπ0(z) is the invariant density from the first order dynamics, satisfying(11).

5.3. Limit of the diffusivity tensor

Combining(46) and (47)in (37)gives

a ·Ka = σ2

2
|a|2 + σ2

2

∫
Td
π(z)|∇zχ0(z)|2 dz+ σ2

∫
Td
π(z)a · ∇zχ0(z) +O(

√
τ)

which, to leading order inτ, is the expression for the first order dynamics.

5.4. One-dimensional potential flows

The calculation of higher order terms in the smallτ expansion for the effective diffusivity is quite involved.
Moreover, in the general case, these higher order terms do not seem to be of definite sign. However, it is possible
to compute explicitly the next term in the smallτ expansion and to prove that it has a definite sign in the case of
one-dimensional potential flows and we now pursue this. Consider the equation

τz̈ = −V ′(z) − ż+ σβ̇. (48)

In this case we only need to solve perturbatively the cell problem(31)since the stationary Fokker–Planck equation
corresponding to(48) is exactly solvable yielding an invariant density independent ofτ:

ρ(y, z) = 1

Z

1√
πσ2

e(−2/σ2)((1/2)y2+V (z)), (49)

with Z = ∫ 1
0 exp((−2/σ2)V (z)) dz andy = (1/

√
τ)ż. The effective diffusivity – which now is a scalar – is given by

the formula:

K = 1√
τ

∫ +∞

−∞

∫ 1

0
yφ(y, z)ρ(y, z) dy dz. (50)

A lengthy calculation enables us to compute the first four terms in the smallτ expansion for the cell problem:

φ0 = χ(z), (51a)

φ1(y, z) = y(χ′(z) + 1), (51b)

φ2(y, z) = 1

2
y2χ′′(z) + ψ2(z), (51c)

φ3(y, z) = 1

6
y3χ′′′(z) + y

(
1

2
σ2χ′′′(z) − V ′(z)χ′′(z) + ψ′

2(z)

)
. (51d)

The cell problem for the first order dynamics, Eq.(13), can be solved explicitly[46] to give

χ(z) =
∫ z

0
ρ̂(z) dz− z+ c0,
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with

ρ̂(z) = e2/σ2V (z), Ẑ =
∫ 1

0
e(2/σ2)V (z) dz.

We use the above formula forχ(z) in Eq.(15) to obtain the following formula for the effective diffusivity

K(τ = 0) = σ2

2

1

ZẐ
. (52)

The termψ2(z) satisfies an equation similar to the cell problem of the first order dynamics. The solution of this
equation is

ψ2(z) = − 2

σ2

∫ z

0

(
1

2
(V ′(z))2 + 3σ2

4
V ′′(z)

)
ρ̂(z) dz+ c1

∫ z

0
ρ̂(z) dz+ c2,

where

c1 = − 2

σ2

∫ z

0

1

2
(V ′(z))2ρ̂(z) dz.

The values of the constantsc0, c2 are not needed for the computation of the effective diffusivity. We substitute now
(51) and (49), using the formulas forχ(z) andψ2(z) and for the moments of the Ornstein–Uhlenbeck process. The
final result is

K = σ2

2

1

ZẐ
− τ

∫ 1

0

1

2
(V ′(z))2ρ̂(z) dz+O(τ2).

The above formula shows that, forτ sufficiently small, the diffusivity is depleted beyond the depletion exhibited by
homogenization in the passive tracer case, which is given by(52).

6. Numerical experiments

In this section we study the dependence of the effective diffusivity for Eqs.(1) and (3)on the non-dimensional
parameters of the problemτ, σ andδ. For simplicity all the experiments we perform are for the Taylor–Green flow
(2)4

U(x) = ∇⊥ψTG(x), ψTG(x) = sin(x1) sin(x2).

The closed streamlines of Lagrangian particle paths in this velocity field is a rather special situation and we describe
numerical experiments for other stream functions, including open streamline topologies, in[34].

It is straightforward to check that the Taylor–Green flow satisfies condition(39)and hence the absence of ballistic
motion at long scales is ensured. Moreover, the symmetry properties of(2) imply that the two diagonal components
of the effective diffusivity are equal, whereas the off-diagonal components vanish. In the figures presented below
we use the notationK := K11 = K22.

4 In our derivation of the homogenized equation and the formula for the effective diffusivity we assumed that the velocity field is 1-periodic,
rather than 2π-periodic. Of course the analysis, as well as the formulas that we derived, are trivially extended to encompass this change of period.
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Fig. 4. Effective diffusivity vs.τ for δ = 0.0, σ = 0.1.

