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Abstract

We study a class of “particle in a heat bath” models, which are a generalization of the well-known Kac–Zwanzig class of
models, but where the coupling between the distinguished particle and thenheat bath particles is through nonlinear springs. The
heat bath particles have random initial data drawn from an equilibrium Gibbs density. The primary objective is to approximate
the forces exerted by the heat bath—which we do not want to resolve—by a stochastic process. By means of the central limit
theorem for Gaussian processes, and heuristics based on linear response theory, we demonstrate conditions under which it is
natural to expect that the trajectories of the distinguished particle can be weakly approximated, asn → ∞, by the solution of a
Markovian SDE. The quality of this approximation is verified by numerical calculations with parameters chosen according to
the linear response theory. Alternatively, the parameters of the effective equation can be chosen using time series analysis. This
is done and agreement with linear response theory is shown to be good.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mechanical models for particles immersed in a heat bath have a long history, dating back to the 1960s with the
model of Ford et al.[1]. The simplest models consist of a “distinguished” particle interacting with a large collection
of n “heat bath” particles[2,3]. The initial conditions for the heat bath particles are assumed to be random, with a dis-
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tribution governed by the laws of statistical physics. Such models have recently been studied as test problems for di-
mensional reduction methods such as coarse time-stepping[4–6], optimal prediction[7,8], and transfer operators[9].

In a recent publication[10] we analyzed then → ∞ limit of a variant of the Kac–Zwanzig model. On bounded
time intervals the behaviour of the distinguished particle was proved to be weakly approximated by a (generalized)
Langevin stochastic differential equation (SDE). While this weak approximation was not proved for infinite time
intervals, the long time behaviour of the distinguished particle’s trajectories was found numerically to resemble that
of the limiting SDE: the close relationship between the large system of ordinary differential equations (ODEs) and
the limiting SDE over large times is manifest, for example, in the good agreement in the empirical measures and
auto-covariance functions of the two processes.

All the above analyses use explicitly the simplicity of the Kac–Zwanzig model and, notably, the fact that the
distinguished particle interacts with the heat bath particles through linear springs. Using standard methods for
linear ODEs one can then eliminate the heat bath variables and obtain, in explicit form, a closed integro-differential
equation for the distinguished particle; this facilitates analysis of then → ∞ limit. The form of Hamiltonians which
we study in this paper are given by

H(Pn,Qn, p, q) = P2
n

2
+ V (Qn) +

n∑
j=1

[
p2
j

2mj

+ kjv(qj − Qn)

]
, (1)

where (Pn,Qn) are the momentum and position of the distinguished particle, and the remaining (pj, qj) are the
momenta and positions of the heat bath. The work of Kac and Zwanzig which laid the foundation of this subject
area concerns the case of quadratic (Hookean) potentialv. Here we consider more general non-Hookean potentials,
in particular quartic ones, and again considern � 1. At the end of this section we describe other forms of nonlinear
coupling, different from(1), that arise in the literature.

The purpose of this paper is to obtain understanding of such nonlinear bath-particle coupling. In particular we
investigate the approximation of the motion of the distinguished particle by an SDE, using a combination of rigorous
analysis, formal asymptotics and time series analysis. It is hoped that the insight we obtain here will inform more
ambitious projects to fit SDEs to coarse models of molecular conformational dynamics such as that initiated in[11].
Where conformational transitions are exceptionally rare events, it may be impossible to generate sufficiently long
sample paths of the ODEs to fit SDEs which are valid on the whole phase space; but it may still be useful to fit them
locally, within a conformation and this idea is one considered in[11]. Furthermore, the techniques introduced here
may also, in principle, be used to fit experimental data.

A recent publication which investigates the possibility of dimension reduction through stochastic closure is[12].
That work exploits a time scale separation to facilitate the dimension reduction and applications are drawn from the
atmospheric sciences. Here we exploit the broad spectrum of the heat bath.

We start by considering a single nonlinear oscillator with initial data drawn from a Gibbs distribution (Section 2.1).
For power law potentials the general solution can be related to a normalized solution via a similarity transformation.
We then consider a collection ofn such oscillators, varying in mass and spring coefficient, and analyze the (time-
dependent) force,Fn(t), that they exert on their common anchor point (Section 2.2). This force is a random function
in the probability space induced by the initial data. For masses and spring coefficients satisfying certain properties
we prove thatFn(t) converges, asn → ∞, to a Gaussian process,F (t), with zero mean and a computable auto-
covariance. The convergence is in distribution, i.e., weak convergence[13], in the space of continuous functions
C([0, T0],R), whereT0 is finite but arbitrary. By fitting numerical data, we find parameters for which the auto-
covariance of the limiting process is well approximated by an exponential decay, i.e., the limiting process closely
resembles an Ornstein–Uhlenbeck (OU) process (Section 2.3). Then we use methods from time series analysis to
fit OU processes to data generated at finiten, comparing the results with the fits obtained atn = ∞, and showing
good agreement (Section 2.4). The results ofSection 2are generalizable to arbitrary potentials without power law
form and this is discussed inSection 2.5.

The next step is to analyze the force exerted by an oscillator when the anchor point is moving (Section 3.1). The
expected value of this force is called “drag”, whereas the deviation from the mean is called “noise”. In general,
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the drag depends on the entire history of the motion of the anchor point via a memory kernel. For linear springs
the separation between drag and noise follows immediately from the variation of constants formula. For nonlinear
springs these components cannot be obtained analytically. We perform a perturbative expansion in the limit where
the displacement of the anchor point is small and obtain a “linear response” solution, where the drag force is given
by the velocity of the anchor point convolved with a memory kernel. This memory kernel is proportional to the
auto-covariance of the fluctuating force at equilibrium (when the anchor point is static—Section 2.2), which is a
manifestation of the fluctuation–dissipation principle. Numerical computations are used to extend this analysis by
showing a deviation from linear response when the displacement of the anchor point is not small (Section 3.2).
It is also demonstrated numerically that increasing the temperature improves the accuracy of the linear response
approximation. Related discussion about the validity of linear response theory may be found in[14,15]; there the
effects of chaotic mixing, and of system dimension, are explored.

Finally in Section 4.1we return to the full Hamiltonianproblem (1)for a particle interacting through nonlinear
springs with a collection ofn heat bath oscillators. The analysis inSection 3.1, as well as the analysis in the case
of linear bath-particle coupling, suggests how to construct an approximate generalized Langevin equation in the
linear response regime. When the equilibrium fluctuations behave like an OU process, it is possible to eliminate
the memory by the introduction of one auxiliary variable, and obtain an SDE. First we use linear response theory
to fit parameters in this SDE and good agreement with the Hamiltonian system is shown. Secondly we use time
series analysis to find the optimal parameter fit of this SDE to the motion of the distinguished particle in the full
Hamiltonian problem. Agreement between the parameter estimates, and those obtained by linear response theory,
is good. Hence the resulting SDE approximates well, in a weak sense, the trajectories of the distinguished particle
for largen (Sections 4.2 and 4.3).

Concluding discussions are given inSection 5.
Earlier work by Lindenberg and co-workers study particle-bath couplings induced by Hamiltonians of the form

H(Pn,Qn, p, q) = P2
n

2
+ V (Qn) +

n∑
j=1

[
p2
j

2mj

+ kj(qj − aj(Qn))2
]

(2)

and of the form

H(Pn,Qn, p, q) = P2
n

2
+ V (Qn) +

n∑
j=1

[
p2
j

2mj

+ kjq
2
j/2

]
− λQnΓ (q), (3)

whereq = (q1, . . . , qn). The Hamiltonian(2) is studied in[16], with later work in cosmology in[17]; the quadratic
coupling potential allows explicit elimination of the bath variables. The Hamiltonian(3) is studied in[18]; perturba-
tion techniques are applied, making the assumption thatλ is small and thatΓ is polynomial inq. Classical models
that use nonlinear springs to induce coupling between the distinguished particle and the heat bath have been also
studied numerically[5].

Models that use nonlinear interactions between distinguished particles and heat baths have also been studied
in the quantum mechanical context; indeed some of the references in the previous paragraph include the quantum
case. Classical models are limits of quantum models, and are treated in many cases quasi-classically[19]. In [20] a
quantum system is analyzed via the derivation of a master equation for the system’s density operator. In these two
papers, the nonlinearity is treated by perturbative expansions, and in this respect differ from the present work.

2. Construction of random functions with nonlinear oscillators

In this section we show that sums of solutions of a single degree of freedom Hamiltonian system with random
data can be approximated by Gaussian processes. We also show that, in certain regimes, these limiting Gaussian
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processes can themselves be approximated by OU processes.Section 2.1introduces the prototypical Hamiltonian
we study—separable with quartic potential.Section 2.2proves convergence of sums ofn solutions to this problem,
with canonical initial data, to Gaussian processes.Section 2.3contains numerical validation of the theory and studies
the approximation of the limiting (n = ∞) Gaussian process by an OU process. This is taken further inSection 2.4
where a systematic time series analysis is undertaken to fit OU processes to data generated by the finite (n < ∞)
sum of nonlinear oscillators.Section 2.5contains generalization to potentials other than quartic.

