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Abstract

We study a class of “particle in a heat bath” models, which are a generalization of the well-known Kac—Zwanzig class of
models, but where the coupling between the distinguished particle andhta bath particles is through nonlinear springs. The
heat bath particles have random initial data drawn from an equilibrium Gibbs density. The primary objective is to approximate
the forces exerted by the heat bath—which we do not want to resolve—by a stochastic process. By means of the central limit
theorem for Gaussian processes, and heuristics based on linear response theory, we demonstrate conditions under which it i
natural to expect that the trajectories of the distinguished particle can be weakly approximated,&s by the solution of a
Markovian SDE. The quality of this approximation is verified by numerical calculations with parameters chosen according to
the linear response theory. Alternatively, the parameters of the effective equation can be chosen using time series analysis. This
is done and agreement with linear response theory is shown to be good.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mechanical models for particles immersed in a heat bath have a long history, dating back to the 1960s with the
model of Ford et al[1]. The simplest models consist of a “distinguished” particle interacting with a large collection
of n“heat bath” particle§,3]. The initial conditions for the heat bath particles are assumed to be random, with a dis-
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tribution governed by the laws of statistical physics. Such models have recently been studied as test problems for di-
mensional reduction methods such as coarse time-stefgpifi optimal predictiorj7,8], and transfer operatof8].

In a recent publicatiofil0] we analyzed the — oo limit of a variant of the Kac—Zwanzig model. On bounded
time intervals the behaviour of the distinguished particle was proved to be weakly approximated by a (generalized)
Langevin stochastic differential equation (SDE). While this weak approximation was not proved for infinite time
intervals, the long time behaviour of the distinguished particle’s trajectories was found numerically to resemble that
of the limiting SDE: the close relationship between the large system of ordinary differential equations (ODEs) and
the limiting SDE over large times is manifest, for example, in the good agreement in the empirical measures and
auto-covariance functions of the two processes.

All the above analyses use explicitly the simplicity of the Kac—Zwanzig model and, notably, the fact that the
distinguished patrticle interacts with the heat bath particles through linear springs. Using standard methods for
linear ODEs one can then eliminate the heat bath variables and obtain, in explicit form, a closed integro-differential
equation for the distinguished particle; this facilitates analysis of the oo limit. The form of Hamiltonians which
we study in this paper are given by

2 n 2
H(Pn»Qn’paQ)=%+V(Qn)+Z|:% +kjv(qj_Qn)j|v 1)
j=1 !

where ¢,, 0,) are the momentum and position of the distinguished particle, and the remajring X are the
momenta and positions of the heat bath. The work of Kac and Zwanzig which laid the foundation of this subject
area concerns the case of quadratic (Hookean) potentisdre we consider more general non-Hookean potentials,

in particular quartic ones, and again consigder 1. At the end of this section we describe other forms of nonlinear
coupling, different from(1), that arise in the literature.

The purpose of this paper is to obtain understanding of such nonlinear bath-particle coupling. In particular we
investigate the approximation of the motion of the distinguished particle by an SDE, using a combination of rigorous
analysis, formal asymptotics and time series analysis. It is hoped that the insight we obtain here will inform more
ambitious projects to fit SDEs to coarse models of molecular conformational dynamics such as that inftldfed in
Where conformational transitions are exceptionally rare events, it may be impossible to generate sufficiently long
sample paths of the ODEs to fit SDEs which are valid on the whole phase space; but it may still be useful to fit them
locally, within a conformation and this idea is one considerdd 1. Furthermore, the techniques introduced here
may also, in principle, be used to fit experimental data.

A recent publication which investigates the possibility of dimension reduction through stochastic cl¢$Rte is
That work exploits a time scale separation to facilitate the dimension reduction and applications are drawn from the
atmospheric sciences. Here we exploit the broad spectrum of the heat bath.

We start by considering a single nonlinear oscillator with initial data drawn from a Gibbs distribB&otign 2.).

For power law potentials the general solution can be related to a normalized solution via a similarity transformation.
We then consider a collection afsuch oscillators, varying in mass and spring coefficient, and analyze the (time-
dependent) forcek;, (¢), that they exert on their common anchor poBé¢tion 2.2 This force is a random function

in the probability space induced by the initial data. For masses and spring coefficients satisfying certain properties
we prove thatF), () converges, a8 — oo, to a Gaussian procesB(t), with zero mean and a computable auto-
covariance. The convergence is in distribution, i.e., weak converdé&Btein the space of continuous functions
C([0, o], R), whereTy is finite but arbitrary. By fitting numerical data, we find parameters for which the auto-
covariance of the limiting process is well approximated by an exponential decay, i.e., the limiting process closely
resembles an Ornstein—Uhlenbeck (OU) proc&ex{ion 2.3 Then we use methods from time series analysis to

fit OU processes to data generated at finjteomparing the results with the fits obtainediat oo, and showing

good agreemenSction 2.4. The results oection 2are generalizable to arbitrary potentials without power law
form and this is discussed Bection 2.5

The next step is to analyze the force exerted by an oscillator when the anchor point is ng®atigr{ 3.1 The
expected value of this force is called “drag”, whereas the deviation from the mean is called “noise”. In general,
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the drag depends on the entire history of the motion of the anchor point via a memory kernel. For linear springs
the separation between drag and noise follows immediately from the variation of constants formula. For nonlinear
springs these components cannot be obtained analytically. We perform a perturbative expansion in the limit where
the displacement of the anchor point is small and obtain a “linear response” solution, where the drag force is given
by the velocity of the anchor point convolved with a memory kernel. This memory kernel is proportional to the
auto-covariance of the fluctuating force at equilibrium (when the anchor point is staéictien 2.2, which is a
manifestation of the fluctuation—dissipation principle. Numerical computations are used to extend this analysis by
showing a deviation from linear response when the displacement of the anchor point is notSaotdin 3.2
It is also demonstrated numerically that increasing the temperature improves the accuracy of the linear response
approximation. Related discussion about the validity of linear response theory may be fouad 5} there the
effects of chaotic mixing, and of system dimension, are explored.

Finally in Section 4.1we return to the full Hamiltoniaproblem (1)for a particle interacting through nonlinear
springs with a collection ofi heat bath oscillators. The analysisSection 3.1as well as the analysis in the case
of linear bath-particle coupling, suggests how to construct an approximate generalized Langevin equation in the
linear response regime. When the equilibrium fluctuations behave like an OU process, it is possible to eliminate
the memory by the introduction of one auxiliary variable, and obtain an SDE. First we use linear response theory
to fit parameters in this SDE and good agreement with the Hamiltonian system is shown. Secondly we use time
series analysis to find the optimal parameter fit of this SDE to the motion of the distinguished patrticle in the full
Hamiltonian problem. Agreement between the parameter estimates, and those obtained by linear response theory.
is good. Hence the resulting SDE approximates well, in a weak sense, the trajectories of the distinguished particle
for largen (Sections 4.2 and 4)3

Concluding discussions are given3ection 5

Earlier work by Lindenberg and co-workers study particle-bath couplings induced by Hamiltonians of the form

p2 n pz
H(Pa, On, 0 @) = o + V(@) + ) [j +kjlg; - a./(Qn»Z} @)
j=1 /

and of the form

P2 n pz.
H(Pu, On, @) = -+ V(Qn) + 3 [j + k,-qf/Z} ~10uT(q). (3)
j=1 /

whereg = (g1, .. ., ¢»). The Hamiltoniar(2) is studied in16], with later work in cosmology ifil 7]; the quadratic

coupling potential allows explicit elimination of the bath variables. The Hamiltof8jis studied if18]; perturba-

tion techniques are applied, making the assumptionitigsmall and thaf™ is polynomial ing. Classical models

that use nonlinear springs to induce coupling between the distinguished particle and the heat bath have been also
studied numerically5].

Models that use nonlinear interactions between distinguished particles and heat baths have also been studied
in the quantum mechanical context; indeed some of the references in the previous paragraph include the quantum
case. Classical models are limits of quantum models, and are treated in many cases quasi-cJaS}italg0] a
quantum system is analyzed via the derivation of a master equation for the system’s density operator. In these two
papers, the nonlinearity is treated by perturbative expansions, and in this respect differ from the present work.

2. Construction of random functions with nonlinear oscillators

In this section we show that sums of solutions of a single degree of freedom Hamiltonian system with random
data can be approximated by Gaussian processes. We also show that, in certain regimes, these limiting Gaussiar
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processes can themselves be approximated by OU proc8esti®on 2.lintroduces the prototypical Hamiltonian
we study—separable with quartic potentaéction 2.2roves convergence of sumsro$olutions to this problem,
with canonical initial data, to Gaussian procesSegtion 2.2 ontains numerical validation of the theory and studies
the approximation of the limiting« = oo) Gaussian process by an OU process. This is taken furtf8adtion 2.4
where a systematic time series analysis is undertaken to fit OU processes to data generated by the: fiwi}e (
sum of nonlinear oscillator&ection 2.5contains generalization to potentials other than quartic.

