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Abstract

When considering the effect of perturbations on initial value prob-
lems over long time intervals it is not possible, in general, to uni-
formly approximate individual trajectories. This is because well-
posed initial value problems allow exponential divergence of trajecto-
ries and this fact is reflected in the error bound relating trajectories of
the perturbed and unperturbed problems. In order to interpret data
obtained from numerical simulations over long time intervals, and
from other forms of perturbations, it is hence often necessary to ask
different questions concerning the behavior as the approximation is
refined. One possibility, which we concentrate on in this review, is to
study the effect of perturbation on sets which are invariant under the
evolution equation. Such sets include equilibria, periodic solutions,
stable and unstable manifolds, phase portraits, inertial manifolds
and attractors; they are crucial to the understanding of long-time
dynamics.

An abstract semilinear evolution equation in a Hilbert space X is
considered, yielding a semigroup S(t) acting on a subspace V of X.
A general class of perturbed semigroups S h(t) are considered which
are C! close to S(t) uniformly on bounded subsets of V and time
intervals [t1,t2] with 0 < ¢; < t2 < co. A variety of perturbed prob-
lems are shown to satisfy these approximation properties. Examples
include a Galerkin method based on the eigenfunctions of the linear
part of the abstract sectorial evolution equation, a backward Eu-
ler approximation of the same equation and a singular perturbation
of the Cahn—Hilliard equation arising from the phase-field model of
phase transitions. The invariant sets of S(t) and S"(t) are compared
and convergence properties established.

1This work was supported by the Office of Naval Research, contract number N00014-
92-J-1876 and by the National Science Foundation, contract number. DMS-9201727. I
am greatly indebted to Don Jones, Stig Larsson and Tony Shardlow for help in the
proof-reading of, and suggestions of improvements to, the material in this article.
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1 Introduction

The accumulation of errors caused by perturbation of a well-posed evolu-
tion equation is governed by the properties of the evolution equation itself.
In regions where nearby solutions of the equation tend to diverge expo-
nentially in time, the error introduced by perturbation will tend to grow
exponentially in time. Consider, for example, the perturbation caused by
numerical approximation of an evolution equation. Because of the exponen-
tial divergence of trajectories, typical a priori error estimates between true
and numerical solutions contain error constants which grow as the exponen-
tial of the time interval under consideration. For many nonlinear problems
this exponential divergence may not persist for all time and it is possible
to obtain greatly reduced error constants by means of a posteriori error
analysis (see Eriksson et al. [33]) whereby the error constant is estimated
as the computation proceeds rather than being majorized by an exponen-
tial in time. It is nonetheless a fact that, for most problems and for both
a priori and a posteriori error estimates, it is not possible to approrimate
a true trajectory with a numerical trajectory starting from the same point,
uniformly on an infinite time interval. The only exception is the case where
trajectories are contracting which, for autonomous problems, implies that
the solution being approximated is asymptotic to a stable steady state. It is
thus natural to ask how numerical data from long time simulations involv-
ing more complicated behavior than convergence to a steady state should be
interpreted. Such long time simulations are of great importance in science
and engineering arising, for example, in the simulation of turbulent fluid
flow, in phase transition calculations and in interplanetary interactions. In
all these examples it is commonplace to integrate past the time at which
standard a priori or a posteriori estimates guarantee closeness of trajecto-
ries. Although we have talked primarily about the effect of perturbations
introduced through numerical approximation, similar considerations are
relevant, for example, in studying the effect of singular perturbations of
the coefficients in evolution equations.

The properties of an evolution equation on a Hilbert space V are cap-
tured by a semigroup S(¢) mapping an initial data point v € V to the
solution of the equation at time ¢, namely S(¢)v. The semigroup can also
be extended to act on subsets of V in the natural way. Of crucial impor-
tance to understanding the long time behavior of an evolution equation are
the sets which remain invariant under S(¢). Such sets may include simple
objects such as equilibria or periodic solutions and also more complicated
sets such as those arising in chaotic systems; also of importance are in-
variant manifolds such as the stable and unstable manifolds of equilibrium
points and the inertial manifold, a set on which the dynamics of certain
partial differential equations is governed by ordinary differential equations.
Here we study the effect of small perturbations to S(t), such as those aris-



sed evolu-
;ion itself.
rge expo-
1 to grow
caused by
exponen-
ween true
: exponen-
problems
s possible
riori error
estimated
exponen-
i1 for both
prozimate
wme point,
>ase where
1plies that
state. It is
ns involv-
» should be
in science
ulent fluid
actions. In
= at which
f trajecto-
turbations

‘ations are -

‘bations of

V are cap-
- V to the
ip can also
cial impor-
juation are
ude simple
omplicated
nce are in-
squilibrium
s of certain
_equations.
those aris-

Perturbation Theory for Infinite Dimensional Dynamical Systems 183

ing from numerical approximation or from singular perturbations to partial
differential equations, on these invariant sets. As we shall see the analysis is
considerably streamlined by assuming that the perturbation is C! close to
S(t), in a sense to be made precise. Such C! closeness results can be proved
for many numerical methods and for singular perturbations of partial dif-
ferential equations. They are’are established in this article in a variety of
contexts.

In Section 2 we introduce the class of evolution equations which we
use to illustrate the analysis. These equations are formulated as ordinary
differential equations in a Hilbert space and take the form of a linear dif-
ferential operator (whose solutions decay in time) with a lower-order non-
linear perturbation. Examples which are considered include an abstract
sectorial evolution equation, reaction-diffusion equations, some important
fourth-order pattern formation problems and the Navier—Stokes equation.
Existence, uniqueness and regularity results are described for the abstract
sectorial evolution equation, using a variation of constants formula for the
problem. Appropriate references are given to the analogous results for other
classes of problems. Section 2 concludes with a summary of the important
definitions and results from the theory of dynamical systems that will be
useful to us here. '

In Section 3 we state our basic assumptions concerning the perturbed
semigroup S"(t) : it is C?! close to the semigroup S(t) generated by the un-
derlying equation itself, uniformly in bounded subsets of V' and on compact
time-intervals disjoint from the origin. We then describe various examples
where this is satisfied. We initially consider the abstract sectorial evolu-
tion equation and introduce a spectral method based on the eigenfunctions
of the linear differential operator. We prove standard error estimates for
trajectories together with results concerning the effect of numerical approx-
imation of the Fréchet derivative of the semigroup with respect to initial
data. Throughout, the variation of constants formula is used to unify the
presentation. Similar results are described for a singular perturbation of
the Cahn-Hilliard equation, known as the viscous Cahn—Hilliard equation.

In Section 4 we consider the neighborhood of an equilibrium point.
We first show that, provided @ is a hyperbolic equilibrium point of S(t),
then there is a nearby equilibrium point @" of the approximate semigroup
Sh(t). We then show that, if the solution being approximated approaches
an exponentially attracting equilibrium point as ¢ — oo, then it can be
uniformly approximated over infinite time intervals. This situation is the
only case where uniform-in-time approximation of individual trajectories
is possible for autonomous problems.

Following this we construct a local phase portrait comprising the union
of solutions of u(t) = S(t)u(0) in the neighborhood of an equilibrium point
@ of saddle type. This local phase portrait is shown to persist under the
basic approximation assumptions. Since these solutions are defined over
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arbitrarily long time intervals, a standard error estimate cannot be used
directly in proving this result; instead we show that each solution of S(t)
may be approximated by a solution of S*(t) starting from a different ini-
tial condition. Understanding the effect of numerical perturbation on phase
portraits is of use for the interpretation of data found when directly com-
puting phase portraits close to equilibria. It is also useful as a building block
for the proof of other results such as the uniform in time, piecewise contin-
uous, error estimates for gradient systems which are described in Section
8.

In Section 5 we look at unstable manifolds of a hyperbolic equilibrium
point %. Locally in the neighborhood of % these may be constructed as
part of the phase portrait discussed in Section 4; however, we describe an
alternative presentation based on a technique known as a graph transform.
Again, persistence of a nearby local unstable manifold under the assump-
tions on the perturbation is proved. Every point on the true local unstable
manifold is close to a point on the approximate local unstable manifold and
vice versa. Having studied local unstable manifolds the results are extended
to the global unstable manifold by a compactness argument. There are two
main reasons for studying unstable manifolds: they are of interest in their
own right and, furthermore, are an important building block in the study
of attractors — something pursued further in Section 7.

In Section 6 we study inertial manifolds. These objects are of theoretical
importance in the study of a partial differential equation since they show
that certain infinite-dimensional systems are governed by finite-dimensional
systems for large time. Indeed, on its inertial manifold, the equation reduces
to an ordinary differential equation known as an inertial form. It is thus
of some interest to understand the effect of perturbation on the inertial
manifold. The techniques we use are very similar to the graph transform
techniques used in Section 5 for the construction of unstable manifolds.
Under appropriate conditions we prove that S(t) and S"(¢) have inertial
manifolds M and M" and that every point of M is close to a point in M"
and vice versa.

In Section 7 we study attractors — these are sets which attract an open
neighborhood of themselves under the evolution equation. Simple examples
are stable equilibrium points and periodic solutions; however, the reason
for abstracting to this general object is that in very complex problems
(for example those exhibiting chaos) the most basic description of what
we observe after a long time is contained in the notion of attractor. We
assume that S(t) and S*(t) have attractors A and A" and then show that
every point on A" is close to a point on A for h small. Unfortunately it
is not possible to prove the converse in general; simple counter-examples
exist to illustrate why. Thus parts of an attractor may disappear under
small perturbations. However, we know by considering the simple exam-
ple of an exponentially attracting stable equilibrium point that, for some
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problems, the whole attractor will be well approximated. The remainder
of the chapter is devoted to studying two classes of attractor for which
the whole object perturbs by a small amount under the basic assumptions
about the perturbing semigroup. The first class is the class of attractors A
and A" which are uniformly exponentially attracting; the second class is
the class of attractors made up of the union of unstable manifolds and in
this connection we exploit the theory of Section 5.

In Section 8 we turn our attention to error estimates for gradient sys-
tems. These systems are characterized by a globally decreasing Lyapunov
functional which drives solutions towards an equilibrium point for large
time. Using this property and the results of Sections 3 and 4, it is possible
to approximate uniformly almost all trajectories of gradient systems by so-
lutions of the perturbed system. However, in so doing, the error constant
behaves badly with respect to initial data. In particular, the error constant
is not uniformly bounded as the initial data is varied in a bounded set.
For this reason the value of the error estimate is severely diminished. To
obviate this problem we introduce a weaker concept of piecewise approxi-
mation of trajectories: we seek approximation of true solutions on (0, co)
by a piecewise continuous trajectory of the approximate problem with a
finite number of discontinuities. In this context we derive uniform in time
error estimates with error constants bounded uniformly in a bounded set
of initial data. :

Note that the analysis outlined so far is primarily concerned with prov-
ing persistence of invariant sets, and their convergence, under a basic as-
sumption about the perturbed semigroup which includes, but is not re-
stricted to, a variety of numerical approximation techniques. As such no
distinction is made between the practical value of different numerical meth-
ods for dynamical systems other than in their rate of convergence. In order
to assess the practical value of various schemes for dynamical systems it
is of value to generalize the idea of practical numerical stability to classes
of nonlinear problems arising in practice. In Section 9 we briefly turn our
attention to this question.

Certain themes persist throughout the article and important results,
frequently used and not necessarily proved, have been summarized in the
Appendices. The first recurrent theme is the use of a variation of constants
approach to the evolution equations: we use it in Sections 2 and 3 to prove
existence, regularity and error estimates for the abstract sectorial evolution
equation and its spectral approximation. We also use it in Sections 4 and 5
to enable us to replace the differential equation in the neighborhood of an
equilibrium point by a mapping which retains the “linear plus small nonlin-
ear” structure inherent in such problems; similar considerations apply for
the construction of inertial manifolds in Section 6. The use of mappings is
motivated by a desire to prove results which apply to time-discrete as well
as time-continuous perturbations. The essential material for understanding
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the variation of constants approach to evolution equations in a Hilbert space
is given in Appendix A. The second recurrent theme is the use of uniform
contraction principles to construct objects of interest (such as equilibria,
phase portraits and invariant manifolds) and at the same time to incor-
porate the effect of perturbation in the analysis. Contraction principles of
various types used throughout the article are described in Appendix B; the
Taylor expunsion in a Hilbert space is also given in that Appendix and used
several times in the main body of the text. The third recurrent theme is
attractive invariant manifolds. Simple examples are unstable manifolds and
inertial manifolds and both of these are constructed by use of an abstract
theorem concerning attractive invariant manifolds given in Appendix C.

Some of the material described here is also presented in the context of
time-discretization of ordinary differential equations in R™ in Stuart [88].
However there are certain technically challenging difficulties which arise in
the consideration of partial differential equations which mean that different
or modified techniques need to be applied.

2 Evolution equations in a Hilbert space
2.1 Introduction

This section commences with an introduction to the basic properties of
sectorial operators in a Hilbert space. The important material, together
with some examples, is sketched. More details and references are given in
Appendix A. This material is followed by a brief summary of some of the
important notation used throughout the article. In Section 2.4 the nonlin-
ear evolution equation which we study is introduced and the assumptions
about its solution given. These basically amount to asking that the solution
depend on time and initial data in a C! sense.

We then describe a variety of situations in which the assumptions hold.
We concentrate on an abstract evolution equation in a Hilbert space, gov-
erned. by a sectorial evolution equation. The primary result of importance
heré is Theorem 2.6 which describes the existence and regularity for the
equation. The Important remark following the theorem introduces the
use of a variation of constants approach to the nonlinear partial differential
equation, a theme which recurs throughout. We also mention briefly the
Navier—Stokes equation, the Cahn-Hilliard equation and ordinary differen-
tial equations, all of which fit into our framework.

The section concludes with a summary of some basic results in the
theory of dynamical systems.

2.2 Sectorial operators

We consider the background theory of certain abstract evolution equations
in a Hilbert space. For this we need the idea of a sectorial operator. For
details concerning sectorial operators together with definitions of their frac-
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tional powers and exponentials see Appendix A. We will refer freely to re-
sults in this Appendix throughout the article, and the reader is encouraged
to study it at this point.

The easiest context in which to understand sectorial operators is the
theory of self-adjoint operators. Consider a separable Hilbert space X with
inner product (e,e) and norm defined by | ¢ |2 = (e, ). We assume that
A is a closed, densely defined, self-adjoint, positive operator with compact
inverse; we denote the associated eigenfunctions by {¢;} and the positive
real eigenvalues by {\;} with the ordering chosen so that

O< A <<, . (21)

In the case primarily considered here, where X is infinite-dimensional, we
have A\, — 0o as n — oo.

The properties of A ensure that it is a sectorial operator so that we
may define fractional powers of A, A%, and also the resulting Hilbert spaces
X* = D(A®) with norms | e |, = |A® e |. For each oo > 8 > 0 it follows
that the inclusion X® C X# is compact. Furthermore, we may define the
operator e~4* for t > 0. Of particular interest to us is the space X” where
B € [0,1) appears in Assumption 2.3 and in (2.11) below. We employ the
notation

V=X’ and [e]=]|els

Initial data for our basic equation (2.9) will be specified in V.

Example 2.1 Let X = Ly(R), A = —;, D(4) = H*(Q) N H}(Q) and
Q= (0,1). Thus ‘

i
(v,w)z/o v(z)w(z)dz,

and | e | denotes the Ly norm. Also ¢j = /2sin(jnz) and \; = j2n? for

J=1,2,...,00. It is well known that any function v € X can be written
as
(o o]
v=Y vipi, v =(v,¢;) (2.2)
j=1

where the v; € R, j = 1,2,..., 00 satisfy

(o]

§ : 2
’Uj<OO.

j=1

The fractional powers of A are generated by defining

oo
A% = Z AJvjp;.
j=1
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Thus

o0

ol = DA%

j=1

Roughly speaking D(A%*) may be thought of as the set of functions v such
that

o0

Soart <o

j=1

with v; given by (2.2). For example, if o = %, we find that X2 = H}(Q).
This may be seen by noting that, formally, ‘

(N

v2 = 32 & 2 jmv;v/2 cos jinx); Y jEu; V2 cos JTT
J J

Jj=1 j=1
o0 .
= | jmv;v2cos(jma)|? = vl
j=1

Recalling that |v,| is a norm on H(Q2) the result follows.
For future use we also note here the following basic norm inequalities:

v < zlvly Vv € Hy(Q),

2.3
[0lloo = SuPae(ony [0(@)] < oy Vo € HE(Q). ke:%)

Note that the heat equation

oo
u + Au =0, u(0) = up := Zujcpj
j=1 ’

has solution
o0

’ —At —Ajt :
u(t) =e “up = E e s
i=1

this gives the appropriate way to think about exponentials of sectorial
operators in the self-adjoint case.

It cannot be over-emphasized that the preceding example, and the straight-
forward calculations given therein, are very specific to the self-adjoint prob-
lem. To understand fully the concepts of fractional powers and exponen-
tials of sectorial operators, the reader should pursue in detail the references
given in Appendix A. In any case it will be beneficial to the reader to study
Appendix A before proceeding.
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2.3 Notation
In subsequent sections we will need an appropriate definition of the distance
between sets in V. Thus we introduce the following notation:

( dist(u, A) = infyea lu—v|, - )

dist(B, A) = sup,, ¢ g dist(u, A),
< L (2.4)
N(A,e) ={ueV :dist(u, 4) < €},

ON(A,e) = {u €V :dist(u, A) = €}. |

\

It follows from (2.4) that, if dist(B, A) < ¢, then B C N(4,¢). Hence
dist(B,A) =0 & B C A.

Thus “dist” only defines a semidistance — the asymmetric Hausdorff semi-
distance. The Hausdorff distance between two sets A and B is defined by

du(B, A) = max{dist(4, B),dist(B, A)}. (2.5)

Thus - -
du(A,B) =0 & B = A.

We also employ the notation

B(v,e) :={u eV :|u—v| <e},
(2.6)
0B(v,e) =={ueV:|u—v|| =¢€}.

Thus B(v,e) = N(v,e) and 0B(v,e) = N (v,e). With this notation we
make a definition. Yo

Definition 2.2 _A4 family of sets A", h € [0,h.], is termed upper semi-
continuous at h = 0 if dist(A*, Ag) — 0 as h — 0. The family is termed
lower semi-continuous at h = 0 if dist(Ag, A*) — 0 as h — 0. The family
1s continuous at h = 0 if it is both upper semi-continuous and lower semi-
continuous at h = 0 so that dy(Ag, A") — 0 as h — 0.

In the remainder of the article we use the standard induced operator
norm on linear mappings L € £(V, V) namely

LIl := sup [L]. (2.7)
ll€ll=1

We define the operator norm of L € L(X, X) by

|L| := sup |L¢|. (2.8)
l¢]=1
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2.4 The evolution equation

Throughout this article we study the behavior of the abstract evolution

equation
du

% + Au = F(u),t >0, u(0)=u,. (2.9)
The operator A is assumed to satisfy the properties given in Section 2.1:
it is a linear, closed, densely defined, self-adjoint, positive operator with
compact inverse. The function F' is a continuous nonlinear operator from
X¢ to X, for some ( € [0,1), whose properties are specified below. Its
Fréchet derivative is denoted by dF(e). The precise definition of a solution
to eqn (2.9) may be found in Lemma 10.8. Throughout this article we make
the following assumptions concerning solutions of this equation.

Assumption 2.3 There is 3 € [0,1) such that, for every uo € V = X7,
egn (2.9) has a unique solution u(t;us) € V defined for t € [0,00). We
denote by S(t) : V +— V the operator defined by

S(t)v := u(t;v).

There exists n > [ such that, for everyt > 0 and everyv € V, S(t)v € X".
Furthermore, we assume that S(e)e € C1(R" x V, V).

Briefly, this assumption implies existence and uniqueness of a solution,
continuous dependence upon the data, and a compactness property for
the solution operator. This assumption is made throughout without being
explicitly stated in the results in the remainder of the article.

We shall use the notation dS(v;t) to denote the Fréchet derivative of
S(t)u with respect to u, evaluated at a point v. Note that, since the solution
operator S(t)e is C! we deduce the following result. '

Lemma 2.4 For any R > 0 there is a positive and increasing function
C(t), defined on R*, such that

IS(t)u — Sit)v|| < C(t)||lvu —v|| VYu,v € B(0,R). (2.10)

In Sections 2.5, 2.6, 2.7 and 2.8 we consider various examples illustrating
that Assumption 2.3 is satisfied for a wide variety of problems.

2.5 Sectorial evolution equations

As our first example of a class of problems satisfying Assumptions 2.3 we
consider (2.9) as an ordinary differential equation in the Hilbert space X.
We make the following assumption concerning the function F'(u) appearing
in (2.9). There exists a constant K > 0 and 8 € [0,1) such that, for all
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u,v,w,eV:

F e V. X
F(w) < K;
Fu) = F(v)] < Klu—olg; (2.11)
|dF(u)v] < Klvlg;
|dF (u)w — dF(v)w| < Klu—v|glwls.

(Recall that V = X7 and that ||e|| = |e|s.) Under this assumption, and the
standing assumptions on the operator A, we will prove that Assumption
2.3 holds. We start with an example illustrating (2.11).

Example 2.5 As a first example consider the scalar reaction-diffusion
equation

ug = ugz + f(u), (z,t) € (0,1) x (0,00),
w(0,t) = u(1,t) =0, ¢>0, (2.12)
u(z,0) = uwplz).

We establish that (2.11) holds for-this problem, under the assumption that
f € C*(R,R) and that there exists a constant C > 0 such that

If@) + [ F @]+ (W) <C VueR. (2.13)

Here A and D(A) may be defined as in Example 2.1; recall that D(Az) =
H(Q). We define F(u) by
F(u)(z) = f(u(2))
and then 50
(dF (w)v)(z) = f'(u(z))v(z).

That F is C? follows from the smoothness of f. First note that

|F(u)|? / f(u(z))dx < C2.