2.1. A nonlinear oscillator with random initial data

Consider the following single degree of freedom Hamiltonian

H(p, q) = p2

2m
+ kq4

4
, (4)

wherep andq are momentum and coordinate. This Hamiltonian describes a particle (or an oscillator) of massm in
a quartic potential well,v(q) = (1/4)kq4. Hamilton’s equations are

q̇ = p

m
, q(0) = q0, ṗ = −kq3, p(0) = p0, (5)

where (p0, q0) are the initial data. The initial conditions are assumed to be random, drawn from the Gibbs distribution
with densityZ−1 exp[−βH(p0, q0)], whereZ is a normalization factor andβ the inverse temperature. ForH(p, q)
given by(4) p0 andq0 are independent, and their joint probability density isf (p0, q0), where

f (p, q) = β1/2

(2πm)1/2
exp

(
−βp2

2m

)
· (4βk)1/4

Γ (1/4)
exp

(
−βkq4

4

)
(6)

andΓ (x) is the Gamma function[21]. Note, however, that although the initial data is random, most of the parameter
estimation that we perform in this section, and subsequent ones, is based on a single path of the underlying dynamics,
generated by a single pick of the initial data.

Eq. (5) satisfies a homogeneity property: its general solution can be expressed in terms of the solution of a
“normalized” equation. LetΦ(t) be the solution of the initial value problem:

Φ̈ + Φ3 = 0, Φ(0) = 1, Φ̇(0) = 0, (7)

then the solution to(5) is

q(t) = k−1/4ξ0Φ(ξ0νt + τ0), (8)

whereν = k1/4m−1/2. The parametersξ0 andτ0 are related to the initial data by

q0 = k−1/4ξ0Φ(τ0), p0 = m1/2ξ2
0Φ̇(τ0). (9)

It is readily verified thatΦ(t) is periodic with period, to five significant digits:

T = π−1/2[Γ ( 1
4)]2 = 7.4163

and satisfies the normalized energy conservation relation:

2Φ̇2(t) + Φ4(t) = 1. (10)
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The relation(9) defines a mapping from the original variables (p, q) to action-angle-like variables (ξ, τ). Viewed as
a map

(ξ, τ) ∈ R × [0, T ) → (q, p) ∈ R
2,

the mapping is onto and takes two points in the domain into every point in its range (the mapping is one-to-one and
onto if we restrictξ to R

+). In particular, the density(6) induces a density on (ξ, τ), as established by the following
proposition.

Proposition 2.1. The density(6) induces the following density on(ξ, τ):

f̃ (ξ, τ) = m1/2k−1/4ξ2f (p, q) = β3/4

√
πΓ (1/4)

ξ2 exp

(
−βξ4

4

)
. (11)

That is, τ and ξ are independent, τ is uniformly distributed in[0, T ] and ξ has a density proportional to
ξ2 exp

(−βξ4/4
)
onR.

We refer to phases and amplitudes distributed this way ascanonical.

Proof. The change of variables formula is

f̃ (ξ, τ) = f (p(ξ, τ), q(ξ, τ))

|J(ξ, τ)| ,

where

|J(ξ, τ)|−1 =

∣∣∣∣∣∣∣∣
∂p

∂ξ

∂p

∂τ

∂q

∂ξ

∂q

∂τ

∣∣∣∣∣∣∣∣
= m1/2k−1/4ξ2[2Φ̇2(τ) − Φ(τ)Φ̈(τ)] = m1/2k−1/4ξ2

and we have used(7) and (10). �

2.2. Sums of nonlinear oscillations

We consider nown independent oscillators with interaction potentials (1/4)kjq4 and massesmj; this determines

the frequenciesνj, j = 1,2, . . . , n throughνj = k
1/4
j m

−1/2
j . Each oscillator has random initial data (ξj, τj), which

are mutually independent sequences of i.i.d. random variables. The phase variablesτj have uniform distribution
U [0, T ], whereas the action-like variablesξj have density proportional toξ2 exp(−βξ 4/4). The oscillators then
have positionqj(t) determined by(8). The joint force that these oscillators exert on the common anchor point (the
origin) is given by the sum over derivatives of the potential, that is

Yn(t) =
n∑

j=1

kjq
3
j (t) =

n∑
j=1

k
1/4
j ξ3

jΦ
3(ξjνjt + τj). (12)

We are interested in the limiting behaviour of such sums asn → ∞. Some assumptions need to be made for the
parameterskj andνj which, together, determine themj. The νj determine the characteristic frequencies of the
oscillators once theξj are known, i.e. they determine the “spectrum of the heat bath”. Note, however, that the
actual spectrum in(12) is also amplitude (i.e.,ξ) dependent. Since heat baths are characterized by broad and dense
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spectra, we want the set ofνj to cover an increasingly large range of frequencies, in an increasingly dense manner,
asn → ∞. A simple choice that satisfies this requirement is

νj = j #ν, #ν = na

n
(13)

for somea ∈ (0,1). This choice differs from the one used in[10], where the analogous parameter was chosen
at random. Because the frequency is amplitude dependent here, and the amplitude is a random variable, there is
sufficient randomness in the spectrum even if theνj are chosen equi-distant.

In addition we make the following assumption for the distribution of coefficientskj.
Assumption 2.1. The coefficientskj can be written as

k
1/2
j = g(νj)#ν,

whereg(ν) is uniformly bounded onR+ and satisfiesg(ν) ≤ c/ν1+b for someb > 0.
Note that this implies that the masses have the form

mj = g(j#ν)

j2#ν
.

We may now formulate a theorem concerning the limiting behaviour of(12).
Theorem 2.1. Let Yn(t) be a sequence of random functions given by(12) with νj given by(13), kj satisfying
Assumption 2.1and canonicalτj, ξj. ThenYn ⇒ Y in C([0, T0],R), T0 > 0 arbitrary, whereY (t) is a stationary
Gaussian process with mean zero and auto-covariance

σ(t) = β−3/2
∫ ∞

0
g(ν)h(β−1/4νt) dν, (14)

hereh(t) is the auto-covariance of the force exerted by a single oscillator with canonical data and unit parameters
m = k = β = 1:

h(t) = 1√
2Γ (3/4)

∫ ∞

−∞
ξ8 e−ξ4/4

[
1

T

∫ T

0
Φ3(ξt + τ)Φ3(τ) dτ

]
dξ. (15)

Proof. The proof relies on the following theorem ([22], p. 450). LetYn be a collection of real-valued almost-surely
continuous stochastic processes on [0, T0], such that:

(1) The finite-dimensional distributions ofYn weakly converge to those of an almost-surely continuous processY.
(2) Tightness: there exist positive constantsα, η,M such that for alln

E|Yn(t + u) − Yn(t)|α ≤ M |u|1+η.

(HereE denotes expectation with respect to the random data on (ξ, τ).) ThenYn ⇒ Y in C([0, T0],R).
The weak convergence of the finite-dimensional distributions is proved inAppendix A in Lemma A.1. The

tightness property is proved inLemma A.2. �
Comments:

(1) The auto-covariance of the force exerted by an oscillator with parametersk,m, andβ is

σ1(t) = β−3/2k1/2h(β−1/4νt), (16)
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whereν = k1/4m−1/2. The finiten auto-covariance is then

σn(t) = EYn(s)Yn(s + t) = β−3/2
n∑

j=1

g(νj)h(β−1/4νjt)#ν, (17)

where we have usedAssumption 2.1for the form of thekj. The limit n → ∞ gives(14).
The deviation ofσn(t) fromσ(t) has two contributions: the approximation of the integral(14)by quadrature,

and the truncation of the upper limit of integration atν = na. The dependence of these two contributions onn
depends on specific properties of the functionsg(ν) andh(t).

(2) The inverse temperatureβ scales both the magnitude and the timescale of the auto-covariance: the larger
the temperature is, the larger and faster are the force fluctuations. This is a manifestation of the underlying
nonlinearity. The precise scaling is however a characteristic of the quartic potential.

(3) The functionh(t), which is the auto-covariance of the force exerted by a single oscillator with unit parameters,
is bounded andh(t) ∼ t−1 ast → ∞. To see this we note that(15) is of the form

h(t) = lim
M→∞

∫ M

−M

ξ8 e−ξ4/4φ(ξt) dξ,

whereφ is continuous,T-periodic and averages to zero over a period; henceφ is bounded and thush is bounded.
Integrating by parts, we find

h(t) = lim
M→∞

1

t

∫ M

−M

(
ξ11 − 8ξ7

)
e−ξ4/4ψ(ξt) dξ,

whereψ(x) = ∫ x
0 φ(x′) dx′ is bounded; the integral can be bounded uniformly int and|h(t)| ≤ C/t. Thus, for

every fixedn, the auto-covariance ofYn tends to zero in time.
(4) Together withAssumption 2.1, the boundedness ofh(t) and the decay estimate forh(t) show thatσ(t) given by

(14)satisfies|σ(t)| ≤ C log(t)/t.1 Hence the auto-covariance ofY tends to zero ast → ∞. Item 3 and Eq.(17)
show that the auto-covariance ofYn also tends to zero ast → ∞.

(5) In the case of linear bath-particle coupling (see[10]) the situation is different, if we consider the auto-covariance
found for fixedkj,mj (and henceνj) and averaged over random data. The force exerted byn oscillators with
massesmj, spring constantskj, and Gibbsian initial data is

Yn(t) =
n∑

j=1

k
1/2
j ξj cos(νjt + τj),

whereνj = (kj/mj)1/2, andξj, τj are mutually i.i.d. sequencesξj ∼ β−1/2N(0,1) andτj ∼ U(0,2π). Letting
kj = g(νj)#ν, with νj ∼ U(0, na) i.i.d andAssumption 2.1ong, we get the finiten auto-covariance

σn(t) = EYn(s)Yn(s + t) = β−1
n∑

j=1

g(νj)h(νjt)#ν,

whereh(t) = (1/2) cos(t). (Again E is expectation only with respect to random data.) This function is quasi-
periodic and does not decay in time for any finiten. However, in the limitn → ∞, we obtain

1 To prove this, write(14) in terms ofs = νt and split the interval into (0, log(t)), (log(t), t) and (t,∞).
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σ(t) = β−1
∫ ∞

0
g(ν)h(νt) dν.