Rather than solving the cell problem(42), we compute the effective diffusivity using Monte Carlo simulations:
we solve the equations of motion(41)numerically for different realizations of the noise and we compute the effective
diffusivity through the formula

K = lim
t→∞

1

2t
〈(x(t) − 〈x(t)〉) ⊗ (x(t) − 〈x(t)〉)〉,

where〈·〉 denotes ensemble average. We solve the stochastic equations of motion using Milstein’s method, appro-
priately modified for the second order SDE[19, p. 386]:

xn+2 = (2 − r)xn+1 − (1 − r)xn + r�tv(xn+1) + σr�tN(0,1).

wherer = �t/τ ands1 = 1 − (r/2), s2 = 1 + (r/2). This method has strong order of convergence 1.0.5 We use
N = 1024 uniformly distributed particles in 2πT

2 with zero initial velocities and we integrate over a very long time
interval (which is chosen to depend upon the parameters of the problem) with�t ≈ 5 × 10−4 min{1, τ}.

In some instances we compare the effective diffusivities for inertial particles with those for passive tracers. The
latter are computed by solving the cell problem directly, by means of a spectral method similar to that described in
[24], together with extrapolation into parameter regimes where the dependence of the diffusivity is provably linear.

6.1. The effect ofτ on diffusivity

We compute the effective diffusivity as a function of the non-dimensional particle relaxation timeτ for the
Taylor–Green flow whenδ = 0.0. Our results are presented inFig. 4, for σ = 0.1. For comparison, the effective
diffusivity of the tracer particle (τ = 0) and that of the free particle, namelyσ2/2, are also plotted. The parameter
τ, apart from influencing the effective diffusivity, introduces an additional time scale into the problem[20]. In
particular, forτ large, we need to integrate the equations of motion over a longer time interval in order to compute
accurate statistics.

5 All experiments reported in this paper have been independently verified by use of an alternative, linearly implicit, method. The agreement
between the statistics computed using these two methods is excellent.
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Fig. 5. Effective diffusivity as a function ofδ for σ = 0.0 andτ = 2.0. (a) The second moment of the particle velocity forδ = 0.45 andδ = 0.55.
The linest andt2 are also plotted for comparison. (b)K vs.δ.

The main interest in this data is that it shows highly non-trivial dependence of the effective diffusivity on the
parameterτ as well as giving quantative information about how inertia enhances the diffusivity over that obtained in
the case of passive tracers. We remark, in particular, that the effective diffusivity reaches its maximum forτ = O(1).
It is in this regime that the free-flight time-scale for the inertial particle is of the same order as that induced by the
velocity field. A similar phenomenon, in a different context, has been observed by Vassilicos et al.[45].

6.2. The effect ofδ on diffusivity

It is a well documented result[6,37,47,48,26]that the particle trajectories of(4) perform an effective Brownian
motion even in the absence of noise, in certain parameter regimes. The linear stability analysis of4 for the Taylor–
Green flow indicates that in the parameter regimeδ ∈ (1/τ,1) we expect a very complicated, chaotic behavior
which might be interpreted as an effective Brownian motion at long times. WhenU(x) = ∇⊥ψTG(x) then the
noise free dynamics arising from(1) whenσ = 0 has two sets of equilibria,X1

0 = [nπ,0,mπ,0], n,m ∈ N and
X2

0 = [(π/2) + nπ,0, (π/2) +mπ,0], n,m ∈ N. The first set of equilibria have two-dimensional unstable manifold
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Fig. 6. Effective diffusivity as a function ofδ for σ = 0.1 andτ = 2.0.

for δ > τ−1 and one-dimensional forδ < τ−1; the second set have a two-dimensional unstable manifold forδ < 1 and
is stable forδ > 1. Numerically we observe diffusive behaviour, in the absence of noise, if and only ifδ ∈ (τ−1,1).
In this regime, all equilibria have two-dimensional unstable manifolds. The basic mechanism for diffusion is chaotic
mixing caused by separation near the separatrices of equilibria; it is unsurprising therefore that the linear stability
of equilibria play a strong role on determining the interval ofδ in which diffusion occurs.

In Fig. 5a we plot the second moment of the particle position as a function of time for values ofδ below and
above the thresholdδ = 0.5, and in the absence of noise. As expected, the particle motion is ballistic forδ = 0.45
and diffusive forδ = 0.55.

In Fig. 5b we plot the effective diffusivity as a function ofδ, again in the absence of noise. Since we have chosen
τ = 2.0 we expect an effective Brownian motion forδ ∈ (0.5,1). Notice that the effective diffusivity increases as
δ→ 0.5+, and appears to diverge in the limit. This is to be expected, sinceδ = 0.5 separates ballistic motion (for
δ < 0.5) and diffusive motion (forδ > 0.5) motion.

In Fig. 6we plot the effective diffusivity as a function ofδ when the particles are subject to additional molecular
diffusion. In this case the effective diffusivity is a decreasing function ofδ.