2.1. A nonlinear oscillator with random initial data

Consider the following single degree of freedom Hamiltonian

2 4
p° | kg
H(p,q) = — + ——, 4
(p.a)=5 -+, (4)
wherep andg are momentum and coordinate. This Hamiltonian describes a particle (or an oscillator) shimass
a quartic potential welly(g) = (1/4)kg*. Hamilton’s equations are

. D .
g=-- 4d0)=q. p= —kq®, p(0) = po, ®)

where (g, go) are the initial data. The initial conditions are assumed to be random, drawn from the Gibbs distribution
with densityZ—1 exp[-BH (po, qo)], whereZ is a normalization factor anflthe inverse temperature. FHi(p, q)
given by(4) po andgg are independent, and their joint probability density (®o, go), where

pY? PP (4pk) pkq’
100~ o= -55)- ez o(-4) ©

andI'(x) is the Gamma functiof21]. Note, however, that although the initial data is random, most of the parameter
estimation that we performin this section, and subsequent ones, is based on a single path of the underlying dynamic:
generated by a single pick of the initial data.

Eq. (5) satisfies a homogeneity property: its general solution can be expressed in terms of the solution of a
“normalized” equation. Let®(r) be the solution of the initial value problem:

@+ @3 =0, ?(0) =1, @(0) =0, (7)
then the solution t¢5) is

q(t) = kgD (Eovt + 10). (8)
wherev = k¥4m~1/2, The parameterg andrp are related to the initial data by

qgo = k™Y *&®(0), po = mY?ed(xo). )
It is readily verified thatp(r) is periodic with period, to five significant digits:

T =nY2[r(})?=74163

and satisfies the normalized energy conservation relation:

20°%(t) + o) = 1. (10)
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The relation(9) defines a mapping from the original variablegs 4) to action-angle-like variable§,(z). Viewed as
amap

(6 1) eRx[0,T) — (g, p) € R?,

the mapping is onto and takes two points in the domain into every point in its range (the mapping is one-to-one and
onto if we restrict to R™). In particular, the densitg6) induces a density org(z), as established by the following
proposition.

Proposition 2.1. The density6) induces the following density ¢g, 7):

7 1/2;,-1/452 :33/4 2 :354
&0 =m 5 S (. g) =~ st exp(—T) : (11)

That is t and & are independentr is uniformly distributed in[O, 7] and & has a density proportional to
£2 exp(—pE*/4) onR.

We refer to phases and amplitudes distributed this wayaasnical

Proof. The change of variables formula is

f(p 1), q(€ 7))

TED=""ea
where
o 9p
I )L = gi ‘;{; — MY YVA2[202(1) — B(1)B(1)] = mY2k—YAE?
& ot
and we have use) and (10) O

2.2. Sums of nonlinear oscillations

We consider nowm independent oscillators with interaction potentialgs4()qu4 and masses ;; this determines
the frequencies;, j = 1,2, ..., nthroughv; = k}”mfl/z. Each oscillator has random initial dagg,(z;), which
are mutually independent sequences of i.i.d. random variables. The phase varjdides uniform distribution
U [0, T], whereas the action-like variablés have density proportional e exp(—p£*/4). The oscillators then
have positiony ;(r) determined by8). The joint force that these oscillators exert on the common anchor point (the

origin) is given by the sum over derivatives of the potential, that is

a0) = > kigd0) = > k633 vt + 7). (12)
j=1 j=1

We are interested in the limiting behaviour of such sums as co. Some assumptions need to be made for the
parameters; andv; which, together, determine the;. The v; determine the characteristic frequencies of the
oscillators once th¢; are known, i.e. they determine the “spectrum of the heat bath”. Note, however, that the
actual spectrum ifL2)is also amplitude (i.e§) dependent. Since heat baths are characterized by broad and dense
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spectra, we want the set of to cover an increasingly large range of frequencies, in an increasingly dense manner,
asn — oo. A simple choice that satisfies this requirement is

a

vi=jAv, Av= % (13)

for somea € (0, 1). This choice differs from the one used|[it0], where the analogous parameter was chosen
at random. Because the frequency is amplitude dependent here, and the amplitude is a random variable, there |
sufficient randomness in the spectrum even ifithare chosen equi-distant.
In addition we make the following assumption for the distribution of coefficients
Assumption 2.1. The coefficients; can be written as
1

2
72 = g(v)) Av,

k;

whereg(v) is uniformly bounded o+ and satisfieg(v) < ¢/v!*? for someb > 0.
Note that this implies that the masses have the form

_ &(jav)
N

We may now formulate a theorem concerning the limiting behavio(ir2)f

Theorem 2.1. Let Y,(r) be a sequence of random functions given(1®) with v; given by(13), k; satisfying
Assumption 2.Jand canonical;, &;. ThenY, = Y in C([0, To], R), To > O arbitrary, whereY(r) is a stationary
Gaussian process with mean zero and auto-covariance

o= " g()h(B Y 4ur) . (14)
0

hereh(¢) is the auto-covariance of the force exerted by a single oscillator with canonical data and unit parameters
m=k=p8=1:

_ 1 8 —t4 [1 T3 3 ]
M= e /_ I /O B3t + )d3(x) dr | (15)

Proof. The proof relies on the following theoreii2g], p. 450). Lety,, be a collection of real-valued almost-surely
continuous stochastic processes on7[), such that:

(1) The finite-dimensional distributions &f, weakly converge to those of an almost-surely continuous process
(2) Tightness: there exist positive constamtg, M such that for alh

E|Yy(r + 1) — Yu(0)|® < M |ul*™.

(HereE denotes expectation with respect to the random datg,af.] ThenY,, = Y in C([0, Tp], R).
The weak convergence of the finite-dimensional distributions is provekppendix Ain Lemma A.1 The
tightness property is proved Lemma A.2 |

Comments

(1) The auto-covariance of the force exerted by an oscillator with parantetarandg is
o1(0) = B~ 2n(~ vn), (16)
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wherev = k¥4, ~1/2_The finiten auto-covariance is then

on(t) = EY,(s)Yals +1) = B2 g(p)h(B~*vjt) Av, (17)
j=1

where we have usetissumption 2.¥or the form of thek;. The limitn — oo gives(14).

The deviation ob,(¢) from o(¢) has two contributions: the approximation of the integtal) by quadrature,
and the truncation of the upper limit of integrationvat n“. The dependence of these two contributionsion
depends on specific properties of the functighg andh(z).

(2) The inverse temperatugg scales both the magnitude and the timescale of the auto-covariance: the larger
the temperature is, the larger and faster are the force fluctuations. This is a manifestation of the underlying
nonlinearity. The precise scaling is however a characteristic of the quartic potential.

(3) The functiom(z), which is the auto-covariance of the force exerted by a single oscillator with unit parameters,
is bounded and(r) ~ +~1 ast — oo. To see this we note thét5)is of the form

M 4
Mo = lim /_ ey s

whereg is continuousT-periodic and averages to zero over a period; herisdounded and thusis bounded.
Integrating by parts, we find

M
h() = lim % f_ (g -aT) e s

wherey/(x) = [ ¢(x) dx’ is bounded; the integral can be bounded uniformlyamd|a(z)| < C/t. Thus, for
every fixedn, the auto-covariance df, tends to zero in time.

(4) Together withAssumption 2.1the boundedness 6fr) and the decay estimate fa(:) show thatz(¢) given by
(14) satisfiego(r)| < C log(r)/1.r Hence the auto-covariancetends to zero as— oco. Item 3 and Eq(17)
show that the auto-covariance Xf also tends to zero as— oo.

(5) Inthe case of linear bath-particle coupling (EH#) the situation is different, if we consider the auto-covariance
found for fixedk;, m; (and hence;) and averaged over random data. The force exertaudsgillators with
masses j, spring constants;, and Gibbsian initial data is

V(1) = kj'%&j costji + 1)),
=1
wherev; = (k;/m;)¥/?, andg;, 7; are mutually i.i.d. sequencés ~ p~Y2A10, 1) andr; ~ U(0, 2x). Letting
k; = g(v;)Av, with v; ~ (0, n¢) i.i.d andAssumption 2.Jon g, we get the finiten auto-covariance
n
on(t) = EY,()Yals+1) = 71> g(vj)h(vjt)Av,
=1

whereh(r) = (1/2) cosf). (AgainE is expectation only with respect to random data.) This function is quasi-
periodic and does not decay in time for any fimtéHowever, in the limit: — oo, we obtain

1 To prove this, writg14)in terms ofs = vr and split the interval into (og(r)), (log(z), 7) and ¢, co).
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o0
o(t) =Bt / g(V)h(vt) dv.
0

This function can decay in time for appropriate choiceg.dflote the contrast with the nonlinear case where
both the finite and infinite auto-covariances decay in time.