This function can decay in time for appropriate choices ofg. Note the contrast with the nonlinear case where
both the finite and infiniten auto-covariances decay in time.

(6) Note, however, that the empirical auto-covariance, found by averaging over time, will not decay to zero for
either the linear or nonlinear heath baths at finiten. It is this auto-covariance which we calculate numerically
in Fig. 5below.

(7) The extension of these results to other power-law valued potentials is straightforward. More general potentials
are treated inSection 2.5.

2.3. Comparison of limiting process and OU process

We have proved that the random functionsYn(t), defined by(12), weakly converge to a stationary Gaussian
processY (t) of mean zero and auto-covarianceσ(t) given by (14). We next validate this result numerically by
studyingYn(t), n large, obtained by an explicit construction of the sum(12)with random data forξj, τj.

The limiting auto-covariance,σ(t), depends onh(t), which is a property of the shape of the potentialv(q) = q4/4,
and ong(ν), which is a characteristic of the heat bath parameters. InFig. 1we ploth(t), given by(15), which was
obtained by a direct numerical integration; this function exhibits damped oscillations.

Every choice ofg(ν) that satisfiesAssumption 2.1yields a differentσ(t). In view of theβ dependence in(14), if
we writeσ = σ(t;β) to emphasize theβ dependence, then

σ(t;β) = β−3/2σ(β−1/4t; 1)

and hence it is sufficient to calculateσ(t;β) for β = 1. Of particular interest are parameters for which the auto-
covariance is close to exponential. In this case the limiting process can be approximated by an Ornstein–Uhlenbeck
process. Graphs ofσ(t) that correspond toβ = 1 andg(ν) of the form

g(ν) = µ

µ2 + ν2
(18)

Fig. 1. The functionh(t) given by(15).
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are displayed inFig. 2. Each curve is fitted, using a nonlinear least squares fit, to an exponential function:

σ(t) ≈ β−1
0 e−α0t . (19)

(See[23] for similar fits of components of deterministic systems to OU processes.) Forµ = 0.4, for example, an
excellent exponential fit(19) is obtained withβ−1

0 = 3.108 andα0 = 0.623; this estimate was obtained by applying
the nonlinear least square fit using data from the time intervalt ∈ [0,2]; this is roughly the length of the characteristic
decay time ofσ(t). Putting back temperature dependence we have

β−1
0 = 3.108β−3/2, α0 = 0.623β−1/4. (20)

This suggests thatYn(t) is well-approximated, forn � 1, by the stationary OU process,U(t), defined by

dU = −α0U dt + (2α0β
−1
0 )1/2 dB, U(0) ∼ N(0, β−1

0 ), (21)

whereB(t) is standard Brownian motion. Note that the OU temperatureβ−1
0 differs from the temperatureβ−1

associated with the Gibbs distribution; it does not even scale linearly withβ−1.
In order to speed up numerical simulations, it is of interest to determine the value ofa for which the convergence

rate ofYn is optimal. Such a calculation was carried out analytically for linear springs in[10], yielding a = 1/3.
Here we estimate the optimal value ofa by minimizing theL2-norm of the error inσ(t):

Err(a) =
∥∥∥∥∥∥
∫ ∞

0
g(ν)h(νt) dν −

n∑
j=1

g(νj)h(νjt)#ν

∥∥∥∥∥∥
2

.

If we assume thath(t) decays like 1/t and balance the error from truncating the infinite integral to [0, na) with the
error from quadrature we obtaina = 1/4 as the optimal value. This value was used in all the calculations shown in
this paper.

We proceed to compare the processesYn(t), with g(ν) given by(18)andµ = 0.4, with the OU processU(t) given
by (21). In Fig. 3we plot a sample path ofYn(t) for n = 20,000 andβ = 1. For comparison, we plot a sample path
of the limiting OU process. One approach to quantifying the similarity manifest in this figure is to make statistical
comparisons between ensembles of solutions of both processes on a bounded time interval. However, the long terms
results in[10] suggest that it is also of interest to compare the long term statistics of single trajectories and this is
what we do here.

In Fig. 4 we display sample path empirical distributions ofYn(t), calculated witha = 1/4 andβ = 1. The
distributions are compared with the empirical distribution ofU(t), which is a Gaussian with varianceβ−1

0 . Forn =
500 the empirical distribution still varies noticeably from one realization to another, deviating from the approximate
limiting distribution of the OU process(21). Forn = 20,000 the statistical errors are significantly smaller, and the
empirical distribution ofYn(t) is close to the empirical distribution of the approximating process. Recall that the fit
to an OU process is performed at then = ∞ limit.

In Fig. 5we show the empirical auto-covariances for the same sample paths ofYn(t), which we compare to the
auto-covariance(19) of U(t). Here too, the data is very scattered about the approximate limiting behaviour when
n = 500. It is much less so whenn = 20,000 where the fit to the approximating SDE is excellent.

2.4. Time series analysis

To test the robustness of the approximation ofYn(t) by an OU process, we fitYn(t) to an OU process using
parameter estimation techniques from time series analysis. In addition to being a consistency check on the ad hoc
data fitting from the previous section, the approach we use in this section is likely to be the most practical approach
when model parameters cannot be obtained by analytical means. It also forms a rational basis for hypothesis testing.
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Fig. 2. The auto-covarianceσ(t) for g(ν) = µ/(µ2 + ν2), β = 1 and various values ofµ (symbols) and the exponential fits (solid lines).

Although our parameter estimation will, of course, be performed using discrete time observations of a single
path ofYn(t), it is important to understand the limit in which the path is observed in continuous time. IfY (t) is a
continuous path ont ∈ [0, T ] then the maximum likelihood estimate (MLE) forα0, in a fit to Eq.(21), is [24,25]

α̂0 = −
∫ T

0 Y (t) dY (t)∫ T
0 Y2(t) dt

. (22)

This is found by writing the Radon–Nikodym derivative between Weiner measure and measure on path-space for
the OU process. Formally the estimate may be found by a least squares calculation: setU(t) = Y (t) in (21) and
choosêα0 to minimize

2α0

β0

∫ T

0

∣∣∣∣dBdt
∣∣∣∣
2

dt =
∫ T

0

∣∣∣∣dYdt + α0Y

∣∣∣∣
2

dt
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Fig. 3. (a) sample path ofYn(t) for n = 20,000 andβ = 1. (b) sample path of the limiting OU process.

overα0. If Y (t) is a sample path of(21)then it follows that̂α0 → α0 almost surely asT → ∞ [25]. Onceα̂0 is esti-
mated, the temperatureβ0 can be found from the fact that, ifY (t) is actually a sample path of(21), then, almost surely:

n∑
i=1

[
Y

(
iT

n

)
− Y

(
(i − 1)T

n

)]2

→ 2α0T

β0
(23)

asn → ∞, for any fixedT.
The estimate for the driftα0 which (22) implies can only be improved by observing the sample path on longer

time intervals. For the diffusion coefficientα0β
−1
0 , however, the estimate implied by(23)on any time interval will

suffice, no matter how short; this is because diffusion is characterized by local fluctuations in the path. Since the
inverse temperatureβ0 requires knowledge of both drift and diffusion, it too can only be improved by sampling
longer time intervals.

If the pathY (t) is observed at closely spaced points in time, separated by#t � 1, then we expect maximum
likelihood estimation to reproduce the convergence behaviour of the continuous sample path estimates—requiring
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Fig. 4. Symbols: empirical distributions of sample paths ofYn(t) for n = 500 (a) andn = 20,000 (b); we useda = 1/4 andβ = 1. Solid line:
the empirical distribution of the limiting processU(t).

long time intervals to estimate the drift, but not the diffusion. Now we describe how to find estimates forα0, β0 in
the case of discretely observed data. LetXj = Y (j#t). Then, ifY is the OU process(21):

Xj − λ0Xj−1 = Zj, (24)

where λ0 = exp(−α0#t) and theZj are i.i.d. normal variables with mean zero and varianceγ2
0 = β−1

0 [1 −
exp(−2α0#t)]. Within the time series terminology, such a process is known as an auto-recursive process of or-
der 1, denoted AR(1) (see e.g.[26]).

Given a sample path ofXj the parametersλ0, γ2
0 (and henceα0, β0) are estimated using the maximum likelihood

estimation. Specifically, assumingλ0, γ
2
0 to be known, the one-step transition probability density fromXj−1 toXj,

givenXj−1 isN(λ0Xj−1, γ
2
0), hence the likelihood for the data{Xj} is

L(λ0, γ
2
0) =

N∏
j=1

1√
2πγ2

0

exp

[
− (Xj − λ0Xj−1)2

2γ2
0

]
.
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Fig. 5. Symbols: empirical auto-covariance of sample paths ofYn(t) for n = 500 (a) andn = 20,000 (b); we useda = 1/4 andβ = 1. Solid
line: the auto-covariance(19)of U(t).

Maximizing the logarithm ofL(λ0, γ
2
0) with respect to the model parameters we obtain

∂

∂λ0
log L(λ0, γ

2
0) =

N∑
j=1

Xj−1(Xj − λ0Xj−1)

γ2
0

= 0,

∂

∂γ2
0

log L(λ0, γ
2
0) = − N

2γ2
0

+
N∑
j=1

(Xj − λ0Xj−1)2

2γ4
0

= 0

from which immediately follows

λ̂0 =
∑N

j=1Xj−1Xj∑N
j=1X

2
j−1

, γ̂2
0 = 1

N

N∑
j=1

(Xj − λ0Xj−1)2.



