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Abstract

We study the problem of homogenization for inertial particles moving in a periodic velocity field, and subject to molecular
diffusion. We show that, under appropriate assumptions on the velocity field, the large scale, long time behavior of the inertial
particles is governed by an effective diffusion equation for the position variable alone. To achieve this we use a formal multiple
scale expansion in the scale parameter. This expansion relies on the hypo-ellipticity of the underlying diffusion. An expression
for the diffusivity tensor is found and various of its properties studied. In particular, an expansion in terms of the non-dimensional
particle relaxation time (the Stokes number) is shown to co-incide with the known result for passive (non-inertial) tracers in
the singular limitt — 0. This requires the solution of a singular perturbation problem, achieved by means of a formal multiple
scales expansion inlncompressible and potential fields are studied, as well as fields which are neither, and theoretical findings
are supported by numerical simulations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the transport properties of particles moving in fluid flows and subject to molecular diffusion is
a problem of great theoretical and practical intef@4t23]. For the purposes of mathematical analysis, the fluid
velocity is assumed to have some statistical or geometrical structure which mimics features of real fluid flows, and
yetis such that the resulting equation describing the motion of the particle is amenable to both analysis and efficient
numerical investigations. For example the velocity may be assumed steady and periodic in space, or may be assumec
to be a Gaussian random field in space—time. This is the problem of turbulent difféds28h
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It is often the case that the velocity field of interest is active at various length and time scales. Consequently, the
equations which govern the particle motion are very hard to analyze directly. In such cases an effective equation
which governs the behavior of the particles at long times and large scales compared to those of the fluid velocity is
sought. The derivation of such an effective equation is based on multiscale/homogenization teglhiques

This problem has been studied extensively over the last thirty years for passive tracers, i.e. massless particles. |
has been shown that, for periodic or random velocity fields with short range correlations, the particles perform an
effective Brownian motion. The covariance matrix of this Brownian motion -effextive diffusivity- is computed
through the solution of an auxiliary equation, ttedl problem In the case of steady periodic velocity fields the cell
problem is a linear elliptic PDE with periodic coefficients. Various properties of the effective diffusivity have been
investigated. In particular, it has been shown that the diffusivity is always enhanced (over bare molecular diffusion)
for incompressible flow§l2,23,29]and always depleted for potential flof]. Extensions of the above results
to the case where the molecular diffusivity is modelled as colored noise have also been &itdlyzed

However, there are various applications where the particles cannot be modelled as tracers and inertial effects hav
to be taken into account. The need for adequate modelling and analysis of the motion of inertial particles in various
applications in science and engineering has been recognized over the last few years with a number of publications
in this direction[8,10,38] As well as bringing important physical features into the problem, the presence of inertia
also renders the mathematical study of the resulting equations more delicate. The purpose of the present pape
is to study the long time, large scale behavior of inertial particles moving in periodic velocity fields, under the
influence of molecular diffusion. Both analytical and numerical techniques are used. From a physical standpoint
the main interest in this work is perhaps the enormous enhancement in diffusion which can be introduced through
relatively small inertial effects; see Secti6nFrom the mathematical standpoint, the main interest is perhaps (i)
the hypo-elliptic structure of the differential operators arising in the multi-scale expansions (S &iah(ii) the
elucidation of the passive tracer limit, from within the inertial particles framework, again by use of multiple scales
expansions (Sectios).

We consider the diffusive behaviour of trajectories satisfying the equation

% = v(x) — x + o, (1)

wheref() is a standard Brownian motion &, d > 1. InFig. 1we plot a sample trajectory ¢1) with dimension
d = 2,7 = 1 ando = 1, the velocityv(x) is given by the Taylor-Green field:

v(x) = Viyrelx),  ¥re(x) = sin() sinfx). (2)

This figure strongly suggests that the long time behavior of the particles is diffusive. Our goal is to make this type
of observation precise. We provide a mathematical formula for the effective diffusivity, and study its properties
by a combination of analysis and Monte Carlo simulations. The results raise a number of interesting questions of
physical interest, regarding behaviour of the effective diffusivity, and also provide a framework for mathematical
analysis to further probe questions of physical interest.

Problems of this type have already been studied in a variety of situations:

1. Wheno =0,V - U(x) = 0and
v(x) = U(x) + 8tU(x) - VU(x) 3)
we obtain the following model for the motion of a particle in an incompressible steady velocity2XreRkB}
1
X=38U(x)-VU(x)+ - (U(x) — x). @)
T

Here x(r) denotes the particle position ard(x) is the fluid velocity. The parametér= ps/pp is the ratio
between the fluid density and the particle density amténotes the Stokes number. Ed) becomes Stokes’
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Fig. 1. The two components of the solution(&j and (2)with t = o = 1.0.

law whens = 0, i.e. when the particles are much denser than the surrounding fluid. The (@#paak analyzed
numerically for two-dimensional steady incompressible cellular flows by Crisanti g&]alTheir numerical
experiments showed that for particles slightly denser than the surrounding fldid € 0 and$ < 1), and for

7 = 1, the particles perform an effective Brownian motion with a well defined diffusion coefficient The term
inertial diffusion was introduced to describe this phenomenofkidn2 we present a sample trajectory (@

with U(x) given by the Taylor—Green velocity fie(@), for t = 2.0 ands = 0.7. The figure again suggests long
time behavior of the particle trajectories which is diffusive. This phenomenon has been observed and analyzed
—mostly numerically — by various authd26,37,47,48]The range oé in which Brownian motion behaviour

is observed appears to be connected to the linear stability properties of the equili@iasefe the discussion

in Section6.

. Wheno =0, V- U(x) = 0 andv(x) = U(x) (i.e.5 = 0 in (4)) a similar investigation was carried out by Wang
etal. in[47] in the casel = 3. They studied Eq4) numerically for the three-dimensional ABC flow. It is well
known that the streamlines of this flow are cha¢®L It was exhibited numerically that, for sufficiently small
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Fig. 2. The two components of the solution(dj, for U(x) given by(2), with § = 0.7 andz = 2.0.
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7, the particles perform Brownian motion. The resulting diffusion coefficient was evaluated numerically and its
dependence onwas investigated.

3. Wheno > 0 andv(x) = —VV/(x)itis possible to study the effective behavior of particles moving in a periodic or
random potential flow, under the influence of molecular diffusion. This has been addressed by various researchers
[15,22,31,35]In this case the particle motion is governed by the Langevin equation:

F=-—VV() — %+ 0B, (5)

wherep(r) is the standard Brownian motion Rf’, o > 0 andV (x) is a potential which can be either periodic or
random. It was shown by Papanicolaou and Varad8a&hthat, for sufficiently smooth random potentidigx),
the particles perform an effective Brownian motion, at long length and time scales, with a nonnegative-definite
effective diffusivity. A similar result was proved for periodic potential§3®] and various refinements were
analyzed irf15,22] The analysis of E(5) is greatly simplified by the fact that the explicit form of the invariant
distribution associated to the particle position and velocity is known.