(6) Note, however, that the empirical auto-covariance, found by averaging over time, will not decay to zero for
either the linear or nonlinear heath baths at finité is this auto-covariance which we calculate numerically
in Fig. 5below.

(7) The extension of these results to other power-law valued potentials is straightforward. More general potentials
are treated irsection 2.5

2.3. Comparison of limiting process and OU process

We have proved that the random functiongr), defined by(12), weakly converge to a stationary Gaussian
processY(r) of mean zero and auto-covariangé) given by (14). We next validate this result numerically by
studyingY,(t), nlarge, obtained by an explicit construction of the s{ir) with random data fog;, ;.

The limiting auto-covariance(r), depends oh(r), which is a property of the shape of the potentigl) = ¢*/4,
and ong(v), which is a characteristic of the heat bath parameterBignlwe ploti(r), given by(15), which was
obtained by a direct numerical integration; this function exhibits damped oscillations.

Every choice ofz(v) that satisfief\ssumption 2.Yields a different(¢). In view of theg dependence i(lL4), if
we writeo = o(¢; B) to emphasize thg dependence, then

o(t; B) = B~ ¥?a(p~ ;1)
and hence it is sufficient to calculat€r; 8) for 8 = 1. Of particular interest are parameters for which the auto-

covariance is close to exponential. In this case the limiting process can be approximated by an Ornstein—Uhlenbecl
process. Graphs of(z) that correspond tg = 1 andg(v) of the form

g(v) = # (18)

25

151

h(t)
o
e &

=05 1

/
-1.5}

_2 L 1 L L L " I L 5
0 2 4 6 8 10 12 14 16 18 20
time

Fig. 1. The functior(r) given by(15).
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are displayed irrig. 2 Each curve is fitted, using a nonlinear least squares fit, to an exponential function:
o) ~ By teo, (19)

(See[23] for similar fits of components of deterministic systems to OU processes;) E00.4, for example, an
excellent exponential f{tL9) is obtained Witheal = 3.108 andxp = 0.623; this estimate was obtained by applying
the nonlinear least square fit using data from the time interedD, 2]; this is roughly the length of the characteristic
decay time ot (¢). Putting back temperature dependence we have

Byt =31088"%2  ag=0.623"14 (20)
This suggests that, (¢) is well-approximated, for > 1, by the stationary OU proceds(r), defined by
dU = —aoU dr + (2x0py1)Y/? dB, U(0) ~ MO, Bz V), (21)

where B(t) is standard Brownian motion. Note that the OU temperaﬂgr% differs from the temperaturg—!
associated with the Gibbs distribution; it does not even scale linearlyavith

In order to speed up numerical simulations, it is of interest to determine the vaferofhich the convergence
rate ofY, is optimal. Such a calculation was carried out analytically for linear sprin§s0h yieldinga = 1/3.
Here we estimate the optimal valueaby minimizing theL2-norm of the error inv(r):

Err(a) = /0 gW)h(ur)dv — > g(v))h(v;t) Av

=1 2

If we assume thali(¢) decays like 1r and balance the error from truncating the infinite integral {@{Q with the
error from quadrature we obtain= 1/4 as the optimal value. This value was used in all the calculations shown in
this paper.

We proceed to compare the procesigs), with g(v) given by(18)andu = 0.4, with the OU procesE(r) given
by (21). In Fig. 3we plot a sample path df, (r) for » = 20,000 ang3 = 1. For comparison, we plot a sample path
of the limiting OU process. One approach to quantifying the similarity manifest in this figure is to make statistical
comparisons between ensembles of solutions of both processes on a bounded time interval. However, the long terms
results in[10] suggest that it is also of interest to compare the long term statistics of single trajectories and this is
what we do here.

In Fig. 4 we display sample path empirical distributions 16f(¢), calculated witha =1/4 andg = 1. The
distributions are compared with the empirical distributior/gf), which is a Gaussian with variang‘}gl. Forn =
500 the empirical distribution still varies noticeably from one realization to another, deviating from the approximate
limiting distribution of the OU proces@1). Forn = 20,000 the statistical errors are significantly smaller, and the
empirical distribution ofY,, (¢) is close to the empirical distribution of the approximating process. Recall that the fit
to an OU process is performed at the= oo limit.

In Fig. 5we show the empirical auto-covariances for the same sample path&pfwhich we compare to the
auto-covariancé€l9) of U(r). Here too, the data is very scattered about the approximate limiting behaviour when
n = 500. It is much less so when= 20,000 where the fit to the approximating SDE is excellent.

2.4. Time series analysis

To test the robustness of the approximationypf:) by an OU process, we fit, () to an OU process using
parameter estimation techniques from time series analysis. In addition to being a consistency check on the ad hoc
data fitting from the previous section, the approach we use in this section is likely to be the most practical approach
when model parameters cannot be obtained by analytical means. It also forms a rational basis for hypothesis testing.
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3.5 :
+ p=0.1
. v u=0.2
3% o u=0.4f
iy x u=0.8
2.5 ':"(‘

%
2t %
%

&

o (t)

15014
1l

0.5t

1=0.1

0 12
(b) time

Fig. 2. The auto-covarianes(r) for g(v) = u/(u? + 1), B = 1 and various values gf (symbols) and the exponential fits (solid lines).

Although our parameter estimation will, of course, be performed using discrete time observations of a single
path ofY,(¢), it is important to understand the limit in which the path is observed in continuous tirki€)lis a
continuous path one [0, T] then the maximum likelihood estimate (MLE) fap, in a fit to Eq.(21), is [24,25]

_ o Y(dr()

. (22)
1) v2() de
This is found by writing the Radon—Nikodym derivative between Weiner measure and measure on path-space for
the OU process. Formally the estimate may be found by a least squares calculatid(r) set’ (¢) in (21) and
chooseaxg to minimize
2 T 2 T 2
ﬂ / dr = /
Bo Jo 0

B
d dr

dy
dr

Y
o + ap
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n=20000

[ o
T T

n
T

=
2l
73_

-5 L L " 1 L L i 1 L
0 10 20 30 40 50 60 70 80 90 100
(a) t

OU process

u(t)

0O 10 20 30 40 50 60 70 80 90 100
(b) t

Fig. 3. (a) sample path df,(r) for » = 20,000 an@8 = 1. (b) sample path of the limiting OU process.

overap. If Y(¢) is a sample path ¢21)then it follows thatrg — ag almost surely ag — oo [25]. Onceqy is esti-
mated, the temperatupg can be found from the fact that }f{) is actually a sample path (1), then, almost surely:

B () (] -4

i=1

asn — oo, for any fixedT.

The estimate for the drittg which (22) implies can only be improved by observing the sample path on longer
time intervals. For the diffusion coefficieap s, ! however, the estimate implied §83) on any time interval will
suffice, no matter how short; this is because diffusion is characterized by local fluctuations in the path. Since the
inverse temperaturgp requires knowledge of both drift and diffusion, it too can only be improved by sampling
longer time intervals.

If the pathY(¢) is observed at closely spaced points in time, separatefitby. 1, then we expect maximum
likelihood estimation to reproduce the convergence behaviour of the continuous sample path estimates—requiring
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= 0.25;

o
o

Empirical Distribution of Y (t
o 2
— o

0.05}

—_—
iy
~

|
2]

Empirical Distribution of Y (t)

Fig. 4. Symbols: empirical distributions of sample pathd,af) for » = 500 (a) and: = 20,000 (b); we used = 1/4 andg = 1. Solid line:
the empirical distribution of the limiting proces&{).

long time intervals to estimate the drift, but not the diffusion. Now we describe how to find estimates figrin
the case of discretely observed data. Kgt= Y (jAr). Then, ifYis the OU proces1).

Xj—2Xj1=12j, (24)

where g = exp(—apAr) and theZ; are i.i.d. normal variables with mean zero and variamée: ﬂal[l —
exp(—2apAt)]. Within the time series terminology, such a process is known as an auto-recursive process of or-
der 1, denoted AR(1) (see e[g6]).

Given a sample path & ; the parametersy, yg (and henceg, Bo) are estimated using the maximum likelihood
estimation. Specifically, assuming, yg to be known, the one-step transition probability density flom; to X ;,
given X ;_1 is MXoX j—1, 3), hence the likelihood for the daf& ;} is

N
L(r0, v$) = 1_[ ! exp[—w] ‘

2
j=1,/27y3 215
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Fig. 5. Symbols: empirical auto-covariance of sample pathg, ¢ for n = 500 (a) and: = 20,000 (b); we used = 1/4 andg = 1. Solid

line: the auto-covariandd 9) of U(z).