292 R. Kupferman, A.M. Stuart / Physica D 199 (2004) 279–316

This, in turn, determines estimates for the parametersα0, β0 of the OU process via the inverse relations

α̂0 = − 1

#t
log λ̂0, β̂−1

0 = γ̂2
0

1 − λ̂2
0

.

Note that making the approximationλ0 ≈ 1 − α0#t and taking the limit#t → 0, we recover(22) and (23).
In Fig. 6we plot estimated values ofα0 (left) andβ−1

0 (right) forn = 20,000 andβ = 1. To make these estimates
we first generated numerical data with time-step#tmin. We then performed parameter estimation based on sampling
the numerical data with time-step#t = k#tmin for variousk ∈ Z

+. Each estimate is repeated for several values
of k and hence of the sampling time step#t. The dashed lines are sample path estimates for a time interval of
105 time units; by this time convergence to the asymptotic values has been achieved and further increase in the
time interval has negligible effect on the results. The open circles are ensemble averages obtained by averaging
over 104 sets of initial data; for each set of initial data, (ξ, τ), we computedYn(t) andYn(t + #t), wheret is a time
chosen independently at random from [0,100] for each path. We then modified the estimation procedure for data by
replacing averages over time by averages over the ensemble. The thick horizontal lines represent the theoretically
expected values ofα0 = 0.623 andβ−1

0 = 3.108 predicted from the data fit ton = ∞ in the previous section. From
these results we draw the following conclusions:

(1) Even forn as large as 20,000 there is still significant variability between different realizations, which indicates
sensitivity to the random data.

(2) For small#t the estimatedα0 is very different from the theoretical prediction; it is close to zero. The estimated
α0 then grows with#t, and reaches a plateau for#t ∼ 0.25; at the plateau the value is close to the theoretical
prediction. A plausible explanation is the following: for the OU approximation to be reasonable the time steps
have to be large enough compared with the characteristic period of the oscillators. Forn = 20,000 anda = 1/4
this characteristic period is of the order ofT/na ∼ 0.6.

(3) The ensemble-averaged results are within 2% deviation from the expected parameters for#t ≈ 0.25 and larger.

In summary, the time series analysis appears to give good fits of SDE models to sums of nonlinear oscillators,
provided that the sampling rate in time is not small compared with fast frequencies in the oscillators. This is a
helpful platform from which to attempt SDE fits to partially observed Hamiltonian systems—and we pursue this in
Section 4.

2.5. Generalization to arbitrary potentials

The weak convergence analysis inSection 2.2uses explicitly the similarity transformation for power law valued
potentials. In this section we generalize the weak convergence results for arbitrary potentials.

Consider again a single degree of freedom Hamiltonian

H(p, q) = p2

2m
+ kv(q),

wherem is the mass of the particle,v(q) is the potential, andk is a spring stiffness parameter. Hamilton’s equations
are

q̇ = Hp(p, q) = p

m
, ṗ = −Hq(p, q) = −kv′(q), q(0) = q0, p(0) = p0, (25)

where the subscripts inHq,Hp denote differentiation. As before, the initial conditions (p0, q0) are drawn from
the Gibbs distribution, i.e. with densityf (p0, q0) = (1/z) exp[−βH(p0, q0)]. We assume that all the trajectories
(p(t), q(t)) solving(25)are closed.
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Fig. 6. Parameter fitting ofYn to an OU process forβ = 1. The dashed lines are sample path estimates over several time intervals; the open
circles are ensemble average estimates. Left: estimated values ofα0 vs.#t for different realizations. The solid line isα0 = 0.623, which is the
value that was obtained by fitting the auto-covariance function. Right: estimated values ofβ−1

0 vs.#t. The solid line isβ−1
0 = 3.108.

Hamiltonian systems with one degree of freedom are integrable, implying the existence of a canonical
transformation into action-angle variables[27]. Let a(p, q) be the area enclosed by a trajectory (p(t), q(t)) of (25)
that passes through the point (p, q). Since bothH(p, q) anda(p, q) are constant along trajectories, then there is a
functionA(·) such that

a(p, q) = A(H(p, q)).

If the level sets ofH(p, q) are closed and nested then this function is one-to-one and we assume that this is the case;
this restriction can be partially relaxed and we will indicate what is needed for this below. The derivativeA′(H)
has units of time; it is the period corresponding to energyH. The angular frequency is defined accordingly by

ν = 2π

A′(H)
and can be parameterized either as a function ofH or a; we will useν = ν(a).
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The points on any given orbit can be parameterized by an “angle”,ϑ, which is time normalized so that the period
in ϑ is always 2π. The originϑ = 0 is arbitrary up to a differentiability requirement on the map (p, q) �→ (a, ϑ).
So given (p, q), there is an associateda(p, q), the area enclosed by the orbit through (p, q), andϑ(p, q), which is a
normalized time along that orbit. Using (a, ϑ) as coordinates in the (p, q) plane, the equations of motion are

ȧ = 0, ϑ̇ = ν(a), (26)

as a direct consequence of the definitions. Thus, the solution isa(t) = a0 andϑ(t) = ν(a0)t + ϑ0. If q(a, ϑ), p(a, ϑ)
denotes the inverse map, then the solutionq(t) to (25) is q(t) = q(a0, ν(a0)t + ϑ0).

Remark. For example, letv(q) = (1/4)q4, then an explicit calculation yields

A(H) = 4
∫ (4H/k)1/4

0

√
2m

(
H − kq4

4

)
dq = 4

√
πΓ (5/4)

Γ (7/4)
m1/2k−1/4H3/4 (27)

and the period is

T (H) = A′(H) = 3
√
πΓ (5/4)

Γ (7/4)
m1/2k−1/4H−1/4.

The “normalized” functionΦ(t) given by(7)corresponds to the parametersk = 1,m = 1 andH = 1/4, in which case
we get a period ofT = 3

√
2πΓ (5/4)/Γ (7/4) = 7.4163 as expected. Finally, we relate the action-angle variables

(a, ϑ) to the variables (ξ, τ) used inSection 2.1. The phasesϑ andτ differ only by a multiplicative constant:

ϑ = 2π

T
τ.

The relation betweena andξ is deduced by noting thatH = ξ4/4, which together with(27)gives

a =
√

2πΓ (5/4)

Γ (7/4)
m1/2k−1/4ξ3.

To find the Jacobian of the mapping (p, q) �→ (a, ϑ) we note that

ϑ̇ = ϑqq̇ + ϑpṗ = ϑqHp − ϑpHq = ν

and

aq = A′(H)Hq = 2π

ν
Hq, ap = A′(H)Hp = 2π

ν
Hp,

so that

ϑqHp − ϑpHq = ν

2π
(ϑqap − ϑpaq) = ν.

Hence:∣∣∣∣ ∂(ϑ, a)

∂(q, p)

∣∣∣∣ = (ϑqap − ϑpaq) = 2π.
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As a consequence, the measure on (p0, q0) induces on (a0, ϑ0) a measure with densitỹf (a0, ϑ0), where

f̃ (a, ϑ) = 1

2π
f (p(a, ϑ), q(a, ϑ) = 1

Z
exp[−βH(a)],

andZ = 2π
∫∞

0 e−βH(a) da.

Remark. When the level sets ofH are not nested, for example ifv(q) has multiple critical points, then there may
be more than one trajectory corresponding to a given energy or action; in particular, the map (p, q) �→ (a, ϑ) is
not one-to-one. Thus, one has to consider the possibility ofr = r(a) trajectories, which we denote byqγ (a, ϑ),
γ = 1,2, . . . , r(a); the corresponding energies are denoted byHγ (a). The measurẽf (a, ϑ) then takes the form

f̃ (a, ϑ) = 1

Z

r(a)∑
γ=1

exp[−βHγ (a)],

whereZ = 2π
∫∞

0

∑r(a)
γ=1 e−βHγ (a) da. However, here we proceed on the assumption that the level sets are nested,

for ease of exposition.

We now consider a collection ofn oscillators, thejth oscillator having massmj and a spring stiffness constant
kj; these parameters may depend onn, but we do not add an extra index to retain a compact notation. The action and
angle of thejth oscillator are denoted byaj andϑj, respectively; the mapping from (aj, ϑj) to the (p, q) plane is
denoted bypj(aj, ϑj) andqj(aj, ϑj); the energy-action relation isaj = Aj(Hj), with νj = 2π/A′

j(Hj). The action
variables have a probability density proportional to exp[−βHj(aj)], whereasϑj ∼ U[0,2π].

The trajectoryqj(t) of the jth particle is given byqj(aj, νj(aj)t + ϑj), whereaj, ϑj are the initial action-angle
values. The total force that then oscillators exert is

Yn(t) = −
n∑

j=1

mjν
2
j (aj)

∂2qj

∂ϑ2
j

(aj, νjt + ϑj) =
n∑

j=1

kjv
′(qj(aj, νjt + ϑj)). (28)

Note that, ifE denotes expectation with respect to random data on (a, ϑ):

E

[
ν2
j

∂2qj

∂ϑ2
j

(aj, νjt + ϑj)

]
= 1

Zj

∫ ∞

0
ν2
j e−βHj

∫ 2π

0

∂2qj

∂ϑ2
j

(aj, νjt + ϑj) dϑj daj

= 1

Zj

∫ ∞

0
ν2
j e−βHj

[
∂qj

∂ϑj
(aj, νjt + 2π) − ∂qj

∂ϑj
(aj, νjt)

]
daj = 0, (29)

where the last equality follows from the periodicity inϑ of q(a, ϑ); here

Zj = 2π
∫ ∞

0
exp[−βHj(a)] da.