6.3. The effect ofσ on diffusivity

It is well known, see e.g.[23], that for the case of passive tracers the effective diffusivity depends on the molecular
diffusivity σ in a highly non-linear, very complicated way. In particular, the limit asσ tends to 0 is singular and the
enhancement in the diffusivity – for divergence free flows – depends crucially on the topology of the streamlines.
It is therefore interesting to study the dependence of the effective diffusivity onσ for the inertial particles problem.

In Fig. 7we present the effective diffusivity as a function of the molecular diffusion for two sets of parameters:
(a) forδ = 0.0 (for which the streamlines are closed),τ = 1.0 and (b) forδ = 0.7, τ = 2.0 (a regime in which there
exists) a well defined effective diffusivity even in the respectively. The diffusivity of the free particleσ2/2 is also
plotted for comparison. Moreover, inFig. 7a, we also plot the effective diffusivity for passive tracers.

In both figures we see the clear enhancement of diffusivity over the bare molecular value. Furthermore, inFig.
7a we also observe that the enhancement in the diffusivity is significantly greater forτ > 0 (inertial particles) than
it is for τ = 0 (passive tracers), especially whenσ is small.

A further interesting observation concerns the dependence of the diffusivity onσ. For δ = 0 the dependence is
highly non-trivial, exhibiting both a local maximum and a local minimum. Forδ = 0.7 the presence of inertia leads
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Fig. 7. Effective diffusivity vs.σ for δ = 0.0 andδ = 0.7. (a)δ = 0.0, τ = 1.0. (b)δ = 0.7, τ = 2.0.

to an effective diffusivity which increases asσ becomes smaller. This should be contrasted with the established fact
that, for passive tracers in periodic cellular flows, the effective diffusivity decreases linearly inσ, for σ sufficiently
small[39,42]. It would be interesting to understand how the enhancement scales withσ → 0 and to compare it with
known theoretical results for the passive tracer case; in particular, it would be interesting to extend the theory of
maximally and minimally enhanced diffusion[24] to the inertial situation studied here.

7. Conclusions

The problem of periodic homogenization for inertial particles is considered in this paper. It is shown that, at long
times and large scales, the inertial particles perform Brownian motion and a formula for the effective diffusivity is
derived. Furthermore, the dependence of the effective diffusivity on the non-dimensional particle massτ a (Stokes
number) and the ratio of the fluid to particle densityδ is studied, by means of analysis and numerics.

It is shown that, asτ → 0, the effective diffusivity converges to the one obtained from the homogenization of
passive tracers. Moreover, it is shown through numerical experiments that for a variety of interesting divergence
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free flows, the diffusivity in the presence of inertia is enhanced much beyond the well documented enhancement
of the diffusivity for passive tracers. Furthermore, the dependence of the effective diffusivity onτ andδ is studied
numerically in some detail.

The calculation of the effective diffusion tensor requires the numerical solution of Eqs.(31) and (26). It is
coneivable that this task might be as computationally demanding as direct Monte Carlo simulations, because the
domain of the PDE is unbounded in the momentum variable, and because the PDE is not elliptic (only hypo-elliptic).
This is to be contrasted to the case of passive tracers in periodic flows; there the calculation of the effective diffusivity
requires the solution of the elliptic PDE(13) on a periodic domain. Equations of this type can be routinely and
efficiently solved using, for example, a spectral method. From this point of view our results might not provide
any computational advantage over Monte Carlo simulations. However, the results reported in this paper provide
a mathematical framework for rigorous analysis of the dependence of the effective diffusion coefficient on the
physical parameters of the problem. We have already undertaken such an analysis to study the limit of small Stokes
number and we plan to undertake further studies in future work.

The numerical results reported in Section(6), for a simple two-dimensional steady flow, exhibit a wide range of
interesting physical phenomena. As examples we mention the dependence of the effective diffusivity on the Stokes
number and the fluid/particle density ratio, for a given streamline topology, question which are, we believe, of great
interest to the applied community. The purpose of this work is to develop a framework within which such questions
can be addressed. We plan to investigate some of these issues in future work. The dependence of the effective
diffusivity for a wider class of velocity fields is undertaken in[34].

Summarizing, we note the following specific areas where future work would be of interest:

• the extension to time dependent velocity fieldsv(x, t), either periodic in time or random in time—for example
with an Ornstein–Uhlenbeck structure as in[33,40,41];

• the extension to random velocity fields in space;
• rigorous analysis of the parametric dependence of the effective diffusivity onσ, τ andδ, taking into account the

free streamline topologies;
• further numerical studies for velocity fields other than the simple Taylor–Green flows studied here—in particular

to study problems where the Lagrangian particle paths have open streamline topologies, such as the Childress–
Soward family; this is initiated in[34].