Maximizing the logarithm ofZ (1o, yg) with respect to the model parameters we obtain

N
d X '_1(Xj — )»()Xj_l)
— log L(h0, v8) =)~ =0,
dro /Z:; yg
3 5 N (X — hoXj1)?
2 log Lo, ) =~y + D O o
9 2y0 = 2)/0

from which immediately follows
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This, in turn, determines estimates for the parametgrgo of the OU process via the inverse relations

76

= A2,
1-32

& L o9k Bot

oo = At 0g Ao, /30
Note that making the approximatiag ~ 1 — agAr and taking the limitAr — 0, we recove(22) and (23)

In Fig. 6we plot estimated values af) (left) and,Ba1 (right) forn = 20,000 an@ = 1. To make these estimates

we first generated numerical data with time-step;in. We then performed parameter estimation based on sampling
the numerical data with time-stefr = kArmin for variousk € Z*. Each estimate is repeated for several values
of k and hence of the sampling time st&p. The dashed lines are sample path estimates for a time interval of
10° time units; by this time convergence to the asymptotic values has been achieved and further increase in the
time interval has negligible effect on the results. The open circles are ensemble averages obtained by averagin
over 1¢ sets of initial data; for each set of initial dat4, ), we computed’,,(r) andY,(t + Ar), wheret is a time
chosen independently at random from100] for each path. We then modified the estimation procedure for data by
replacing averages over time by averages over the ensemble. The thick horizontal lines represent the theoreticall
expected values afp = 0.623 anq851 = 3.108 predicted from the data fit to= oo in the previous section. From
these results we draw the following conclusions:

(1) Even fornas large as 20,000 there is still significant variability between different realizations, which indicates
sensitivity to the random data.

(2) For smallAt the estimatedy is very different from the theoretical prediction; it is close to zero. The estimated
ap then grows withAr, and reaches a plateau far ~ 0.25; at the plateau the value is close to the theoretical
prediction. A plausible explanation is the following: for the OU approximation to be reasonable the time steps
have to be large enough compared with the characteristic period of the oscillators=F2%,000 and: = 1/4
this characteristic period is of the order©fz¢ ~ 0.6.

(3) The ensemble-averaged results are within 2% deviation from the expected parameters @25 and larger.

In summary, the time series analysis appears to give good fits of SDE models to sums of nonlinear oscillators,
provided that the sampling rate in time is not small compared with fast frequencies in the oscillators. This is a
helpful platform from which to attempt SDE fits to partially observed Hamiltonian systems—and we pursue this in
Section 4

2.5. Generalization to arbitrary potentials

The weak convergence analysisSaction 2.2ises explicitly the similarity transformation for power law valued
potentials. In this section we generalize the weak convergence results for arbitrary potentials.
Consider again a single degree of freedom Hamiltonian

P2
H(p.q) = 5 -+ ku(q).
m
wheremis the mass of the particle(q) is the potential, an#lis a spring stiffness parameter. Hamilton’s equations
are

= Hp.)=2.  p=—H(p.9=-k'@. ¢O=q. pO=po (25)

where the subscripts ifl,, H, denote differentiation. As before, the initial conditionsqo) are drawn from
the Gibbs distribution, i.e. with densit§(po, g0) = (1/z) exp[—BH(po. qo)]. We assume that all the trajectories
(p(®), q(1)) solving(25) are closed.
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Fig. 6. Parameter fitting of,, to an OU process fof = 1. The dashed lines are sample path estimates over several time intervals; the open
circles are ensemble average estimates. Left: estimated valugvefA¢ for different realizations. The solid line ég = 0.623, which is the
value that was obtained by fitting the auto-covariance function. Right: estimated val.ﬂga%\zﬁ. At. The solid line isg;, 1=3108.

Hamiltonian systems with one degree of freedom are integrable, implying the existence of a canonical

transformation into action-angle variabl@y]. Leta(p, g) be the area enclosed by a trajectopyt{, ¢(¢)) of (25)
that passes through the point, ). Since bothH(p, ¢) anda(p, g) are constant along trajectories, then there is a

function A(-) such that

a(p, q) = A(H(p. q)).
If the level sets of (p, ¢) are closed and nested then this function is one-to-one and we assume that this is the case;
this restriction can be partially relaxed and we will indicate what is needed for this below. The deriv4tiie

has units of time; it is the period corresponding to eneiigifhe angular frequency is defined accordingly by

21

V= ——7
A'(H)
and can be parameterized either as a functiad of a; we will usev = v(a).
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The points on any given orbit can be parameterized by an “angevhich is time normalized so that the period
in ¥ is always 2r. The origin® = 0 is arbitrary up to a differentiability requirement on the mapq) — (a, 9).
So given p, g), there is an associatedp, ¢), the area enclosed by the orbit through 4), andd(p, ¢), which is a
normalized time along that orbit. Using, () as coordinates in they(g) plane, the equations of motion are
a=0, ¥ = v(a), (26)
as a direct consequence of the definitions. Thus, the solutidr) is- ag andd(¢) = v(ag)t + vo. If g(a, 9), p(a, ¥)
denotes the inverse map, then the solutiéfito (25)is ¢(t) = g(ao, v(ag)t + Do).

Remark. For example, let(q) = (1/4)¢*, then an explicit calculation yields
(4H/ k)Y/* kot 4
q VAL (S/4) 172, 174,34
AH)=4 2m (H — = | dg = Y mY2~14g% 27
=4 (=5 ) =gy @7
and the period is

3ﬁr(5/4)m1/2k_1/4H_1/4.

T(H) = A'(H) = =2 )

The“normalized” functiord(r) given by(7) corresponds to the parameters 1,m = 1andH = 1/4,inwhich case
we get a period of = 3v/2n"(5/4)/I"(7/4) = 7.4163 as expected. Finally, we relate the action-angle variables
(a, ©) to the variablesq t) used inSection 2.1 The phases$ andr differ only by a multiplicative constant:

27
P=—r
T

The relation betweea andé¢ is deduced by noting thai = £*/4, which together witt{27) gives

_ V27TF(5/4)m1/2k71/4

3
T(7/4) =

To find the Jacobian of the mapping, ) — (a, ) we note that

O = 04q + Opp = 0gH, — OpHy = v

and
2T 2
ag = A'(H)H, = —H,.  ap=A'(H)H, = T”Hp,
so that
vV
V,H), —9,H,; = E(ﬁqap — Bpay) = v.
Hence:

' Wa) | _ (O4ap — Vpag) = 2m.

(g, p)
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As a consequence, the measure p# §o) induces ondp, o) a measure with densitjﬁ(ao, Y0), where

Tla 9) = 5 f(pla. 9). ala, 9) = 5 expl-pH(@)],

andZ = 2 [5° e PA@ da.

Remark. When the level sets dfl are not nested, for exampleiifg) has multiple critical points, then there may

be more than one trajectory corresponding to a given energy or action; in particular, the map( (a, 9) is

not one-to-one. Thus, one has to consider the possibility-efr(a) trajectories, which we denote ly,(a, ©#),
=1,2,...,r(a); the corresponding energies are denoted#yn). The measurég (a, ¥) then takes the form

r(a)
Fla. ) = 2 Y expl-py (@),

y_

whereZ = 2 f Z’(") e #Hy(@) da. However, here we proceed on the assumption that the level sets are nested,
for ease of exposmon

We now consider a collection afoscillators, thgth oscillator having masa ; and a spring stiffness constant
k;, these parameters may dependphut we do not add an extra index to retain a compact notation. The action and
angle of thgth oscillator are denoted hy; and®;, respectively; the mapping froma (, ©#;) to the (p, ) plane is
denoted by ;(a;, ;) andg;(a;, ¥;); the energy-action relationis = A ;(H;), with v; = 27T/A/]-(Hj). The action
variables have a probability density proportional to expH;(a;)], whereas?; ~ U[0, 2r].

The trajectoryg;(¢) of thejth particle is given by ;(a;, v;(a;)t + ©;), wherea;, ¥; are the initial action-angle
values. The total force that threoscillators exert is

Ya(t) == mjv? (aj) 52 D asvit +9)) = Zk V(gj(aj, vit +9))). (28)
=1 j=1

Note that, ifE denotes expectation with respect to random data:pf)(

2326]]' 1 'S} > _pH 27132qj
E|vi—=(a;,vit +9; — vie f/ ai,vit+9;)dd;da;
]819]2(] J 7 0 879,2'(1 J j) A0 da;

— _/ V2 e PH| |: 9J -(aj, vjt +2m) — (“J’ V/t):| daj =0, (29)

where the last equality follows from the periodicity:irof ¢(a, #); here

Zj=2m /000 exp[—pBH (a)] da.