4. The problem of averaging for equations of the fgfrywith periodic coefficients was studied by Freidlifi8].
He considered the equation

rfc:v(z)—jc+a<g),3,

wherev(x), o(x) are smooth, 1-periodic functions and the matrfx) = o(x)o(x)* is non-degenerate. It was
shown in[13] that ast, € tend to 0, the particle positioxnconverges to the solution of a first order SDE with
constant coefficients, leading to linear in time mean flow, with superimposed Brownian fluctuations. The averaged
coefficients of the limiting SDE depend on how fagends to O relative te and two different cases have to be
distinguished.

The purpose of the present paper is to study the long time, large scale behavior of inertial particles satisfying
when the velocity field is periodic with period d(x +¢;) = v(x), j = 1,...,d, where{éj}ji.:l are the unit vectors

in RY. We show, by applying multiscale techniques to the backward Kolmogorov equation associdigdhtat,
provided the drift term is centered with respect to the invariant distribution of the stochastic process corresponding
to (1), the long time, large scale behavior of the inertial particles is governed by an effective Brownian motion. The
effective diffusivity tensotC is computed through the solution of the cell problem which is an equation posed on
R? x T¢, whereT? is thed-dimensional unit torus. It is shown that this tensor is nonnegative and that, consequently,
the effective dynamics is well-posed. We emphasize that our analysis does not assume any specific structure ol
the drift term and that, in particular, it is valid for both divergence free as well as potential flows, provided that a
centering condition om(x) is satisfied. However, in the case of potential flows, the effective diffusivity is shown to
be depleted, for all Stokes’ numbers, when compared with bare molecular diffusion; this generalizes a known result
for passive tracers.

Our theoretical findings are supported by numerical simulations which probe the dependence of the effective
diffusivity on parameters such asand, when the velocity field is given §8), . The equations of motio(L) are
solved for the Taylor—Green flo() and the long time behavior of the particle trajectories is shown numerically to
be that of a Brownian motion. The numerically computed effective diffusivity is compared with the enhancement
for passive tracers, i.e. when= 0, and it is shown that the presence of inertia enhances the diffusivity beyond the
enhancement for the passive tracers. The problem is also analyzed throughaestpalision of the effective dif-
fusivity. We show that, to leading orderinthe effective diffusivity is equal to that arising from the homogenization
of passive tracers. We also compute ) correction to the effective diffusivity for one-dimensional gradient
flows of the type(5) and show that it is always negative. Thus, in the one-dimensional case andffficiently
small but positive, the diffusivity is depleted over bare molecular diffusion even further than the depletion which
occurs whenr = 0.
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Here we analyze the problem of homogenization of inertial particles and derive the formula for the effective
diffusivity using formal multi-scale calculations. We emphasize that the basic homogenization result derived in this
paper can be proved rigorously using techniques from stochastic analysis, in particular the martingale central limit
theorem[18]; we refer to[16] for the rigorous proof of the homogenization theorem.

The paper is organized as follows. In Sective review homogenization for passive tracers. The derivation of
the homogenized equation for the general second order stochastic differentja) &éth periodic velocity field
v(x) is discussed in Sectio® Various properties of the effective diffusivity are derived and analyzed in Section
4. The homogenization result for the Hd), subject to molecular diffusion, is also presented there. The gmall
expansion foiC is studied in Sectiob. Numerical experiments for the Taylor—Green flow are presented in Section
6. Section7 contains our conclusions. Finally, some technical results which are needed for the rigorous justification
of the multi-scale method employed in this paper are provekpipendix A

2. Homogenization for passive tracers

In this section we review the homogenization result for passive tracers — i.e. massless particles — advected by a
velocity fieldv(x) and subject to molecular diffusion:

% = v(x) + op. (6)

We do this in order to emphasize the structural similarities between this case and the inertj4) edseh is the
focus of the paper.

The velocity fieldv(x) is assumed smooth and periodic with period 1. We will take 0. This problem has
been extensively analyzed, ¢#,23,29,46] Here we merely outline the main steps in the derivation of the ho-
mogenized equation. Notice that we do not assume that the flow is either incompressible or potential. We also
remark that we have chosen to base our analysis on the backward Kolmogorov equation as opposed to for-
ward Kolmogoroy, i.e. the Fokker—Planck-equation, which is more customary. Of course, the two approaches
are equivalent, provided that the fielgx) is sufficiently smooth. We feel, however, that the analysis based on
the backward Kolmogorov equation is cleaner than that based on the Fokker—Planck equation. Furthermore, the
backward Kolmogorov equation is the starting point for the rigorous justification of the results reported here, see
[16,18]

The process(r) whose evolution is governed I{§) is ergodic on the torug?, [4, ch. 3]for details. This in
particular implies the existence of a unique, smooth, invariant densg(ty) which is the unique solution to the
stationary Fokker—Planck equation. We will assume that the drift term averages to 0 with respect to this invariant
densitymo:

Ad v(x)mo(x) dx = 0. @)

The above centering condition ensures that the long time, large scale behavior of the particle is diffusive and, in
particular, excludes the possibility of the existence of an effective drift. It is automatically satisfied for potential
flows (for which the invariant densityo(x) is the Boltzmann distribution) and it reduces to the condition that the
average of the drift over the unit cell vanishes for incompressible flows, since in thisgage= 1.1

1 It would seem more natural from a physical point of view to impose the condﬁ}@m(x)dx = 0, rather than conditiof7), since the
invariant density itself depends on the diifk). But, as we will see, conditio(7) is natural from a mathematical point of view. If, instead, the
conditionjfd v(x) dx = O is imposed, then an effective drift can appear and then a Galilean transformation with respect to this effective drift
can bring the problem to the form that we consider.
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2.1. The rescaled process

We use the scaling property of Brownian motiéfat) = /c8(z) in law[17, Lemma 2.9.4{o deduce that, under
the re-scaling — /€2, x — x/e we obtain

X = %v(%) +op.