Appendix A

In this appendix we prove the existence of a unique invariant measure for the process{x, ẋ} solving 1 and,
moreover, that the generatorL of the process satisfies the Fredholm alternative. This justifies the formal multi-scale
calculations presented in Section3. To simplify the notation we setσ = τ = 1. The equations of motion become

ẍ = v(x) − ẋ+ β̇. (53)

The generator of the Markov process{x, y}, with y = ẋ is

L = y · ∇x + (v(x) − y) · ∇y + 1

2
�y

We have the following theorem
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Theorem A.1. Assume thatv(x) ∈ C∞(Td). Then there exists a unique, smooth invariant densityρ(x, y) for the
process{x, y}:

L∗ρ(x, y) = 0.

Let furtherh(x, y) be a smooth function such that
∫
Rd

∫
T d
h(x, y)ρ(x, y) dx dy = 0. Then the Poisson equation

− Lf = h (54)

has a unique mean zero solution inL2(Td × R
d,e−δ2‖y‖2

dx dy) for everyδ ∈ (0,2σ−2).

The proof of the existence of a unique invariant measure for our process is based on the results of[25] and is
broken into three lemmas. First, we need to prove the existence of a smooth transition probability density for our
Markov process. This is accomplished by means of Hörmander’s theorem[36, Thm. V38.16]. Then we need to prove
the compactness of phase space, for which we need to find an appropriate Lyapunov functions. Finally, we need to
prove that the transition probability density is everywhere positive. To show this we need to use a controllability
argument. The proof of the existence and uniqueness of solutions of the Poisson Eq.(54) is based on Fredholm’s
theorem.

Lemma A.1. The Markov process generated byL has a smooth transition probability density.

Proof. This follows by an application of Ḧormander’s theorem. The basic idea behind this theorem is that, even
though noise does not act directly to the position variable, there is nevertheless sufficient interaction between
momentum and position so that noise, and consequently smoothness, is transmitted to all degrees of freedom. We
write the generator in Ḧormander’s “sum of squares” form:

L = 1

2

d∑
i=1

X2
i +X0,

whereXi = ∂/∂yi, i = 1, . . . , d andX0 = y · ∇x + (v(x) − y). Let now [A,B] denote the commutator between the
vector fieldsA,B and let Lie{F } denote the Lie algebra generated by the family of vector fieldsF. Define

A0 = Lie{X1, . . . Xd}

and

Ak = Lie{[X0, U], U ∈ Ak−1}, k = 1,2, . . .

Set finally

H = Lie{A0,A1, . . .}.

According to Ḧormander’s theorem, a sufficient condition for the Markov process{x, y} to possess a smooth invariant
density is forH to span the tangent spaceTx,yM, whereM = T

d × R
d . We readily check now that

[X0, Xi] = − ∂

∂xi
+ ∂

∂yi
, i = 1, . . . , d,
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and consequently

Span(Lie{A0,A1}) = Tx,yM.

Thus, Ḧormander’s hypothesis is satisfied and the Markov process generated byL has a smooth density. �
Now we prove that the existence of a Lyapunov function.

Lemma A.2. There exists a constantβ > 0 such that the functionV (x, y) = 1 + (1/2)‖y‖2 satisfies

L(V (x, y)) ≤ −1

2
V (x, y) + β.

Proof. We have thatV (x, y) maps the state space onto [1,∞) and that lim‖y‖→∞ V (x, y) = ∞. Moreover we have

L(V (x, y)) = v · y − ‖y‖2 + d

2
≤ −1

2
‖y‖2 +

(
d

2
+ 1

2
‖v‖2

)
≤ −V (x, y) + β, (55)

with β = d/2 + (1/2) supx∈Td ‖v(x)‖2 + 1. �
The last ingredient which is needed for the proof of the ergodicity of the process generated byL is the fact the

transition probabilityPt is everywhere positive.

Lemma A.3. For all z := (x, y) ∈ T
d × R

d, t > 0 and openO ⊂ T
d × R

d , the transition kernel for(53)satisfies
Pt(z,O) > 0.

For the proof of this lemma we refer to[25, Lemma 3.4].

Proof of Theorem A.1. The existence of a unique invariant measure follows fromLemmas A.1–A.3, upon using
Corollary 2.8 from[25]. In order to prove the existence and uniqueness of solutions of the Poisson Eq.(54)we need
to prove that the generatorL has compact resolvent. This is accomplished in[16, Thm. 3.1, Thm. 3.2]. �

Remark A.1. The above lemmas enable us to conclude that the system converges exponentially fast to its invariant
distribution[25].

Remark A.2. We a bit of extra work we can also prove sharp estimates for the invariant distribution and the solution
of the Poisson equation−Lf = h. We refer to[16, Thm. 3.1, Thm. 3.2]for details.
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