ThusEY, (r) = 0. The auto-covariance;(t) = EY,(s)Y, (s + ¢), is given by
n g2 00 21
Gn(t) = Z J h (l)]t) /’lj(t) = /(; e‘ﬂHf /0 v’(Qj(aj, 4+ l?j))v/(qj(aj, 19]')) dl?j daj. (30)

j= 1

Note that the structure is very similar to thatSection 2.2 Analogously to the conditions leading to the proof of
Theorem 2..we anticipate that, under certain assumptions on the behaviour of the mgssed spring constants
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k; (and hence o}, A; andv;), the functiono, () will have a limit asn — oo and that this will characterize a
limiting mean-zero stationary Gaussian proceg3 found fromY,,(¢) in the limit asn — oo. Rigorous analysis of
this situation will not be undertaken here; it is similar to, but more involved than, that for the probéofem 2.1

3. Drag force on a moving body coupled to nonlinear oscillators

In this section we generalize our insights fr@action 2to the situation where the nonlinear oscillators have a
moving anchor pointQ(z). This is in preparation foBection 4whereQ(¢) will itself couple back to the oscillators
through a Hamiltonian; the situation $ection 4is, of course, the primary goal of our studies.

In this section we show that, given a functignz), the effective force may be splitinto a “drag” (zerad{r) = 0
as in the previous section) and “fluctuations” (the object of study in the previous section). We use approximations
which assume tha®(z) is small. In practice we find their range of validity to be surprisingly large.

In Section 3.Jwe consider a single nonlinear oscillator;Section 3.2ve extend the validity of our analysis by
means of numerical experiment.Bection 3.3ve study a collection of oscillators with differing masses and spring
constants.

3.1. A moving body coupled to a single oscillator

Consider again a single nonlinear oscillator of mmassd spring potentidlv(g). This time the oscillator’'s anchor
point moves; we denote its trajectory B(r). We may regard the motion of the oscillator as governed by a time
dependent Hamiltonian:

172
H(p,q,1) = om T kv(g — Q(1)).

Hamilton’s equations are

. p=—k(g-00)

. p
q=—
m

with initial data (po, go) distributed with density (1z) exp[—B8H (po, g0, 0)] (a Gibbs distributiorconditioned by
the initial data for Q(r)). Note that this distribution is not invariant wh&lr) is not constant in time.
The quantity of interest is the fordg(r) exerted by the oscillator:

F(t) = kv'(q(r) — Q(1)), (1)

which we write as the sum of two terms: the expected val(g) = EF(r), which we call the “drag”, and the
deviation from the mearf (r) = F(i) — F(r), which we call “fluctuations”. As usudl denotes expectation with
respect to random initial data.

It is more convenient to use a centered coordingi@,— ¢(r) + Q(z), in terms of which

. p . .
g==-0, p=—ki(g). (32)
m
Egs.(32) are Hamilton’s equations for a time-dependent Hamiltonian

2 . .
Hy(p. q.1) = g—m +ku(g) — pO() = H(p. q) — pO).
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The force is now
F(1) = kv'(q(1))- (33)

The initial data po, go) are distributed with density(po, o), where

2
100) = 0| -5 (5 + @) |. (34)

Asinthe static (or unperturbed) case we use action-angle variables, B¢bfe action-angle variables constructed
with the unperturbed Hamiltoniarf (p, ¢). The equations of motion for (%) are

a=agqg+app=ag(Hy— Q) —apHy, 0 =0,q+0,p=0(Hy,— Q) — 9,H,
Becaused, = (v/2n)ay, H, = (v/2n)a,, andd,a, — ¥ pa, = 27, we obtain

a= —an, ® = v(a) — l?,,Q. (35)

Indeed, ifQ(¢) = 0 then @5) reduces to the trivial unperturbed systé8). To transform the right hand sides into
functions of ¢, ¥) only we use the following identity:

-1
Vg 0p\ _ (a9 9a _ oy Pe
aq ap P Pa —Pv gy '

so thata, = —2npy, ¥4 = 2np,, and
a=21py(a.0)Q. V= v(a) — 21pa(a. 9)Q. (36)

Recall thatv(a) = 27 H'(a), hencg36) is a Hamiltonian system with time-dependent Hamiltonian
Gla, v, 1) = 27 [H(a) — O(r)p(a, 9)] .

The initial data are distributed with density

fla) = —exp[ BH(a)].

whereZ = 27 [;° e #H) da,
Eq. (36) cannot be solved analytically. However, since we are only interested in the evolving statistics of an
ensemble of solutions, we may consider instead the effect that the perturbatimasyon the probability density,
p(a, 9, 1), in the action-angle plane. This density satisfies the Liouville equation
o 0

% - 5a ( pz?Q/O) ~ s [(V(a) 21pq Q ) ] = _anﬁQg_Z - (v(a) ZJTpaQ)

ap

av (37)

with initial density

pla, 9,0) = f(a).
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For future use, note that
9 ~ o~ B ~
a—f(a) = —pH'(a) f(a) = —2—v(a)f (@)
a T

In the unperturbed casQ(t) = 0, the solution is stationary(a, 9, ) = ¥ (a). For weak perturbations we expect
the density to deviate from"(a) only slightly. To carry out a formal power series expansion wael — €Q(t)
(e is eventually set to 1), and expand the density in powets of

ola, 9, 1) = f(a) + ep1(a, 9, 1) + Epaa, 0, 1) + - - -

Substituting this expansion into the Liouville equati@7), equating terms of the same ordereinve obtain for
the O¢) terms:

a1 . 83‘ S , . a
- T )— = —21py(a, D)Q(1) 5~ = Pu(a)po(a. 9)Q(1) f(a) = —pkv (q(a. D) Q(1) f()- (38)
In the last identity we used the fact that is the time derivative of the momentum, where time is measured in units
of 1/v, hencevpy is the force exerted by the oscillatéy'(¢).
The homogeneous part of the linear equation (38) governs translation along the angular coordinate. Thus, the
solution to the inhomogeneous equations is given by Duhamel’s principle:

pila, v, 1) = —ﬁk}(a)/o v (g(a,  — v(@)(t — 5))) Q(s) ds,

where we have imposed the initial perturbatj@ita, 9, 0) = 0
The force exerted by an oscillator with coordinatesy) is kv'(g(a, ©)). Therefore, over a distribution of initial
conditions, the mean force is

_ oo 21
F(t) = k/(; /(; V(g(a, ¥))p(a, 9, 1) dd da.

We substitute the first order approximation fae, 9, r). The zeroth order term vanishes (there is no drag in the
absence of perturbations—see E2P)—and so, to leading order and setting- 1, we obtain

F() ~ — /O «(t — s)O(s) ds, (39)
where
00 2 N
(1) = B2 /0 /O Y (gla, 9 — (@) (gla ) F(a) d9 da. (40)

Eqg. (39)is a linear response solution (see Chapter B8] for general reference on linear response theory). The
drag depends linearly on the perturbation. This dependence is non-local in time, and involves a convolution with
a memory kernelg(z). Furthermore, sincé/(a) is the canonical density for the oscillator, the memory ke(4@)
multiplied by the temperature/g coincides with the auto-covariance of the fluctuating faF¢e at equilibrium

i.e., whenQ(z) = 0. This is a manifestation of the fluctuation—dissipation principle. Note, however, that linear
response is a consequence of our weak perturbation asymptotics. It is not expected to remain valid for arbitrarily
large perturbations.
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3.2. Numerical results

In the previous section we considered the drag (i.e., mean) force that a single oscillator with Gibbsian initial data
exerts on its anchor point when the latter moves. We were able to derive an explicit expression in a near equilibrium
regime. We now verify numerically the accuracy of the linear response approximation.

Given Q(r) the drag forceF'(¢) can be calculated numerically as follows. A set of initial datg o) is drawn
from the distribution(34). For every initial state we integra82) numerically, using a standard ODE solver, and
computeF () given by(33). The mean forcé (r) is estimated by averaging over the ensemble. We used a sample
of 5000 solutions, which proved sufficient to get small enough sampling errors.

Plots of the mean force are shownhigs. 7—10and comparisons are made with the linear response prediction
(39). All our calculations are for the quartic potentigly) = (1/4)g* with m = k = 1. As discussed above, the
memory kernek(r) equalss times the auto-covarian¢#6) of the force exerted by a single oscillator at equilibrium.