Settingz = x /e gives the system of SDEs

i= %v(z) + 0B, (8a)
t= o)+ 2B, (8b)
€ €

with the understanding thate T¢ andx € R?. This clearly exhibits the fact that the problem possesses three time
scales of9(1), O(e) andO(¢?). We now average out the fastest scale, givea.by

2.2. Mutiscale expansion

The backward Kolmogorov equation f(8) is

ou 1 1
(= z 9
o (62£0+6£1+£2)u, ( )

with

O.2
Lo=v(z)- V. + 7A2a

L1 =1v(z)- Vi + 02V, - Vi,

o2

£2 = EAX

HereLq is a uniformly elliptic operator with periodic boundary conditionsTish We look for a solution of Eq(9)
which has the form:

u=u0+eu1+62u2+---

with u; = u;(x, z,1),i = 1, 2, .. .. Substituting the above ansatz ir{) we obtain the following sequence of equa-
tions:

Loug =0,

Louy = —Lauo, (10)
0

Loup = —Lqur — Loug + %

The ergodicity of the process generateddgimplies that the null space of the operatly consists of functions
which are constants in We letrg be the invariant density which satisfies the equation

omo(z) = 0. (11)
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Thus the equatiog f = g has a solution if and only i averages to 0 ovél? with respect torg(z):

(oo = [ | e)mo(c)dz =0 (12

We refer to[4, ch. 3]for proofs of these results.
In view of the discussion in the previous paragraph, from the first equatid@®)mwe deduce thatg = uo(x, 1).
Furthermore, the centering condition on the drift terfx) implies that

/ Liug(x, )mo(z) dz = (/ v(z)mo(z) dz) - Vyug =0,
Td Td
and consequently the second equatiofiD)is well-posed. We can solve this equation using separation of variables:

I/t]_(x, Z, t) = X(Z) : quo(x7 t)

where the corrector fielgl(z) satisfies theell problem:
Lox(z) = —v(2). (13)

Notice that, in view of the centering condition on the drift term, the cell problem is well-posed and it admits a unique
solution.
Now we proceed with the final equation(h0). We apply the solvability condition to obtain:

0
0= / <£1u1+£2u0 — ﬂ) mo(z) dz
Td ot

oug o2

= —E + 7AxM0 + <[Ed[v(Z) ® X(Z) + UZVZX(Z)]WO(Z) dZ> : D)ZCMO

ou

We have used the notati®§uo for the Hessian ofig:

andA : B for the product of the matriceésandB. Moreover,® stands for the tensor product between two vectors.
From the above equation we deduce that:

3 ¥
duo _ iji’ (14)
ot Bxiaxj
where the summation convention has been usedefbetive diffusivityC is
2

o oY

Kij = =6 +/ v;(2)xi(z)7o(z) dz + 02/ X ro(z) dz. (15)
2 Td Td 0Z;

Eq. (14) is the backward Kolmogorov equation associated to a Brownian mat{onwith covariance matrixC.
We remark that these formal calculations can be justified rigorously using either energy esdihdtesmethod
of two-scale convergendgé] or probabilistic methodg3,32].
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2.3. Well-posedness of the limiting equation

The limiting backward Kolmogorov E¢14)is well-posed, i.e. the effective diffusivity is a nonnegative matrix.
To see this, we first observe that

$(f0) = —moLof + 0*(A, f)mo + 02V, f - Voo = —moLo f + 0%V, - {(V, f)mo}, (16)

for every smooth periodic functiofi(z). Consequently:

2
/ f(Cofmode =~ / V. fPmo e, (17)
Td Td

in view of (16) and an integration by parts. Now @be an arbitrary vector ilR? and letyo = a.x wherey is the
solution of the cell problen(il3). The scalar quantityg satisfies the equation

Loxo=—a-v. (18)

We consider the effective diffusivity along the directianWe useg(17)to obtain:

2

o

a-Ka= —|d|2+/ (a'v)xoﬂodz-lrdz/ (Vzx0 - @)mo dz
2 Td Td

2

o

= EIClI2 —/ (ﬁoxo)xoﬂoderGZ/ (Vexo-a)modz
Td ’[[‘d

o? o?

=—|a|2+—f IszolzﬂodZJrGZ/ (Vzxo0 - a)mo dz
2 2 Td T"

= E/q;-d IV:x0 + al“mo dz. (19)

Using the notatiorf12), the penultimate line i§19) may be written as

o? 2 o? 2 2
a-Ka= ?|Cl| +?(|vz)(0| >n0+0 (szO'a)rro- (20)

From (19) we deduce that the effective diffusivity is indeed nonnegative and the well posedness of the effective
equationl4is demonstrated.

2.4. Incompressible flows

Whether the diffusivity is enhanced or depleted depends on the specific properties of the periodic drift term. For
the case where the flow is steady and either divergence free or potential more detailed information can be obtained
In particular, for incompressible flows we have thgfz) = 1. Consequently the last integral on the right hand side
of the penultimate line ii19) vanishes on account of the periodicity @f(z). Thus, the effective diffusivity along
the vectora becomes:

02 2 02 2
a-Ka=Zia?+ % / 1V, xolProlz) . (21)
2 2 Jpd

This shows that transport is always enhanced over bare molecular diffusion, for incompressibjgdlows
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2.5. Potential flows

Whenu(z) = —VV(z), the invariant densityto(z) is the Boltzmann distribution:

70(2) = %exp(—%V(z)) Cz= A d exp(—%V(x)) dz.

An integration by parts, together with the periodicity)@f(z), 7o(z) and Eq.(17), gives:

o? / Vexolz) - amo(z) dz = —o? / 1V, x0(2) Prolz) de.
Td Td

and consequently, from the penultimate ling1®), we find that

O_2 2

2_0 2 o® o o 2
a-Ka= 5 lal® — 2 S IV x0l“mo(z) dz = Elal - 7(|sz0| )70 (22)
with mo(z) being the Boltzmann distribution. This shows that transport is always depleted, compared with bare
molecular diffusion, for potential flowgl6].

3. Homogenization for inertial particles

In this section we will derive the homogenized equation which describes the motion of inertial particles at long
times and large scales using multi-scale techniques. The equation of motion for the inertial partigles is

3.1. The rescaled process

We start by performing a diffusive rescaling to the equations of mdfigir — /€2, x — x/e. Using the fact
thatB(c, ) = /cB(t) in law we obtain:

1 . .
1e%% = —v (f) —x+op.
€ \¢€

Introducingy = +/tex andz = x/e we write this equation as a first order system:

1

X = ——

JTE Y
. 1 o

1 .
y= WU(Z) -2t ﬁﬂ» (23)
1

7=
JTe? Y
with the understanding thate T¢ andx, y € R<. This clearly exhibits the fact that the problem possesses two time

scales of9(e) andO(e2). We now average out the fastest scales, on which)( evolve, and show that the fast and
large fluctuations ix induces diffusion on time-scales 6X1).