Secondly note that, if u,v € H3(Q), then v and v are bounded pointwise
by (2.3); thus f’(£(z)) is bounded pointwise if £(z) = su(z) + (1 — s)v(x)
for some s = s(z) € [0, 1]. By the mean value theorem and (2.3) it follows
that

1
|F(u) - F(v)]* = /O[f(U(m))—f(v(m))]de
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IA

1
| 1 €@ ute) - @)
= a9 <Clu— ’u|2%/7r2.
Thirdly we have that, by (2.3),
|dF (u)v]? = /l[f'(U(m))]2v($)2dm < C?]? < C?fi /72
0 2

Finally note that, by arguments similar to those used in bounding |F'(u) —
F(v)|, we have '

|dF (v)w — dF (v)w|?

/0 ' (u(@)) — f'(v(@)) PP (@)de

1
< /0 £ (1(2))(u(z) — v(=))?w(z)2ds
< Clu—v|l% |w?
< C2|u—v|2%|w|2%/7r2.

Thus (2.11) holds with 8 = 1/2. The same result may be established in
dimensions 2 and 3 by a slightly more subtle analysis.
As a second example consider the equation

Ut = —Ugzgs + f(’LL), (l‘,t) € (0)1) X (0,00),
w(0, 1) = 81, 8) = 8ea(0,8) = u.0(1,8) =0, t20,
92,0} = ny{x).

This is sometimes known as the Swift—-Hohenberg equation. Let Ay denote
the operator denoted by A in Example 2.1 and now set A = A2; the eigen-

values of A are j4r? and now |v;|? = |v|2. We make the same assumptions
4

about f as for the reaction-diffusion equation and define F in the same

way. Consequently, by following the analysis of the previous example, we
have that (2.11) holds with g = 1/4.

We now prove the following result.

Theorem 2.6 Let (2.11) hold. Then, for every u, € V, there erists a
unique solution u(t) of (2.9). Furthermore, there exist constants Ci; =
Ci(T,R) and C; = Cqy(a,T,R) > 0, such that, for all t € (0,T) and
Ug € B(O, R)

u(t)la < g Vo € [6,1];

(2.14)

du 02
20| < o vaeP- 1),
g ‘|, T et
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Finally the solution operator S(t)uo := u(t) satisfies Assumptions 2.3.

Proof The existence of a solution globally defined in t > 0 follows from
Theorem 10.9, using (2.11) to establish (10.6) and (10.9). The bound on
du/dt follows directly from the estimate in Theorem 10 9. Now let o € [, 1].
Note that from (2.9),

+ [ F(w)la-1-

a—1

du
- a—1 < Sy
ula = 14240 < | 2

By Lemma 10.6, A%~! is bounded on X for @ < 1 and so, by (2.11) and
the bound on du/dt we obtain
K, K1 C(T)

-B

|ula < promy + K| F(u)| < K < pr

the required result on |u|, for a € [, 1]. It follows that S(e)e is in C1(R™ x
V,V) by Theorem 10.10, since F' € C}(V, X) by (2.11). This completes the
proof. a

Important remark Since the proof of the bounds in Theorem 2.6 follow
directly from the stated bound on du/dt in Theorem 10.9 and are hence
somewhat obscure to a reader unfamiliar with Henry [54] or Pazy [81], we
sketch a direct proof of the bounds on u which is valid for a € [3,1). This
introduces an approach to the analysis of (2.9) and its applications, based
on the variation of constants formula, that will be useful to us in a variety
of contexts. By formally using e~“4? as an integrating factor and noting
that it is the solution operator for the linear problem (10.7), it follows that
u(t) satisfies

u(t) = e Aug + /0 t e A1=9) F(u(s))ds. (2.15)
Applying A% to (215) we obtain )
Ao‘u(;) = A% /Ot A%e= A=) P(y(s))ds.
Noting that fractional powers of A commute with e~ “4? we obtain
[u(t)|q < |AY Pe= At APuyy| + /0 t |A%e=AC=3)| | F(u(s))|ds.

Applying Lemma 10.6, (2.11) and (10.4), we obtain

£ L O
S
[u(t)|e < ta_glluOll+/O g

The second term is integrable and proportional to (1 — a)~! if @ < 1 and
the bound on |u(t)|, follows for a € [3,1).
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It is also of interest to prove the Lipschitz property (2.10) without
appealing to the abstract Theorem 10.10. In fact, under (2.11), we have a
global Lipschitz property. From (2.15), Lemma 10.6 and (2.11) we see that

IS =Sl < llu—vl + | == s 11S(s)u~ S(e)olds.

Applying the Gronwall Lemma 10.11 we obtain
AC=C(t) >0:[|SEu— S| <Cllu—v|| Yu,velV. (2.16)

Without loss of generality we may assume that C(t) is bounded as t — 0
and that it is monotonically increasing in t.

Note that by Theorem 2.6 the solution of (2.9) subject to (2.11) is a C*
function of time ¢ and the initial data uy. This allows us to consider the
concept of the derivative of the solution with respect to initial data. We
can now try and find the equation which the derivative satisfies. This can
be calculated by linearizing eqn (2.9) about a given solution with initial
data ug. Setting

w(t) = u(t) +no(t),

where u(t) and w(t) both satisfy (2.9) and n € R, we find that

(cil_z_: + Au = F(u), u(0) = u,,
%"tﬂ + Aw = F(w), w(0) = w,.

Hence v(t) satisfies
dv '
= +Av] = Fu+nv) — F(u), v(0)=¢

Linearizing so that F(u+nv) = F(u) +ndF(u)v+ O(n?) and letting  — 0
gives the equation

dv
dt

where u = u(t) solves (2.9). Thus v(¢) is the function found by calculat-
ing the derivative of the solution u(t) with respect to initial data u, and
applying it to €. For the following theorem, concerning the existence and
regularity of the solution to (2.17), we need the concept of mild solution
given in Lemma 10.7.

+ Av =dF(u)v, t>0, wv(0)=E¢, (2.17)

Theorem 2.7 Let (2.11) hold. For every £ € V there ezists a mild solu-
tion v(t) of (2.17). Furthermore, there ezists C = C(T') > 0 such that, for
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allt € (0,T), up € V:

le@Il < CliEl;

Clel b

lv(t)|a < a Va € (8,1).

— a)te=8’
Finally, if v(t) = dS(uo,t)€ then v(t) satisfies (2.17).

Proof We employ Theorem 10.10 to deduce that (2.17) has a mild solu-
tion and that it represents the action of the operator dS(ug,t) on £. Thus
the solution satisfies an integral equation obtained by the variation of con-
stants formula

t
v(t) = e ¢} / e~ A=) dF (u(s))v(s)ds. (2.19)
0
Hence
¢
AVu(t) = AV Pe=AtAP¢ +/ AYe A=) dF (u(s))v(s)ds.
0

Taking norms and applying Lemma 10.6 we obtain

C1 I
) < osléll+ | G luelds. (2:20)

Letting v = 8 and applying the Gronwall Lemma 10.11 we obtain the first
result. Having obtained this we return to (2.20) with v = a € (3,1) and
integrate to obtain the second result:

Ciliéll /t C2C ¢
b8 T ) G5
: CCliEll | tTeCClll

F fa—p (1-a)
Cy + CoCTY#
< el
(1-a)t

lv(t)le <

This completes the proof. O

Important remark At the expense of some unwieldy calculation it is
possible to obtain greater regularity on v(¢) than that given here. However,
in the context in which we are interested when considering the spectral
approximation of (2.9), for example, the fact that the numerical solution
converges in a C! sense is all that we need and the rate of convergence is
not required. The rate of convergence of the spectral method is governed
by the regularity of the solution being approximated and hence, for our
purposes, it is not necessary to derive greater regularity on v(t).
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2.6 The Navier—Stokes equations

These equations may be written as

ug +u-Vu=5Au—Vp+h(z), z€Q,
Vi u=0, 28,

u=10, zxedf

Let X be the Hilbert space H comprising divergence free velocity fields
contained in the space Ly(Q2)? — see, for example, Temam [91]. This can
be used to formulate an abstract evolution equation of the form (2.9) where
A denotes the Stokes operator and F'(u) comprises the effect of convection
and the body forcing h. Then in two dimensions it may be shown that

|F(u) — F(v)| < K(R)|lu —vlg, Yu,v € B(0,R)

provided that g > % See, for example, Hale [50]. Thus (2.11) is not satisfied
directly. However, under suitable conditions on €2, a priori bounds on the
solution enable the construction of a modified F' which satisfies (2.11) and
yields a problem which is equivalent to (2.21) for sufficiently large time.
See Temam [92]. |

An alternative approach to the existence theory is to use the Faedo-
Galerkin approach as described in Temam [91] and in Constantin and Foias
[19]. This approach can be used to deduce that Assumptions 2.3 are satisfied
with X =V =%,

2.7 The Cahn—Hilliard equation

The Cahn-Hilliard equation (see Elliott [28] and the references therein)
subject to Dirichlet boundary conditions may be written in the form

= Aw, x€Q,
0=Au+ f(u)+w, ze€Q,
u=w=0, ze€odfl,
w=uglz), T=10
Here a typical choice for f(u) arising in applications is f(u) = B(u —u?) for

some (3 > 0. Equation (2.21) may be formulated as an abstract evolution
equation in the form of (2.9) by setting

us + Adu = AgF(u), u(0) = uo, (2.21)
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where A is the operator denoted by A in Example 2.1, and letting
F(u)(z) = f(u(z))

The existence theory described in Section 2.5 and in Appendix A does not
apply directly to this equation. However a similar theory can be developed
and the Assumptions 2.3 shown to hold — see Elliott and Larsson [30] and
Elliott and Stuart [32] for details.

2.8 Ordinary differential equations

As a final example of a system satisfying Assumptions 2.3, consider the
system of ordinary differential equations of the form

we = flu), w0) = up. (2.22)

Assume that f € C1(IR™,R™) and that structure is imposed on the func-
tion f(u) ensuring global existence in time for all initial data in R™.

Then solutions of eqn (2.22) are readily seen to generate a semigroup
S(t) : R™ — R™ such that Assumptions 2.3 hold with V' =R™.

2.9 Semigroups

By Assumption 2.3 we know that a unique solution of (2.9) exists for all ¢ >
0 and any ug € V and we have encountered several examples of classes of
equations which do satisfy these assumptions. We have defined a semigroup
S(t) : V — V in such a way that the solution u(t) of (2.9) is given by

u(t) = S(t)uo.

The one parameter mapping S(t) satisfies the usual semigroup properties
(1) S(0) = I, the identity on V;
(2) S(t+s)=S(t)S(s) Vt,seR*.-
For certain uo the operator S(t) may be defined for ¢t < 0; in such instances
we will freely use $(f) with negative arguments. A simple example is when

Up is an equilibrium point. We now give some basic definitions and results
concerning dynamical systems.

Definition 2.8 The action of S(t) on a set E C V is defined by
SHE = | S(t)z. (2.23)
zeE

A set E is said to be invariant (resp. positively invariant, negatively invari-
ant) if, for anyt >0, St)E = E (resp. S(t)E C E, S(t)E D E).

Example 2.9 The simplest example of an invariant set is an equilibrium
point @ € D(A) C V satisfying Au = F(a) (see (4.13)). Since du/dt = 0 if
ug = @ in (2.9) it is clear that @ is invariant. Another simple example of an
invariant set is a periodic solution of the equation.
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To construct a simple positive invariant set assume that, for some r > 0,
d 2
Zi—t”u(t)u lt=0 <0 Vu, € 8B(0,r),

where B(0,7) and 0B(0,r) are defined in (2.6).

Then no solutions starting in the set B(0,7) can leave and hence it is
positively invariant.

When comparing S(t) and the perturbed semigroup S”(t) it is thus
natural to compare the effect of approximation on the invariant sets (or
positively invariant sets or negatively invariant sets) of S(¢). This is the
approach we take in the remainder of the article. In general, given an
initial data point u,, we define the forward orbit to be {S(t)uo,t > 0}. If
there is ¢ : (—00,0] — V with ¢(0) = ue and S(t)¢(s) = p(t + s) for
0 <t < —s then a negative orbit of ug is {¢(t),t < 0}. This orbit will not
exist for general uq; when it does exist it may not be unique. If a negative
orbit does exist then a complete orbit is the union of the positive and a
negative orbits. The notion of backward orbits is very useful in the study
of unstable manifolds (see Chapter 5). The notion of complete orbits will
also be particularly useful in the study of attractors (see Chapter 7). A
forward orbit is a simple example of a positively invariant set; a negative
orbit is a simple example of a backward invariant set; a complete orbit is
a simple example of an invariant set. Indeed it is a simple exercise to show
that every point in an invariant set lies on a complete orbit.

It is important to be able to capture all the possible behavior of a
dynamical system for large time. This is the motivation behind the follow-
ing definition which leads to the identification of some further important
invariant sets: '

Definition 2.10 The w-limit set of a point ug is deﬁned by
wlug) = {x € V|3{t;}, t: — 00 : S(t;)up — z as t; — oo}

An equivalent definition is

w(uo) = [ I S#)uo. (2.24)

s>0t>s

Simalary we may define the w-limit set of a set E C'V by

QJ(E) = {.'II = V|E|{tz}, {ui},ti — oo,u; € E: S(ti)’u,.,; —X T a8 by —> OO}

An equivalent definition is

w(E) = JS®E. (2.25)

s>0t>s
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Given a particular negative orbit through uo, say {¢(t)|t < 0}, we define
its a-limit set by

Ot(uo) — {iE € V|3{ti},ti Lol (P(ti) —zast; — —OO}.

Examples of w-limit and a-limit sets of individual points are equilibrium
points, periodic solutions, quasi-periodic solutions and more complicated
objects such as the strange attractors observed in chaotic systems like the
Lorenz equations. Note that, in general, we only have

‘ U w(z) C w(E).

z€eE

Thus the w-limit sets of sets may be more complicated than simply the
union of limit sets of individual trajectories — they also contain heteroclinic
and homoclinic orbits connecting individual limit sets of trajectories. These
are complete orbits with the same a- and w-limit sets in the homoclinic
case and differing ones in the heteroclinic case.

The following property of limit sets is fundamental.

Theorem 2.11 Assume that E C V is non-empty and that there ezists
to > 0 such that U,s,, S(t)E is relatively compact. Then w(E) is non-
empty, compact and invariant. Furthermore, for any point ug € V, w(uo)
is connected. A

For any negative orbit {¢(t),t < 0} through uo for which there ezists
t1 < 0 such that | J,<,, ¢(t) is relatively compact, a(uo) is non-empty, com-
pact, tnvariant and connected.

Proof Note that

wE) = Us®E= ) JsS®E.

s=20d>2s o s>to t>s

By the assumptions of the theorem, this is an intersection of nested non-
empty compact séts; it is therefore non-empty and compact.

Now we show positive invariance: assume that z € w(E). If S(¢;)v; — =
then by continuity of S(t)e,

Thus S(t + t;)vi — S(t)z and, hence, S(t)z € w(E) by Definition 2.10.
Thus we deduce positive invariance of w(E).

Now we establish negative invariance: assume that z € w(E). We wish
to show that, for any ¢t > 0, Jy: S(t)y = z and y € w(E). Let S(t;)v; — z,
where, without loss of generality, we may choose t; > 1 + to + t. Now
consider the sequence S(t; — t)v;. Since J,5;, S(t)E is relatively compact
it follows that there exists a convergent subsequence

S(t?’] = t)'U.,;j —> 1.
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Now
T = hm S(tz] )'U,;j = hm S(t)S(tzJ == t)’Uij
9 —+00 J—00

= S(t) hm S(tij = t)’l)ij = S(t)y.
J—o0 S

Hence the result is proved.

Finally we show that w(ug) is connected. Assume for contradiction that
w(ug) has two disjoint components P and Q with N (P,e) N N(Q,¢) =0,
for some £ > 0. Then there exist sequences t; — oo and 7; — oo such that
S(ti)up — z € P and S(mi)up — y € Q. Without loss of generality we
may assume that ¢; < 7; and that S(¢;)ug € N(P,¢), S(1:)uo € N(Q,¢)
Vi > 1. By continuity of S(e)uq it follows that there exists T; € (¢;,7;)
such that S(T;)ug € ON (P, ). But the set N (P, ) is compact, since P
is compact. Thus there exists a convergent subsequence S(T;,)ug — z,
where z € ON(P,€). But this is a contradiction since then, by definition,
z € w(ug) but z ¢ PU Q. This completes the proof. The statements about
a-limit sets follow similarly. a

We conclude with three categories of dynamical systems which will be
useful to us throughout this article.

Definition 2.12 The semigroup S(t) : V +— V is said to be contractive in
the neighborhood of an equilibrium point G if there exist constants o, > 0
such that, if ui,us € B(q,0), then

IS uy — S(t)uz|| < e™*|uy —u2|| Vt >

In Section 4.3 we will prove that hyperbolic, stable equilibrium points
yield contractive semigroups under certain natural conditions on the non-
linearity.

Definition 2.13 The semigroup S(t) : V +— V is said to be dissipative
if thexe 1s a bounded set B C V, known as an absorbing set, such that for
any bounded set E C V there is T = T(E, B) such that S(t)E C B for all
1

Example 2.14 Consider eqn (2.12) under (2.13). By using the techniques
outlined in Temam [92] it is possible to show that the equation generates
a semigroup S(t) : X — X, where X = L5(0,1). Let (e, ) and | @ | denote
the inner product and norm on X. To see that the equation is dissipative
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on X note that, by (2.3), for any € > 0 we have
1d

§E|U|2 = (u, Ut)

2 e? 2 1 2
< —|us +3|U| +2—E2|f(u)|

[ b E 2
£ - o il -
m|ul® + 2|u| +262
By choosing € = m we have
o
dt
Integration shows that the equation is dissipative on X with absorbing set
B = B(0, p) for any p: p?> > C?/r.
Definition 2.15 The C! semigroup S(t) generated by (2.9) is said to
define a gradient system if there exists V € C(V,R), called a Lyapunov
function, satisfying
(i) V(u) >0 for allu e V;
(1) V(u) — o0 as ||uf — oo;

02
lul> < =

2012
— | ul®.

(#i) V(S(t)u) is nonincreasing in t for each u € V;

(iv) if u is such that S(t)u is defined for all t € R and V(S(t)u) = V(u)
fort € R then u is an equilibrium point satisfying Au = F'(u).
Example 2.16 Consider the reaction-diffusion equation (2.12) subject to
(2.13). By Theorem 2.6 this forms a dynamical system on V = H}(Q).
(Note that, in contrast, we considered the same equation as a dynamical

system in L3((0,1)) in Example 2.14.) If we define h(u) to be a primitive
of f(u) so that h'(u) = f(u) and set

1
Vig)ia / (542~ h(p))dz

then V(e) is a Lyapunov functional for (2.12) and hence we have a gradient
system. To see this note that

h(u) =c+ /Ou f(w)dw (2.26)

for some arbitrarily chosen ¢ € R. Thus, by (2.13), for any € > 0,

1 c 5 2
/ h(@)dp < e+ Cp < e+ — + 2|2,
0

2e2 2
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Thus, by (2.3),

Gt . a C
£ ) lell* —c— %2

Choosing ¢ such that 4Ce? = 272 and c such that 2e2c = —C, we obtain
V(p) > l¢l|?, as required for (i), (ii). Also, multiplying (2.12) by u; and
integrating by parts, we find that

V(o) > Slell? -

L ()} = ~lu(o)P
so that (iii), (iv) follow.

In this article we will start by studying equilibrium points and their
neighborhoods in Sections 4 and 5. We will also consider w-limit sets of
sets, leading to the study of global attractors — see Section 7. There are
currently certain limiting factors in the study of convergence of attractors
and, in Section 6, we study an object which contains the global attrac-
tor, namely an inertial manifold. Because of its stronger attractivity, it is
possible to prove stronger results about the affect of perturbation on the
inertial manifold than on the global attractor. Section 8 uses our analysis of
Section 4 to derive piecewise continuous error bounds for gradient systems.
Finally, in Section 9, we briefly describe numerical methods which preserve
the dissipative or gradient structure of Defintions 2.13 and 2.15.

2.10 Bibliography

The theory of ordinary differential equations in a Hilbert space that we
exploit here may be found in Henry [54] and Pazy [81]; the majority of the
results in Appendix A are taken from these two sources.

The basic theory and definitions for dynamical systems in finite dimen-
sions is presented very clearly in Bhatia and Szego [11]. Generalizations to
partial differential equations include Babin and Vishik [4], Hale [50], La-
dyzhenskaya [72] and Temam [92]. See also Chueshov [18] for a review of the
subject. General references concerning the numerical analysis of dynamical
systems can be found in Beyn [9], Broomhead and Iserles [14], Kloeden and
Palmer [69] and Stuart [88].

3 Basic approximation of trajectories
3.1 Introduction

Section 3.2 contains our basic assumptions about the approximating semi-
group. Roughly this states that the error is small in the C! sense, uniformly
on compact time intervals disjoint from the origin and on bounded sets in
V. In the remaining sections a variety of perturbations to equations of the
form (2.9) are described and shown to satisfy the assumptions of Section
3.2.
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In Section 3.3 a spectral method is defined for the abstract evolution
equation introduced in Section 2.5 and its existence and regularity proper-
ties stated. We then derive error estimates for the spectral method. Theo-
rem 3.6 does this by use of a variation of constants approach to the error
analysis. (For an introduction to the use of variation of constants, refer back
to the Important remark following Theorem 2.6). Theorem 3.7 is an ex-
tension to obtain C! error estimates, namely estimates for the difference
between the Fréchet derivatives of the true and spectral solution opera-
tors with respect to initial data. Such C! error estimates can be derived
for many methods and are particularly useful in the context of dynamical
systems. As mentioned they form the basis of our assumptions outlined
in Section 3.2. Their importance follows from the fact that C! closeness
implies closeness of the Lipschitz constants of certain nonlinear operators
used in the construction of objects of interest in the context of dynamical
systems. We emphasize that the spectral method is not being recommended
for practical computation; it is simply a good example with which to illus-
trate the abstract approximation theory that follows in remaining sections.