ThusEYn(t) = 0. The auto-covariance,σn(t) = EYn(s)Yn(s + t), is given by

σn(t) =
n∑

j=1

k2
j

Zj

hj(νjt), hj(t) =
∫ ∞

0
e−βHj

∫ 2π

0
v′(qj(aj, t + ϑj))v

′(qj(aj, ϑj)) dϑj daj. (30)

Note that the structure is very similar to that inSection 2.2. Analogously to the conditions leading to the proof of
Theorem 2.1we anticipate that, under certain assumptions on the behaviour of the massesmj and spring constants
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kj (and hence onHj,Aj andνj), the functionσn(t) will have a limit asn → ∞ and that this will characterize a
limiting mean-zero stationary Gaussian processY (t) found fromYn(t) in the limit asn → ∞. Rigorous analysis of
this situation will not be undertaken here; it is similar to, but more involved than, that for the proof ofTheorem 2.1.

3. Drag force on a moving body coupled to nonlinear oscillators

In this section we generalize our insights fromSection 2to the situation where the nonlinear oscillators have a
moving anchor point,Q(t). This is in preparation forSection 4whereQ(t) will itself couple back to the oscillators
through a Hamiltonian; the situation inSection 4is, of course, the primary goal of our studies.

In this section we show that, given a functionQ(t), the effective force may be split into a “drag” (zero ifQ(t) = 0
as in the previous section) and “fluctuations” (the object of study in the previous section). We use approximations
which assume thatQ(t) is small. In practice we find their range of validity to be surprisingly large.

In Section 3.1we consider a single nonlinear oscillator; inSection 3.2we extend the validity of our analysis by
means of numerical experiment. InSection 3.3we study a collection of oscillators with differing masses and spring
constants.

3.1. A moving body coupled to a single oscillator

Consider again a single nonlinear oscillator of massmand spring potentialkv(q). This time the oscillator’s anchor
point moves; we denote its trajectory byQ(t). We may regard the motion of the oscillator as governed by a time
dependent Hamiltonian:

H(p, q, t) = p2

2m
+ kv(q − Q(t)).

Hamilton’s equations are

q̇ = p

m
, ṗ = −kv′(q − Q(t))

with initial data (p0, q0) distributed with density (1/z) exp[−βH(p0, q0,0)] (a Gibbs distributionconditioned by
the initial data forQ(t)). Note that this distribution is not invariant whenQ(t) is not constant in time.

The quantity of interest is the forceF (t) exerted by the oscillator:

F (t) = kv′(q(t) − Q(t)), (31)

which we write as the sum of two terms: the expected value,F̄ (t) = EF (t), which we call the “drag”, and the
deviation from the mean,̃F (t) = F (t) − F̄ (t), which we call “fluctuations”. As usualE denotes expectation with
respect to random initial data.

It is more convenient to use a centered coordinate,q(t) �→ q(t) + Q(t), in terms of which

q̇ = p

m
− Q̇, ṗ = −kv′(q). (32)

Eqs.(32)are Hamilton’s equations for a time-dependent Hamiltonian

H1(p, q, t) = p2

2m
+ kv(q) − pQ̇(t) ≡ H(p, q) − pQ̇(t).
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The force is now

F (t) = kv′(q(t)). (33)

The initial data (p0, q0) are distributed with densityf (p0, q0), where

f (p, q) = 1

Z
exp

[
−β

(
p2

2m
+ kv(q)

)]
. (34)

As in the static (or unperturbed) case we use action-angle variables. Let (a, ϑ) be action-angle variablesasconstructed
with the unperturbed Hamiltonian, H(p, q). The equations of motion for (a, ϑ) are

ȧ = aqq̇ + apṗ = aq(Hp − Q̇) − apHq, ϑ̇ = ϑqq̇ + ϑpṗ = ϑq(Hp − Q̇) − ϑpHq.

BecauseHq = (ν/2π)aq, Hp = (ν/2π)ap, andϑqap − ϑpaq = 2π, we obtain

ȧ = −aqQ̇, ϑ̇ = ν(a) − ϑqQ̇. (35)

Indeed, ifQ̇(t) ≡ 0 then (35) reduces to the trivial unperturbed system(26). To transform the right hand sides into
functions of (a, ϑ) only we use the following identity:

(
ϑq ϑp

aq ap

)
=
(
qϑ qa

pϑ pa

)−1

= 2π

(
pa −qa

−pϑ qϑ

)
,

so thataq = −2πpϑ, ϑq = 2πpa, and

ȧ = 2πpϑ(a, ϑ)Q̇, ϑ̇ = ν(a) − 2πpa(a, ϑ)Q̇. (36)

Recall thatν(a) = 2πH ′(a), hence(36) is a Hamiltonian system with time-dependent Hamiltonian

G(a, ϑ, t) = 2π
[
H(a) − Q̇(t)p(a, ϑ)

]
.

The initial data are distributed with density

f̃ (a) = 1

Z
exp[−βH(a)],

whereZ = 2π
∫∞

0 e−βH(a) da.
Eq. (36) cannot be solved analytically. However, since we are only interested in the evolving statistics of an

ensemble of solutions, we may consider instead the effect that the perturbation byQ has on the probability density,
ρ(a, ϑ, t), in the action-angle plane. This density satisfies the Liouville equation

∂ρ

∂t
= − ∂

∂a

(
2πpϑQ̇ρ

)− ∂

∂ϑ

[(
ν(a) − 2πpaQ̇

)
ρ
] = −2πpϑQ̇

∂ρ

∂a
− (

ν(a) − 2πpaQ̇
) ∂ρ
∂ϑ

(37)

with initial density

ρ(a, ϑ,0) = f̃ (a).
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For future use, note that

∂

∂a
f̃ (a) = −βH ′(a)f̃ (a) = − β

2π
ν(a)f̃ (a).

In the unperturbed case,Q̇(t) ≡ 0, the solution is stationary,ρ(a, ϑ, t) = f̃ (a). For weak perturbations we expect
the density to deviate from̃f (a) only slightly. To carry out a formal power series expansion we setQ̇(t) �→ εQ̇(t)
(ε is eventually set to 1), and expand the density in powers ofε:

ρ(a, ϑ, t) = f̃ (a) + ερ1(a, ϑ, t) + e2ρ2(a, ϑ, t) + · · · .

Substituting this expansion into the Liouville equation(37), equating terms of the same order inε, we obtain for
the O(ε) terms:

∂ρ1

∂t
+ ν(a)

∂ρ1

∂ϑ
= −2πpϑ(a, ϑ)Q̇(t)

∂f̃

∂a
= βν(a)pϑ(a, ϑ)Q̇(t)f̃ (a) = −βkv′(q(a, ϑ))Q̇(t)f̃ (a). (38)

In the last identity we used the fact thatpϑ is the time derivative of the momentum, where time is measured in units
of 1/ν, henceνpϑ is the force exerted by the oscillator,kv′(q).

The homogeneous part of the linear equation (38) governs translation along the angular coordinate. Thus, the
solution to the inhomogeneous equations is given by Duhamel’s principle:

ρ1(a, ϑ, t) = −βkf̃ (a)
∫ t

0
v′ (q(a, ϑ − ν(a)(t − s))) Q̇(s) ds,

where we have imposed the initial perturbationρ1(a, ϑ,0) = 0.
The force exerted by an oscillator with coordinates (a, ϑ) is kv′(q(a, ϑ)). Therefore, over a distribution of initial

conditions, the mean force is

F̄ (t) = k

∫ ∞

0

∫ 2π

0
v′(q(a, ϑ))ρ(a, ϑ, t) dϑ da.

We substitute the first order approximation forρ(a, ϑ, t). The zeroth order term vanishes (there is no drag in the
absence of perturbations—see Eq.(29)—and so, to leading order and settingε = 1, we obtain

F̄ (t) ≈ −
∫ t

0
κ(t − s)Q̇(s) ds, (39)

where

κ(t) = βk2
∫ ∞

0

∫ 2π

0
v′(q(a, ϑ − ν(a)t))v′(q(a, ϑ))f̃ (a) dϑ da. (40)

Eq. (39) is a linear response solution (see Chapter 5 in[28] for general reference on linear response theory). The
drag depends linearly on the perturbation. This dependence is non-local in time, and involves a convolution with
a memory kernel,κ(t). Furthermore, sincẽf (a) is the canonical density for the oscillator, the memory kernel(40)
multiplied by the temperature 1/β coincides with the auto-covariance of the fluctuating forceF̃ (t) at equilibrium,
i.e., whenQ̇(t) ≡ 0. This is a manifestation of the fluctuation–dissipation principle. Note, however, that linear
response is a consequence of our weak perturbation asymptotics. It is not expected to remain valid for arbitrarily
large perturbations.
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3.2. Numerical results

In the previous section we considered the drag (i.e., mean) force that a single oscillator with Gibbsian initial data
exerts on its anchor point when the latter moves. We were able to derive an explicit expression in a near equilibrium
regime. We now verify numerically the accuracy of the linear response approximation.

GivenQ(t) the drag forcēF (t) can be calculated numerically as follows. A set of initial data (p0, q0) is drawn
from the distribution(34). For every initial state we integrate(32) numerically, using a standard ODE solver, and
computeF (t) given by(33). The mean forcēF (t) is estimated by averaging over the ensemble. We used a sample
of 5000 solutions, which proved sufficient to get small enough sampling errors.