170 G.A. Pavliotis, A.M. Stuart / Physica D 204 (2005) 161-187

3.2. Multiscale expansion

The backward Kolmogorov equation associated to(28) is

ou® 1 1 1 1 1 1 1
A Vo [y Vot —u(2) - Vy + 2L = ( Lo+ =L uf, 24
ot ﬁey x +62(ﬁy Z+ﬁv(z) y+r )u (ez 0+e 1>u (24)
where
2
o
‘COU:_y'Vy—F?Ay’
1 1 ou
Eoz—ﬁ(y-vz+v(z)-vy)+;£ ,
L= 1 \Y
1—ﬁy x-

Note that£OV is the generator of a standadetimensional Ornstein-Uhlenbeck procgbs, ch. 3] This process
is ergodic with Gaussian invariant density satisfying

(EOU)*pOU —0. (25)

In order to carry out the analysis which follows we will make use of the ergodic properties of the solution to
(1) with x — z. Using the tools developed {i25] one can prove that the procegs), y(r) with y(r) = /7z(¢)
is ergodic onT¢ x R?.2 The analysis implies that there exists a unique invariant depsityz) with support of
positive measure ofiY x R¢. The hypo-ellipticity ofLj established ii25] shows that the density is smooth and
is hence the unique solution to the stationary Fokker—Planck equation associated to the(fyg2éssh. 11]

2
0o(y, 2) = —% (v Vep 4+ (z) - Vyp) + % (Vy (o) + %Ay) p=0. (26)

The Fokker—Planck operatdy is the adjoint of the generator of the proc&gs The null space of the generatfg
consists of constants i y. Moreover, the equatiofip f = g, has a unique (up to constants) solution if and only if

(8)p = fR . /T ’ 8(y, 2)p(y, z) dydz = 0. (27)

In Appendix Awe prove the ergodicity of the proceigs y}, together with the fact thalg satisfies the Fredholm
alternative.
We will assume that the average of the velocity with respect to the invariant densityishes:

(v(z))p, =0. (28)

From the identity/s [pa YLE0(y, 2) dy dz = 0 and after an integration by parts usi@$), it follows that condition
(28)is equivalent to

(»p=0.

We assume that the following ansatz for the solutiéimolds:

u6=u0+6u1+62u2+--- (29)

2 This pairz, y is the same as, y solving(23) up to a rescaling in time which is irrelevant to the ergodicity discussion here.
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with u; = u;(x, y, z,1), i = 1, 2, .. .. We substitutg29) into (24) and obtain the following sequence of equations:

Loug =0,

Lour = —Lyuo, (30)
ou

Loup = —Lqug + 3_t0

From the first equation i(B0) we deduce thatg = uo(x, ), since the null space dip consists of functions which
are constants igandz. Now the second equation {80) becomes:

1
Loug = __‘Ey - Vyuo.

7

The centering condition that we have imposed on the vector #igic) implies that(y), = 0. Hence the above
equation is well-posed. We solve it using separation of variables:

u1 = &(y, z) - Viuo
with
1
LoP(y,7) = ——=). 31
0®(», 2) ﬁy (31)

This is the cell problem which is posed @ x R?. Now we proceed with the third equation(®0). We apply the
solvability condition to obtain:

oug 1 82140 1

2 _ ¢ = (3®))y—— = —(y® D), : D2uo.
o (Lau)p ﬁ(yl J>p3xi3x]' ﬁb’@ Yo U0

This is the backward Kolmogorov equation which governs the dynamics on large scales. We write it in the form

d 3
duo _ j U0 (32)
ot Bx,'ax]'
where the effective diffusivity is
1
Kij = —=(i®))p- (33)

NG

The calculation of the effective diffusivity requires the solution of the cell prol{&th Notice that the cell problem
is not elliptic—it is, however, hypo-elliptic. This follows from the calculationd &mma A.1
Before studying various properties of the effective diffusivity, let us briefly present the basic ingredients of the
rigorous proof of the homogenization theorem presentgtbh The basic idea is to applydformula to the solution
@(y, z) of the cell problem to obtain, frorf23),

x(1) = x(0) + % /O y(s) ds = x(0) — e((y(1). (1)) — @(¥(0). 2(0))) + % /0 Vy® (y(s). z(s)) dB(s).

It is straightforward to show that the bracketed terms on the right hand side of the above equation converge to O,
ase — 0. By using the fact that they(z) process is fast, the martingale central limit theorem facilitates proof that
the stochastic integral which appears in the above equation converges to a Brownian motion whose covariance is
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given by the limit of the quadratic variation of the stochastic intefir@], [9, Thm. 7.1.4] The application of this
theorem automatically provides us with the well-posedness of the limiting backward Kolmogorov equation. In the
next section we establish this well-posedness directly, through the multiple-scales framework.

4. Properties of the effective diffusivity tensor
4.1. Well-posedness of the limiting equation

In the previous section we showed that the dynamics of the inertial particles at large scales is governed by the
backward Kolmogorov E(.32). In this subsection we prove that this equation is well-posed, i.e. that the effective
diffusivity is nonnegative. To see this, we first observe that

0'2 0’2
%
o(fp) = —pLof + 7pAyf + 7Vyp “Vyf,

for every periodic functiory (y, z) which is sufficiently smooth. We use this equation, together with an integration
by parts and some algebra to obtain:

o2 2 o2 )
/Rd/w f(ﬁof)pddeZ—Z—T/Rd/WlVyﬂ pdydz:—2—r(|vyf| o (34)

This is the analogue @fL7) for passive tracers. Now leét= a - ® where is the solution of the cell probleif31)
anda s a constant vector iR¢. The scalar quantity satisfies the equation

1
Lop = —ﬁa Y. (35)

From the formula for the effective diffusivity, together with equat{84), we obtain:

1 o2
[ [ e ompdya=— [ [ ocopodyar=2 [ [ 19.02pdve:
VT Jrd JTa Rd JTd 2t Jra Jmd

= 5 {IVyel%), = 0.

a-Ka=

4.2. Alternative representation of the effective diffusivity

The aim of this subsection is the derivation of an alternative representation for the effective diffusivity along
the direction of the vectaa in R?. To this end, we define the fieldthroughg = /7y -a+ x With ¢ = @ - a, @
being the solution of the cell proble(81). Substituting this expression {81) we obtain the following modified
cell problem:

Lox=—a-v. (36)

The effective diffusivity along the direction of the vectexpressed in terms of is:

o2 2 2

o o
a-Ka= 7|a|2+2—T<|vyx|2>p+ﬁ<vyx.a>p (37)
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Eqgs.(36) and (37have the same structure as the corresponding(Egsand (20¥or the first order dynamics. We
will exploit this in the next section when we consider the> 0 limit of (37).