In Section 3.4 we consider the viscous Cahn—Hilliard equation which
can be derived from a simplification of the phase-field model of phase tran-
sitions and contains the Cahn—Hilliard equation as a singular limit. This
singular limit is studied and the assumptions of Section 3.2 shown to hold
for the singular perturbation. Section 3.5 contains a discussion of ordinary
differential equations.

Those readers not interested in the error analysis for particular pertur-
bations can jump straight to Section 4 after reading Section 3.2. Thus the
important point in Section 3 is to understand the basic Assumptions 3.2
which will be used throughout the remainder of the article. ‘

It is our aim in this article to study the effect of various perturbations
over long time intervals. In this context it is clear that the error estimates
made in Assumptions 3.2 are of no direct use since they contain constants
which typically grow with the time interval under consideration. (Indeed
the growth is typically exponential). Sections 4-9 deal with a variety of
results enabling us to interpret the relationship between the underlying
unperturbed dynamical systems and the perturbed dynamical system over
long time intervals.

3.2 Approximation assumptions

In the rest of the article we will consider a whole class of approximations
to the semigroup S(t) given in Assumptions 2.3 yielding approximate semi-
groups S*(t) : V - V satisfying certain natural approximation properties.
In some applications, such as time discretization, ¢ may not take on val-
ues in the whole of R™ but in a subset g(h)INt = {0,g(h),2g(h),...}.
For example, in backward Euler approximation with time step h we will
have g(h) = h. To enable us to make statements about time-discrete and
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time-continuous semigroups S*(t) we use S to denote R* or g(h)IN" as
appropriate.

We denote the Fréchet derivative of S”(t)u with respect to u evalu-
ated at a point v € V by dS"(v,t). Before stating the basic assumptions
concerning S”(t) we make the following definition.

Definition 3.1 The approzimation error for the semigroup S*(t) : V
V' as an approximation to the semigroup S(t) : V +— V generated by the
partial differential equation (2.9) at a point ug € V is deﬁnez% by

E(uo;t) := S(t)uo — S™(t)uo.

The Fréchet derivative of E(ug;t) with respect to uy € V evaluated at a
point v € V 1is denoted by

dE(v;t) := dS(v;t) — dS™(v;1t).

Throughout the remainder of this article we make the following as-
sumption concerning the relationship between the semigroup S(t) and its
perturbation S"(t).

Assumption 3.2 For allu € B(0O,R) and allt € S, t > 0, there exist
constants C; = C;(t,R) < 00,i = 1,2, and a function k : Rt — R such
that the semigroups S(e)e and Sh(e)e satisfy

I1E(u; )| < Cih,

[dE(u; )| < Car(h),
where k(h) — 0 as h — 0.

We make this assumption throughout the remainder of the paper. We
will not state it explicitly in the results. What makes the analysis partic-
ularly .challenging, in comparison with analogous theories for ordinary dif-
ferential equations, is that C;, Cy are not assumed to be bounded as ¢t — O.
Many perturbations, such as those arising from numerical approximation
or singular perturbations of the terms in (2.9), have the property that the
C; are unbounded as t — 0, and hence it is important to incorporate it in
our assumptions.

In the remainder of this section we detail a variety of situations in which
this assumption can be shown to hold. Examples include spectral approx-
imation of (2.9) based on the eigenfunctions of A, time approximation of
(2.9) based on the backward Euler method and singular perturbations of
the Cahn-Hilliard equation arising by considering (2.21) as singular limit
of the phase-field equations for phase transitions.
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3.3 Spectral method for the sectorial equation

We now introduce a spectral method for the approximation of the abstract
sectorial evolution equation (2.9) under (2.11). Let IP denote the projection
of X into span{yp; }§’=1; thus, given v expressed as

oo
U= E UjPj,
j=1
we set

N
Pv = Z ViP5
g=1

We also let ) denote the orthogonal complement of IP so that Q = I — IP.
We use the notation VN = IPX. The Galerkin approximation to (2.9) which
we consider is to find uN € VN satisfying

d

—gt— + AuN =PFW"), t >0, uN(0)=Pug. (3.1)
As for (2.9) it will also be important to consider the linearized problem

d

% + Av™ = PdF(u™)w™,¢t >0, oM (0) = PeN. (3.2)

By methods analogous to those used to prove Theorems 2.6, 2.7 we
may prove the following two results about (3.1) and (3.2). The proofs are
identical after noting that |P| = 1.

Theorem 3.3 Let (2.11) hold. Then, for every ug. € V there exists a
unique solution uN(t) of (3.1). Furthermore, there exists C; = C1(T, R) > 0
and Cy = Ca(a, T, R) such that, for all_t € (0,T) and ug' € B(0, R)

(0 < fﬁ,va < 16,1
(3.3)
Ya e [f—-1,1).

Cy
(t)’ = oo ,B+1’

Finally, the semigroup SN (t)(t) : V +— V defined by SN(¢)(t)us® = uN(t)
satisfies Assumptions 2.3.

Theorem 3.4 Let (2.11) hold. Then, for every N € V there exists a mild
solution vN(t) of (8.2). Furthermore, there ezists C = C(T, ||uo"||) > 0 such
that, for allt € (0,7):

Y@ < ClIE™;

N (3.4)
[N ()le < (f%, Va € (6,1).
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Finally, if vV (t) = dSN(t)(ug"; t)EN, then vN(t) satisfies (3.2).

Thus the numerical method (3.1) generates a semigroup SN(t) : V — V
— denoted by S"(t) in the foregoing theorems — in such a way that the
solution u™ of (3.1) is given by

(L) = SN(tjuoN.

Note also that SN(t) may be viewed as a mapping from VN to VN since it
is VN valued for t > 0 and VN C V. Here the superscript N is used simply
to emphasize the dependence of the numerical method on the dimension
of the projection IP. This semigroup satisfies properties analogous to those
for S(¢) :

(1) SN(0) =P, the projection V s VN;

(2) SN(t+s) = SN(t)SN(s) Vt,seR*.
(Actually a true semigroup must satisfy SN(0) = I but having SN(0) = P
does not affect the analysis given here in any way. We can view SN (t) as a
true semigroup satisfying SN(0) = I if we restrict its domain to VN.)

We denote the Fréchet derivative of S™(t)u, with respect to u, € V,

evaluated at a point v € V, by dS™(v;t).

Example 3.5 Consider A given by Example 2.1 and the heat equation
us + Au=0, u(0) =1y, € H}(R).

For v € H}(Q) C L2(Q) we may write v as a series as in (2.2). Similarly
any & € H}(2) can be written as

=7 Gvs
j=1

It follows that i

-

o0
S(t)yv = Z e M0,
i=1
Furthemore we have that

dS(v;t)€ = Z e_>‘jt§j<pj.

=t

Note that dS(v;t) is independent of v because of the linearity of the prob-
lem.
The spectral approximation generates semigroup S™(t) satisfying

N
SN (t)'U = Z e”\jtvjcpj
=1
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and
N

dS™ (v; )€ = Z e_)‘jtfjgaj.

Jj=1

We now prove that the approximation error for (3.1) as an approxima-
tion of (2.9) is small in both a C° and a C! sense. The closeness of the ap-
proximation depends on the regularity of the solution being approximated.
For many particular equations it is possible to obtain greater regularity
than we prove under the assumptions here; this yields stronger approxima-
tion results — see Example 3.8.

Theorem 3.6 (C° Error Estimates) Let (2.11) hold. There ezists a
constant C = C (T, R) such that the solutions of (2.9) and (3.1) with u, €
B(0, R) satisfy

C -
lrt) ~ WO < 5 1P (o — ud)| + M4 Ve € (0,7
Proof Let ‘
e(t) = Pu(t) — uN(t), E(t) =u(t) —uN(t), qt) = Qu(t).
(Recall that @ = I — IP.) Note that, if

oo
w(t) = Z UjP;
i=1

then
o0 o0
2 2(—-1 2(6—-1
el = 3 APzl nV % Al < A0 i

By applying Theorem 2.6 we obtaiI;, for C; = C1(T, R)

.. W
(EAN+1)P

Now note that e(t) satisfies the equation

e; + Ae = P[F(u) — F(u")].

lg(®)]l < (3.5)

Use of variation of constants gives
t
eft) = e e(0) + | A IPIF(u(s) - F(u"(s))]ds.
0

Taking norms, using (2.11), (10.4), |IP| =1 and Lemma 10.6, we obtain

el < e + | = l1E )l
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Hence, since E(t) = e(t) + ¢(t), we have from (3.5),

. c £ i
IE@I < IP(so — ud)ll + W + [ amsplBes.

Thus

1 2
L {0 w0} + [ Bl

Application of the Gronwall Lemma 10.11 gives the desired result for
E(t) = u(t) — uN(t). a

Important remark Note that the error estimate blows up as ¢ — 0. To
understand this consider the set of functions u, € B(0, R) and their spectral
approximations ug'. Let uy = v/ where

N =3 e,
j=1

and

Then ||uf¥]|? = R? so that /¥ € B(0, R). But Pu} = 0 and so
I — P =R YN >0.

Hence there are sequences of functions in B(0, R) for which the spectral
approximation of the initial data in X? yields a constant error R for each
N > 0. Thus the estimate O(A?\, 1) for the error cannot hold uniformly
for all solutions with initial data in B(0,R) as t — 0. This observation
is particular to partial differential equations and does not arise in the ap-
proximation of ordinary differential equations. It means that certain proofs
employed in ordinary differential equations which rely on small time be-
havior neéd to be modified. To understand this further the reader should
compare the proofs of results in this article with similar results concerning
the convergence under perturbation of invariant sets of dynamical systems
in ordinary differential equations given in Stuart [88]. Note also that on any
compact time interval [t1,¢2] disjoint from the origin the error estimate is
uniform within a ball B(0, R) of initial data. This is not true of the error
estimate in Corollary 4.10 for uniform-in-time approximation of trajecto-
ries asymptotic to a stable equilibrium point — see the remark following
that corollary.

Recall the standard induced operator norm on linear mappings L €
L(V,V) given in (2.7).

Theorem 3.7 (C! Error Estimates) Let 2.11 hold. There ezists a con-
stant C = C(T, ||\uol|) such that, for any a € (B, 1), the Fréchet derivative of
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the approzimation error generated by solutions of (2.17) and (3.2) satisfies

C
(1 - a)(tAn41)>P

[|dS (uo; t) — dS™ (uo; t)|| < vt € (0,T].

Proof We let
d(t) = Pu(t) — v (t), D(t) =v(t) —oN(t), r(t) = Qu(t)

where v(t) and v™(t) satisfy (2.17), (3.2) with &N = ¢ and with u(t) and
uN(t) generated from (2.9), (3.1) with ug" = uo. Using the regularity es-
tablished for v(t) in Theorem 2.7, it follows that

C1i€ll :
)(EAN 1) P

the derivation is similar to that for (3.5). Now d(t) satisfies the equation

di + Ad = P[dF (u)v — dF (u)v] + P[dF (u") (v — vV)].

Ir@)I] < s (3.6)

Applying the variation of constants formula we obtain

d(t)/ = e~ 4%d(0) + / t e~ A=) P[dF (u)v — dF (uN)v]ds
0

te"A(t_s) uwN) (v — vV)]ds.
+ [ PdF (™) (v - o™)]d

Applying AP, taking norms and using (2.11), (10.4) and Lemma 10.6, we
find that

la < aoyy + [ Ko OO, , [ PO,

Since &N = £ we have d(0) = 0. AlS(;, l;y Theorem 3.6, we have that since
N :
Up = Uo, |

>

lu(t) —w" @) < (3.7)

(ANt1t)—8°

By Theorem 2.7 we have ||v(t)|| < C||£|| and hence, putting all this together,
we find that

1)l < /Ot( Klel g0, [(EIDGN, g4

t— s)ﬂsl‘ﬂ/\}v—fl o (t—9)F

It may be shown that, if 8 > 0, then

/t ds . - AR
o (t—38)Pst=F — B(1-p)’
we return to the case § = 0 below. Hence, using (3.6) and (3.8), we find
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that
DO < el + lIr@)|l

Coll€] Cull¢] ‘K|D@)
B1-BALE  A—a)Owpt)? " Sy (E-5)Pf
Hence .

A —o)Angit)>? ~ Jo (E—s)f

Applying the Gronwall Lemma 10.11 yields

Cliél
v(t) — N ()| < , Vte(0,T).
o) = (Ol € T, V€ (0T
Since v(t) = dS(ue;t)¢ and v™N(t) = dSN(t)(ue;t)¢ the required bound
follows from (2.7).

The case 8 < 1 can be handled similarly by using the (weaker) error
bound '

C
T BT | e —
) = Ol € G55
in place of (3.7); this bound may be derived by modifying the proof of
Theorem 3.6. O

Remark Recall the remark following Theorem 2.7 which indicates why it
is not necessary for us to obtain convergence in the C! norm at the same
rate as in the C° norm. O.

The following example shows, however, that for many particular prob-
lems results far stronger than those proved here will hold.

Example 3.8 For the-heat equation Example 3.5 we have, for § = % S0
that || e ||.is the norm on H}(Q),

[e.9]
E(v;t) = Z e Mty ;.
j=N+1

Thus

(o ]
IE@)I? = D e 28] < e i|jy)?.
j=N+1

This shows the exponential rate of convergence of the spectral method
with respect to N, for any fixed t > 0. The same rate of convergence
holds for ||[dE(v;t)||. This rate of convergence is a consequence of the high
degree of regularity of the solution for each ¢ > 0 given by the exponential
decay of the Fourier coefficients. In general the addition of nonlinear terms
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will destroy this smoothness and hence the weaker error bounds proved
in Theorems 3.6, 3.7 are typical. However, many nonlinear problems do
possess a form of regularity known as Gevrey class which implies rapid
decay of the co-efficients in eigenfunction expansions; such regularity can
be exploited in the error estimates for spectral methods. Ferrari and Titi
[35] give general conditions under which (2.9) yields solutions of Gevrey
class regularity.

Note that Theorems 3.6 and 3.7 show that, at any positive finite time,
both the semigroup and its derivative are well-approximated. The constants
appearing in the error bounds depend only on the norm of the initial data
uo and the time interval under consideration. Thus with the definition

Sh(t) = SNt) Vhe NRiD AN, (3.9)

Theorems 3.6, 3.7 show that Assumptions 3.2 are satisfied for the spectral
approximation.

3.4 Backward Euler method for sectorial equations

As another example of a method satisfying the approximation Assumptions
3.2, consider the backward Euler method

Untl _Un 4 ALAU™H! = ALtF(U™HY), U = u,.

This equation generates an approximation U™ = u(nAt). The approxima-
tion assumptions used in this paper are established for the method applied
to a reaction-diffusion equation and to the Kuramtoto-Sivashinsky equation
respectively in Hale et al. [51] and Alouges and Debussche [1].

3.5 The phase-field and viscous Cahn—Hilliard equations .

Now we introduce an example where the effect of perturbation is not from
numerical approximation but from a singular perturbation to the partial
differential equation.' The phase-field equations are

l
c9t+§ut:kA0, re, t>0,
ouy =Au+ f(u)+66, ze€Q, t>0.
We consider these equations subject to the Dirichlet boundary conditions

u=0=0 rzed, t>0,

and initial conditions on u and 6. These equations model phase transitions
such as that between ice and water; see Caginalp [15].
If we set ¢ = 0, re-scale time and the function f and introduce a scaled
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version of ¢, namely w, then we obtain equations in the form

’U,t:A'U), .’BEQ,

eup = Au+ f(u)+w, =z€ Q,
(3.10)
u=w=0 z¢cdQ,

u=wyglz), t=0.

These are a form of the viscous Cahn-Hilliard equation. We use Ag to
denote the same operator as in (2.21) and then (3.10) may be written as

we + (€ + A7) Aou = (e + 45Y) T F(w).

If € is small this may be viewed as a non-local singular perturbation of the
Cahn-Hilliard equation (2.21). In Elliott and Stuart [32] it is shown that
for any € > 0 equations (3.10) generate a dynamical system with semigroup
S(e)e € C?(R* x V,V) where V = H}(Q) so that Assumptions 2.3 hold.
Furthermore the semigroup is shown to be C! in ¢, uniformly on compact
time intervals disjoint from the origin and on bounded sets in V. Thus
Assumptions 3.2 hold with h = k(h) =e.

3.6 Ordinary differential equations

The system of ordinary differential equations
ur = f(use), u(0) =10,

where f is smooth in u and €, generates a semigroup satisfying Assumptions
2.3 and 3.2 with h = k(h) = €. Thus the theory in this article applies.

3.7 Bibliography .

The approach to C? error “estimates given here is similar to that devel-
oped for finite element methods applied to reaction-diffusion equations in
Larsson [74] and generalized to the Cahn-Hilliard equation in Elliott and
Larsson [30]; that work in turn builds on the work of Thomee [96] and
of Johnson et al. [61]. These works employ the semigroup approach to fa-
cilitate the error analysis. The use of C! error estimates is particularly
important in the context of dynamical systems and examples of such re-
sults may be found in Alouges and Debussche [1] and Hale et al. [51] for
specific approximations of reaction-diffusion equations, in Stuart [88] for
arbitrary one-step methods applied to ordinary differential equations and
in Jones and Titi [64] and Jones [62] for spectral and finite difference ap-
proximations of certain partial differential equations of the form (2.9).
The spectral method based on the eigenfunctions of A is typically only
useful as a numerical computational technique for problems with simple
geometry and simple differential operators such as those appearing in Ex-
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amples 2.1, 2.5. An early use of such a computational method for (2.9) is
described in Orszag [80]; a more recent reference, directly relevant to the
computation of invariant manifolds in partial differential equations, is Bai
et al. [5]. The spectral method (3.1) is also of theoretical importance as
a tool to prove existence results about (2.9); indeed, by use of a spectral
method, such results can be proved under weaker hypotheses concerning
the initial data u, than those given here — see Friedman [40], Lions [76],
Constantin and Foias [19], and Temam [91] [92].

4 Equilibria and phase portraits

4.1 Introduction

This section starts with a consideration of the effect of the approximation
error on general, not necessarily stable, equilibrium points. The approach is
to use the implicit function theorem. The core of the analysis is contained
in Lemma 4.2 but the main result is stated as Theorem 4.3.

In Section 4.3 we study the one case where error estimates for (2.9)
may be obtained which are independent of the time-interval, namely for
solutions approaching an exponentially stable equilibrium point. This in-
troduces the important idea, which we use throughout the article, of com-
bining the standard finite time error estimates together with some underly-
ing property concerning the behavior of the differential equation. The most
important result in this context is Corollary 4.10. An important stepping-
stone along the way is Lemma 4.7 which shows that, near a stable hyper-
bolic equilibrium point, the semigroup is contractive.

In Section 4.4 we move from stable equilibria to local phase portraits
near saddle points — the union of all solutions of (2.9) in a small ball
around the equilibrium point. Since such solutions can spend an arbitrarily
long time near the equilibrium point standard error analysis does not apply.
The key is to compare true and rumerical solutions with different initial
data and the important results are Theorems 4.18 and 4.19. The method of
analysis used in this section is to construct the solutions of interest by use
of a contraction mapping argument (see Theorem 4.13) and then use the
uniform contraction principle (see Appendix B) to incorporate the effect of
perturbation.

4.2 Equilibria

In this section we are concerned with the behavior of steady solutions of
(2.9) and solutions in their neighborhood.

Definition 4.1 A point @ € V is a fized point of S(7) for some 7 € R if
S(r)a = u. A pointa € V is an equilibrium point if it is a fized point of S(t)
for allt € R. A fized point @ of a semigroup S(t) is said to be hyperbolic
if dS(a,t) has no eigenvalues on the unit circle. An equilibrium point @ of
a semigroup S(t) is said to be hyperbolic if dS(a,t) has no eigenvalues on
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the unit circle for allt #0. O

Throughout we will use the following notation for the set of fixed points
of S(t) and S”(t); recall the notation S, given before Definition 3.1, enabling
us to consider time-continuous and time-discrete semigroups together.

E={veV:Stv=v Vte R}

gh={veV:Shtl=v VteS) (1)

Let us assume that S(t) has an equilibrium point @. We introduce the
new variable

v(t) =u(t) —a
and change variables in (2.9). Then v(t) satisfies the equation

v + Cv =g(v), v(0) = :=up — G,
(4.2)
C=A-dF(u), g()=[F(v+a)— F(a)—dF(a)v].

Recall the operator norm of L € L£(X,X) given by (2.8). Note that
(C — A)A=P| = |dF(a)A~P| < K by (2.11) and hence, by Lemma 10.13,
the operator C is sectorial so that e~¢* may be defined. Thus we see that
dS(a,t) = e Ct.

The hyperbolicity of @ is equivalent to the operator C having no eigen-
values with zero real part. When % is hyperbolic, by Theorem 10.14 we
can split the space X into X =Y’ & Z’ where Y’ (resp. Z’) is the sub-
space of X spanned by the generalized eigenspace of C corresponding to
eigenvalues with negative (resp. positive) real parts. We denote by P and
Q the spectral projections P : X — Y’ and Q : X — Z’ and then denote
Y =PV,Z =QV sothat V =Y & Z. Using Theorem 10.15 it follows that,
for any a < 1, there exists T* > 0 such that ”

leCtull < aljv|| VE>T* YoeY

(4.3)
le=Ct|| < allv|| Vt>T* YveZ.

Our aim is to show that if 4 is hyperbolic then, under Assumptions 3.2,
Sh(t) will also have a fixed point and hence an equilibrium point. We
start by showing in the next lemma that for any given fixed time ¢ the
semigroup S”(t) has a fixed point %" (t). In the theorem following the lemma
we establish that the fixed point of S*(t) is actually an equilibrium point
for Sh(t).

Lemma 4.2 Assume that S(e)e € C?>(R* x V,V). Let @ be a hyperbolic
equilibrium point of (2.9) and assume that t > T* given by (4.3) and that
t € S. Then there exists h*,C > 0 such that S™(t) has a fized point,
a" = uP(t) unique in B(@;Ch), for all h € (0,h*].
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Proof The proof is similar to the proof of the implicit function theorem.
Consider the mapping

Wk+l = F(Wk; ¢)

F(W;t) := W — DIW — Sh(t)W] (4.4)

where D = D(t) = [I —dS(4,t)]"! and t > T*, where T* is given in (4.3).
As a preliminary to the proof we prove that || D|| is bounded. Consider the
equation

(I—e%)a=>b

and note that, in the induced operator norm (2.7) we have

|D|| = sup |al,
Ibll=1

since dS(@,t) = e~ C*. We write a = a,+a, and b = b, +b, where a,,b, € Y
and aq,b, € Z; here Y and Z are the invariant subspaces of C. Thus

(I —e%)a, = b,

(I — e Ya, = b,.