In Fig. 7 we show the drag for the case where the anchor point is translated with constant@f¢esd,r, and
B = 1 (solid lines). We repeat this calculation for four valueg oind compare the computed curves with the linear
response solution (dashed curves), which in this case takes the simple form

~1/4,

Fo~—r [ et = 5)ds = —yp [ 832084 — )y ds = —yp 1/t [ e (41)

Both the exact and the approximate solution exhibit decaying oscillations. The linear response solution fits the
exact solution very well when the translation ratevis- 0.5, and is even fairly good fop = 1. But its accuracy
deteriorates ag increases further and nonlinear effects become significant. Note that in the nonlinear regime the
amplitude of the drag grows nonlinearly wigh and the frequency of the oscillations increases with the amplitude,
which is a manifestation of the amplitude dependent frequency of the oscillator.

Similar calculations are repeatedhiy. 8, this time for an abrupt perturbatio@(r) = yH(t), whereH(¢) is the
Heaviside step function. Again, usify6), the linear response approximation is

t

F(r)~ —J/fo (t — )H'(s) ds = —yic() = =B~ n(6~/*). (42)

Here too, the approximation is very good when the perturbation is sufficiently weak. For stronger perturbations, the
nonlinearity has a similar effect as in the case of constant translation rate.

Similar results are displayed Figs. 9 and 10or a higher temperature,/8 = 4. These results show that the
linear response approximation is more accurate at higher temperature. This is presumably because the anchor poin
Q1) typically undergoes small motions, relative to the bath, as the temperature increases.

3.3. A moving body coupled to n nonlinear oscillators

Consider now a collection af independent nonlinear oscillators attached to a common moving anchor point,
whose trajectory i§(r). We allow the Hamiltonians of the oscillators to vary, aSacttion 3by making the masses
m; and coupling constants; into variables. All parameterizations remain the same &eiction 2.5The goal is
to characterize the force exerted by thescillators.

Recall that we write the total force exerted on the anchor point as

Fn(t) = fn(t) + Fn(t)y

whereF, = EF,(r). By writing the anchor point trajectory &g)(r), expanding in powers af and extending the
analysis ofSection 3.1to sum over variable: ; andk; we deduce thaF,(r) is given by
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Fig. 7. Solid lines: the drag forcg(r) for a steadily moving anchor poin®(z) = yz. These curves were computed by averaging over an ensemble
of 5000 solutions. Dashed lines: the linear response predi¢fibp The four plots correspond to pulling ratesjof= 0.5, 1, 2, and 4. The
temperature is 18 = 1.

Fo(t) = —¢ /O Kot — s)O(s) ds + O(2). (43)

Here

Kn(r) = Bon(t) (44)
with oy, (¢) given by(30). By the discussion isection 2.5and byTheorem 2.Xor quartic coupling potentials) we
expect that, under certain reasonable conditions:

lim K, (1) = Bo(2),

n—od
whereo(t) is the limiting auto-covariance in the unperturbed case. On the other hand, the weektan 2for
€ = 0 shows that

E,(1) = Y,() + O(e), (45)
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Fig. 8. Solid lines: the drag forcg(r) when the anchor point jumps discontinuously at time 0: Q(r) = yH(f) (H is the Heaviside step
function). These curves were computed by averaging over an ensemble of 5000 solutions. Dashed lines: the linear responsgigjetiion
four plots correspond tp = 0.25, 0.5, 1, and 2. The temperature j8%= 1.

whereY, (¢) is a stationary Gaussian process with correlation function
EY,(1)Y,(0) = B Ku(t) = 04 (). (46)

Retaining only the leading order expression$48) and (45)and then setting = 1, gives the following approxi-
mation to the force exerted on the anchor point:

F,() = — fot Kt = 5)O(s) ds + Y, (2).

Taking the limitrn — oo gives the force

F(t) = — fol K(r — 5)0(s) ds + Y(2),
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Fig. 9. Same abig. 7 with temperature A8 = 4.

whereY (¢) is a Gaussian process satisfying
EY(1)Y(0) = B~1K(t) = o(r). (47)

Performing an expansion of the drag and the fluctuation 4 1, retaining only leading order terms in each
expansion separately, adding them to find the effective force and then settidgis clearly a highly questionable
procedure. However we will show in the next section that it is an approximation process which leads to quite accurate
approximation of components of large Hamiltonian systems by SDEs, even in situationgiHasaot obviously

small. Note also that the idea that fluctuation and dissipation can contribute at different order in nonlinearly coupled
bath-particle systems is something that has been observed in previous worl-6]saed the references therein.

4. The Hamiltonian system
In this section we put together the experience gained in previous sections in order to study the Hamiltonian

heat bath models which are our primary motivation in this papegdction 4.lwe show how the analysis of the
previous two sections leads naturally to conjectured forms for SDEs approximating the motion of a distinguished
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Fig. 10. Same aBig. 8with temperature 18 = 4.

particle coupled to a heat bath. Then,Saction 4.2we use parameter fits obtainedSection 2.3o determine
coefficients in these SDE models and compare the behaviour of the resulting SDEs with behaviour of the under-
lying Hamiltonian problem. Finally, irsection 4.3we fit the SDE models directly to data generated by sample
paths of the Hamiltonian system, using time series analysis, and compare results with those from the preceding
section.

4.1. The model

In the two previous sections we developed the tools necessary for the study of nonlinear heat bath models. We
consider now a mechanical system that consists-6fl particles: a “distinguished” particle, whose momentum
and coordinate we denote by, O,), andn “heat bath” particles whose momenta and coordinates we denote
by (pj,q;), j=1,2,...,n. (The subscriph in (P,, Q,) is introduced purely to label the size of the heat bath.)
The distinguished particle has unit mass whereagthieeat bath particle has mass. The distinguished particle
moves in a potential fieldf(Q,), and in addition interacts with each of théaeat bath particles through a potential
kjv(q; — Qn), wherek; is, as before, the stiffness constant of jteinteraction.
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The Hamiltonian of the system is given f}) and Hamilton’s equations are:

. ' n / . Di .
On = Py, P, = _V/(Qn) + ijv (qj - Qn)s qj = m_j" pPj= _kjv/(Qj - Qn) (48)
j=1 /

Let Py, Qo denote the initial data for the distinguished particle; they are assumed to be deterministic. The heat
bath variables, on the other hand, are assumed to have random initiap g@Xp— p(j)- andg;(0) = q?, whose

probability density is governed by the (conditional) Gibbs distributigp®, ¢°), wherep® = (p9, ..., p9)T, ¢° =
(5. ....q9)7, and

1
flp.q) = Z exp[-BH(Po, Qo, p. q)].

Note that the initial datayg, ...,pff, q(l), ...,qg are mutually independent variables, by virtue of the structure in
(2). Although the initial data is random, all the parameter estimation that we perform in this section is based on a
single path of the underlying dynamics, generated by a single pick of the initial data.
In the case of linear springs, thatigg) = (1/2)¢?, each of theg;, ¢;) equations ir{48)can be solved explicitly,
with 0, () as a time-dependent inhomogeneous term. Substituting the solution back into the equaj¢r) fone
gets a closed integro-differential system f&y,( 0,). This procedure cannot be carried out in explicit form when
the interactions are nonlinear. However, the analysBeaftion 3.3uggests how to approximate the force exerted
by the bath on the distinguished particle. Specifically it suggests that

S k(0 — 0n) ~ _/ Kon(t — $)0n(s) ds + Y (2),
=1 0

whereY, andkC, are given by(44) and (46) This is precisely the formrovento be a valid approximation when
there is a linear bath-particle couplifitd].
This suggests that the equation satisfiedhyr) is approximated by the integro-differential equation:

Ou+ V/(0n) + /0 Kot — )0uls) ds = Y, (1).

In the case of the quartic coupling potential as studie®aation 2.2we know that, as: — oo, I uniformly
converges, on bounded intervals 8@(r), whereo(z) is the limiting auto-covariance. Furthermokg(r) converges
weakly to a stationary Gaussian processés), with mean zero and auto-covariane&). Under appropriate
conditions on the distribution of masses and spring constants we expect similar convergence for general coupling
potentials as well—seBection 2.5We assume that we are operating under such conditions.

The strong convergence of the memory kerikg),— /C, with the weak convergence of the random forcing,
Y, = Y, imply the weak convergence of the trajectori@s to a limiting proces<. Specifically, 0, = 0 in
C?[0, Ty], where Q(r) satisfies the stochastic integro-differential equation (SIDE):

0+ V'(0)+ /0 Kt — 5)Q(s)ds = Y (1) (49)

(see[10]).