4.3. Incompressible flows

We are unable to prove the analogue of what is known for passive tracers, namely that diffusion is always
enhanced for incompressible flow fields. Numerical evidence, however, suggests that this enhancement is seen in
a wide variety of situations and that, furthermore, the presence of inertia further enhances the diffusivity over the
passive tracer enhancement. See Se@&ion

4.4. Potential flows

From the representatiq7) we can prove that, for potential flows, the diffusivity is depleted foral 0, as is
true for the case = 0 of passive tracers. As for passive tracers we use the fact that the explicit form of the invariant
measure is known for potential flows. From Eg4), with f = ¢, the facts that|a - y|?), = (¢2/2)a|? and that
a-Vyp = —(2/0%)py - a and an integration by parts we obtain:

o2
PN

We use the above formula in E@7)to deduce that, for potential flows, we hae V,x), = —(1//7)( |V}X|
which implies:

o
Vyx-a)p=a- lCa——|a|2

02 0‘2
a-Ka= 7|a|2 — 2—T<|Vyx|2>p. (38)

Hence, transport is always depleted for potential flows. This formula should be compared with the f82mula
arising in the case = 0, passive tracers. We also remark that a more sophisticated analysis, based on the variational
formulation of the effective diffusivity for passive tracers, yields that for potential flows, and atleastin one dimension,
the diffusivity fort > 0 is depleted even beyond its depletion foz 0[30, Thm. 5.1]

2
K(r) < K(r=0)< "7

This is a sharper upper bound #ifr) than the one that follows fror(88). On the other hand, E¢38) has the
advantage that it provides us with an explicit expression for the difference between molecular diffusivitrand
in terms of the solution of E(36).

4.5. Conditions for the centering hypothegi8) to be satisfied
In this section we present some conditions which ensure that the centering co(@Bjidhis easy to check that

this condition is satisfied for potential flows. Indeed, the explicit form of the invariant density is known in this case
and this enables us to perform the following computation:

v (—2/02)((1/2)y*+V(2)
/ / v(z)p(y, z)dydz = Z(noZ)"/Z /;T ) /R VV()e dydz

0?1 2 2
= - - ( 2/0°)(1/2y“+V (@)Y dy dz =
27z (7102)"/2 /1;‘d Agd ) yoe=
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Fig. 3. Second moments of the particle position vs. time for the velocity @&} The graphs of and:? are also included for comparison.

Inthe general case, for which the invariant density is not explicitly known, we have to study the symmetry properties
ofthe drifttermin order to identify other classes of flows for which the centering condition is satisfied. Let us consider

the case of a parity invariant flow, i.e. a flow satisfying the condition

v(—z) = —v(z). (39)
It follows from (39) that the solution of Eq(26) — i.e. the invariant density — satisfies

p(y, 2) = p(=y, —2).

Hence(28)is satisfied.
As a concrete example which shows that conditi88) is necessary for the centering hypothg&8) to be
satisfied, let us consider the two-dimensional velocity field

v(z1, z2) = (Sin z1, — COS z3). (40)

We have that
v1(—z1) = —v1(z1) and wvp(—z1) = va(z1),

and hence we expect diffusive long time behavior along ftdirection and ballistic motion along the direction.
In Fig. 3we present the second mometits(r)?), (x2(r)?) of solutions to Eq(1) with v(x) given by(40).3

4.6. Homogenization when the centering hypoth@83is not satisfied

In the previous section we imposed the centering cond{@8)in order to ensure that there is no mean drift and
that the motion of the inertial particles at long scales is diffusive. In the case where this condition is not satisfied,
then we expect that the effective behavior of the particles is described by a transport equation and that the diffusion
appears only as a higher order correction. Indeed, an analysis similar to the one presented in the previous sectior

3 The moments are obtained through Monte Carlo simulations. The details of the numerical simulations presented in this paper are discussec

in SectionG.
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using the advective rescaling= /¢ andx = x/¢, shows that in this case the particle motion at large scales is
governed by the following backward Kolmogorov equation

du - ou ek 82148
— = (Vi) ,— + eKjj—0xj,
or P ox; Yox; !

where(v), = Ja Jra v(2)p(y, 2) dy dz. Alternatively, the behavior of the particles is diffusive at the reference frame
moving with the mean flow.

4.7. The homogenization problem for E4)

Let us now consider the E@) in the presence of molecular diffusion. For steady flows this equation becomes
1 ] .
X = dv(x) - Vu(x) + —(v(x) — x + 0 B), (42)
T

where$ is the ratio of fluid density to particle density. The techniques developé2binenable us to conclude
that there exists a unique, smooth, invariant density for the prg¢eé$s +/7x(r)}, which we denote by?(y, z). It

is straightforward to check that the assumptign z) = —v(z) ensures that the drift terd? (z) = sv(z) - Vo(z) +
(1/7)v(z) is centered with respect to this invariant denafnb;))pa = 0. Hence, the multiscale techniques developed
in Section3 apply with (1/7)v(z) — b°(z) and we can conclude that the rescaled prog€ss ex(z/€2), with x(r)
being the solution of equatiofil, converges as — 0 to a Brownian motion. The covariance-effective diffusivity
of this Brownian motion is

1
K> = ﬁ@‘s ® Y)

whered’ solves the cell problem
1
L0 = ——y, 42
7 (42)

with
L8 = ﬁb8~v +iy-V —i—lﬁou
YT * T '

Now the effective diffusivity depends ahas well as orr ando. We study the effect of varying in Section6,
by means of numerical experiments. The main interest here stems from the fact thwat: forEq. (4) exhibits
effective diffusive behaviour for certain cellular flows and choices.dfiow this diffusive mechanism interacts
with molecular diffusion is a matter of some interest.

5. Smallt asymptotics

In this section we show that the effective diffusivity teng&be () reduces to the effective diffusivity tensor
from first order dynamics, as— 0. To this end we define

Ao=L%, A=y -V.+u(z)- 2
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and then, by polarization, the effective diffusion ten&t) is determined by37) with x solving (36), p solving
(26)and

1 1
Lo=— —Aj.
0 tAo-i- ﬁAl

We wish to expandq and p in powers oft and show that the leading order behaviourkif) is given by20.
Higher order terms in the smallexpansion of the effective diffusivitZ(z) will be computed only for the case of a
one-dimensional potential flow in Sectié. Perturbation calculations similar to the ones presented in this section
were reported if43,44]for linear shear flows.
5.1. Expansion foy
We set
X=xo+Tx1+txe+---

in (36) and then find

Aoxo=0 (43)
Aox1 = —Aixo (44)
Aox2 = —a-v— A1x1. (45)

The first of these equations implies that= xo(z) only and the second is soluble because
(A1x0) Jou = (¥ - V2 x0(z)) ou = O.
Herep®V is the mean zero Gaussian invariant density of the OD process, satié¥ap@olving for x1 gives

x1 =y Vzxo(z) + ¥1(z)

and the solvability condition for thg, equation yields
o2
5 Aaxo+u(e) - Vaxo = —a - v(z).