Using the hyperbolicity property we deduce that (4.3) holds and hence that

lapll < a(l —a)~ byl

lagll < (1 — a)=2||by]|- (4.5)

Note that || e || is equivalent to the norm || ¢ ||y given by

[ llv = max{[|Pe],[[Qe]]}. ‘
Hence it follows from (4.5) that there exists a constant K > 0 such that
lafl <K (1 —a)~"|Ib]

so that || D|| < K(1 —a)~.

Fix € > 0. Recall the constants C; = Ci(t, ||@||+¢) and Cy = Ca(t, ||a||+
€) given by Assumptions 3.2 and evaluated here at time ¢ and within a ball
of radius ||@|| + €. To prove existence of a fixed point of (4.4) we show that
the iteration (4.4) maps B(@;Ch) into itself for C = (1 + a)||D||C; and
that it is a contraction on that set. The constant a has been introduced to
facilitate the proof of Theorem 4.3 following this lemma. We assume that
h is sufficiently small that

(1+ a)||D||Cih L€ (4.6)

so that u € B(@;Ch) implies that ||u| < ||@| + €; thus, since all our
analysis takes place in B(@;Ch), the constants C; and Cy as defined are
the appropriate constants in the following argument. Clearly a fixed point
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of the mapping (4.4) is necessarily a fixed point of S”(t). To show that the
mapping (4.4) is into, note that by Definition 3.1, (4.4) may be written as

Wk = wk _ D[W* — S)W* + E(W*;1)]. (4.7)
Also, since @ is a fixed point of S(t) it follows that
@ =1a— D[z — S(t)a]. (4.8)

Let Wk € B(u;Ch) and set e¥ = W* — @. Then (4.7), (4.8) yield, upon
appplication of Taylor’s Theorem 11.4,

le*+1| = |le® — D[(I - dS(a,t))e" + Q1+ E(W* )]l

where
Q1 < Kile¥|I?,

for some K7 > 0. Thus, using the definition of D,
1] < IDIHQ1 + IDIIEWS; 8]l
Hence, by Assumption 3.2,
I < (1 +@)?|I DIPK1CTh? + || DI|C1h.
Choosing h sufficiently small so that
(14 a)?K;||D||*C1h < q, (4.9)

we deduce that the mapping (4.4) takes B(@,Ch) into itself.

To show that the mapping (4.4) is a contraction, let V* satisfy (4.7)
with W* — V* and define d* = W* —V*; assume that W°,V° € B(@, Ch).
Then s '
- ld¥|| < 2(1 + @)|| D||C}A. (4.10)

A similar manipulation to that used in showing that the mapping (4.4) is
“into” yields

ld¥+1| < [|d* — D[(I — dS(@,t))d* + Q2 + E(W*;t) — E(V¥;1)]]|

where
1Q2ll < Kalld¥|?,

for some constant K5 > 0. Hence, by Assumption 3.2 and Taylor’s Theorem
11.4, (4.10) gives

|4+ < IDIIQzl + IDNEW*;1) — BVl o
411

< 2(1+ )| D|*K2C1hllde|l + | D[|C2r(h) | dx |-
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Thus the mapping (4.4) is a contraction for h sufficiently small so that
|
2(1 + a)K>3||D||?C1h + || D||C2k(h) < 3 (4.12)

The existence of a fixed point 4" of S* follows for h < h* = h*(||d||, ¢, t, )
(given by (4.6), (4.9), (4.12) and t > T™*.) O

Now we deduce that the fixed point @"(t) from the previous lemma is
actually independent of ¢ and hence an equilibrium point of S?(¢).

Theorem 4.3 (Equilibrium Points Under Approximation) Assume
that S(e)e € C2(R™ x V,V) and assume that S"(t) is a time-continuous
semigroup. Let 4 be a hyperbolic equilibrium point of (2.9). Then there exist
he > 0 and C > 0 such that S"(t) has an equilibrium point @*, unique in
B(u; Ch), for all h € (0, h|.

Proof Consider the fixed point @” found in Lemma 4.2 by setting t =
T > T*. First we show that the point @” is a fixed point of S"(t) for
all t. Note that h* and C in the previous theorem both depend upon «;
since this is the only dependency of interest to us here we denote these
quantities by h*(a) and C(a); recall that a was introduced to parameterize
the radius of the ball in which the contraction argument of Lemma 4.2 was
performed and note that C(1) < C(2). By Lemma 4.2 we deduce that, if
h < max{h*(1), h*(2)}, then there is a fixed point of S*(¢) in B(@, C(1)h)
which is unique in B(%, C(2)h). Clearly 4" must lie on a periodic solution
with minimum period 7 where, if 7 # 0, then T is an integer multiple of T,
say T' = mr. We wish to show that 7 = 0. Denote the set of points on the
periodic solution by

8 = {S*(t)a" 10<t <7}

If 7 > 0 then, by continuity, there exists v € S with v # @* and v €
B(1,C(2)h) and satisfying S*(m7)v = v. This contradicts the uniqueness
of @* in B(@,C(2)h) and it follows that 7 = 0 as required. Thus @"(¢) is
actually an equilibrium point of S?(t).

To see that this equilibrium point is unique in a ball of sufficiently small
radius note that, if it is not, then Lemma 4.2 is contradicted since any other
equilibrium point would also be a fixed point of S”(t). O

A similar argument proves the following, an analog of Theorem 4.3 when
Sh(t) is time-discrete.

Theorem 4.4 (Equilibrium Points Under Approximation) Assume
that S(e)e € C?(R* x V,V) and assume that S"(t) is a time-discrete
semigroup so that S™(g(h)) is a one-step map from V into V. Let G be a
hyperbolic equilibrium point of (2.9). Then there ezists h.,C > 0 such that
S"h(g(h)) has a fized point @", unique in B(a; Ch), for all h € (0, h].
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4.3 Trajectories asymptotic to a stable steady state

We continue our analysis of the approximation of dynamical systems by
generalizing Example 3.8, which shows uniform convergence for ¢ € (0, c0)
for a solution approaching an exponentially stable equilibrium point of the
linear heat equation, to the general nonlinear problem. In the following
section we consider the neighborhood of an equilibrium of saddle type and
derive uniform-in-time approximation results for trajectories near the sad-
dle. In Section 5 we study unstable manifolds near a saddle point. Thus
for both this section, the following section and Section 5, we assume that
there exists @ €-D(A) such that

At = F(q). | (4.13)

We introduce the notation S : V — V to denote the semigroup constructed
so that v(t) = S(t)v, solves (4.2). Hence

S(tyw = S(t)(@ +v) — @ (4.14)

For partial differential equations of the form (2.9) it follows from (4.2) that
the nonlinear function g(e) is quadratic in v. Thus we make the following
assumption:

Assumption 4.5 There exists ( < 1 — 3 such that
lg(v) = g(w)l—¢ < k(p)llv—wlls Vo,w € B0, p). (4.15)
Here k: RT — R™" is nondecreasing and satisfies
k(p) =0 as p— 04. (4.16)
The following example illustrates the assumption:
Example 4.6 Cons‘ide"r the reaction-diffusion equation

B w=Au+ f(u), €
u=0, xze€dN

B=wug, t=0.
If Q is a sufficiently smooth domain in R? and f(u) satisfies
fP@) <CA+l), j=0,1,2 ueR,

for some C > 0 where § =3 if d = 3 and 6§ < oo if d < 3, then (4.15) and
(4.16) hold for g given by (4.2). In that case 8 = 1 and ¢ = 0. See Larsson
and Sanz-Serna [75] for details.
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Consider the Cahn-Hilliard equation (2.21) which can be written as
w = —-AfAu+ f(w)}, ze€Q

u=Au+ f(u)=0, ze€d

=1y 1=0.

If f satisfies the conditions described for the preceding reaction-diffusion
equation then (4.15), (4.16) hold with 8 = § and ¢ = 3. See Elliott and
Stuart [32] for details. :

This assumption about g enables us to prove the following result about
the semigroup in the neighborhood of stable equilibria. Recall Definition
2.12.

Lemma 4.7 Let Assumption 4.5 hold. If the equilibrium point 4 is hyper-
bolic and stable (so that Z =V andY = Q) then the semigroup generated
by (2.9) is contractive in a neighborhood of .

Proof We work in the v variable so that @ translates to the origin. We
may use the variation of constants formula to write the solution of (4.2) as

w(t) = e_Ctv(O) + /t e~ Ct=)g(v(s))ds. (4.17)
0

Thus a second solution w(t) satisfies
t
w(t) = e~ “tw(0) +/ e~ Ct=9) g(w(s))ds.
0

Letting e(t) = v(t) — w(t), applying Theorem 10.15 and using Assumption
4.5 we find that

-

t e—V(t—s)
el < Cree@)] + [ AR g5, aas)

provided v(t), w(t) € B(0, p).
By Lemma 10.12 there exists K > 0 such that, forv =1-—-( >0,

le(®)]l < 2C1le(0) || exp[{K (C1k(p))""* — 7}1]
whilst v(t), w(t) € B(0, p). Choose p sufficiently small that

K(Cik(p))M” < g . (4.19)

and let v(0) = 0 so that v(t) = 0 for all t > 0. If ||w(0)| < o := p/2C}
then, arguing by contradiction, we have that w(t) € B(0,p) for all ¢t > 0
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and, furthermore, that
lw(®)|| < pe~ /2 vt >o. (4.20)
Hence any two solutions with v(0), w(0) € B(0, o) satisfy
() — w()]l < 2C1e™2]v(0) — w(0)].
If 7 = 4log(2C1)/~ then
lo(t) —w(®)l| < e™"/*||v(0) — w(O)]| V¢ =T (4.21)

Thus, by Definition 2.12, contractivity holds at the origin. Converting back
to the u variable gives the desired result with

a=7/4, T=4log(2C,)/y, o= p/2C, (4.22)
and p sufficiently small that (4.19) holds. O

Theorem 4.8 (Time Uniform Approximation of Trajectories) Let
Assumption 4.5 hold and let u be hyperbolic and stable. Then there erists
a > 0 such that, for any uy € B(0,0), the solution of (2.9) satisfies

1S(t)uo — || < e~*|Juo — || ¥t > .

Furthermore, there exists a constant K = K(1,||||,0) > 0 such that, for
any ug € B(0,0/2) the semigroup S(t) generated by the solution of (2.9)
and the approzimate semigroup S™(t) satisfy

1S (t)uo — SH(t)uol| < Kh Vt > 27,
if h is sufficiently small.

Proof The first result follows by taking u; = uo,us = @ in Definition 2.12
and noting that S(t)a = @Vt > 0. Note that, if £ > 1 and u, € B(0,0/£),
then S(t)uo € B(0,0/a) for all t > 7 by (4.21). Let r = ||| + o and note
that

1S(t)u — S™(t)v|| < C(t,7)[||u —v|| +h] Vu,v e B(0,0), (4.23)

where we may assume that C(¢,r) is non-decreasing in t for ¢ > 7 without
loss of generality — this follows from Assumption 3.2 and Lemma 2.4. Also
C(t,r) < oo for any t € (0,00). Let

E(t) = |S®)uo — S*")uoll, Em := E(m7).

Assume for induction that
—maoT

1 Eonl| < [11“ Fios ] S, vk (4.24)
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noting that this holds for m = 1 by (4.23) with u = v = up and t = 7.
Assume that h is sufficiently small so that

C’(T T)h

[ Em] < —or S0/2.

Since S(m7)u, € B(0,0/2) it follows that S*(mt)u, € B(0,0). Now, by
Definition 2.12, (4.21), (4.22) and (4.23),
[Emiall = [IS( )S(mT)UO_Sh(T)Sh(mT)uOH

< [I8(m)S(mm)ug — S(7)S™ (mT)u,||
+S(1) 8" (mT)ue — S™(1)S"(mT)uo||

< e || En| + C(r,7)h.
Hence, by (4.24), we have

1 O e—ma'r

Bl = ¢ ( ) C(r,r)h+ C(7,7)h

1 N e—a‘l’

e—(m+1)a7‘
= (

[—ear ) Cir,vih.

Thus (4.24) holds for all m > 1 by induction so that
C(r,r)h

1 it e—a‘r

IEml < Vm > 1.

It remains to fill in the error between times t = m7r for m > 2. By (4.23),
ift=mr+T withm>1and T € [7' 27), then

1S(t)uo — S*(B)uoll < [ISET)S(mr)uo — SM(T)S™(mT )uo|

< CTn)IEml + Al

< C@nr)[|Emll + A
The result follows. O
The following is a straightforward corollary of Theorem 4.8.

Corollary 4.9 (Time Uniform Approximation of Trajectories) Let
Assumption 4.5 hold and let u be a hyperbolic, stable equilibrium point.
Then, for any ug, us* € B(0,0/2), there ezists K = K(1,||a||,o0) such that

I1S)uo — S*(t)ud|| < e |uo — ud|| + Kh Vit > 27,

for all h sufficiently small.
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Proof Note that, by Theorem 4.8 and Definition 2.12,
IS@t)uo — S*(B)ua'll < [1S(t)uo — SE)ud’|| + ISE)ud” — S™(t)uc||

< e *|lug —ug|| + Kh

for all t > 27. a

Corollary 4.10 (Time Uniform Approximation of Trajectories)
Let Assumption 4.5 hold and let u be hyperbolic and stable. Assume also
that the solution of (2.9) satisfies u(t) — @ ast — oo. Then there exists a
constant K1 = K1(7,||@||,u0) > O such that the semigroup S(t) generated
by the solution of (2.9) and the approzimate semigroup S™(t) satisfy

1S (t)ue — SH(t)uol| < K1h Vt > 27,
for all h sufficiently small.

Proof If uy € B(0,0/2) the result follows directly from Theorem 4.8. If
uo ¢ B(0,0/2) then there exists T' = T'(up) such that S(t)u, € B(0,0/4)
for all ¢ > T, since u(t) — u. Without loss of generality we may assume
that 7' > 27. By Assumption 3.2 there is C = C(T + 27, ||uo||) such that

1S(t)ue — S™(t)uol| < Ch Vit € [27,T + 27].

By choosing h sufficiently small we have S*(t)u, € B(0,0/2). Applying
Corollary 4.9 gives K = K(7, ||a||, o) such that

IS(t)uo — S*()uoll = [IS(t — T)S(T)uo — S™(t — T)S™(T)uo||
< e D||S(T)uo — S™(t)uol| + Kh
< (€ ¥ K)h,
forallt > F+27. This completes the proof by defining K1 = C+ K. O

Important remark Note that K, the error constant, depends explicitly
on uy. Furthermore it is not necessarily uniform in u, € B(0, p). This is
since it is possible for there to be a sequence uo® — () for which
S(t)ue® — 4 for each i but S(t)ue(® does not tend to @. By continuity
it follows that T'(ue(") — 0o as i — oo and hence K(7,||@l|,uo) is not
uniformly bounded.

This lack of uniformity is undesirable in some circumstances since 7"(ug)
is usually not known a priori. By weakening the notion of approximation
to piecewise approximation, the non-uniformity with respect to initial data
can be overcome in some circumstances. See Section 8. O
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4.4 Phase portraits near a saddle

In this section our aim is to construct solutions of (2.9) (or equivalently
(4.2)) in the neighborhood of a hyperbolic equilibrium point & € £ (or
equivalently v = 0) of saddle type. The union of these solutions will form a
“local phase portrait” near 4. We will then show that; under Assumptions
3.2, each of these solutions can be approximated by Sh(t) independently of
the time interval over which the solution is being considered; thus the com-
plete local phase portrait perturbs smoothly with h. Recall that standard
error estimates involve constants which grow exponentially with the time
interval under consideration.

By virtue of the smallness properties of g(e) given by Assumptions 4.5
it is reasonable to expect that, for hyperbolic equilibria, the properties of
the linear equation w; + Cw = 0 describe the dynamics of solutions to
(4.2) in the neighborhood of v = 0. Our aim is to prove such a result and
then show continuity with respect to the perturbations introduced by the
approximating semigroup of Assumption 3.2.

We now formulate the solution of (4.2) as a mapping over time interval
T. Recalling (4.14), (4.17) we may write

v(t) = L(t)v(0) + G(v(0),1) (4.25)

where

L(t) := e, G’(v,i) = /t L(t — 5)g(S(s)v)ds. (4.26)
0

Now we define ¢, = nT, v, = v(t,) and deduce from (4.25) that

Un+1 = Lv, + G(vy,) (4.27)

where L := L(T') and G(e) := G(e,T'). Using the spectral projections P
and Q we can decompose v, 8s Vn, = Pn + ¢, Where p, = Pv, € Y and
qn = Qu, € Z to obtain

Pnt1 = Lpn + PG(pn . Qn)a

4.28
Gt = Bl + Do ). (4:28)

This follows since P and Q commute with L since they commute with C.
This decomposition of the variable v will also be useful to us when studying
local unstable manifolds in Section 5. We now prove a lemma summarizing
the important properties of L and G which we need.

Lemma 4.11 For any a € (0,1) there exists T* > 0 such that for all
T2T*

IL7 ]| < allv]] Vv e,
(4.29)

| Lv|| < aljv|| Yve Z.
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Furthermore, if Assumption 4.5 holds, then there exist K;(t) > 0, i =1,2
such that

IR[G(v,t) = G(w,1)]|| < K1 (t)k(p)llv — wl|

(4.30)
IRG (v, t)|| < Ka(t)k(p)p
for all v,w € B(0, p) and for R = 1,P, Q, where
Ki(t),K2(t) -0 as t—0 (4.31)
and
sup Ki(t) = K; < o0, sup Ks(t) = Ko < 0. (4.32)

0<t<2T~ 0<t<2T™

Proof To prove (4.29) apply Theorem 10.15 and choose 7™ such that
Ci1e"T" = a as in the derivation of (4.3). Now let v,w € B(0,p). Note
that, by Lemma 2.4, we have that there exists C = C(t) > 0 such that

IS#)v — St)wll < CE)llv —wl  Yv,w € B(0, p); (4.33)

here C'(0) is bounded and, without loss of generality, we may assume C(t)
is monotonically increasing in t.

To prove (4.30) note that, by Lemmas 10.6 and 10.13, Assumptions 4.5,
(4.26) and the boundedness of the projections P, Q there exists K > 0 such
that

IRIGE.H) - Gl < [ ZE IS - S(sullds.

Thus we have from (4.33)

et oty < ECOE~4k()
IRIGE. 8 - G, o] < T

A bound for ||RG(v)|| then follows in a similar fashion to the calculation
of the Lipschitz constant in (4.34); we obtain

o — w]. (4.34)

Kt'=F=Ck(p)p

RIGW)]|| < - 4.35

IRIGWII € =F—5—& (435)

The required result follows since C(t) is bounded as ¢t — 0,4 and since
B+¢<1. a

Remark Note that K1(¢) and K»(t) are O(t1=#~¢); if ¢ + 8 > 0 then this
presents certain technical difficulties not present when considering ordinary
differential equations — for many of the arguments we present it is not
possible to let ¢ — 0. Instead it is neceesary to fix ¢ > 0 and develop a
separate argument to show that the objects of interest persist ast — 0. O
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For the remainder of Section 4, whenever estimating v or its numerical
counterpart, we employ the norm on V' given by

[vllv = max{||Pvl], || Qu|]}. (4.36)

This choice of norm simplifies the exposition considerably since the major-

ity of the estimation takes place either in Y or Z where ||e |y = || ¢||. Note
that

loll < 2[jvllv. (4.37)

Thus by (4.30), if ||v|ly <e and T € [T*,2T*], then

IR[G(v,1) — G(w,t)]|| < K1(t)k(2€)||lv — wl|
(4.38)
IRG(v,t)|| < 2K2(t)k(2¢)e

In the remainder of this section, the ball B(0,7), for any r > 0, is always
measured in the || e ||yy norm wherever the v variable is under consideration.

We now seek a solution of (4.28) which satisfies the boundary conditions
Pm=E€EY, q@=n€Z (4.39)

where ||€||, ||n]] < €/2. Recalling that v, = p, + ¢, induction on (4.28)
gives

m—1
Pn=L"""pm = D L 1IPG(vy),
j=n :
(4.40)
n-—1 2
gn = L"qo + Z L1791 9G(vy).

J=0

We wish to solve (4.40) subject to (4.39) for arbitrary m > 0. Such a
solution corresponds to solving the eqn (4.2) with boundary conditions
conditions specified in Y at ¢t = mT and in Z at t = 0; since m is arbitrary,
the time of flight between these points can be arbitrarily large. Finding
all such solutions with € small corresponds to constructing the local phase
portrait for equation (4.2) near v = 0. Figure 1 illustrates the situation
pictorially. At time ¢t = 0 each solution lies on the dotted line intersecting
the Z-axis at 7; at time ¢ = mT each solution lies on the dotted line
intersecting the Y-axis at £. Four solutions are shown corresponding to
four values of m: m; < mg < m3 < my. As m — oo the solution of (4.39,
4.40) gets closer and closer to the origin.
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Fia. 1.

Example 4.12 Consider the equation
vy + Av = 2720

where A is given by Example 2.1. In this case C = A — 272] and g(e) = 0.
Thus C has eigenvalues {A\n,}55_;, where A\, = m?n? — 27%, and corre-
sponding eigenfunctions- {sin(mnz)}5°_,. Hence we have

. PV = span{sin(rz)}, QV = span{sin(2rz),sin(3rzx),...}.