Plots of the mean force are shown inFigs. 7–10and comparisons are made with the linear response prediction
(39). All our calculations are for the quartic potentialv(q) = (1/4)q4 with m = k = 1. As discussed above, the
memory kernelκ(t) equalsβ times the auto-covariance(16)of the force exerted by a single oscillator at equilibrium.
In Fig. 7 we show the drag for the case where the anchor point is translated with constant speed,Q(t) = γt, and
β = 1 (solid lines). We repeat this calculation for four values ofγ, and compare the computed curves with the linear
response solution (dashed curves), which in this case takes the simple form

F̄ (t) ≈ −γ

∫ t

0
κ(t − s) ds = −γβ

∫ t

0
β−3/2h(β−1/4(t − s)) ds = −γβ−1/4

∫ β−1/4t

0
h(s) ds. (41)

Both the exact and the approximate solution exhibit decaying oscillations. The linear response solution fits the
exact solution very well when the translation rate isγ = 0.5, and is even fairly good forγ = 1. But its accuracy
deteriorates asγ increases further and nonlinear effects become significant. Note that in the nonlinear regime the
amplitude of the drag grows nonlinearly withγ, and the frequency of the oscillations increases with the amplitude,
which is a manifestation of the amplitude dependent frequency of the oscillator.

Similar calculations are repeated inFig. 8, this time for an abrupt perturbation,Q(t) = γH(t), whereH(t) is the
Heaviside step function. Again, using(16), the linear response approximation is

F̄ (t) ≈ −γ

∫ t

0
κ(t − s)H ′(s) ds = −γκ(t) = −γβ−1/4h(β−1/4t). (42)

Here too, the approximation is very good when the perturbation is sufficiently weak. For stronger perturbations, the
nonlinearity has a similar effect as in the case of constant translation rate.

Similar results are displayed inFigs. 9 and 10for a higher temperature, 1/β = 4. These results show that the
linear response approximation is more accurate at higher temperature. This is presumably because the anchor point
Q(t) typically undergoes small motions, relative to the bath, as the temperature increases.

3.3. A moving body coupled to n nonlinear oscillators

Consider now a collection ofn independent nonlinear oscillators attached to a common moving anchor point,
whose trajectory isQ(t). We allow the Hamiltonians of the oscillators to vary, as inSection 3, by making the masses
mj and coupling constantskj into variables. All parameterizations remain the same as inSection 2.5. The goal is
to characterize the force exerted by then oscillators.

Recall that we write the total force exerted on the anchor point as

Fn(t) = F̄n(t) + F̃n(t),

whereF̄n = EFn(t). By writing the anchor point trajectory asεQ(t), expanding in powers ofε and extending the
analysis ofSection 3.1to sum over variablemj andkj we deduce that̄Fn(t) is given by
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Fig. 7. Solid lines: the drag forcēF (t) for a steadily moving anchor point,Q(t) = γt. These curves were computed by averaging over an ensemble
of 5000 solutions. Dashed lines: the linear response prediction(41). The four plots correspond to pulling rates ofγ = 0.5, 1, 2, and 4. The
temperature is 1/β = 1.

F̄n(t) = −ε

∫ t

0
Kn(t − s)Q̇(s) ds +O(ε2). (43)

Here

Kn(t) = βσn(t) (44)

with σn(t) given by(30). By the discussion inSection 2.5(and byTheorem 2.1for quartic coupling potentials) we
expect that, under certain reasonable conditions:

lim
n→∞ Kn(t) = βσ(t),

whereσ(t) is the limiting auto-covariance in the unperturbed case. On the other hand, the work ofSection 2for
ε = 0 shows that

F̃n(t) = Yn(t) +O(ε), (45)
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Fig. 8. Solid lines: the drag forcēF (t) when the anchor point jumps discontinuously at timet = 0: Q(t) = γH(t) (H is the Heaviside step
function). These curves were computed by averaging over an ensemble of 5000 solutions. Dashed lines: the linear response prediction(42). The
four plots correspond toγ = 0.25, 0.5, 1, and 2. The temperature is 1/β = 1.

whereYn(t) is a stationary Gaussian process with correlation function

EYn(t)Yn(0) = β−1Kn(t) = σn(t). (46)

Retaining only the leading order expressions in(43) and (45), and then settingε = 1, gives the following approxi-
mation to the force exerted on the anchor point:

Fn(t) = −
∫ t

0
Kn(t − s)Q̇(s) ds + Yn(t).

Taking the limitn → ∞ gives the force

F (t) = −
∫ t

0
K(t − s)Q̇(s) ds + Y (t),
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Fig. 9. Same asFig. 7with temperature 1/β = 4.

whereY (t) is a Gaussian process satisfying

EY (t)Y (0) = β−1K(t) = σ(t). (47)

Performing an expansion of the drag and the fluctuation inε � 1, retaining only leading order terms in each
expansion separately, adding them to find the effective force and then settingε = 1, is clearly a highly questionable
procedure. However we will show in the next section that it is an approximation process which leads to quite accurate
approximation of components of large Hamiltonian systems by SDEs, even in situations whereQ(t) is not obviously
small. Note also that the idea that fluctuation and dissipation can contribute at different order in nonlinearly coupled
bath-particle systems is something that has been observed in previous work—see[16] and the references therein.

4. The Hamiltonian system

In this section we put together the experience gained in previous sections in order to study the Hamiltonian
heat bath models which are our primary motivation in this paper. InSection 4.1we show how the analysis of the
previous two sections leads naturally to conjectured forms for SDEs approximating the motion of a distinguished
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Fig. 10. Same asFig. 8with temperature 1/β = 4.

particle coupled to a heat bath. Then, inSection 4.2, we use parameter fits obtained inSection 2.3to determine
coefficients in these SDE models and compare the behaviour of the resulting SDEs with behaviour of the under-
lying Hamiltonian problem. Finally, inSection 4.3, we fit the SDE models directly to data generated by sample
paths of the Hamiltonian system, using time series analysis, and compare results with those from the preceding
section.

4.1. The model

In the two previous sections we developed the tools necessary for the study of nonlinear heat bath models. We
consider now a mechanical system that consists ofn + 1 particles: a “distinguished” particle, whose momentum
and coordinate we denote by (Pn,Qn), andn “heat bath” particles whose momenta and coordinates we denote
by (pj, qj), j = 1,2, . . . , n. (The subscriptn in (Pn,Qn) is introduced purely to label the size of the heat bath.)
The distinguished particle has unit mass whereas thejth heat bath particle has massmj. The distinguished particle
moves in a potential fieldV (Qn), and in addition interacts with each of then heat bath particles through a potential
kjv(qj − Qn), wherekj is, as before, the stiffness constant of thejth interaction.
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The Hamiltonian of the system is given by(1) and Hamilton’s equations are:

Q̇n = Pn, Ṗn = −V ′(Qn) +
n∑

j=1

kjv
′(qj − Qn), q̇j = pj

mj

, ṗj = −kjv
′(qj − Qn). (48)

Let P0,Q0 denote the initial data for the distinguished particle; they are assumed to be deterministic. The heat
bath variables, on the other hand, are assumed to have random initial data,pj(0) = p0

j andqj(0) = q0
j , whose

probability density is governed by the (conditional) Gibbs distributionf (p0, q0), wherep0 = (p0
1, . . . , p

0
n)T, q0 =

(q0
1, . . . , q

0
n)T, and

f (p, q) = 1

Z
exp[−βH(P0,Q0, p, q)].

Note that the initial datap0
1, . . . , p

0
n, q

0
1, . . . , q

0
n are mutually independent variables, by virtue of the structure in

(1). Although the initial data is random, all the parameter estimation that we perform in this section is based on a
single path of the underlying dynamics, generated by a single pick of the initial data.

In the case of linear springs, that is,v(q) = (1/2)q2, each of the (pj, qj) equations in(48)can be solved explicitly,
with Qn(t) as a time-dependent inhomogeneous term. Substituting the solution back into the equation forPn(t), one
gets a closed integro-differential system for (Pn,Qn). This procedure cannot be carried out in explicit form when
the interactions are nonlinear. However, the analysis ofSection 3.3suggests how to approximate the force exerted
by the bath on the distinguished particle. Specifically it suggests that

n∑
j=1

kjv
′(qj − Qn) ≈ −

∫ t

0
Kn(t − s)Q̇n(s) ds + Yn(t),

whereYn andKn are given by(44) and (46). This is precisely the formprovento be a valid approximation when
there is a linear bath-particle coupling[10].

This suggests that the equation satisfied byQn(t) is approximated by the integro-differential equation:

Q̈n + V ′(Qn) +
∫ t

0
Kn(t − s)Q̇n(s) ds = Yn(t).

In the case of the quartic coupling potential as studied inSection 2.2we know that, asn → ∞, K uniformly
converges, on bounded intervals, toβσ(t), whereσ(t) is the limiting auto-covariance. Furthermore,Yn(t) converges
weakly to a stationary Gaussian processes,Y (t), with mean zero and auto-covarianceσ(t). Under appropriate
conditions on the distribution of masses and spring constants we expect similar convergence for general coupling
potentials as well—seeSection 2.5. We assume that we are operating under such conditions.