Consider again the particular case of a quartic potenigl = (1/4)¢*, with k; governed byAssumption 2.1
andg(v) given by(18), so thato(r) (and hencédC(¢)) is well approximated by an exponential functi®®). Then,
using this exponential approximation and introducing an auxiliary varigtle the SIDE(49) is approximated by
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the memoryless SDE:

dQo = Pd:, Q(0)= Qo, dP =[-V/(Q) + R]d:, P(0)= Py, (50)
dR = —(aoR + BByt P) dt + (20085 )2 dB,  R(0) = MO, By ). (51)
Note that

R(r) = —% /: e~ %00=9) p(s) ds + U(r),

whereU(z) is the OU proces@1)with auto-covariance(t) = A, L exp(—agt). We write the parametric dependence
of the SDE forRin the form given in order to facilitate direct comparison with the SRE) and the parameter fits
to ag, Bo which we obtained irSection 2

We introduce the three free paramet@ssfo andg in this fashion because, when using our analysis ftomoo
to make informed choices of the parameters, this is the natural way to write the problem.

CommentThe SIDE(49) can be approximated by a memoryless SDE through the addition of auxiliary variables
even when the memory kernel is not exponential. This approach holds, for example, in the extreme non-Markovian
case where the memory kernel decays algebraically and the corresponding nois¢ fsnaisk"; seq29] and
references therein.

4.2. Comparison of Hamiltonian system and SDE

Inthis section we compare statistical properties of the Hamiltonian sy@@with the SDE50). The parameters
ag, Bo are chosen, give, according to the relation@0); thus we are using our linear response analysis of the
previous section to inform our choice of matching SDE. In the next section we will, instead, use time series analysis
directly on paths of the Hamiltonian systems to fit parameters; we will compare the resulting parameter estimates.

In Fig. 11we plot a sample path @b, () solving the Hamiltonian system, with= 2500,8 = 1, and a double-
well self-potentialV(Q) = (1/4)Q* — (1/2)Q2. For comparison, we also plot a sample pathogf) solving the
approximating SDE. In both cases, the distinguished particle spends most of its time in the vicinity of the wells’
minima, Q = +1, with occasional jumps between wells. We now quantify the similarity between the two systems.

InFig. 12we plot the empirical distributions (left) and the empirical auto-covariances (right) for four sample paths
of 0,(¢) solving the Hamiltonian systeif#8) with a quadratic self-potential/(Q) = (1/2)Q? and temperature
B~1 = 1; as before we take = 1/4. These results are represented by dashed lines; the solid lines are the same
quantities for a sample path ¢f(¢) solving the SDE50). The top graphs are far = 1000 and the bottom ones for
n = 2500. Fom = 1000 there is still significant variability between different realizations. This variability is much
smaller forn = 2500, and the data agrees quite well with the data for the SDE, indicating that the linear response
approximation works well.

Similar data are presented Fig 13 this time for a double-well shaped self-potentig(Q) = (1/4)Q0* —
(1/2)Q?. Here again, there is a significant reduction in variance when the number of particles increases
from 1000 to 2500. The agreement between the larger system and the approximating SDE is excellent for
n = 2500.

Finally, in Fig. 14we repeat the double-well calculations for a higher temperatyfe=14. Consistent with the
results in the previous section, higher temperature improves the quality of the linear response approximation and
there is even better agreement between statistical properties of the Hamiltonian system and the approximating SDE.
In fact it appears that the errors are dominated by sampling for ta@500 case.

In conclusion, we have shown that linear response theory predicts an SDE fit to the partially observed Hamiltonian
which is very good for moderate to high temperatures.
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Fig. 11. Left: sample path o, (r) solving the Hamiltonian system far= 2500, 8 = 1, and a self potentia¥’(Q) = (1/4)0* — (1/2)Q%.
Right: sample path of(¢) solving the approximating SDE.

4.3. Time series analysis

In this section we analyze long time series R)(r), O, () obtained from a direct numerical simulation(déB), n
large, and estimate the parametassso, andg in the approximating SDE50) using MLE. This time series analysis
is a generalization of that iBection 2.4First we discuss the MLE for continuous observations. Given a continuous
observation of R(r), P(r)} ont € [0, T] the maximum likelihood estimates af anduo = ,3,351 satisfy[30]

T T T
2
fo R(¢) dt /0 R(0) P(¢) dt <&0> /0 R() dR(r)

T T = T
2
/0 R())P(r) dr /0 P(1) /O P(1) dR(r)

Formally this may be obtained by using least squares, &sation 2.4for the OU process: choosg and g to
minimize theL? (in time) norm of the white noise on (@). The diffusion coefficient can then be estimated®§)

ito
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Fig. 12. Left: empirical distribution for four sample path solutions of the Hamiltonian system with a quadratic potential (dashed lines) and the
equilibrium distribution for unit temperature (solid line). Right: the empirical auto-covariances for sample path solutions of the Hamiltonian
system (dashed lines) and the approximating SDE (solid line). The top figures are=f@000 and the bottom ones far= 2500. The
temperature is 48 = 1.

with Y (¢) replaced byR(r). Also, as inSection 2.4we require large time intervals to estimate drift parameters, but
not to estimate the diffusion coefficient.
To analyze discrete time, we start by rewriting théI5DE(50) in integral form:

R(1) = 0(1) + V'(Q(),

t t

R(t) = R(ro) et~ — g1 [ p(s) &7 =9) ds 4 (20, 1)Y/2 / el =) dB(s). (52)
to fo

Thus, given a time series @l (¢) the first equation ir{52) gives an explicit expression for the auxiliary fiel{r).

In practice, we compute a discrete times serieg)(f), and calculate, using finite differencing, a discrete time

series ofR; = R(t;), t; = j At. The finite differencing we use is based on the difference scheme used to solve the

Hamiltonian problem itself, so that we actually recover the discrete force applied to the distinguished particle in



308 R. Kupferman, A.M. Stuart / Physica D 199 (2004) 279-316

e Double-well potential, n=1000 Double—well potential, n=1000
0.3l 3
=
5 =
.= L (]
S 0.25 g
a
2 o2t Z
o >
E =
< 0.15} g
E‘ £
L IS
0.1 G
0.05}
0 0 s | s 1 I i I 1 25
-3 3 0 2 4 6 8 10 12 14 16 18 20
(a) (b) time
il Double—well potential, n=2500 Double—well potential, n=2500
0.3 o
Q
c
8
5 0.25} §
= o
£ 02 17
2 =
o
= [
8 o1sf .
g E
TR g
L
0.05
0

(d)
Fig. 13. Same aBig. 12for a double-well potential.

the course of the numerical integration. For more complex problems this will not be possible and non-trivial issues
arise when performing numerical differentiation to filRdrom Q andP [30].
The second equation {52) can then be put in the following discrete form

Rjt1 = 2oR;j + woU; + Zj11,
where
Lj+1
Uj=-— / P(s) e %0lj+179) dfg, (53)
tj
theZ; are i.i.d. MO, yg), and the parameteis, 1o, yo are given by

B

o & = By M1 — exp(=2aoAd)]. (54)

Ao = e 04T, Ho =



R. Kupferman, A.M. Stuart / Physica D 199 (2004) 279-316 309

- Double-well potential, n=1000 Temp=4 Double-well potential, n=1000 Temp=4
@
S
0.2 s
S 5
5 <]
a 1]
2
= 0.15 CI.J
2 5
o ®
8 o4 8
E’ £
s ¥
0.05¢
-3
(a) (b)
0.25
0.2 &
8 :
5 =
£ o1s g
;
g :
g g
T =
0.05 g
0
-3
(© Q (d)

Fig. 14. Same aBig. 13for temperature 18 = 4.

Thus estimates foko, 1o and yo will imply estimates forag, fo and 8. In practice, theU; are calculated by
approximating the integrab3) by quadrature. In fact, sinc€(r) is less regular tham(z), a better numerical
approximation is obtained {53) is first integrated by parts and then quadrature applied to the resulting integral
over the path of). As in Section 2.4parameter estimation performs poorly if the sampling rate is too small. Thus
tj+1 — t; is large enough that the deviationi@f from P(z;) is significant, and the dependencengmust be allowed
for.

The likelihood function for the dat&;, given the “input’U;, is

N 2
Riv1 —AoR; — noU;
Lo mo.v0) =[] p By 3 L :|

V : [
ex !
j=1./2ny2 2y5
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Fig. 15. Estimates of (a)o, (b) ﬁgl and (c)g~! vs. the time steph. The three dashed lines are estimates based on three sample paths of length
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n = 20,000. The solid lines are the estimates based on the resdectibn 2

The parameteré, yg, and ug are estimated by maximizing the log-likelihood function. Fis,and o are
estimated by minimizing numerically the following expression:

N
Z[Rj+1 — aoR; — 10U j(ao(r0))]%.
j=1

Then, 3 is obtained by

1
76 = 5 D_(Rj+1— AoR; — joU(c0))*.
j
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Inverting (54) we obtain the model parameters:

V6

2
1-22

1
= —— IO A S —1 = S = .
a0 A7 0970 Bo B = Bouro

In Fig. 15we plot estimates of (ayg, (b) ,851 and (c)8~1 versus the time stepr, based on time series analy-
ses for three sample paths ©f,(r) with n = 2500, 8~1 = 4 and self-potential/(Q) = (1/2)Q? (dashed lines);
the integration interval is Fotime units. The open circles represent estimates using a collection of short time
series drawn from 20,000 paths 6,(r); heren = 20,000. The expected values feg and ,851, based on the
estimates ofSection 2 are 0.881 and 24.86, respectively, and are represented in the graphs by horizontal solid
lines.