-

The analog of (4.39) for this problem is
o0
Pu(t) = & sin(nz), Qu(0) = an sin(jmz),
j=2
where 7 = mT. Separation of variables yields the unique solution

oo
u(t) = &e™ 7 sin(rz) + 3. n; e~ tsin(jnz).
j=2

In the following we aim to generalize situations like the one shown in
the previous example to incorporate the addition of the small nonlinear
term g(e). Our approach to this problem will be to use a contraction map-
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ping argument exploiting the fact that e~C* is contractive on Z and e®*
contractive on Y, by virtue of Lemma 10.15 and (4.29). We need an appro-
priate functional setting for this argument and we let V = {v,}, denote
an element of the product Hilbert space ¥ = {V'}™ and define

Wloo = jmax[lun]lv.

We also define the set
U.={VeT:|V|o<ce}

To study (4.40), (4.39) we use the contraction mapping theorem in ¥.. We
generate iterates V! = {v},}™ , through the definition V'*! = MV where

MYV = {Mp, + Mgn}—,
and where Mp,, € Y and Mgq, € Z are defined by
Mp, = L" ™ — Z L” 1=IPG(v;),

(4.41)
Mgn, = L™n+ 3777 L” 1=19G(vy).
Clearly a fixed point of M is a solution of (4.39), (4.40).
From the bounds (4.29) in Lemma 4.11 it follows that
m—1 ) m—1 _ m—n ”v”
S IL I < 30 eyl < Y Ve < T2 €Y,

=0 j=n =1

(4.42)

ZML a 1vjn<2a = 1||vg||<2 Voo < Moo gy, e 2

J=

We may now prove *

Theorem 4.13 Let Assumption 3.2 hold and let a and T* be as in Lemma
4.11. Assume that T € [T*,2T*| and that € is chosen so that

4 max{K;,2K5}k(2¢) <1 —a.

Then, for any m >0 and any £ € Y, n € Z with |[§|], ||n]| < § there exists
a unique solution of (4.27) subject to (4.39) satisfying

=
Jmex [[vally <e.

Proof Note that the bound on € in the theorem implies that
2max{K1,2K2}k(2¢) <1 —a. (4.43)

The bound has been chosen to be robust under doubling of K; and K> to
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allow for an analogous proof for the approximation of (2.9) under Assump-
tions 3.2.

Since (4.28) is equivalent to (4.40) we examine (4.40), (4.39). To prove
the result we show that M : ¥, — ¥, and is a contraction. From (4.41) we
have, using (4.29), (4.38), (4.30) and (4.42), that

m—1

IMpnll < L€+ ) IILPI7 PG (vy)|
J=n
1
< 2€.
< il + 7= Kak(26)2e

Hence, by (4.43) it follows that

|IMp,|| <e VYn:0<n<m.
Likewise it may be shown that

IMgp|| <e Vn:0<n<m

so that MV € ¥..

To show that the mapping contracts, consider (4.41) with p, — z,,
dn — Yn,Un — Wy, define w, = z, +y, and set @ = {w, }_,. Then, using
(4.29), (4.30) and (4.42) we obtain from (4.41)

|Mpn — Mzy| <

|
S aKlk(25)||V — Qo m:0<n<m

and

[Man — Mzy|| <

- aKlk(Qs)HV — Qoo Yn:0<n<m.

Thus it follows from (4.43) that
. [V = 95 g < ZIVF — 0¥,

Hence M : ¥, — W, is a contraction and the result follows. O

We now use the previous lemma to solve eqn (4.2), and hence (2.9),
subject to specified boundary conditions. Consider the problem

ut + Au = f(u), 7Plu(r)—a]=¢, Qu(0) —a] =n. (4.44)

Corollary 4.14 (Phase Portraits) Let Assumption 4.5 hold. Assume
that € is chosen so that

4max{K;,2K5}k(2e) <1 —a.

Then, for any T > T* and any £ € Y, n € Z with ||€]|, ||n|| < § there exists
a solution u(t), unique in B(T,2¢), of (4.44)
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Proof Note that existence and uniqueness for (4.44) is equivalent to the
following problem with which we work during the course of the proof:

v + Cv =g(v), Pu(r)=¢£, Qu(0) =1. (4.45)

The existence of a solution of (4.45) for 7 = mT with T € [T, 27*] and
any integer m follows from Theorem 4.13. Since any real number larger
than 7™ can be expressed as an integer multiple of a number in the in-
terval [T*,27*] the existence result follows. Assume for the purposes of
contradiction that this solution of (4.45) is not unique in B(0, ). Then any
other solution also generates a solution of (4.28) subject to (4.39); by the
uniqueness of Theorem 4.13 the second solution must agree with the first at
the points ¢ = nT" and hence, by uniqueness for the initial value problem,
they must agree everywhere. Uniqueness for (4.45) follows. By (4.37) the
constant 2 appears when changing norms from v to u. a

We now extend this analysis to the approximate semigroup S”(t) and
prove an approximation result for the trajectories constructed in Corollary
4.14 which is independent of the time 7. We start by converting the approx-
imation to new coordinates and introduce the semigroup S*(t) : V — V
defined by

S"(t)yv = S"(t)(@ + v) — a. (4.46)

Compare this with (4.14). Here v = @"* — @ is a fixed point of S"(t) for
all ¢ > 0; it is simply the equilibrium given by Theorem 4.3 in the new
coordinates. We define the approximation error in the new coordinates by

E(v;t) = S(t)v — S*(t)v. (4.47)

The Fréchet derivative of E(v;t) with respect to v exists by Assumptions
3.2. When evaluated at a point w_€-V, we denote it by dF(w;t). The
following lemma is a straightforward consequence of Assumptions 3.2.

Lemma 4.15 For all v € B(0,R) and allt € S, t > 0, there ezist con-
stants C; = C;(t,R) < 00,i = 1,2, and a function k : Rt — RY such
that

IE(v; t)ll < Cih

IdE(v;t)|| < Car(h),
where k(h) — 0 as h — 04.

Now we introduce the notation Vo = S'h(tn)Vb where t,, = nT’; this is
analogous to the notation v, = S(t,)vo used in the construction of phase
portraits for (4.2). Note that

Vor1 = STV, = 8TV, — E(V,,;T)
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= LV, +G(V,) — E(Vy; T).

Hence we may write 4
Vas1 =LV, + G(Vy,) (4.48)

where
é’(v) = G(v) — E(v;T). (4.49)

Recall T*, K1, K5 from Lemma 4.11. The following properties of G will be
needed: ;

Lemma 4.16 For any p > 0 there exists h* = h*(p) > 0 such that for all
h<h* and T € [T*,2T*]

IRIG(v) — G(w)]|| < 2K:1k(p)lv — wl,
; (4.50)
IRG(v)|| < 2K2k(p)p

for all v,w € B(0, p).
Proof From (4.30), (4.32), (4.49), Lemma 4.15 and Theorem 11.4 we have

IRIG(v) = GO < [RIG(v) = Gw)]]| + IRIE(; T) — E(w; T
< Kik(p)llv — wll + IR fy dE(sv + (1 - s)w; T)[v — w]ds|

< Kik(p)llv — wll + Cr(h)||v — w|.

By choice of h sufficiently small the first result follows. ‘The second result
may be proved similarly. - ‘ |

By applying appropriate projections to (4.48) we find that

= Pn+1:LPn+PG~'~(Pn+Qn)a
Qn-H &= LQn # QG(Pn + Qn)a

where P, = PV, € Y and Q,, = PV, € Z. Using Lemma 4.16 we prove
existence of solutions to (4.48) subject to

Pan=FteY, Co=9gcZ. (4.52)

Theorem 4.17 Let Assumption 4.5 hold. Assume that T € [T*,2T*] and
that € is chosen so that

(4.51)

4max{K;,2K>}k(2¢) <1 —a.

Then if h € (0, h*), where h* = h*(g) is given by Lemma 4.16, there exists
C > 0 such that, for any m > 0 and any § € Y, n € Z with |€]],]In]] < §
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there exists a unique solution of (4.48) subject to (4.52), satisfying

s iVl =
and, furthermore, ,
OgnnaéXm lvn — Val| < Ch,
where v, is given by Theorem 4.13.

Proof The problem under consideration is equivalent to finding a solution
of (4.51) which satisfies the boundary conditions (4.52), where |[£]|, [[n]] <
€/2 and for any T € [T*,2T*]. As for (4.28), induction on (4.51) gives

P, = L"™Pp, — Y1 L IPE(Y;),
(4.53)
Qn = L"Q5 + X7y L" 1 7QG(V;).

Thus our objective is to solve (4.53) subject to (4.52).
By analogy with (4.41) we generate iterates V! = {v!,}™_, through the
definition V1 = M, V' where

MpV = {Myp Py + MpQn}i_,
and where M, P, € Y and M;Q,, € Z are defined by

MpP, = L™™¢ — Y 5L LV 1IPG(Yy),
(4.54)
MpQn = L™+ X725, L1 1QG(V;).

Clearly a fixed point of M}, is a solution of (4.52), (4.53). The same proof
as used in Theorem 4.13 proves the existence of a solution to this problem;
note that that proof was constructed to be robust under enlargement of K
and K5 by a factor of 2 and that comparison of Lemmas 4.11, 4.16 shows
that this is"all that is necessary to extend the proof.

It remains to find the error bound and for this we use the uniform
contraction principle. Let {v,}™_, denote the fixed point of M found in
Theorem 4.13 and let {V,}* , denote the fixed point of Mj. Since the
contraction constant is % for both M and M; we obtain from Theorem

11.2

max |v, — Vallv <2 sup [|[MV — MpV| -
0<n<m

o SE

Here we denote the elements of ¥, by V = {w, }52, where w, € V and we

set wy, = Tp, + Yn Where z, € Y and y, € Z. Then (4.41) and (4.54) show
that "
m=1

IMzp — Mpzo|| < > LV IPE(wn; T)|.

j=n
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Thus, by Lemma 4.15 and (4.42), we have

m—1
ek o
|mhh—mm%ng§;d11%mmhglgin
J=n

Note that the result is independent of m. A similar result holds for | My,, —
Mpyn||. Combining these we deduce that, since C(7") may be assumed
monotonic increasing for 7' > T,

s *
OF )h.
a

: o <
Orgnfgk [|vn nllv < 1 —

d

We now consider the following analog of (4.44): find u"(t) € V such
that

uh(t) = Sh(t)u(0) Plut(r) —a]=¢ Qu(0)—a =7  (4.55)

Theorem 4.18 (Convergence of Phase Portraits) Let Assumption
4.5 hold. Assume also that € is chosen so that

4max{K1,2K3}k(2¢) <1—a

and h € (0,h*), h* = h*(¢) giwen by Lemma 4.16. Then there is a constant
C > 0 such that, for any 7 > T* and any { € Y, n € Z with ||§||, |0l < §

there ezists a solution u"(t), unique in B(4,2¢), of (4.55) satisfying

sup [|u(t) — u"(t)|| < Ch,
T+<t<r

where u(t) is the solution of (4.44) given in Corollary 4.14.

Proof Theorem 4.17 gives the existence of a unique solution in B(a, 2¢)
the constant 2 appearing when changing norms by (4.37). The required
error estimate at integer multiples of 7" also follows; the error between
these points can be obtained by use of the standard finite time error bound
in Assumptions 3.2. a

Instead of (4.39) it is also of interest to study (4.28) subject to
5

This is equivalent to finding a solution of the problem

ue+ Au=f(u), Qu(0)—-al=n, |[n]< % lu(t) — ally < eVt >0.
(4.57)
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The analogous problem for the approximation is

uh(t) = S"(t)u(0), Q[u™(0)—a] =n, |n| < > @) —ally <evt>o0.
(4.58)

It is straightforward to show that solutions of (4.57) (resp. (4.58)) must
approach the equilibrium point % (resp. ") as ¢ — oco. Hence by solving
these problems we are constructing a set of points known as the stable set.
This set actually has a manifold structure but we will not use that fact

here. By following the method of proofs of Corollary 4.14 and Theorem
4.18 we obtain

Theorem 4.19 (Convergence of Stable Sets) Let Assumption 4.5 hold
and let a and T™* be as in Lemma 4.11. Assume also that € is chosen so
that

dmax{K1,2K2}k(2¢) <1—a

and h € (0,h*), h* = h*(e) given by Lemma 4.16. Then there is a constant
C > 0 such that, for any T > T* and any n € Z with ||n|| < 5 there exist
solutions of (4.57), (4.58), unique in B(u,2¢), satisfying

sup [[u(t) — wh (&) < Ch.
T*<t=<7
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2].
5 Unstable manifolds

5.1 Introduction

In this section we study the unstable set of an equilibrium point — that is
the set of points from which solutions defined backwards in time converge
to the equilibrium point. In Section 5.2 we introduce the definitions and
background theory sufficient for the remainder of Section 5. In this regard
Lemma 5.2 is crucial since it shows how the unstable set may be broken
into two parts, the first a local part (the local unstable manifold) near the
equilibrium point and the second being found by evolving the boundary
of the first part forward in time. The local part of the unstable set has a
manifold structure — it can be represented as a graph. Theorem 5.3 is at
the core of the construction of this graph whilst Corollary 5.4 shows that the
graph has the desired properties. Again by use of the uniform contraction
principle from Appendix B, we incorporate the effect of perturbation into
the graph representing the local unstable manifold. In Section 5.4 we return
to the second part of the-unstable set and use its characterization as the
evolution of the boundary of the local unstable manifold to estimate the
effect of perturbation. See Theorem 5.7.

5.2 Background theory

We start with a precise definition of the objects of interest to us in Section
5.

Definition 5.1 The unstable set of an equilibrium point @ of (2.9) is the
set

W¥(a) := {uo € V : a negative orbit {p(t),t <0} exists through u,
and ¢(t) - @ as t - —oo}.
The local unstable manifold of 4 is the set

W (g) := {uo € W™(a) : ||ult) — || < e V¥t <0}
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Analogous definitions hold for S™(t) and the notation (W, (a")) W,*(a")
is used to denote the (local) unstable set (manifold) of an equilibrium @"
satisfying S*(t)a" = @™ Vt > 0.

Note that the unstable set is invariant whilst the local unstable mani-
fold is negatively invariant. For brevity, however, we will refer to the local
unstable manifold as invariant in the following proofs. The basic idea of
Section 5 is first to prove convergence of the local unstable manifold and
then to use this as a building block to prove convergence of the global un-
stable set by means of a compactness argument. The following lemma is
essential in this regard. :

Lemma 5.2
The unstable set W* (@) of (2.9) is invariant and, furthermore,

W (a@) = W**(@) U | J ST (5.1)
t>0
where
I' = W%(a)( ) 0B(a,e). (5.2)

Furthermore, if W*(4) is contained in a bounded set B C V, then the set
U0 S@)T is relatively compact.

Proof It follows from the definition that, if u € W*(a) then, for every
7 > 0 there exists v7 € V such that

S(rivT =u

vT — % as T — 00. &)

The converse is also true: if (5.3) holds for every 7 > 0 then u € W"(ﬁ)
Let u € W*(a). Then -

S(T)S(t)v” = S(r+t)v" = S(t)u

and, since (5.3) holds, we deduce that S(t)u € W*(a) so that S(t)W*(a) C
W*(4). Furthermore, since S(t)v* = u we have that, for every ¢ > 0 and
every T > t, S(7—t)v™ = vt. Thus, from (5.3), we deduce that v* € W*(a).
Thus W*(@) C S(t)W*(u) and the first part of the proof is complete.

We now establish (5.1) and (5.2). First we show that

W (@) C W<(a)u | J ST. (5.4)
t>0

Let u € W*(a)\W“¢(a). If u ¢ B(a,¢) then, since (5.3) holds it follows
that v° = u and, by continuity, there exists ¢ > 0 such that S(¢)v* = u and

vt € I'. On the other hand, if u € B(@,¢) then 3t > 0,v* € V : S(t)v* = u
with v* € T since otherwise we have u € W*¢(@). Thus (5.4) holds.
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Now we show that

w*(z) 2 W*s(@) U | ] S@)L.
t>0
If

u € U S()Tr
>0

then there exists w € T' such that S(t)w = wu. Furthermore, since w €
W (a) it follows that u € W*(@) by (5.3) and the result is proved.

Finally we assume that W"(@) is contained in a bounded set B C V.
Thus S(¢t)I" C B. By applying the compactness implied by Assumptions 2.3
on overlapping intervals 7,7}, [0,2T], [T,3T], [2T,4T],... and noting
that S(mT)[' € B for all integers m > —1 we deduce that there exists
K = K(B,T) > 0,n > @ such that

yln <K VyelJS@r;
t>0

this establishes the relative compactness. O

5.3 Local unstable manifolds

Throughout the remainder of Section 5, Assumption 4.5 is assumed to hold.

We consider the mapping (4.28) where L and G are given by (4.2), (4.26).
Let

Y={peY:|p| <e}
and seek ® € C(Y, 2) :

an = ®(Pr) <= tnt1 = 2(Pnt1) Vn:|pall, Pnirll < e (5.5)

As we shall see, the grap}; of the function ® gives the local unstable manifold
of 4. We shall look for @ lying in the space

Le,a) ={® € C(Y,Z) : |®lc = suppey 12Dl <&,
|2(p1) — @(p2)|| < ellp1 —p2|| Vp1,p2 €Y}

The subscript C in the norm on C(Y, Z) is simply to denote the space of
continuous functions in which ® lies. Recalling 7* from Lemma 4.11, we
can now prove

Theorem 5.3 Let Assumption 4.5 hold and assume that T' € [T*,2T*].
Then there ezists €* > 0 such that, for all € € (0,e*] and for all a € [1,2]
there exists a unique ® = @, , € I'(e, ) such that (5.5) holds for (4.28)
and, furthermore,

lim — 2l < (152) " llao = 2(p0) (56)
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for all m such that v, € B(0,¢) for1 <n < m. Finally @, o is independent
of €, in the sense that, if €1 < g3 and a; < ao,

(I)El,al (p) = (D€2,Ot2 (p) Vp! Hp“ S €1-

Proof We apply Theorem 12.3 with r = y =¢g,b=a! > 1,u = (1 +
a)/2,B; = 2K1k(2¢) and By = 4K3k(2¢)e. As in Section 4, B; and By
have been doubled to allow for the incorporation of perturbation error at
a later stage.

Note that 7 > (b—1)~! B; by choice of e sufficiently small, since k(¢) — 0
as € — 0. Points (C1)—(C4) follow similarly. Since I'(e;, 1) C I'(e9, a2) if
g1 < g9 and a; < ag, the independence of ® from € and « follows from the
uniqueness implied by the contraction mapping principle. a

Corollary 5.4 (Local Unstable Manifold) Let Assumption (4.5) hold.
Then there ezists €. > 0 such that, for all € € (0,¢.|, the origin for (4.2)
has local unstable manifold representable as

W“e(0)=M:={veV:PveY,Qu=3Pv)}
where ® € I'(e, 1) satisfies (5.5) and (5.6).

Proof For this proof it is necessary simply to verify: (i) that the manifold
constructed by means of the graph in Theorem 5.3 is actually invariant for
all t > 0 and not just T" € [T*,27*]; (ii) that the invariant manifold is the
unstable manifold.

For (i) note that ® is constructed as a fixed point of the mapping T’
given by

=  LE+PG(E+ (), " (5.7)

p
(TO)(p) = LU(E)+QG(E +T(e)).

Note that 7" depends on a parameter t and when this dependence is impor-
tant we shall denote it by 7). Using the fact that L and G are constructed
through one parameter semigroups e~“* and S(t) it may be shown that
T o T() = T(5) ¢ T() Hence the fixed point constructed in Theorem
5.3 is independent of ¢ € [T*,27™*] by Theorem 11.3(i). To apply Theorem
11.3(ii) and deduce invariance for all sufficiently small ¢ it is sufficient to
prove that

T8, T2, (5.8)

provided that e, < &*. Straightforward analysis of (5.7) for ¢ sufficiently
small shows that (5.8) holds by continuity.

For (ii), to show that the graph of ® defines the local unstable manifold,
consider the map

Pn+1 = Lpn S PG(pn I Q(pn))
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It is straightforward to show that ®(0) = 0 by performing the contraction
argument used in the construction of ® in Theorem 12.3 in the space I'
appended with the condition ¥(0) = 0; it is necessary to use the fact that
G(0) = 0. Thus, recalling B; = 2K;k(2¢) from Theorem 5.3 we have

IPnll < allpnill + 2K1(1 + a)k(2€)||pall-
Hence, for ¢ sufficiently small,

1+a
2

Thus, if po € Y then p, € Y for all n < 0 so that, by induction; ||p,| — 0
as n — o0o. Since ®(0) = 0 it follows that v, — 0 as n — —oo for all vy on
the invariant manifold. a

”pn” = “pn+1H-

Now we consider the effect of approximation on the invariant manifold.
Specifically we study (4.51) and try to find ® € C(Y, Z) such that

Qn = (I)h(Pn) = Qny1 = (I)h(Pn-H) vn : || Pl ”Pn+1” =& (5.9)

Theorem 5.5 Let Assumption 4.5 hold and assume that T € [T*,2T™].
Then there exists €* > 0 such that, for all € € (0,£*] and for all a € [1,2]
there ezists a unique ®" = ®" € I'(¢,a) such that (5.9) holds for (4.51)
and, furthermore,

1+a

m
12m - &Pl < (152) 100 - 2(R0) (5.10)
for all m such that V, € B(0,e) for n = 0,...,m. Futhermore <I>f_},a is
independent of €, in the sense that, if 1 < eg9, a1 < g, -

Qel)al (P) = (1)52,012 (p) Vp : ”p“ < €y

Finally ®"is close to @ from Theorem 5.5 in the sense that there exists
K > 0 such that

sup [|®(p) — ®"(p)llc < Kh. (5.11)
peEY

Proof Using Lemma 4.16 we deduce that the same method can be used
to construct the local unstable manifold as that leading to Corollary 5.4
— note that the proof of Theorem 5.3 was constructed to be robust under
enlargement of K; and K> by a factor of 2 and this is all that is required
by comparing Lemmas 4.11, 4.16.