The strong convergence of the memory kernel,Kn → K, with the weak convergence of the random forcing,
Yn ⇒ Y , imply the weak convergence of the trajectoriesQn to a limiting processQ. Specifically,Qn ⇒ Q in
C2[0, T0], whereQ(t) satisfies the stochastic integro-differential equation (SIDE):

Q̈ + V ′(Q) +
∫ t

0
K(t − s)Q̇(s) ds = Y (t) (49)

(see[10]).
Consider again the particular case of a quartic potentialv(q) = (1/4)q4, with kj governed byAssumption 2.1

andg(ν) given by(18), so thatσ(t) (and henceK(t)) is well approximated by an exponential function(19). Then,
using this exponential approximation and introducing an auxiliary variableR(t), the SIDE(49) is approximated by
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the memoryless SDE:

dQ = P dt, Q(0) = Q0, dP = [−V ′(Q) + R] dt, P(0) = P0, (50)

dR = −(α0R + ββ−1
0 P) dt + (2α0β

−1
0 )1/2 dB, R(0) = N(0, β−1

0 ). (51)

Note that

R(t) = − β

β0

∫ t

0
e−α0(t−s)P(s) ds + U(t),

whereU(t) is the OU process(21)with auto-covarianceσ(t) = β−1
0 exp(−α0t). We write the parametric dependence

of the SDE forR in the form given in order to facilitate direct comparison with the SDE(21)and the parameter fits
to α0, β0 which we obtained inSection 2.

We introduce the three free parametersα0, β0 andβ in this fashion because, when using our analysis fromn = ∞
to make informed choices of the parameters, this is the natural way to write the problem.
Comment: The SIDE(49)can be approximated by a memoryless SDE through the addition of auxiliary variables

even when the memory kernel is not exponential. This approach holds, for example, in the extreme non-Markovian
case where the memory kernel decays algebraically and the corresponding noise is a “1/f -noise"; see[29] and
references therein.

4.2. Comparison of Hamiltonian system and SDE

In this section we compare statistical properties of the Hamiltonian system(48)with the SDE(50). The parameters
α0, β0 are chosen, givenβ, according to the relations(20); thus we are using our linear response analysis of the
previous section to inform our choice of matching SDE. In the next section we will, instead, use time series analysis
directly on paths of the Hamiltonian systems to fit parameters; we will compare the resulting parameter estimates.

In Fig. 11we plot a sample path ofQn(t) solving the Hamiltonian system, withn = 2500,β = 1, and a double-
well self-potentialV (Q) = (1/4)Q4 − (1/2)Q2. For comparison, we also plot a sample path ofQ(t) solving the
approximating SDE. In both cases, the distinguished particle spends most of its time in the vicinity of the wells’
minima,Q = ±1, with occasional jumps between wells. We now quantify the similarity between the two systems.

In Fig. 12we plot the empirical distributions (left) and the empirical auto-covariances (right) for four sample paths
of Qn(t) solving the Hamiltonian system(48) with a quadratic self-potential,V (Q) = (1/2)Q2 and temperature
β−1 = 1; as before we takea = 1/4. These results are represented by dashed lines; the solid lines are the same
quantities for a sample path ofQ(t) solving the SDE(50). The top graphs are forn = 1000 and the bottom ones for
n = 2500. Forn = 1000 there is still significant variability between different realizations. This variability is much
smaller forn = 2500, and the data agrees quite well with the data for the SDE, indicating that the linear response
approximation works well.

Similar data are presented inFig 13, this time for a double-well shaped self-potential,V (Q) = (1/4)Q4 −
(1/2)Q2. Here again, there is a significant reduction in variance when the number of particles increases
from 1000 to 2500. The agreement between the larger system and the approximating SDE is excellent for
n = 2500.

Finally, in Fig. 14we repeat the double-well calculations for a higher temperature, 1/β = 4. Consistent with the
results in the previous section, higher temperature improves the quality of the linear response approximation and
there is even better agreement between statistical properties of the Hamiltonian system and the approximating SDE.
In fact it appears that the errors are dominated by sampling for then = 2500 case.

In conclusion, we have shown that linear response theory predicts an SDE fit to the partially observed Hamiltonian
which is very good for moderate to high temperatures.
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Fig. 11. Left: sample path ofQn(t) solving the Hamiltonian system forn = 2500,β = 1, and a self potentialV (Q) = (1/4)Q4 − (1/2)Q2.
Right: sample path ofQ(t) solving the approximating SDE.

4.3. Time series analysis

In this section we analyze long time series forPn(t),Qn(t) obtained from a direct numerical simulation of(48), n
large, and estimate the parametersα0,β0, andβ in the approximating SDE(50)using MLE. This time series analysis
is a generalization of that inSection 2.4. First we discuss the MLE for continuous observations. Given a continuous
observation of{R(t), P(t)} on t ∈ [0, T ] the maximum likelihood estimates ofα0 andµ0 = ββ−1

0 satisfy[30]


∫ T

0
R2(t) dt

∫ T

0
R(t)P(t) dt

∫ T

0
R(t)P(t) dt

∫ T

0
P2(t)



(
α̂0

µ̂0

)
= −



∫ T

0
R(t) dR(t)

∫ T

0
P(t) dR(t)


 .

Formally this may be obtained by using least squares, as inSection 2.4for the OU process: chooseα0 andµ0 to
minimize theL2 (in time) norm of the white noise on (0, T ). The diffusion coefficient can then be estimated by(23)
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Fig. 12. Left: empirical distribution for four sample path solutions of the Hamiltonian system with a quadratic potential (dashed lines) and the
equilibrium distribution for unit temperature (solid line). Right: the empirical auto-covariances for sample path solutions of the Hamiltonian
system (dashed lines) and the approximating SDE (solid line). The top figures are forn = 1000 and the bottom ones forn = 2500. The
temperature is 1/β = 1.

with Y (t) replaced byR(t). Also, as inSection 2.4, we require large time intervals to estimate drift parameters, but
not to estimate the diffusion coefficient.

To analyze discrete time, we start by rewriting the (Itô) SDE(50) in integral form:

R(t) = Q̈(t) + V ′(Q(t)),

R(t) = R(t0) e−α0(t−t0) − ββ−1
0

∫ t

t0

P(s) e−α0(t−s) ds + (2α0β
−1
0 )1/2

∫ t

t0

e−α0(t−s) dB(s). (52)

Thus, given a time series ofQ(t) the first equation in(52) gives an explicit expression for the auxiliary fieldR(t).
In practice, we compute a discrete times series ofQ(t), and calculate, using finite differencing, a discrete time
series ofRj = R(tj), tj = j #t. The finite differencing we use is based on the difference scheme used to solve the
Hamiltonian problem itself, so that we actually recover the discrete force applied to the distinguished particle in
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Fig. 13. Same asFig. 12for a double-well potential.

the course of the numerical integration. For more complex problems this will not be possible and non-trivial issues
arise when performing numerical differentiation to findR fromQ andP [30].

The second equation in(52)can then be put in the following discrete form

Rj+1 = λ0Rj + µ0Uj + Zj+1,

where

Uj = −
∫ tj+1

tj

P(s) e−α0(tj+1−s) ds, (53)

theZj are i.i.d.N(0, γ2
0), and the parametersλ0, µ0, γ0 are given by

λ0 = e−α0#t, µ0 = β

β0
, γ2

0 = β−1
0 [1 − exp(−2α0#t)]. (54)
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Fig. 14. Same asFig. 13for temperature 1/β = 4.

Thus estimates forλ0, µ0 and γ0 will imply estimates forα0, β0 andβ. In practice, theUj are calculated by
approximating the integral(53) by quadrature. In fact, sinceP(t) is less regular thanQ(t), a better numerical
approximation is obtained if(53) is first integrated by parts and then quadrature applied to the resulting integral
over the path ofQ. As in Section 2.4, parameter estimation performs poorly if the sampling rate is too small. Thus
tj+1 − tj is large enough that the deviation ofUj fromP(tj) is significant, and the dependence onα0 must be allowed
for.

The likelihood function for the dataRj, given the “input”Uj, is

L(λ0, µ0, γ0) =
N∏
j=1

1√
2πγ2

0

exp

[
− (Rj+1 − λ0Rj − µ0Uj)2

2γ2
0

]
.
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Fig. 15. Estimates of (a)α0, (b)β−1
0 and (c)β−1 vs. the time step#t. The three dashed lines are estimates based on three sample paths of length

105 time units ofQn(t), n = 2500. The open circles are estimates based on a collection of short time series drawn from 20,000 paths ofQn(t),
n = 20,000. The solid lines are the estimates based on the results ofSection 2.

The parametersλ0, γ2
0, andµ0 are estimated by maximizing the log-likelihood function. First,λ0 andµ0 are

estimated by minimizing numerically the following expression:

N∑
j=1

[Rj+1 − λ0Rj − µ0Uj(α0(λ0))]2.

Then,γ2
0 is obtained by

γ2
0 = 1

N

∑
j

(Rj+1 − λ0Rj − µ0Uj(α0))2.
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Inverting(54)we obtain the model parameters:

α0 = − 1

#t
log λ0, β−1

0 = γ2
0

1 − λ2
0

, β = β0µ0.

In Fig. 15we plot estimates of (a)α0, (b) β−1
0 and (c)β−1 versus the time step#t, based on time series analy-

ses for three sample paths ofQn(t) with n = 2500,β−1 = 4 and self-potentialV (Q) = (1/2)Q2 (dashed lines);
the integration interval is 105 time units. The open circles represent estimates using a collection of short time
series drawn from 20,000 paths ofQn(t); heren = 20,000. The expected values forα0 andβ−1

0 , based on the
estimates ofSection 2, are 0.881 and 24.86, respectively, and are represented in the graphs by horizontal solid
lines.

The results show the following:

(1) For the valuen = 2500 the agreement between the time series analysis and the linear response theory is fairly
good, though discrepancies of the order 5–15% remain.

(2) The time-averaged and ensemble averaged estimates also show reasonable agreement, but do differ on the order
of 5–15%.