Thusyo is the solution of the cell problem arising in the passive tracer cas¢l8rFurthermorev, x1 = V; xo(z)
and hence

Vyx = vVTV2x0(2) + O(2). (46)
Notice that the functionr1(z) is undetermined at this point, but that it does not enter(&g).

5.2. Expansion fop

Now it remains to expangd(y, z) from (26)in =. Notice that

—2yp°Y(y)
A5p0) =0, Vyp2U) = — .
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Then, by(16) with z — y andLy — Ag we find that
A5(fo%Y) = =p%[Aof — oAy f +2y - Vy f1= Y Aof
Let p = pOY%. Then

ou 1 ou 1 ou p°Y p°Y
0=Ly(p~"7) = ;AS(P m) + 7 1(07°7) = — Aot + —=

N . 2 N
. ﬁ<y~VZn+v~Vyn—?(v~y)n).

Sincep®Y > 0 everywhere we may divide through by it in the above expression. If we then set
7= mo + /T1 + o
we find that
—Agmg=0
2
—Aory =y Vg +v- Vymo — G—Z(U - y)mo

2
—Aomz =y Ve + v+ Vo — —5 (v y)ma.

The first equation shows that = 7o(z) only and the second then gives

2
w1(y,2) =y -1 Vemo — —270[ ~ M.

As with the second term in the dual expansion, the functigris undetermined at this point. However, as the
subsequent calculations will show, it is not needed in order to compute the first term in the srphsion of the
effective diffusivity.

The negative of the right hand side of the third equation is

2 2
—yQy: {Dg?‘[o — ;VZ{TFOU}} — V- {VZT[O — 0—277,'01)}

2 2v 2
+yQ®y Vo — —7movy @ — +y- Vi1 — —vu1( .

o o o

Now
0,2
(y® y)you = 7] and (y)ou=0

and so the solvability condition for; yields

2

—%Azno + V. {mov} =0
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and hence shows that coincides with the passive tracer case, @4). In summary, we have shown that

p(y, 2) = P2V ()m0(z) + O(V7) (47)

whererno(z) is the invariant density from the first order dynamics, satisfyirD.

5.3. Limit of the diffusivity tensor
Combining(46) and (47)n (37) gives

2 2

a-Ka=Tia?+ %< f 7(2) Vs x0(2)2 dz + 02 / 7(2)a - Vs x0(2) + O(/7)
2 2 Ta’ 'H‘d

which, to leading order in, is the expression for the first order dynamics.

5.4. One-dimensional potential flows

The calculation of higher order terms in the smakxpansion for the effective diffusivity is quite involved.
Moreover, in the general case, these higher order terms do not seem to be of definite sign. However, it is possible
to compute explicitly the next term in the smalkexpansion and to prove that it has a definite sign in the case of
one-dimensional potential flows and we now pursue this. Consider the equation

i=-V'(2) =%+ 0B (48)

In this case we only need to solve perturbatively the cell prolf&hhsince the stationary Fokker—Planck equation
corresponding t@¢48) is exactly solvable yielding an invariant density independent of

-2/ +V ), (49)

1
p(y,2) = 7 Vo

with Z = fol exp((2/02)V(z)) dz andy = (1/4/7)z. The effective diffusivity — which now is a scalar — is given by
the formula:

1 +oo pl
=— yo(y, 2)p(y, z) dy dz. 50
= [ 009000 (50)
A lengthy calculation enables us to compute the first four terms in the sraapansion for the cell problem:

$o0 = x(2), (51a)
$1(y,2) = y(x’(Z) +1), (51b)
¢2(y.2) = 5y*("(2) + 2(2). (51c)
020.2) = %10+ (50206~ VL@ + 1502 (51d)

The cell problem for the first order dynamics, Efj3), can be solved explicit46] to give

X() = fo 3@ dz — 2+ o,
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with
1
pz) =V, 7 =/ g2/0%)VQ) g,
0

We use the above formula fgi(z) in Eg. (15) to obtain the following formula for the effective diffusivity

2

o 1

Krt=0)= ——.

( ) 277

The termyr,(z) satisfies an equation similar to the cell problem of the first order dynamics. The solution of this
equation is

(52)

z 2 z
v =2 [ (G0 V)i sa [ w0k a

where

(=2 /0 VP

The values of the constantg, ¢ are not needed for the computation of the effective diffusivity. We substitute now
(51) and (49)using the formulas fog(z) andy»(z) and for the moments of the Ornstein—Uhlenbeck process. The
final result is

21 11 .
k=% fo (V@23 e+ O()
The above formula shows that, fesufficiently small, the diffusivity is depleted beyond the depletion exhibited by
homogenization in the passive tracer case, which is givgd®y

6. Numerical experiments

In this section we study the dependence of the effective diffusivity for @gsnd (3)on the non-dimensional
parameters of the problemo ands. For simplicity all the experiments we perform are for the Taylor—Green flow
@2

U(x) = V' ¥16(x),  ¥ra(x) = sinfx) sin(xp).

The closed streamlines of Lagrangian particle paths in this velocity field is a rather special situation and we describe
numerical experiments for other stream functions, including open streamline topolod®4, in

Itis straightforward to check that the Taylor—Green flow satisfies cond@@jand hence the absence of ballistic
motion at long scales is ensured. Moreover, the symmetry properti@siofply that the two diagonal components
of the effective diffusivity are equal, whereas the off-diagonal components vanish. In the figures presented below
we use the notatioR = K11 = Koo.

4 In our derivation of the homogenized equation and the formula for the effective diffusivity we assumed that the velocity field is 1-periodic,
rather than 2-periodic. Of course the analysis, as well as the formulas that we derived, are trivially extended to encompass this change of period.
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- 1>0.0

Fig. 4. Effective diffusivity vsz for § = 0.0,0 = 0.1.