It remains to establish convergence of the graphs. The graph ® is a
fixed point of T given by (5.7). Likewise ®” is a fixed point of 7" given by

P = LE+PGE+T(E)),

(TMU)(P) = LU(E) + OG(E + U(e)), e
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where G satisfies (4.49).
We now establish convergence. By the uniform contraction principle we
have that, for I' = I'(e, o),

1% — 8"l < sup 2 |7 — Th¥|lc.
verl

Thus it remains to estimate 7' — T". Clearly
|(T)(P) - (TO)(P)|| < [(T*T)(P) - (TT)(p) | + [(TT)(p) - (TT)(P)].
Since 70 € I we deduce that
I(T*)(P) — (T)(P)] < |(T*¥)(P) — (T)(p)]| + allp - P!
Comparing (5.7) and (5.12) and applying Lemma 4.16 we deduce that
|(T*®)(P) - (T)(P)|| < Ch
and the result follows. a

Corollary 5.6 (Convergence of Local Unstable Manifold) Let 4.5
hold. Then there exists €* > 0 such that, for alle € (0,€*] and all @ € [1,2]
the fized point " — @ for S™(t) has local unstable manifold representable as

W (@ —a) = M" .= {ve V: Pv e ¥, Qv = ®"(Pv)}

where ®" € T'(,1) and satisfies (5.9) and (5.10). Furthermore, there exists
C > 0 such that, for any € sufficiently small, there exists a positive §' < §
such that

dist{ W, (@" — @), W*? (0)} < Ch,
dist{W™3(0), W,»* (@ — @)} < Ch.

Proof Existence and convergence of a manifold invariant under the time
T map follows from Theorem 5.5. It is necessary to show that the graph
constructed for T € [T*,2T™*] is invariant for all ¢ > 0. To do this it is
sufficient to show invariance for all ¢ sufficiently small. The same method
as used in Corollary 5.4 cannot be used since Lemma 4.16 is not valid
for T ¢ [T*,2T*]. We proceed by using a contradiction argument instead.
Assume that ¢(0) = ®(p(0)) for some p(0), ¢(0) such that v(0) = p(0)+¢(0)
and consider the solution of v(7) = S*(7)v(0). Assume for contradiction
that, for each 7 € (0,T'), there exists n = n(7) > 0 such that

lla(r) — @"(p(r))Il = n, (5.13)

where p(0),p(7) € Y. Since v(0) € M" it follows that v(—nT') € MP" for
all positive integers n provided p(—nT') € Y. Furthermore, if p, = p(nT)
then, by (4.51),

Ipnll < allpnirll + 2aBs2,
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where By = 4Kk (2¢)e as in Theorem 5.3. Hence we deduce that

QCLBQ
Ilp-nll < a™llpoll + (1 - ™) T

Hence, for € so small that 2aBs < (1 —a)||po||, we deduce that p_,, € Y for
all n > 0, so that v(—nT) € M" for all n > 0. Now let t = —nT + 7 and
note that, since ¢(—nT) = ®"(p(—nT)), we have

lat) = @* (@I < llg(=nT) — @"(p(—nD))|l + llg(~nT) - a(®)|
+|2" (p(—nT)) — @"(p(t))

< lg(=nT) = g@®)l| + allp(=nT) — p(2)||
< max{l, a}|lv(—nT) - v(t)|v

< Cllv(=nT) —v(®)]].
But ||v(t) — v(—nT)|| < K(t, ||v(—nT)||). Thus
la(t) — @"(p(t))Il < K (&, [lv(=nT)))-
Also
lo(=nT)l| < Kllv(-nT)llv
< Kmax{||lp(—nT)|, ll¢(-nT)|} (5.14)

< Kmab_i{llp(—nT)H,&}-

Since ||p(—nT)|| is bounded pni?for.mly in n in terms of ||p(0)|| and 7 € (0,T),
we obtain

lg(t) — " ()]l < C(T, |Ipol))-

Now let t,, = —mT + 7; since 7 may be arbitrarily small and since
v(—mT') € B(0,¢) we can ensure v(t,,) € B(0,e*) provided € < €*. Thus,
by (5.6),

1+a

n
la(r) - Gl < (152 hate) - 260
since 7 =t + nT" and since the manifold is attractive. Thus, by choice of n
sufficiently large we obtain a contradiction to (5.13). Hence ®" is invariant
under S”(t) for all ¢ > 0. The closeness follows from (5.11). a
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5.4 Global unstable sets

In this section we examine the continuity of the global unstable sets of
(2.9) with respect to numerical perturbation using our knowledge about
the effect of perturbation on the local unstable manifold.

For the following theorem note that boundedness of the unstable man-
ifold implies relative compactness by Lemma 5.2 so that the hypotheses
could be weakened.

Theorem 5.7 (Lower Semicontinuity of the Unstable Set) Assume
that (4.2) has an equilibrium point © and that " is the equilibrium point of
Sh(t) which converges to v as h — 0. Further, suppose that Assumptions.
4.5 holds. Then, if W*(0) is contained in a compact set B C V, it follows
that

dist(W(v), Wy,*(o*)) — 0 as h — 0.

Proof It is sufficient to prove that, given any £ > 0, there exists A > 0
such that for every y € W*(¥) there exists y* € Wy,*(3") with the property
that |ly — y"|| < 2 for h € (0,A].

Recall 0B(9,r) and I given by (2.6), (5.1) and (5.2). Now set

W = WH(@)\W™*(3). (5.15)
Then, for ¢ sufficiently small,
w=]Jswr
t>0

by Lemma 5.2. It follows that W is compact by assumption. Note that
{B(z;€):x € W} is an e-cover for W and hence, since W is compact, we
may extract a finite subcover. Denote this subcover by {B;(e)}/_, and
note that each B;(e) contains a point y; € W, where B;(¢) = B(y;,€). By
construction there exists z; € I annd T; > 0 such that S(7;)z; = y; for each
y; € W. Now, by Cerallary 5.6, it follows that for any 1 > 0 there exists
z"; € W,*(7") and A(7) > 0 such that

lz; — 2™l <n Vhe (0,A%)]; (5.16)
by the invariance of the unstable manifold (see Lemma 5.2) it follows that

= Sh(Ti).’Ehi € Whu('t_)h).
Note that

lys =yl = 1S(To)zi — S™(Ti)a"|

< |IS(To)ahs — SM(Ti)a™sl| + |1S(Ti)a™s — S(T)xill-

It now follows from Assumptions 3.2 and (5.16) that, by the continuity of
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S(T;) and appropriate choice of 7,
£ =
ly: — 9"l < 5 + C(Ti, 0)n

for h € (0, A(7)]. Thus, by further reduction of A(i) if necessary, we find
that

lyi —y"ill <& Vh € (0,A%)].

Since I is finite, we deduce that there exists {y";}/_, each lying in W,,*(%")
and A > 0 such that
h
Bl :
Doz -yl <c Yhe(0A]
Thus, since y; is the center of B;(g), we deduce that for every y € B;(¢)
and 4 such that 1 < i < I there exists y";, € W,"(2") such that

ly — ")l <2 Vh e (0,A]
Since the B;(¢), i =1,...,1I, form a cover of W, we deduce that
distOV, W,,* (")) < 2¢  Vh € (0,A]. (5.17)
Now, by Corollary 5.6 there exists §’ > 0 such that
dist(W™ (3), Wo™? (a")) < 26 Vh e (0,4], (5.18)

possibly by further reduction of A. Putting (5.17) and (5.18) together, the
first result follows by (5.15). O
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the Lyapunov-Perron technique (basically the method used for stable sets
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[98] for material on unstable manifolds.
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struct perturbations of center unstable manifolds of ordinary differential
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6 Inertial manifolds
6.1 Introduction

The inertial manifold is a finite-dimensional set (in terms of the number of
eigenfunctions of A needed to represent it) which has a manifold structure
and exponentially attracts all solutions of (2.9). Roughly speaking it exists
provided the spectrum of A has sufficiently large gaps compared to the size
of the nonlinearity F. In Section 6.2 we make some precise definitions of
the inertial manifold and, in Example 6.6, give an explicit construction of
the inertial manifold for a non-local reaction-diffusion equation. Theorem
6.4 gives a construction of the inertial manifold for a mapping derived by
considering the time 7" flow of the semigroup and applying a contraction
argument very similar to that used in Section 5 to construct the local
unstable manifold; Theorem 6.5 shows that this inertial manifold is also
invariant for the underlying partial differential equation. In Section 6.3 we
incorporate the effect of the approximation, once again using the uniform
contraction principle.

6.2 Existence theory
We assume that there exists R > 0 such that
T =T(p,R) : S(t)B(0,p) C B(0O,R) Vt>T,
} (6.1)
S(t)B(0,R) C B(0,R) Vt>O0.

Note that typical equations under consideration do not satisfy (2.11)
uniformly in V' but only on bounded sets of V; use of conditions such as
(6.1) can be used to achieve (2.11) by smooth modification of F'(e) outside
B(0, R). Thus throughout Section 6 we will make the following assumption.

Assumption 6.1 The function F in (2.9) satisfies (6.1) and (2.11).

Recall that A has eigenvalues ); and eigenfunctions ¢; ordered so that
(2.1) holds. In this section we let IP™ denote the projection of X onto the
first m eigenfunctions of A so that

(o 9] m
p— m — . .
U—Zvjcpj-——HP U—Zngoj.
j=1 j=1

Wealsoset Q" =I—-P"and Y =P"X,Z = Q"X.

Definition 6.2 An inertial manifold for a semigroup S(t) is a positively
invariant set M, defined through a Lipschitz graph ® : Y +— Z and constant
R > 0, and satisfying both of the following:

(i) M may be expressed in the form

M:={ueV:Qm™ =&®™v)}{|B(,R), (6.2)
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(it) there exists v > 0 such that, for each ug in V,
3C = Cl(ue) : dist(S(t)ue, M) < Ce™* Vvt > 0. (6.3)

The reason why inertial manifolds are of theortical importance is that
they show that the large time behavior of certain partial differential equa-
tions is governed by a finite-dimensional ordinary differential equation.
Specifically all solutions are attracted to M exponentially and, on M,
the solutions are governed by the equation

pe + Ap=P"F(p + ®(p)).

This is equivalent to a system of m ordinary differential equations in the
m coefficients of p(t) in an expansion in terms of the ;’s.

Example 6.3 Consider eqn (2.9) with A given in Example 2.1 and F
given by F(u)(z) := f(|u|?)u(z) for some smooth f satisfying
f(x) <X VzeR. (6.4)

Recall that | e| denotes the norm on L2((0,1)) for Example 2.1. Thus (6.4)
is equivalent to the non-local reaction-diffusion equation

U = Ugg + f(fo1 u?(s,t)ds)u, (z,t) € (0,1) x (0,00),
w(t) =ufl.£)=0, >0, (6.5)
w(z,0) = uglx).

Under further conditions on the behavior of f at infinity, (2.11) will be
satisfied. It will also be useful to consider the problem

W = Ve, (2,0 €(0,1) % (0,00),
v(0,t) =v(1,t) =0, t>0, (6.6)
* Tholz,0) =u(x).

-

Recall ¢, defined in Example 2.1. We let a(t) = |u(-,t)|2,b(t) = |v(-,t)|%.
If

(oe]
uo(z) = D axpr, ak = (to, Pk)
j=1

then separation of variables shows that
X SR
w(x, ) = Zake“k "tefo fla(s)ds (6.7)
k=1
Here a(t) satisfies the nonlinear integral equation

a(t) = exp {2 /0 t f(a(s))ds} b(2).
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Now we let
M={veV:(vp)=0 Vk>m}

and show that M is an inertial manifold for appropriately chosen m. First
note that M is invariant for any m such that if uo(z) € M then ax = 0 for
all k > m; by (6.7) it follows that u(z,t) € M. It remains to show that M
attracts exponentially. Note that from (6.4)

/(; f(a(s))ds < At.

Hence

—k27r2tej: f(a(s))ds (A—k%x 2)t

(u(z,t), pk) = age < age

Choosing m such that A — m27? < —pu < 0 we deduce that
(u(z,t), k) < age ™™ Yk >m.

Since the ay are uniformly bounded in k for initial data in V = H3((0,1))
it follows that M is exponentially attracting with rate at least e #¢.

A similar explicit construction of an inertial manifold is given in Bloch
and Titi [12]. That paper concerns a nonlinear beam equation where the
nonlinearity occurs only through the appearance of the Lo-norm of the un-
known. A closely related analysis to that given here allows for construction
of an inertial manifold with structure similar to that given here.

Our basic approach is to use (2.15) to formulate a mapping and prove
that the mapping has an inertial manifold; we then show that the inertial
manifold for the map is also positively invariant under (2.9) and hence an
inertial manifold for (2.9). We define

) =%, G(u,t) = f(f L(t — s)F(S(s)u)ds.

<, (6.8)
“ L= IT),G(w) :=G(,T).
Now consider the mapping
Unt+1 = Luyp, + G(un), (6.9)

where u, = S(nT)uo. We set p, = P™u,, ¢, = Q" u, and seek an invariant
manifold for (6.9) which hence satisfies

gn = P(pn) < @n41 =¥(Pp41) Y20 (6.10)

and is attractive in the sense that there exists p € (0,1) such that

llan — 2(pn)|l < 1"|lgo — ®(po)|| Vn > 0. (6.11)
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Let I' = T'(e, 8) denote the closed subset of C(Y, Z) satisfying

1¥|lr := sup ||¥(p)] <,
peEY

¥ (p1) = ¥(p)ll < 6llpr —p2ll  Vpi,p2 €Y.

We may now prove the preliminary existence result for (6.9).
Theorem 6.4 Let Assumption 6.1 hold. Suppose that for any K3, K4 > 0
there exists an integer qo > 0 such that

Agi? 2 K3, Agr1—Ag = K)o

for all g > qqo. Then for any { > 1 and €/,8" > 0, there exists T > 0, integer
go > 0 and p € (0,1) such that, if ¢ > qo, € € [¢',¢€'], § € [¢,(8'] then
there erists ® € I'(g,6) such that (6.10), (6.11) holds for (6.9); thus there
exists C = C(ug) > 0 such that, if M is given by (6.2) with R given by
(6.1), then

dist(un, M) < Cu™. (6.12)

Proof We show that the mapping (6.9) satisfies (G1)-(G3) and (C1)-

(C4) of Theorem 12.3; the existence (6.10) and attractivity (6.11) then

follow from Theorem 12.3 with r = o0, y =€ € [¢/, Ke'|, a =6 € [¢§', K&'].
We define A = A\j, A = A\g4+1. Then L satisfies (G1), (G2) with

b=e?T, a=e7T, c=eMT,

We set AT = o € (0,00). From the definition of G(u) we have, using
Lemma 10.6 and Assumption 6.1 that there exists C7 > 0 such that

i :
IG@A < [ 1AL - ) F(S(shulds

- < /T——-———CK ds
— Jo (T—5s)
T ok 6
== . -
< T=a (613

Similarly, using (2.16) (Lipschitz continuity of the semigroup S(t)e, which
follows from Assumption 6.1) and the construction of F', there exists Cy =
C3(T) > 0 such that

.
1G() -Gl = T

CoK||u — v||.

Thus, G(u) satisfies (G3) with
By = By = 2T PK, (6.14)
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where K5 = K max{C1,C2}/(1 — ). We have doubled Bj, Bs to allow for
incorporation of perturbation error in Section 6.3.

We verify (C1)-(C4). Let €,6 > 0, 0 € (0,00), o € (e79,1) be given.
Define K3, K4 and T by

o
T=—
A
"Ksa'=P(1+6) (1+0)K
K3_—_2ma,x{e e L ) 5}, (6.15)
—e° eah
: Ks(1 + 6)%e°
K4 = _5_(_(%3_)_. (6.16)
Choose ¢ such that
AP > Ka, A—X> K4A\P. (6.17)

By (6.17) and (6.15) we deduce that A1=# > 2e¢? K5o!1F(1 4 6)/u. Putting
o = AT and A'~# = (0/T)'~? we obtain

2eAT K TP (1 4 6) < .
Since A < A, we have
2T KT P(1 + 6) < ;

this is simply b=1B;(1 + 6) < u; as required to establish (C1).
By (6.16) and (6.15) we deduce that A1=# > 2(1 + o) K5/ (0”¢) so that,
putting 1 + o =1+ AT, we have

B
2(1 + AT)KE,TI;—ﬁ < eAT.

Adding € to both sides and dividing by 1 + AT, we obtain
S e :

- 14+ AT

Since e™* < 1/(1 + z) for all z > 0, we have ae + By < € and (C2) is

established.
To prove (C3) we note that, by (6.17),

+ 2K TP <.

B
A— 2> K4AP > 2K5(1 + 5)%05%5.

Since e* — 1 > z for positive z, we may bound (A — \)T by e®A~NT _ 1.
Multiplying the previous inequality by 7" and using o = AT, we find

6T 4 2K5(1 + 8)*T* P < §e7T.

Since (146)? = (146)+8(1+38), this last inequality becomes éa+(1+6)B; <
6b — 6(1 + 6)B;, which is (C3).
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(C4) is obtained by noting that, from (6.15),

A > Ky > 2Kot P LY
p—e°
Rearranging this gives 2K5T17#(1 + 6) 4+ e7AT < u. Using the definitions
‘of a, By, this last expression becomes a + 2(1 + §)B; < u, which is (C4).
Note that g9 depends on K3 and K4, and hence on € and §. Taking the
supremum of g over all € € [¢/,(€'], § € [¢', (8] yields go such that the result
holds.

It remains to establish (6.12). Recall that u,, = p, + g,. Note that
dist(up, M) < ||up — Gnl|
where @, = p, + ®(pn). Thus, by (12.4) of Theorem 12.3,

dist(un, M) < |lgn — @(pn)| < 1"(lg0 — @(po)|

and the result follows since (6.1) of Assumption 6.1 ensures that u,, enters
B(0, R) after a finite number of iterations. O

Theorem 6.4 shows that the time T flow of the semigroup for (2.9) has
an attractive invariant manifold. We show now that this manifold is in fact
an inertial manifold for eqn (2.9).

Theorem 6.5 (Inertial Manifolds) Under the assumptions of Theorem
6.4, eqn (2.9) has an inertial manifold M satisfying (6.2) and (6.3) for
¢ eT'(e',8") and p > 0 given in Theorem 6.4 and R given by (6.1).

Proof It remains to show that the manifold M constructed as a conse-
quence of Theorem 6.4 is in fact invariant for the underlying partial differ-
ential equation, rather than just the time 7" flow of the semigroup. To do
this set Q = S(7)M for some 7 € (0,T). We show that, for all 7 sufficiently
small, Q =M and hence that M is invariant for S(t). The required result
then follows.

Notice that S(T)Q = S(T)S(T)M = S(7)S(T)M = S(1)M = Q so
that Q is invariant under the time 7T discrete map. In addition, we can
show that  is the graph of a global function: recall the definitions of L(t)
and G(u,t) given in (6.8); by applying the method of proof of Lemma 12.4
it follows that, for every p € Y there exists a unique £ so that

p=L(r)§ + P"G(§ + ©(£),7),

for any 7 sufficiently small. Thus € can be expressed as a graph g = ¥(p)
where ¥ : Y — Z is given by

¥(p) := L(1)2(£) + QTG (£ + 2(¢), 7).
Recall from Theorem 6.4 that ® € I'(¢’, ¢’). Similarly to the calculation
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of (6.13) we have

1-8
1| < e“ATe'+1T~IBClK
1-8
< A(T—T) / B (1) ’ )
< e ae + T

Notice that for 7 = 0,7 = T, ||¥|| < €. In general, for 0 < 7 < T there is
some 77 > 0 such that
1) <€ +n.

In a similar manner, one obtains

1%(p1) — ¥(p2)ll < (&' + m)llp1 — p2ll

for 0 < 7 < T. Note that, by continuity, 7 can be made arbitrarily small
by requiring 7 to be small. Thus we see that for any n > 0 there exists a
7*(n) > 0 such that

U el(€+n,6+n)

for all 7 € (0,7*(n)). Thus we choose ( so large that (C1)—(C4), verified in
the Theorem 6.4, hold for all § € [§,6" +n)],e € [¢/,€ + n]. For such 8, € we
have ¥ € I'(6,€) and we may again apply Lemma 12.4 to obtain that for
every p € Y there exists a pg € Y such that

p = Lpo + P™G(po + ¥(po)),
q = LY(po) + Q™G (po + ¥(po))-

However, since S(T)2 = Q, u = p+q € Q and Q = Graph(¥), we must
have ¢ = ¥(p). Thus V¥ is a fixed point of the map 7" constructed in (12.8),
and by the uniqueness of the fixed point under the conditions of Theorem
6.4, it follows that ¥ = ®. One may now repeat the argument on the
intervals t € (k7, (k+1)7) for integer k > 1. It follows that M = Graph(®)
is an invariant manifold for (2.9) for all time.

To see that this manifold exponentially attracts all solutions as in (6.3)
let ¢ > 0 and ug be given. Set t,(s) =nT + s,s € [0,7]. Then from (6.12)

dist(u(ty), M) = dist(S(nT)u(s), M) < pu"C(|u(s)|y)-

Since u(s) depends continuously on u(0) for all s € (0,T), the result follows
by choosing v appropriately. O

6.3 Perturbation theory

In the previous section an inertial manifold was constructed for (2.9) under
(2.11) on F. Recall that in practice assumptions such as (2.11) only hold
within a bounded set B(0, R) satisfying (6.1); the function F' can then
be modified outside B(0, R) to ensure that (2.11) holds. We make similar
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assumptions about S”(t) : we assume that there exists R > 0 such that

3T =T(p, R) : SR(t)B(0,p) C B(0O,R) Vt>T,
(6.18)
S*(t)B(0,R) € B(0,R) Vt>0.

Thus throughout this section we make

Assumption 6.6 There exists R > 0 such that (6.18) holds for S"(t) of
Assumption 3.2.

We now define a new map
§™(t)u 1= B(Ilull?)S™ (yu + (1 — 8(1[ul2)S(E)u, (6.19)
where § € C®(R*,R") satisfies
6(z) =1Vz:22 <R, 6(z)=0Vz:z2>2R

and @ (z) is uniformly bounded. The derivative of S*(t) with respect to
u € V and evaluated at v € V is denoted by dS"(v,t). Note that the new
map does not satisfy the semigroup property on V' but, by virtue of (6.18),
it does on B(0, R) since it is coincident with S*(t) on that set. The reason
for considering S”(t) is that it has been constructed to be C! close to S(t)
uniformlyon V :

Lemma 6.7 Define
E(u;t) == S(t)u — S*(t)u,
dE(u;t) := dS(u;t) — dS"(u;t).