(3) The#t dependence of the parameter estimates is somewhat different from what we observed in fitting an OU
process to sums of oscillators inSection 2.4. The variability with#t, whilst confined to 5–15%, is plainly
visible forall #t used and the plateau effect present inSection 2.4is not visible. However the spectrum of this
nonlinear Hamiltonian problem is more complicated than for the sums of nonlinear oscillators studied earlier
and it is possible that nonlinear interaction generates characteristic periods for the oscillators which interfere
with the parameter estimation even at the upper end of the sampling rates used inFig. 15.

In summary, the time series analysis has been shown to be quite successful in fitting SDE models to components
of a bath-particle Hamiltonian model of generalized Kac–Zwanzig type. The linear response theory provides some
theoretical justification for the form of SDE model that we fit and the numerical experiments show the ability of the
SDE model to match behaviour of the Hamiltonian system.

5. Conclusions

Our primary objective in this paper is to understand the approximation of components of large Hamiltonian
systems by SDEs. The Kac–Zwanzig models provide an illustration of situations where this may be carried out
analytically, using a particle coupled to a heat bath of oscillators via linear Hookean springs, and theorems may be
proved[1–3,10]. Here we have generalized this model to allow nonlinear bath-particle coupling. In pursuing our
primary objective we have shown the following:

(1) That weighted sums ofn solutions of nonlinear oscillators, with canonical initial data, can behave, for largen,
like Gaussian processes. Furthermore, for certain choices of weights, these Gaussian processes are close to OU
processes.

(2) Linear response theory can be used to approximate the force exerted by the heat bath on the distinguished
particle. The resulting force splits into a drag (mean force) and noise (fluctuations about the mean). These are
related by the fluctuation–dissipation relation and, in the case of linear bath-particle coupling, reduce to a form
which isprovablycorrect. For the case of nonlinear bath-particle coupling the techniques we use do not lead to
a proof, and are somewhat ad hoc. Numerical experiments, however, confirm their validity, especially at high
temperatures.
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(3) This linear response approximation, combined with the knowledge that sums of nonlinear oscillators can be
well-approximated by OU processes, leads to a conjectured form for the approximation of the particle in a heat
bath by an SDE.

(4) Time series analysis can be used to optimize the parameters of this SDE so that its solutions match those of
the particle in the Hamiltonian bath-particle model. The ability of the SDE model to reproduce the projected
Hamiltonian dynamics is very good.

The success of the program we have carried out here, culminating in time series analysis to fit an SDE to a
partially observed Hamiltonian system, suggests that the idea of Kac–Zwanzig heat bath models can be extended
significantly beyond the simple linear bath-particle coupling originally envisioned[1–3,10]. The work presented here
is a platform from which more complicated Hamiltonian systems, such as those arising in biomolecular modelling
[11], can be analyzed by similar techniques from time series analysis.
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Appendix A. Proof of lemmas

Lemma A.1. Let Yn and Y be defined as inTheorem 2.1. Then the finite-dimensional distributions ofYn weakly
converge to those of Y.

Proof. Let t1 < t2 < · · · < tr be a collection of times. We need to show that ther-dimensional vectors with com-
ponentsYn(tα), α = 1,2, . . . , r, weakly converges, asn → ∞, to a Gaussian vector with mean zero and covariance
σ(tα − tβ), with σ(t) given by(14).

The proof relies on the multivariate Lindeberg–Feller theorem (see[31]; see also[10]). Definingz(n)
j,α by

z
(n)
j,α = k

1/4
j ξ3

jΦ
3(ξjνjtα + τj),

so that

Yn(tα) =
n∑

j=1

z
(n)
j,α,

the lemma holds if for allα, γ = 1,2, . . . , r,

(1) lim
n→∞

n∑
j=1

E[z(n)
j,αz

(n)
j,γ ] = lim

n→∞ σn(tα − tγ ) = σ(tα − tγ ).
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(2) For allε > 0:

lim
n→∞

n∑
j=1

E

(
|z(n)
j,αz

(n)
j,γ |;

r∑
δ=1

|z(n)
j,δ | > ε

)
= 0,

whereE(f ;A) denotes the integral off over the setA.

We start with the first condition of the Lindeberg–Feller theorem. The finite-n auto-covarianceσn(t) is given by
(17). By our choice of theνj, the boundednessh(t):

|h(t)| ≤ 1√
2Γ (3/4)

∫ ∞

−∞
ξ8e−ξ4/4 dξ = 8Γ (9/4)

Γ (3/4)
,

the continuity ofh(t), and the assumptions ong(ν), it follows that

lim
n→∞ σn(tα − tγ ) = β−3/2

∫ ∞

0
g(ν)h(β−1/4ν(tα − tγ )) dν = σ(tα − tγ ).

For the second condition of the Lindeberg–Feller theorem we note that

|z(n)
j,αz

(n)
j,γ | ≤ 1

2k
1/2
j ξ6

j

and that

r∑
δ=1

|z(n)
j,δ | > ε only if

r∑
δ=1

1√
2
k

1/4
j |ξj|3 > ε.

It follows that

E

(
|z(n)
j,αz

(n)
j,γ |;

r∑
δ=1

|z(n)
j,δ | > ε

)
≤

β3/4k
1/2
j

2

∫
r/

√
2k1/4

j |ξ|3>ε

ξ8e−βξ4/4 dξ.

Sincek1/4
j ≤ C(#ν)1/2 = Cn(a−1)/2, then the right hand side decays exponentially fast asn → ∞, independently

of j. Summation overj = 1, . . . , n still yields an exponentially decaying quantity. This completes the proof.�

Lemma A.2. LetYn be defined as inTheorem 2.1. Then there exist positive constantsα, η,M such that for all n

E|Yn(t + u) − Yn(t)|α ≤ M|u|1+η.

Proof. SinceYn(t) is a stationary process, it is sufficient to verify that there existα, η,M > 0, such that

E|Yn(t) − Yn(0)|α ≤ M|t|1+η.
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Let η > 0 be given and takeα = 2p, wherep > 2 is an integer sufficiently large so that

γ = 1 + η

2p
∈
(

0,
b

2

)

andb is the constant associated with the decay rate ofg(ν).
Now:

E|Yn(t) − Yn(0)|2p = E

∣∣∣∣∣∣
n∑

j=1

k
1/4
j ξ3

j [Φ3(ξjνjt + τj) − Φ3(τj)]

∣∣∣∣∣∣
2p

≡ E

∣∣∣∣∣∣
n∑

j=1

Ψj

∣∣∣∣∣∣
2p

,

which can be expanded as a sum of (2p)n terms:

E|Yn(t) − Yn(0)|2p =
n∑

j1=1

· · ·
n∑

j2p=1

E[Ψj1Ψj2 · · ·Ψj2p ]. (A.1)

Note that theΨj are mutually independent variables that have mean zero. Hence, all the summands in(A.1) that
have an indexjD that appears only once vanish.

We regroup the summation(A.1) by the “pattern” of repeated indices. A pattern is anr-tuple,{p1, p2, . . . , pr},
p1 ≥ p2 ≥ · · · ≥ pr, meaning that a certain index repeatsp1 times, another index repeatsp2 times, and so on
up to r. Clearly, all thepD satisfy 2≤ pD ≤ 2p, p1 + p2 + · · · + pr = 2p, and the numberr of distinct indices
varies between 1 andp (if r were larger thanp there would be an index that appears only once). With each pattern
{p1, p2, . . . , pr} is associated a combinatorial constant,Cp1,p2,...,pr , which is the number of possible arrangements
of the pattern. We do not calculate these constants, but note that

∑
{p1,...,pr}

Cp1,...,pr

can be bounded by a constant that depends only onp; constants that depend onp (and not onn) will be denoted
generically byCp. (For example, ifp = 2 then the only patterns are{4} and {2,2}, with combinatorial factors
C4 = 1 andC2,2 = 3.)

Each pattern consists ofr distinct indices, and therefore can be “decoded” in

(
n

r

)

different ways by assigning an index 1,2, . . . , n to each of the distinctjD in (A.1). A simple upper bound on(A.1)
is obtained by letting allr indices run over 1,2, . . . , n, so that

E|Yn(t) − Yn(0)|2p ≤
∑

{p1,...,pr}
Cp1,...,pr

n∑
j1=1

E|Ψj1|p1 · · ·
n∑

jr=1

E|Ψjr |pr . (A.2)

We then use the fact that for allγ < 1 there exists a constantKγ such that

|Φ3(s) − Φ3(0)| ≤ Kγ |s|γ
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to deduce that

E|ΨjD |pD ≤ K
pD
γ k

pD/4
jD

ν
γpD
jD

|t|γpDE|ξ(3+γ)pD
jD

| = Cpg
pD/2(νjD )ν

γpD
jD

#νpD/2|t|γpD ≤ Cpν
(γ−(1+b)/2)pD
jD

#νpD/2|t|γpD,

where we have used the assumed bound ong(ν). Substituting the latter inequality into(A.2) we get

E|Yn(t) − Yn(0)|2p ≤ Cp|t|2γp
∑

{p1,...,pr}
Cp1,...,pr#νp−r

r∏
D=1

n∑
jD=1

ν
(γ−(1+b)/2)pD
jD

#ν.

Because each is thepD is greater or equal to 2 and by our choice ofγ, each of the sums overjD converges asn → ∞,
and therefore the finite-n sums can be uniformly bounded, yielding

E|Yn(t) − Yn(0)|2p ≤ Cp|t|2γp = Cp|t|1+η.

This completes the proof. �
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