Rather than solving the cell problef@2), we compute the effective diffusivity using Monte Carlo simulations:
we solve the equations of moti¢hl) numerically for different realizations of the noise and we compute the effective
diffusivity through the formula

K= lim %((x(t) — (x(1))) ® (x(r) — (x(1)))),

where(-) denotes ensemble average. We solve the stochastic equations of motion using Milstein’s method, appro-
priately modified for the second order SIPBD, p. 386]

Xpa2 = (2= 1r)xpp1 — (L —r)x, + rAw(x,11) + orAtNO, 1).

wherer = At/t ands; = 1 — (r/2), s2 = 1+ (r/2). This method has strong order of convergence® Mk use
N = 1024 uniformly distributed particles im'2 with zero initial velocities and we integrate over a very long time
interval (which is chosen to depend upon the parameters of the problemiwith5 x 10~% min{1, t}.

In some instances we compare the effective diffusivities for inertial particles with those for passive tracers. The
latter are computed by solving the cell problem directly, by means of a spectral method similar to that described in
[24], together with extrapolation into parameter regimes where the dependence of the diffusivity is provably linear.

6.1. The effect of on diffusivity

We compute the effective diffusivity as a function of the non-dimensional particle relaxationctfiorethe
Taylor-Green flow wheid = 0.0. Our results are presentedhig. 4, for o = 0.1. For comparison, the effective
diffusivity of the tracer particlex = 0) and that of the free particle, namely/2, are also plotted. The parameter
7, apart from influencing the effective diffusivity, introduces an additional time scale into the pr¢B@&mn
particular, forr large, we need to integrate the equations of motion over a longer time interval in order to compute
accurate statistics.

5 All experiments reported in this paper have been independently verified by use of an alternative, linearly implicit, method. The agreement
between the statistics computed using these two methods is excellent.
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Fig. 5. Effective diffusivity as a function dffor o = 0.0 andr = 2.0. (a) The second moment of the particle velocityfes 0.45 ands = 0.55.
The linesr andr? are also plotted for comparison. (K)vs. 5.

The main interest in this data is that it shows highly non-trivial dependence of the effective diffusivity on the
parametet as well as giving quantative information about how inertia enhances the diffusivity over that obtained in
the case of passive tracers. We remark, in particular, that the effective diffusivity reaches its maximum@®gt ).

It is in this regime that the free-flight time-scale for the inertial particle is of the same order as that induced by the
velocity field. A similar phenomenon, in a different context, has been observed by VassilicoglBj.al.

6.2. The effect of on diffusivity

It is a well documented resUis,37,47,48,26that the particle trajectories ¢4) perform an effective Brownian
motion even in the absence of noise, in certain parameter regimes. The linear stability andysisioé Taylor—
Green flow indicates that in the parameter regitme(1/7, 1) we expect a very complicated, chaotic behavior
which might be interpreted as an effective Brownian motion at long times. WWH{eh= V- yrc(x) then the
noise free dynamics arising frod) wheno = 0 has two sets of equiIibriaXé = [nn, 0, mm, 0], n,m € N and

XS = [(%/2) + nm, 0, (x/2) + mm, 0], n, m € N. The first set of equilibria have two-dimensional unstable manifold
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Fig. 6. Effective diffusivity as a function dffor o = 0.1 andr = 2.0.

fors > t—1and one-dimensional fér< r—; the second set have a two-dimensional unstable manifosd$ot and
is stable fo > 1. Numerically we observe diffusive behaviour, in the absence of noise, if and ahly (£, 1).
In this regime, all equilibria have two-dimensional unstable manifolds. The basic mechanism for diffusion is chaotic
mixing caused by separation near the separatrices of equilibria; it is unsurprising therefore that the linear stability
of equilibria play a strong role on determining the intervaé @ which diffusion occurs.
In Fig. 5a we plot the second moment of the particle position as a function of time for valuelseddéw and
above the thresholéi= 0.5, and in the absence of noise. As expected, the particle motion is ballisfic=f@.45
and diffusive fors = 0.55.
In Fig. 5b we plot the effective diffusivity as a function &fagain in the absence of noise. Since we have chosen
7 = 2.0 we expect an effective Brownian motion #®e (0.5, 1). Notice that the effective diffusivity increases as
8 — 0.5%, and appears to diverge in the limit. This is to be expected, $ire®.5 separates ballistic motion (for
8 < 0.5) and diffusive motion (foé > 0.5) motion.
In Fig. 6we plot the effective diffusivity as a function éfwhen the particles are subject to additional molecular
diffusion. In this case the effective diffusivity is a decreasing functiod of

6.3. The effect of on diffusivity

Itis well known, see e.423], that for the case of passive tracers the effective diffusivity depends on the molecular
diffusivity o in a highly non-linear, very complicated way. In particular, the limitasnds to O is singular and the
enhancement in the diffusivity — for divergence free flows — depends crucially on the topology of the streamlines.
It is therefore interesting to study the dependence of the effective diffusivityfonthe inertial particles problem.

In Fig. 7we present the effective diffusivity as a function of the molecular diffusion for two sets of parameters:
(a) fors = 0.0 (for which the streamlines are closed)- 1.0 and (b) for§ = 0.7, © = 2.0 (a regime in which there
exists) a well defined effective diffusivity even in the respectively. The diffusivity of the free pastigis also
plotted for comparison. Moreover, Fig. 7a, we also plot the effective diffusivity for passive tracers.

In both figures we see the clear enhancement of diffusivity over the bare molecular value. Furtherifigre, in
7a we also observe that the enhancement in the diffusivity is significantly greaterfor(inertial particles) than
it is for t = O (passive tracers), especially wheis small.

A further interesting observation concerns the dependence of the diffusivity Bor § = 0 the dependence is
highly non-trivial, exhibiting both a local maximum and a local minimum. &er 0.7 the presence of inertia leads
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Fig. 7. Effective diffusivity vso for § = 0.0 ands = 0.7. (a)§ = 0.0,7 = 1.0. (b)§ = 0.7,z = 2.0.

to an effective diffusivity which increases adecomes smaller. This should be contrasted with the established fact
that, for passive tracers in periodic cellular flows, the effective diffusivity decreases lineafljano sufficiently
small[39,42] It would be interesting to understand how the enhancement scales witld and to compare it with

known theoretical results for the passive tracer case; in particular, it would be interesting to extend the theory of
maximally and minimally enhanced diffusi¢24] to the inertial situation studied here.

7. Conclusions

The problem of periodic homogenization for inertial particles is considered in this paper. It is shown that, at long
times and large scales, the inertial particles perform Brownian motion and a formula for the effective diffusivity is
derived. Furthermore, the dependence of the effective diffusivity on the non-dimensional particlec{&sskes
number) and the ratio of the fluid to particle dengitig studied, by means of analysis and numerics.