Then for allt € S, t > 0, there ezist constants C;(t) < 00,1 = 1,2, and a
function k : RY — RY such that the maps S(e)e € CY(R" x V,V) and
Sh(e)e € CL(R™ x V, V) satisfy

IE(u;t)| < Cih Yu eV,

|dE(u;t)|| < Cak(h) Yu eV,
where k(h) — 0 as h — 0.

We now let U,, = S"(nT)Up so that
Ups1 = LU, + G(U,), (6.20)

where
G(u) = G(u) + E(u; T). (6.21)
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We set P, = P"U,, @, = Q™U, and seek an invariant manifold for (6.20)
which hence satisfies

Qn = ®"(P,) <= Qny1 = ®*(Poy1) Yn >0 (6.22)
and is attractive in the sense that
1Qr — @(Pp)|l < 1™||Qo — ®(FR)|| Vn >0. (6.23)

Theorem 6.8 Let Assumptions 6.1 and 6.6 hold. Suppose that for any
K3, K4 > 0 there ezists an integer go > 0 such that

Mgt > Ks,  Agr1—Ag > Kadly,

for all ¢ > qo. Then for any K > 1 and €,6' > 0, there exists h.,T > 0,
integer qo > 0 and p € (0,1) such that, if ¢ > qo, € € [¢/,K€'], § € [§', K]
and h € (0, h.) then there exists ®" € T'(¢,6) such that (6.22), (6.28) hold
for (6.20) so that there exists C = C(Up) > 0 such that

dist(Up, M) < Cu™.

Furthermore, there exists K > 0 such that

sup || ®(p) — ®"(p)|| < Kh. (6.24)
peEY »

Proof Using (6.20) and Lemma 6.7 it can be shown that, for h sufficiently
small, G satisfies the same estimates (6.14) as G. (Note that those bounds
were doubled to allow incorporation of perturbation error at this stage).
Thus existence and attractivity follow as in Theorem 6.4.

The convergence result follows from the uniform contraction principle,
Theorem 11.2: note that ® and ®" are fixed points of T' and T respectively,
where x

© p = LE+PMGE+ V()
(TO)(p) = LYU(E)+Q G+ T(e)),

(6.25)

P LE+P™G(E+ T(¢))
(ThO)(P) = LY¥(€)+QmG(E+T(9).

Both ® and ®" lie in I' = I'(¢,§’) and are constructed with contraction
constant u. Thus

1
@ - @*lr < 5

sup || (T'T) — (T"T)||p
ver

where

[¥]|r := sup [|¥(p)]|-
pEY
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Now
ITY — T"¥||p = = I(TT)(p) — (T"T)(p)|.

Hence, by (6.25) and Lemma 6.7 we have

(TT)(p) — (T"T)(p)|
< T (p) — (TE)(P)] + [(THE)(P) — (T"T) (D)l

< QTGE+T(E) - QTGE+ () +6]1P -l
< (1L+6)GE+T(E) - GE+T(©) | (6.26)
< (1+6IEE+T(E),D)

-3 C(T)(1 + d)h.
The convergence result follows. O

An inertial manifold for (6.20) is a set, defined through a Lipschitz
graph ® and constant R > 0, of the form

MP = {v eV : Q™ =3"P™v)}(|B(0,R). (6.27)

The set is assumed to be positively invariant under (6.20) and to exponen-
tially attract all solutions of (2.9) at a uniform rate; that is, there exists
v > 0 such that, for all ug in V,

3C = C(uo) : dist(S™(t)uo, M") < Ce™ Vit > 0. (6.28)

Theorem 6.9 (Continuity of Inertial Manifolds) Under the assump-
tions of Theorems 6.4 and 6.8 there ezists h. > 0 such that, for h € (0, he),
the semigroup Sh(t) has an inertial manifold M" satisfying (6.27) and
(6.28) for ®* € T'(¢',8') and p > 0 given in Theorem 6.8 and R given in
(6.27). Furthermore there exists K > 0 such that

dg(M", M) < Kh.

Proof The existence part of the proof may be proved from (6.8) in the
same way that Theorem 6.5 follows from Theorem 6.4, using the fact that
Sh(t) coincides with the semigroup S™(t) in the positively invariant set
B(0, R). The convergence result follows from (6.24): if z € M" then z =
p + ®"(p) for some p; set z = p +®(p). Then

dist(M", M) < sup ||z — z|| < sup [|®(p) — ®"(p)|| < Kh
7 zeEMPhI peEY
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as required. Similarly the result follows for dist(M, M"?). O
6.4 Bibliography

Inertial manifolds were first introduced by Foias et al. [38]. However, the ba-
sic idea that certain partial differential equations behave finite-dimensional-
ly for large time can be traced back considerably earlier — see Foias and
Prodi [36] and Constantin et al. [20], for example. A variety of analytical
results concerning inertial manifolds may be found in Constantin et al. [21],
Foias et al. [39], Mallet-Paret and Sell [78] and Chow et al. [17]. The origi-
nal paper of Foias et al. [38] employs an existence technique known as the
Lyapunov—Perron approach and, using this theory, the effect of perturba-
tion due to a spectral approximation is studied. Demengel and Ghidaglia
[22] use similar analytical techniques to study a particular time discretiza-
tion. Jones and Stuart [65] use a Hadamard graph transform technique (re-
lated to that used by Mallet-Paret and Sell (78] in their existence theory)
to construct a perturbation theory general enough to allow consideration
of a variety of space and time approximations. It is this theory which is
outlined here.

It is also worth mentioning that the idea of inertial manifolds has been
used in the development of numerical methods, sometimes referred to as
nonlinear Galerkin methods, whereby some attempt is made to approxi-
mate the inertial manifold by a graph ®,,,,,, and compute with a spectral
method of the form

du” N N N N

Ty + Au” =PF(u" + ®approc(v)),t >0, u(0) =Puy . (6.29)
Such numerical methods are studied in, for example, Devulder et al. [24],
Foias et al. [37], Foias et al. [39], Jolly et al. [60], Jones et al. [63], Russel et
al. [83][84], Temam [93] and Titi [94]. Note that standard spectral methods
correspond to taking ®,pproz =.0.

7 Attractors
7.1 Introduction

In Section 4 we considered the effect of perturbation on a very simple
invariant set: the equilibrium point. We also discussed the effect of pertur-
bation on trajectories in the neighborhood of the equilibrium point. Similar
analyses can also be carried out for periodic solutions as mentioned in the
bibliography of that section. In this section it is our purpose to study the
very complicated invariant sets that arise in systems often loosely termed
chaotic. The notion of an attractor formalizes the concept of a general ob-
ject which captures the (possibly chaotic) long time dynamics of a system.

Section 7.2 contains the basic definitions of attractors and some of their
properties. In particular, Theorem 7.3 gives a useful method for construct-
ing global attractors and Theorem 7.6 is a very useful characterization of
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the global attractor as the union of all solutions of (2.9) which are defined
and bounded for all positive and negative time. Further results of particu-
lar importance in Section 7.2 are the characterization of gradient systems
and their attractors: see Theorem 7.7 and Corollary 7.8.

The definitions of upper- and lower-semicontinuity from Section 2.3 are
required to understand fully the remainder of Section 7. In Section 7.3
we study the upper-semicontinuity of attractors — see Theorem 7.9. This
shows that, after a sufficiently long time, every computed point is close to a
point on the true attractor. It does not show, however, that every point on
the true attractor has a nearby counterpart in the approximate attractor.
In other words parts of the attractor may disappear under perturbation.
However, if the true and perturbed attractors are uniformly exponentially
attracting then the whole attractor perturbs smoothly under the approxi-
mation and the attractor is both upper- and lower-semicontinuous — see
Theorem 7.10 in Section 7.4. In Section 7.5 we look at another situation
where both upper- and lower-semicontinuity can be proved; this arises when
the attractor is the union of the closure of unstable manifolds of equilibria.
The simplest situation where this arises is for gradient systems, but other
possibilities are also included.

7.2 Background theory

Definition 7.1 A set A attracts a set B under S(t) if, for any € > 0,
there exists t* = t*(e, B, A) such that S(t)B C N(A,e) Vt > t*. A compact
invariant set A is said to be an attractor if A attracts an open neighborhood

of itself. A global attractor is an attractor which attracts every bounded set
mn V.

Example 7.2 Consider the equation

i us + Au = \u
with the operator A given in Example 2.1 with Q = (0,1). If X € (72, 272)
then 0 attracts the set

1
B={veV: /0 v(z) sin(nz)dz = 0}.

However 0 is not an attractor since any open neighborhood contains points
uo = asin(nz) for which |lu(t)| o exp{(A — 72)t}. If X € (0,7?) then 0
attracts an open neighborhood of itself and is hence an attractor. It is in
fact a global attractor.

Attractors are often constructed by applying the following theorem.

Theorem 7.3 Assume that there exists T > 0 and B C V, a bounded open
set, such that S(t)B C B Vt > 7 and ,>, S(t)B is relatively compact.
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Then w(B) is an attractor which attracts B. Furthermore

A:=w(B)=[)S(t)B.

t>0
Proof Since S(t)B C B for t > 7 it follows that

wB) = Us®wBc NUB=5 (7.1)

sS>Tt>8 s>Tt>s

Thus w(B) is bounded. Note that, in fact, w(B) is compact and invariant
by Theorem 2.11. ‘

We now show that A := w(B) attracts B. Assume that it does not.
Then there exist ¢ > 0 and sequences zx € B and t;y — oo such that
S(tk)xr ¢ N(A, €). But S(tg)zk is a sequence contained in a compact set
and hence has a convergent subsequence S(tg,)zx, — y € B. By Definition
2.10 y € w(B) = A and this is a contradiction.

Note that w(B) C B by (7.1). We show that, in fact, w(B) C B. Assume
for the purposes of contradiction that 3y € w(B) () 0B (where B = B\B).
Since w(B) is invariant it follows that, for any ¢t > 0 3z € w(B) : S(t)z = v.
But, since w(B) C B we have z € B and hence, by assumption, y =
S(t)z € B for t > 7. This is a contradiction and thus no such y exists.
Thus w(B) C B.

Now, since w(B) C B is closed it follows that, for ¢ sufficiently small,
N(w(B),e) C B. Since w(B) attracts B it follows that w(B) attracts an
open neighborhood of itself and is hence an attractor.

Finally, since w(B) C B and w(B) is invariant we have w(B) C S(t)B

for all ¢t > 0. Hence
w(B) C (1) S(t)B.

t>0

-

Furthermore, since
S(s)Bc | Js()B
t>s
it follows that

(N8B c () JSEt)B=w®).

s>0 s=0i>s
The final result follows. a

Recall the Definition 2.13 of dissipativity. It follows that a dissipative
dynamical system which has some smoothing properties giving compactness
will have a global attractor, by Theorem 7.3. Thus we have

Corollary 7.4 Assume that S(t) generates a dissipative dynamical sys-
tem with absorbing set B. Then w(B) is an attractor which attracts B.
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Furthermore

= S(t)B.

t>0

Another corollary concerns the abstract sectorial evolution equation of
Section 2.5.

Corollary 7.5 Consider the dynamical system generated by eqn (2.9) un-
der (2.11). There exists R > 0 such that w(B(0, R)) = ;50 S(¢)B(0, R) is
a global attractor for (2.9).

Proof From (2.9), (2.11), the variation of constants formula (2 15) and
Lemma 10.6 we have

t Ce—5(t—s)
e s,
kel i G

Hence :
u)ll < e ®*|lu(0)]| + K (7.2)

e

Choosing R = K + € and setting B = B(0, R) we deduce from (7.2) that
S(t)B C B for t > to, where tq is chosen so that

where

e %% (K +¢) <e.

Furthermore, by applying the compactness estimate of Assumption (2.3),
which bounds |u(t)|,, on the time intervals [0, 2to], [to, 3t0], [2t0, 4t0], -

we deduce that Ut>t S(t)B is relatively compact. Thus A attracts B by
Theorem 7.3. Furthermore (7.2) shows that for any bounded set E there

exists T' = T(E) such that S(t)E C B for all t > T. Hence A is a global
attractor. O

The following characterization of the global attractor is very useful:

Theorem 7.6 Consider a dynamical system S(t) with global attractor A.
The set A is equivalent to the union of all complete bounded orbits of S(t).

Proof Let z € A. Since A is invariant it follows that S(t)z € A and
Jy € A: S(t)y = z, for every t > 0. Thus a complete orbit through z exists
and is bounded since A is compact. This shows that A is contained in the
union of all bounded complete orbits.

Now let z be a point on a complete bounded orbit H. Note that H is
invariant and hence, for any ¢t > 0-3y* € H : S(t)y* = . We prove that
H C A. Assume that it is not, for contradiction; then, for any e sufficiently
small, 3z € H : z ¢ N(A,¢). But, since A is a global attractor and H is
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bounded, Jt* > 0:
=Sty € SA)H CN(A,e) Vt>t*
thus = € N (A, €), a contradiction. This completes the proof. a

The most general results concerning the effect of perturbation on at-
tractors are quite weak and structure must be placed on the attractor to
obtain stronger results. In this context a particular class of systems of in-
terest to us are gradient systems. Recall the definition of £ given in (4.1)
and the Definition 2.15. Recall also the Definition 5.1 of the unstable set.
The following theorem and corollary elucidate the behavior of trajectories
and the structure of the attractor for gradient systems.

Theorem 7.7 If S(t) defines a gradient system then, for any uq € V,
w(ug) C &€ and for any negative orbit {p(t),t < 0} through u, for which
Ut5t1 @(t) is relatively compact, a(uo) C €. If, in addition, the set £ com-
prises only isolated points then, for any uy € V, there exists x € £ such
that w(ue) = z and, for any negative orbit {p(t),t < 0} through u, for
which U, <,, ¢(t) is relatively compact, there is y € £ such that a(uo) = y.

Proof Consider the case of w limit sets; the argument for « limit sets is
similar. As in the proof of Theorem 7.5 we deduce that, for any 7 > 0,
Uis, S(t)uo is relatively compact. Hence w(uo) is non-empty, compact,
invariant and connected by Theorem 2.11. Now let z and y be two points
in w(up) so that there are sequences t;,7; — oo with t; < 7; < t;11 so that
S(ti)uo — x and S(7;)ue — y. Since

V(S (tit1)uo) < V(S(7i)uo) < V(S(t:)uo)

and there exists ¢ > 0 such that V(S(t;)uo) — ¢ by continuity of V, we
deduce that V(S(m;)ue) — ¢ also..Thus V(y) = c. Since w(u,) is invari-
ant, for each ¢ € R we may choose a y such that y = S(t)z — here we
have extended S(e) to negative arguments for brevity — and deduce that
V(S(t)z) = V(z) for all t € R. By (iv) of Definition 2.15 we have z € £.
By connectedness of the limit set we deduce that w(uy) must be a single
point if £ comprises only isolated points. O

Corollary 7.8 If S(t) defines a gradient system then it has a global at-
tractor given by

A=W*E) :={uo € V: a negative orbit {p(t),t <0} exists through u,
and dist(¢(t),€) - 0 as t — —o0}.

If, in addition, £ comprises isolated points, then

A= )W)

vEE
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Proof By Corollary 7.6 the set A comprises all bounded complete orbits.
Since A is compact by definition, each such complete orbit is compact.
Applying Theorem 7.7 the result follows. O

7.3 Upper-semicontinuity of attractors

In this section we prove a basic result concerning the upper semicontinuity
of attractors. We assume that S(t) and S"(t) have global attractors. That
the perturbation has a global attractor can often be proved directly for
many particular approximation schemes. We discuss this briefly in Section
9. However, note that if S(t) has a global attractor, the general Assumptions
3.2 made here would generally only imply the existence of a local attractor;
a theory can be developed to cater for this case also.

Theorem 7.9 (Upper-Semicontinuity of Attractors) Consider the
approzimation of the semigroup S(t) by Sh(t). Assume that S(t) has a global
attractor Ay and assume that there exist hg > 0 and a bounded B C V such
that S"(t) has a global attractor A® for each h € (0, ho] and

J 4rcB.
he[0,ho)]
Then
dist(Ap, A) -0 as h— 0.

Proof First note that under Assumptions 3.2 we may assume, without
loss of generality, that there exists to > 0 and g¢(t), bounded, continuous
and monotonic increasing for ¢ > tg, such that

1S™(t)u — S(t)ull < C(B)g(t)h Vu € B,t > tq. (7.3)

Furthermore, since Ag attracts B, it follows that there exists a bounded,

continuous function f(t), defined for ¢t > 0 and decreasing monotonically
to zero, such that

dist(S(t)B, Ao) < C(B)f(t) Vt> 0. (7.4)
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Note also that, since A" is invariant under S"(¢) and since v € S(t).A"
implies that there exists w € A" such that v = S(t)w, we have from (7.3)

dist(Sh () AM, S(t)AP) = su { inf U—v }
(ML SO = s 4l e

_ in h u—
- o { s

(7.5)
—  sup { inf nsh(t)u—S(t)wll}

ucAh (WEA

< sup [|S*(t)u— S(t)ull
uc Al

< C(B)g(t)h.

Also we have, since A" is invariant under S"(t), since (7.4) holds and
since A* C B,

dist(AR, A) < dist(A", S(t).AR) + dist(S(t) A, A)
< dist(Sh(t).A", S(t).A") + C(B) f(t) (7.6)

< C(B)g(t)h+ C(B)f(t).
Thus
dist(A", A) < C(B)[hg(t) + f(t)] Vt> 0. (7.7)

By the properties of f(e) and g(e) we may choose h, > 0 and t* - t*(h)
such that .
hg(t™) = f(t*) Vh € (0,hc]. (7.8)

Figure 2 illustrates this situation. Furthermore, by the monotonicity of f
and g it follows that t*(h) — oo as h — 0. Thus, by (7.7),

dist( A", A) < 2C(B) f(t*(h)). (7.9)
By the properties of f(e) and t*(e) the required result follows. O

7.4 Continuity for exponentially attracting attractors

Note that Theorem 7.9 does not necessarily give a rate of convergence
for the quantity dist(A,.A4) which is a power of h. This is since nothing is
assumed about the rate of attraction of the attractor. If the rate is assumed
exponential then a stronger result can be proved and we obtain the error
bound given in Theorem 7.10 below. Note that the bound is less than the
rate of convergence of individual trajectories, unstable manifolds or inertial
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manifolds and reflects the competition between the exponential attraction

to A (which determines 7)) and the exponential divergence of trajectorles
on A (which determines «).

Theorem 7.10 (Continuity of Exponentially Attracting Attrac-
tors) Consider the approzimation of the semigroup S(t) by S™(t) satisfy-
ing (3.2). Let S(t) have a global attractor Ao and assume that there exist
ho > 0 and a bounded B C V such that S"(t) has a global attractor A" for
each h € (0, ho] and

2 U AV B,

s he[0,ho]

Assume also that there exists a,n,tg € RT such that the approrimation
error satisfies (7.3) with g(t) = e**,t > to and that the attractors A" are
uniformly ezponentially attracting so that (7.4) holds with f(t) = e~ ".
Then there exists K > 0 such that

where = n/(a+ n).
Proof Consider dist(A",.A) first. By (7.8) we have

at* _ _—nt*
he e
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so that e™*" = h'/(@+") Hence f(t*) = hP and the bound follows from
(7.9). The bound on dist(A, . A") follows by reversing the roles of A and A"
in the proof of Theorem 7.9. This can be done since the rate of convergence
is uniform in h € (0, h.]. O

7.5 Lower-semicontinuity of attractors

The fact that lower-semicontinuity is hard to prove in general is not an
artefact of the analysis. Simple examples exist which indicate that lower-
semicontinuity is not true in general. Roughly the difficulty is that parts of
the attractor which are not exponentially attracting may disappear under
perturbation. Unfortunately the uniformly-in-h exponentially attracting at-
tractors of Theorem 7.10 do not arise that often in applications and, even
when they do, establishing that they have the right properties can be very
hard. Instead we proceed in this section to prove lower-semicontinuity by
making assumptions on the nature of the flow on the attractor .A. One
important case where this is possible is when the dynamical system S(t) is
in gradient form and the set £ of equilibria given by (4.1) is a bounded set
containing only hyperbolic equilibria. A natural generalization of this is to
make the following assumption:

Assumption 7.11 The dynamical system (2.9) has a global attractor A

where
A= Wu(z)
z€€

and £ comprises a finite number of hyperbolic equilibrium points of (2.9).

Note that this assumption is a consequence of the system being in gra-
dient form and having hyperbolic equilibria — see Corollary 7.8; however,
Assumption 7.11 is weaker. For example, Assumption 7.11 admits equations
with a single unstable equilibrium point and a unique limit cycle attracting
all initial data except that starting at the equilibrium point.

Note also that; since the attractor is compact and contains all equilibria
and since the hyperbolic fixed points are isolated by Theorem 4.3, the
number of fixed points is automatically finite if they are hyperbolic. Under
Assumption 7.11 we may prove lower-semicontinuity of the attractor as
well as upper-semicontinuity:

Corollary 7.12 (Lower-Semicontinuity of Attractors) Assume that
Assumption 7.11 holds and consider the approximation of the semigroup
S(t) by S™(t). Denote the global attractor of S(t) by Ay and assume that
there ezist hg > 0 and a bounded B C V such that S"(t) has a global
attractor A" for each h € (0, ho] and

U Atc Bl.

h€[0,ho]
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Then
dg(Ap, A) -0 as h—0.

Proof It follows from Theorem 7.9 that there exists an approximate at-
tractor Ay satisfying

dist(Ax, A) - 0 as h— 0.
Thus it remains to establish the lower-semicontinuity result that
dist(A, Ap) -0 as h—0. (7.10)

Let @ € £. By Theorem 5.7 we deduce that there exists a fixed point
@™ of S" such that

dist(W*(a), WE(@h)) -0 as h— 0. (7.11)

Now we prove that

Wit (@) C Ap. (7.12)

Let z € W,*(@"); then, by definition, there exists z; — %" and ¢; — oo
such that 2 = S"(¢;)z; and hence it follows that z € A" since A" is a
global attractor and {z;}$2, are contained in a bounded set. Thus (7.11),
(7.12) prove that

dist(Wv(ah), Ap) - 0 as h— 0.