The results show the following:

(1) Forthe value: = 2500 the agreement between the time series analysis and the linear response theory is fairly
good, though discrepancies of the order 5-15% remain.

(2) Thetime-averaged and ensemble averaged estimates also show reasonable agreement, but do differ on the orde
of 5-15%.

(3) TheAr dependence of the parameter estimates is somewhat different from what we observed in fitting an OU
process to sums of oscillators 8ection 2.4 The variability with A¢, whilst confined to 5-15%, is plainly
visible forall Ar used and the plateau effect preserfsection 2.4s not visible. However the spectrum of this
nonlinear Hamiltonian problem is more complicated than for the sums of nonlinear oscillators studied earlier
and it is possible that nonlinear interaction generates characteristic periods for the oscillators which interfere
with the parameter estimation even at the upper end of the sampling rates &sgdlif

In summary, the time series analysis has been shown to be quite successful in fitting SDE models to components
of a bath-particle Hamiltonian model of generalized Kac—Zwanzig type. The linear response theory provides some
theoretical justification for the form of SDE model that we fit and the numerical experiments show the ability of the
SDE model to match behaviour of the Hamiltonian system.

5. Conclusions

Our primary objective in this paper is to understand the approximation of components of large Hamiltonian
systems by SDEs. The Kac—Zwanzig models provide an illustration of situations where this may be carried out
analytically, using a particle coupled to a heat bath of oscillators via linear Hookean springs, and theorems may be
proved[1-3,10] Here we have generalized this model to allow nonlinear bath-particle coupling. In pursuing our
primary objective we have shown the following:

(1) That weighted sums af solutions of nonlinear oscillators, with canonical initial data, can behave, forharge
like Gaussian processes. Furthermore, for certain choices of weights, these Gaussian processes are close to Ol
processes.

(2) Linear response theory can be used to approximate the force exerted by the heat bath on the distinguished
particle. The resulting force splits into a drag (mean force) and noise (fluctuations about the mean). These are
related by the fluctuation—dissipation relation and, in the case of linear bath-particle coupling, reduce to a form
which isprovablycorrect. For the case of nonlinear bath-particle coupling the techniques we use do not lead to
a proof, and are somewhat ad hoc. Numerical experiments, however, confirm their validity, especially at high
temperatures.
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(3) This linear response approximation, combined with the knowledge that sums of nonlinear oscillators can be
well-approximated by OU processes, leads to a conjectured form for the approximation of the particle in a heat
bath by an SDE.

(4) Time series analysis can be used to optimize the parameters of this SDE so that its solutions match those o
the particle in the Hamiltonian bath-particle model. The ability of the SDE model to reproduce the projected
Hamiltonian dynamics is very good.

The success of the program we have carried out here, culminating in time series analysis to fit an SDE to a
partially observed Hamiltonian system, suggests that the idea of Kac—Zwanzig heat bath models can be extende
significantly beyond the simple linear bath-particle coupling originally envisifihe®i 10] The work presented here
is a platform from which more complicated Hamiltonian systems, such as those arising in biomolecular modelling
[11], can be analyzed by similar techniques from time series analysis.
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Appendix A. Proof of lemmas

Lemma A.1. LetY, and Y be defined as ihheorem 2.1Then the finite-dimensional distributions of weakly
converge to those of. Y

Proof. Let; <t < --- < 1, be a collection of times. We need to show thatitfttémensional vectors with com-
ponentsy,(t,),« = 1, 2, ..., r, weakly converges, as— oo, to a Gaussian vector with mean zero and covariance
o(ta — tg), with o(r) given by(14).

The proof relies on the multivariate Lindeberg—Feller theorem [3Ele see als¢10]). Deflnlngzj?a by

1/4.3 3
2 = k03 vjte + 1)),

so that
n
Yalta) = 3_ o
j=1
the lemmaholds if foralk,, y = 1,2, ..., r,

n
- ) (M _ _
(1) lim Z;E[zj’azj’y] = lim_ou(ta = 1) = ota — 1y).
J=
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(2) Foralle > 0:
() () ()
nllm E ]E<|zja”,| E |2 |>e>_0

whereE(f; A) denotes the integral dfover the sef.

We start with the first condition of the Lindeberg—Feller theorem. The fimaato-covariance,(t) is given by
(17). By our choice of the;, the boundedness?):

o4 g _ 8L(9/4)
|OL\WWW®/ g e Ty

the continuity ofi(¢), and the assumptions @ifv), it follows that
o
im0, (ta —1,) = 7 / gWh(B Y v(ty — 1)) dv = o(to — 1).
n— O

For the second condition of the Lindeberg—Feller theorem we note that

12
ozl < 3%

and that
Z Iz(”)l > ¢ onlyif Z 1/4|$j

It follows that

(), ) Vg 4
n) _(n n J 8Bt /4
i) _lzj5l > €] =< / £°e dé.
( ]0( ]V Z ) 2 r/«/ék}/4\§|3>é
Smcekl/4 < C(Av)Y2 = cn@=1/2  then the right hand side decays exponentially fast as oo, independently

of j. Summatlon ovef =1,...,n stlll yields an exponentially decaying quantity. This completes the proofl]

Lemma A.2. LetY, be defined as ifheorem 2.1Then there exist positive constamts;, M such that for all n
E|Y, (1 + 1) = Y, (0)|* < Mu|*+.
Proof. SinceY,(z) is a stationary process, it is sufficient to verify that there exist M > 0, such that

E[Ya(t) — Y, (0)* < M|e|*F.
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Letn > O be given and take = 2p, wherep > 2 is an integer sufficiently large so that

1+ b
=="T¢clo 2
= E<’2>

andb is the constant associated with the decay ratg of.

Now:
14 Y . Y
ElYa(r) — .0 =E|Y k'S0 v+ 1)) — 0°(1))| =E|> w;| |
j=1 j=1
which can be expanded as a sum gf}2terms:
E[Y,(f) — Yn(0)|2p = Z T Z IE:[‘1//'111/]2 T lpjzp]~ (A.1)

=1 j2p:l

Note that the@; are mutually independent variables that have mean zero. Hence, all the summghds that
have an index, that appears only once vanish.

We regroup the summatidw.1) by the “pattern” of repeated indices. A pattern isrample,{p1, p2, ..., pr}
p1> p2 > --- > p,, meaning that a certain index repeatstimes, another index repeats times, and so on
up tor. Clearly, all thep, satisfy 2< p, < 2p, p1+ p2 +--- + pr = 2p, and the number of distinct indices
varies between 1 anul(if r were larger thaip there would be an index that appears only once). With each pattern
{p1, p2, ..., pr}is associated a combinatorial constary, ,,. .., which is the number of possible arrangements
of the pattern. We do not calculate these constants, but note that

can be bounded by a constant that depends only; aonstants that depend @n(and not omn) will be denoted
generically byC,. (For example, ifp = 2 then the only patterns afd} and{2, 2}, with combinatorial factors
Cs=1landCz2 =3.)

Each pattern consists ofdistinct indices, and therefore can be “decoded” in

)

different ways by assigning an index?, ..., n to each of the distincj, in (A.1). A simple upper bound ofA.1)

is obtained by letting all indices run over 12, ..., n, so that
n n
EIYa(t) = YaOI? < Y Cppopy Y EIW,1P1-- > EIW;, |7 (A.2)
{p1,.-., pr} =1 Jr=1

We then use the fact that for gll< 1 there exists a constakt, such that

|3(s) — 23(0)| < K, |s|
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to deduce that
B, |7 < KL RD AP o preRIESP = €, gPt 20 WP APt < Copny TR g pres2 g e

where we have used the assumed boungd(oh Substituting the latter inequality in{@..2) we get

r n

EIYy(t) = Ya(Q)F < Cplt? 1 Cppop 8P [ ]

Y= @+0)/2Dpe p |
{p1.....pr} =1 j,=1

Je

Because each is thg is greater or equal to 2 and by our choice/péach of the sums ovgy converges ag — oo,
and therefore the finita-sums can be uniformly bounded, yielding

E|Yu(r) — Y, (0)?P < Cplt|?"P = Cple*H.

This completes the proof. O
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