It is shown that, ag — O, the effective diffusivity converges to the one obtained from the homogenization of
passive tracers. Moreover, it is shown through numerical experiments that for a variety of interesting divergence
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free flows, the diffusivity in the presence of inertia is enhanced much beyond the well documented enhancement
of the diffusivity for passive tracers. Furthermore, the dependence of the effective diffusivitgro is studied
numerically in some detail.

The calculation of the effective diffusion tensor requires the numerical solution of(Bfsand (26) It is
coneivable that this task might be as computationally demanding as direct Monte Carlo simulations, because the
domain of the PDE is unbounded in the momentum variable, and because the PDE is not elliptic (only hypo-elliptic).
This isto be contrasted to the case of passive tracers in periodic flows; there the calculation of the effective diffusivity
requires the solution of the elliptic PDE3) on a periodic domain. Equations of this type can be routinely and
efficiently solved using, for example, a spectral method. From this point of view our results might not provide
any computational advantage over Monte Carlo simulations. However, the results reported in this paper provide
a mathematical framework for rigorous analysis of the dependence of the effective diffusion coefficient on the
physical parameters of the problem. We have already undertaken such an analysis to study the limit of small Stokes
number and we plan to undertake further studies in future work.

The numerical results reported in Sect{@), for a simple two-dimensional steady flow, exhibit a wide range of
interesting physical phenomena. As examples we mention the dependence of the effective diffusivity on the Stokes
number and the fluid/particle density ratio, for a given streamline topology, question which are, we believe, of great
interest to the applied community. The purpose of this work is to develop a framework within which such questions
can be addressed. We plan to investigate some of these issues in future work. The dependence of the effectiv
diffusivity for a wider class of velocity fields is undertaken[84#].

Summarizing, we note the following specific areas where future work would be of interest:

e the extension to time dependent velocity fields, ¢), either periodic in time or random in time—for example
with an Ornstein—Uhlenbeck structure ag38,40,41]

e the extension to random velocity fields in space;

e rigorous analysis of the parametric dependence of the effective diffusivity oands, taking into account the
free streamline topologies;

e further numerical studies for velocity fields other than the simple Taylor—Green flows studied here—in particular
to study problems where the Lagrangian particle paths have open streamline topologies, such as the Childress:
Soward family; this is initiated ii34].

Appendix A

In this appendix we prove the existence of a unique invariant measure for the pfecessolving 1 and,
moreover, that the generat6rof the process satisfies the Fredholm alternative. This justifies the formal multi-scale
calculations presented in Secti8nTo simplify the notation we set = t = 1. The equations of motion become

¥ =v(x) — x + B. (53)

The generator of the Markov process y}, with y = x is

1
£=y~Vx+(U(x)—y)-Vy+§Ay

We have the following theorem
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Theorem A.1. Assume that(x) € C°>°(T¢). Then there exists a uniguemooth invariant density(x, y) for the
procesdx, y}:

L*p(x, y) = 0.

Let furtheri(x, y) be a smooth function such thﬁﬁgd de h(x, y)p(x, y) dxdy = 0. Then the Poisson equation
—Lf=h (54)

has a unique mean zero solutionfR(T¢ x RY, e~5°I¥1? dx dy) for everys e (0, 20~2).

The proof of the existence of a unique invariant measure for our process is based on the r¢2b]tamd is
broken into three lemmas. First, we need to prove the existence of a smooth transition probability density for our
Markov process. This is accomplished by meansa@ifrander’s theoref36, Thm. V38.16] Then we need to prove
the compactness of phase space, for which we need to find an appropriate Lyapunov functions. Finally, we need to
prove that the transition probability density is everywhere positive. To show this we need to use a controllability

argument. The proof of the existence and uniqueness of solutions of the Poisg6d s based on Fredholm’s
theorem.

Lemma A.1. The Markov process generated Byhas a smooth transition probability density

Proof. This follows by an application of Bkmander’s theorem. The basic idea behind this theorem is that, even
though noise does not act directly to the position variable, there is nevertheless sufficient interaction between
momentum and position so that noise, and consequently smoothness, is transmitted to all degrees of freedom. We
write the generator in Brmander’s “sum of squares” form:

whereX; = 9/dy;, i =1,...,dandXo = y - V, + (v(x) — y). Letnow [A, B] denote the commutator between the
vector fieldsA, B and let Lig F} denote the Lie algebra generated by the family of vector field3efine

Ao = Lie{X1, ... X4}
and

A = Lie{[Xo, U], U € A1}, k=1,2, ...
Set finally

H = Lie{Ap, A1, ...}.

According to Hbrmander’s theorem, a sufficient condition for the Markov pro¢ess} to possess a smooth invariant
density is for to span the tangent spa&e, M, whereM = T x R?. We readily check now that

d d
Xo, Xi{|l=——+—, i=1,...,d,
[Xo., Xi] 8xi+8yi i
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and consequently
Span(Lig.Ao, A1}) = T,y M.

Thus, Hbrmander’s hypothesis is satisfied and the Markov process generatetddsya smooth density. [
Now we prove that the existence of a Lyapunov function.

Lemma A.2. There exists a constagt> 0 such that the functiof’ (x, y) = 1 + (1/2)||y||? satisfies

1
Proof. We have thaV(x, y) maps the state space onto ¢b) and that lim . V(x, y) = oco. Moreover we have

d 1 d 1
LYV =0y = IyIP+5 = —5II*+ (5 + Envnz) ==Vl +h (55)

with 8 = d/2 + (1/2) sugcra [v(@)12+ 1. O

The last ingredient which is needed for the proof of the ergodicity of the process generalasd the fact the
transition probabilityP; is everywhere positive.

LemmaA.3. Forall z := (x,y) € T¢ x R, r > 0and oper® c T¢ x R?, the transition kernel fo(53) satisfies
Pt(Z, O) > O

For the proof of this lemma we refer [85, Lemma 3.4]

Proof of Theorem A.1. The existence of a unique invariant measure follows ftemmas A.1-A.3upon using
Corollary 2.8 from25]. In order to prove the existence and uniqueness of solutions of the Poiss&4 Bge need
to prove that the generatdrhas compact resolvent. This is accomplishelty Thm. 3.1, Thm. 3.2] O

Remark A.1. The above lemmas enable us to conclude that the system converges exponentially fast to its invariant
distribution[25].

Remark A.2. We a bit of extra work we can also prove sharp estimates for the invariant distribution and the solution
of the Poisson equationL f = h. We refer to[16, Thm. 3.1, Thm. 3.2for details.
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