Since Assumption 7.11 holds it is clear that (7.10) follows and the proof is
complete. O

7.6 Bibliography

For background theory on attractors and related material see Babin and
Vishik [4], Bhatia and Szego {11], Hale [50] and Temam [92]. In particular
the construction of global attractors given in Theorem 7.3 is closely re-
lated to the presentation in Temam [92]. Gradient systems are discussed
extensively in Hale [50]; aside from their physical significance in problems
modeled by dynamic energy minimization (see, for example, Elliott [28]),
gradient systems are of fundamental importance in the theory of dynami-
cal systems because of the simple characterization of the attractor given in
Corollary 7.8 and the robustness to perturbations which follows from this.

The proof of continuity for exponentially attracting attractors given in
Theorem 7.10 is taken from similar results in Babin and Vishik [4] and in
Hale et al. [51]. The proof of upper-semicontinuity of attractors given in
Theorem 7.9 is motivated by the proof in Babin and Vishik [4] concern-
ing exponentially attracting attractors; slightly different proofs of upper
semicontinuity are available in, for example, Hale et al. [51] and Temam
[92]. These two general works generated a number of specific applications
such as those studied by Dettori [23] and Shen [86]. Closely related results
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are proved for uniformly asymptotically stable sets (which are positively
invariant sets containing the attractor) in Kloeden and Lorenz [67] [68].
Relationships between the results on attractors and the results on uni-
formly asymptotically stable sets are given in Hill and Siili [57]. For par-
tial differential equations proof of upper-semicontinuity often requires error
bounds for non-smooth initial data; see Elliott and Larsson [30], Larsson
[74] and Yin-Yan [99]. This can be overcome in certain cases where the
underlying equation, and its approximation, have a strong property known
as Gevrey regularity [35] — see Lord and Stuart [77]. For analysis of upper-
semicontinuity in the context of time-discrete, multistep methods see Hill
and Suli [56]. :

Explicit and simple examples showing why lower-semicontinuity is not
true in general may be found in Humphries et al. [59] and in Kapitanskii
and Kostin [66]. Note, however, that if the stable and unstable manifolds
of the equilibrium points for a gradient system intersect transversally then
the attractor is exponentially attracting and Theorem 7.10 may be applied
to establish upper- and lower-semicontinuity. The first general proofs of
lower-semicontinuity for gradient systems, without requiring the transversal
intersection property, appear in Hale and Raugel [52]. Related results may
also be found in Babin and Vishik [4] and in Kostin [70]. These approaches
assume that the attractor is in gradient form with hyperbolic equilibria.
A subsequent generalization may be found in Humpbhries [58] where the
attractor for an ordinary differential equation is assumed to be the union
of unstable manifolds of hyperbolic equilibria; this includes the assumption
of Hale et al. [51] but is more general than it. Results closely related to
those of Humphries [58] may be found in Kapitanskii and Kostin [66] and
in Humphries et al. [59] where partial differential equations are studied.
Extensions of this approach to non-hyperbolic equilibrium points may be
found in Kostin [71] and in-EHiott and Kostin [29].

For estimates of the dimension of the attractor of time-discretized quasi-
linear partial differential equations, and comparison to dimension estimates
for the underlying partial differential equation, see Eden et al. [26].

8 Error analysis for gradient systems
8.1 Introduction

So far we have derived three basic types of error bound for trajectories.
The first appears in Assumptions 3.2 and detailed derivations are given
for spectral methods in Theorem 3.6 (and its C' counterpart Theorem
3.7). The Assumptions 3.2 concern a uniform error bound on compact time
intervals disjoint from the origin and bounded sets in V' (see the remark
following the proof of Theorem 3.6). The second appears in Corollary 4.10
and concerns an error bound uniform in ¢ > 27 for solutions asymptotic
to a stable equilibrium point; this bound is not uniform in a bounded
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set of initial data essentially because initial data from a bounded set can
take arbitrarily long to reach a neighborhood of the equilibrium — see
the remark following the proof. The third appears in Theorem 4.18 and
Theorem 4.19 and concerns an error bound for trajectories comprising a
local phase portrait near an equilibrium point. It is uniform in time and
uniform across a sufficiently small neighborhood of an equilibrium point.
In this section we put these results together in various ways to derive error
bounds for gradient systems and other classes of problems with similar
properties.

What we would ideally like is to find an error bound which is uniform
in large time and uniform across bounded sets of initial data: In general
this does not appear to be possible. If, however, we restrict attention to
gradient (and other closely related) systems and weaken the notion of ap-
proximation to allow piecewise continuous solutions with a finite number
of discontinuities, then the goal is attainable. This we show in the following
section — see Theorem 8.8.

8.2 The result

We start by making an assumption about solutions of (2.9) which is then

shown to be satisfied by a certain class of gradient systems. Recall the set
€ defined in (4.1).

Assumption 8.1 The dynamical system generated by (2.9) satisfies the
following properties

(i) the set & comprises a finite number of hyperbolic equilibria {z;}X., and
there is a constant K, such that, for all sufficiently small p > 0, there
18 a bounded open set U O £ such that

N
= U Qi, GNQ;=0fori#j, QiCN(xKip); (8.1)
=

-

(it) foF each bounded set B C V there is a time T such that, for any
ug € B there is T € [0,T] for which S(1)u, € U;

(iii) there is a constant Ko > 0 such that, for each ug € V and each
p > 0 sufficiently small, there is a subset of £, relabelled {z;}M,,
times {t§, {t7 }M,} satisfying t§ = 0 < t7, t; < tF <t @ =

Byinesd¥ =15 S o <t14(,=oo and € > 0 such that
(a) S(t)uo € N(zi, Kag) for allt € (t],t]),i=1,...,M;

(6) N(zi, Kz€) VN (2, Ka) = O for i # 5
(C) S(t)uo ¢u Vt € [t;l-it1._+l]’ 7’:071M_1;

(d) S(t)ug — zn ast — oo..

Roughly, this states that the solutions of the dynamical system pass
through a finite number of small neighborhoods of equilibria before finally




Perturbation Theory for Infinite Dimensional Dynamical Systems 265

entering and remaining in one such neighborhood for all ¢ sufficiently large.

Definition 8.2 The semigroup S(t) generated by (2.9) is said to define a
standard gradient system if it is a gradient system and

(i) there exists G € C(V,R) such that, for all functions w € C1(A,V) for
some open interval A C R,

d dw

L (e} = (22 Fw) vae N 52)
(i) V() = Hol} - G(o);
(iii) V(0) — V(p) < (A8 — F(0),0 — @) + C|0 — ¢|? V6,0 € X1 = D(A).

Important remark By taking the inner product of (2.9) with w; it follows
that a standard gradient system satisfies

d 2
S {V((t)} = —u (83)

and we will use this equation explicitly in the following. Roughly speak-
ing, the constant C in (iii) is a bound from above on the quadratic form
constructed from the second derivative of V(e) and then (iii) follows from
Taylor expansion.

Example 8.3 Consider the reaction-diffusion equation (2.12) of Example
2.5, under the assumptions (2.13). It is shown to be a gradient system in
Example 2.16. Further study of (2.12), (2.13) shows that it is in fact a
standard gradient system with

1
G(e) = | hipla)da,

where h is given by (2.26). All that is not immediately obvious and remains
to be checked is fiii). To establish (iii) note that

V(O) - V(p) = (A0-F(6),0—)— 5(A0 - ),0 — )

+ (h(p) = R(6),1) + (F(6),0 — ¢).

Now

(h(p) = (), 1) +(F(0),0 — ) =

/0 {h(e(z)) — h(0(x)) + £(6(x))(6(z) — ¢(z))} dz.

But

[h(p) — h(6) ~ F(O)(o— )] <TI0 —o* VO,p € R
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by Taylor expansion, (2.26) and (2.13). Hence, since A is positive definite,
the result follows. O

We now show that standard gradient systems satisfy Assumptions 8.1
before moving on to prove appropriate error estimates under those assump-
tions. §

Theorem 8.4 Assume that the semigroup generated by (2.9) defines a
standard gradient system with a finite number of hyperbolic equilibria and
that there exists K1 > 0 such that

U:={ne X" =D(A):|An— F(n)| < p}

satisfies (8.1) with 6 = Kyp for all p sufficiently small. Then there ezists
Ky > 0 such that Assumptions 8.1 are satisfied with € = Kap for all p
sufficiently small.

Proof The theorem makes Assumptions 8.1(i) a hypothesis. We turn to
(ii). Let uo € B\U, with B bounded. Let

7 =sup {t € R"|S(s)up € B\UVs € [0,t]},

and note that 7 > 0 by continuity. By (8.3) we have

V(u(s2)) = V(u(s1)) = - /82 [ue(s)|*ds. (8.4)

81

Hence, in particular,

V(u(r)) — V(uo) = — /(;T lus (s)|%ds < —71p>.

But V(u,) is bounded by -a constant K(u,) and V(u(r)) > 0 since V €
C(V,R™") by definition. Hence we deduce that

s 7 < K(uo)/p*.
Point (ii) follows with
1
T = — sup K(uo).
p2 ‘U.OepB ( 0)

In the following the K; denote constants independent of E which arise
in the course of the analysis. We now establish point (iii) of Assumption
8.1. We assume that there exist times t; and u; := u(t;),¢ = 1,2 such that
u(t) ¢ U for all t € [t1,t2] and u(t;) € 8Q;, , the boundary of Q;, , for some
integers 11,12 between 1 and N. We will show first that there exists K3 > 0
such that ‘

'U.(t) = B(Zl,Kgp) Vt € [tl,tzl if s1=t=1 (85)
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Secondly we will show that there exists K4 > 0 such that
V(Zm) — V(zl) =& —-K4p if = l 7é Yo =T (86)

Let us consider the case (8.5). By (8.4) and Definition 8.2(iii) it follows
that, for t € [t1,t2],

ta
JE lu(s)Pds < / ool

< V(ur) — V(uz)

< |Aug — F(ug)| Jur — uz| 4+ Clug — uaf?
< Ki[l+CKi]p®

< Kgp”

Now we deduce that

t
(t—t1)p* < | |ue(s)’ds < Ksp?

t1

and hence that t —t; < K5.
From the variation of constants formula (2.15) we have

u(t) = e u(ty) + /t e~ A=) B (u(s))ds,

t1

t
5 =e g +/ e A9 F(z)ds.
t1

Using Assumption 2.3, which shows that F € C(X",X) for some n < 1,
and the Lemma 10.6, we obtain

ds.

¢
Ksllu(s) — 2|l
u(t) — z1l| < flu(t1) — 2z +/
lu(®) — 2]l < llu(t1) — 2| T (=)
Using the facts that n < 1, t — t; < K5 and ||u(t1) — 21]| < K1p the result
(8.5) follows by application of the Gronwall Lemma 10.11.
Now consider (8.6). We have from (8.4) that

t2 ta
V(uz) — V(u1) < —/ lug|2ds < —p/ luelds < —plug — uq.

t1 t1

But

luz — u1| > |zm — 21| — |zm — u2| — |21 — ua)-
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Since the equilibria are isolated we have that there exists ( > 0 such that

| min |z — zm| > ¢
| i#]

and so, for sufficiently small p, since

|zm — u2l, |21 — w1| < Kip, (8.7)

it follows that |u; — u;| > (/2. Hence

V('I.Lz) e V(ul) = —%C

and, finally,

e ™ T 0 7 S T
WW'WmW el M "

V(zm) — V(1) < V(uz) — V(u1) + V(zm) — V(u2) + V(21) — V(u1).

But V(zm) — V(u2) and V(z;) — V(u1) are both O(p?) by Definition 8.2 (ii)
and (8.7), so the required result follows.

To complete the proof of (iii) note that (c) follows by Theorem 7.7
since the system is in gradient form. Clearly S(t)u, passes through a finite
number M < N of the @; and we order these so that V(z;) < V(z;),1 <
i J <1 < M without loss of generality. Define

t; =inf{t:u(t) € Q:}, tf =sup{t:u(t) e Q:}.

By (8.5) we have u(t) € N'(z;, Kap) for all t € [t;,t]]. By (8.6) we deduce

L 1

that if I; = [t;,t}] then I; N I; = @ for i # j and the result follows. O

Example 8.5 We know that the reaction-diffusion equation (2.12) of Ex-
ample 2.5 subjected to (2.13) yields a standard gradient system. Generically
all the equilibria are isolated (see Babin and Vishik [4]) and application of
the implicit function theorem in this case shows that the equilibria satisfy
the remaining hypothesis of Theorem 8.4.

Definition 8.6 The function u(t) is said to be a piecewise continuous
solution generated by a dynamical system S(t), if there exist an integer
N, non-negative numbers {T;}N_, and elements {U; f;‘dl of V such that
O=Te<Th <D< -<Ty=c0oand fori=1,---N

'&,(t) = S(t = Ti-—l)Ui—la iyt <l

Definition 8.7 A piecewise continuous solution of (2.9) is said to be a
combined stabilised trajectory of S if there exists p > 0 and {1, };V;Ol €&
such that B(i;, p) () B(tk,p) = 0 for i # k, with U; € B(u;;p) for j =
0,---N —1 and V(4;) < V(4j-1) forj=1,---N —1.

Theorem 8.8 Let Assumptions 8.1 be satisfied and let E C V be bounded.
Then, for any uo € E, there exists a constant C = C(E,T) and a combined
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stabilised trajectory @ (t) of S™(t), such that for any uo € E

sup || S(t)uo — @ (t)]| < Ch.
t>7

Proof For simplicity assume that uy € U; the case uo ¢ U can be handled
similarly. Let

L=0 ) i=%....M

and remove all such intervals with |I;| < T where T} = T*(z;) from
Theorem 4.13 and Corollary 4.14. Relabel the remaining {I;}}79 where
My < M. Define

IF = (7 +T7,th),i=1,..., My, Ji=[t} ;1 +Ti1,i=0,...,Mo—1.
Note that
N
|Ji] <To+ Z(T +%7)

j=1

since, between intervals I and I7, ; the solution can pass through at most
N other equilibria and can spend at most 7" time units in the neighborhood
of each z;. Whilst outside U/, Assumption 8.1(ii) shows that the solution
can spend at most 7" time units. Thus we have shown that |J;| is bounded
above in terms of E, but independently of the specific choice of uy € E.
Set

Li=t; +T7, U;= Sh(Ti*)U?(O)

where u?? (T") = u"(T) given in Theorem 4.18 with @ = z; fori =1,..., Mo—
1 and uf, (T') = u"(T') given in Theorem 4.19 with @ = zp,. -

On the interval I} we apply Theorems 4.18, 4.19 to get the required
error bounds and on J; we apply Assumptions 3.2 together with (2.16)
to get the required error bound. The constants in Theorems 4.18, 4.19
are independent of E and depend only upon the equilibria {z;}X ;. The
constants in Assumption 3.2 and (2.16) depend only upon E through the
time interval J; which is bounded above in terms of E, independently of
the specific choice of u, in E. a

Important remark Note that the total number of discontinuities is boun-
ded above by the total number of equilibria. Note also that if the solution
S(t)ug — z; as t — oo and does not pass through any Q;, j # 4, then the
number of discontinuities is at most one; it will in fact be zero if z; is stable
for then the discontinuity on the boundary of @Q; disappears as Theorem
4.19 becomes equivalent to Theorem 4.8 and the uniformly valid approxi-
mate solution has the same initial condition as the underlying solution.
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8.3 Bibliography

The idea that trajectories of gradient systems can be uniformly approxi-
mated in time by a piecewise continuous trajectory with a finite number
of discontinuities is contained in the book of Babin and Vishik [4]. Their
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dimensional approximation of an infinite-dimensional dynamical system. In
this article we have proved a weaker result, in the sense that the pieces of
approximating solution are not finite-dimensional in nature, but a stronger
rate of approximation, namely O(h). The approach taken here to prove
the results such as Theorem 8.4 originates in Stuart and Humpbhries [90]
where the effect of error control on gradient dynamical systems in finite
dimensions is considered. Similar techniques were then used in Elliott and
Stuart [32] to study the viscous Cahn-Hilliard equation (3.10).

9 Practical numerical stability

The main purpose of the results in Sections 3-8 in the context of computa-
tion is to enable interpretation of data gleaned from long-time simulations.
In particular we have shown that certain invariant objects persist under
numerical perturbations and we have obtained a variety of error estimates.
Amongst other results these enable us to: (i) state with confidence the sense
in which computations near an equilibrium point make sense; (ii) state with
confidence the sense in which data gleaned from numerical simulations on
(possibly chaotic) attractors should be interpreted; (iii) state with confi-
dence the sense in which error bounds for trajectories of. gradient systems
can be viewed as being uniformly valid in time and across a bounded set
of initial data. #

However, in the tontext of numerical approximation, the results de-
scribed-in Sections 3-8 do not distinguish between the relative merits of
different approximation methods other than in their rate of convergence. It
is of some importance to gain an understanding of which numerical meth-
ods work well in practice and the concept of practical numerical stability
is relevant here. For our purposes we shall take this to mean the construc-
tion of schemes which preserve some important features of the underlying
semigroup under mild or no restrictions on the mesh parameters.

The first illustration is to consider the equation (2.9) under the assump-
tion that there exist «, 3 > 0 such that

Slul} — (F(u),u) > Bluf — o
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It then follows from (2.9) that
57 lul* < a - Bluf?

and hence that the ball B = {u € X : |u|? < R} is positively invariant for
any R > a/. Furthermore any bounded set of initial data is mapped inside
B in a finite time so that B is absorbing and the system is dissipative in
the sense of Definition 2.13. Such results are crucial stepping-stones to es-
tablishing the global bounds on the nonlinearity that we assume in Section
2.5 and Section 6, but which must typically be proven a priori for many
equations arising in applications. One of the earliest works to look at the
preservation of dissipativity in the numerical approximation of equations
like (2.9) is Foias et al. [34], where finite difference and spectral approxi-
mations of the Kuramoto—Sivashinsky equation were studied. Elliott and
Stuart [32] address similar issues for a finite difference approximation of a
reaction-diffusion equation and temporal discretization by a variety of one-
step methods. In the paper of Armero and Simo [3], preservation of dissipa-
tivity is studied for the Navier—Stokes equations under finite element time
approximation and a variety of one-step temporal approximations. The re-
views of Stuart and Humphries [89] and of Humphries et al. [59] contain
surveys of the literature concerning preservation of dissipativity.

A second illustration of the concept of practical numerical stability is the
preservation of the gradient structure of Definition 2.15. An early example
containing explicit reference to the importance of retaining the Lyapunov
functional under approximation is contained in Elliott [28] where finite
element spatial approximation, together with some one-step time approxi-
mations of the Cahn-Hilliard equation, are considered. Further studies are
contained in Elliott and Stuart [31] where finite difference, one-step and
multi-step methods are analysed for a reaction-diffusion equation. See also
Stuart and Humphries [89] for a review of this subject.

Bibliography
1. Alouges, F. and Debussche, A. (1991). On the qualitative behavior of
the orbits of a parabolic partial differential equation and its discretiza-

tion in the neighborhood of a hyperbolic fixed point. Num. Funt. Anal.
and Opt., 12, 253-269.

2. Alouges, F. and Debussche, A. (1993). On the discretization of a par-
tial differential equation in the neighborhood of a periodic orbit. Num.
Math., 65, 143-175.

3. Armero, F. and Simo, J. Unconditional stability and long-term behav-
ior of transient algorithms for the incompressible Navier—Stokes and
Euler equations. To appear in Comp. Meth. Appl. Mech. and Eng.

4. Babin, A. and Vishik, M.I. (1992). Attractors of evolution equations.




272

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Andrew Stuart

Studies in Mathematics and its Applications, North-Holland, Amster-
dam.

Bai, F., Spence, A. and Stuart, A.M. (1993). Numerical computation
of heteroclinic connections in systems of gradient partial differential
equations. SIAM J. Appl. Math., 53, 743-769.

Bates, P.W. and Lu, K. A Hartman—-Grobman theorem for Cahn-
Hilliard and Phase-Field equations. To appear J. Dyn. Diff. Eq.
Beyn, W.-J. (1987). On invariant closed curves for one-step methods.
Numer. Math., 51, 103-122.

Beyn, W.-J. (1987). On the numerical approximation of phase por-
traits near stationary points. SIAM J. Num. Anal., 24, 1095-1113.
Beyn, W.-J. (1992). Numerical methods for dynamical systems. Nu-
merical Analyis; Proceedings of the SERC Summer School, Lancaster,
1990, edited by W.A. Light. Clarendon Press, Oxford.

Beyn, W.-J. and Lorenz, J. (1987). Center manifolds of dynamical
systems under discretization. Num. Func. Anal. and Opt., 9, 381-414.
Bhatia, N.P. and Szego, G.P. (1970). Stability Theory of Dynamical
Systems. Springer-Verlag, New York.

Bloch, A.M. and Titi, E.S. (1990). On the dynamics of rotating elastic
beams. New Trends in Systems Theory, edited by G. Conte, A. Perdon
and B.F. Wyman. Birkhauser, Berlin, 1990.

Braun, M. and Hershenov, J. (1977). Periodic solution of finite differ-
ence equations. Quart. Appl. Math., 35, 139-147.

Broomhead, D. and Iserles, A. (1992). Proceedings of the IMA Con-
ference on the dynamics of numerics and the numerics of dynamics,
1990. Cambridge University Press, Cambridge.

Caginalp, G. (1986). An analysis of a phase field model of a free bound-
ary. Arch. Rat. Mech., 92, 205-245.

Chow, S.-N. and Hale, J.K. (1982). Methods of Bifurcation Theory.
Springer.

Chow, S.-N., Lu, K. and Sell, G.R. (1992). Smoothness of inertial
manifolds. J. Math. Anal. Appl., 169, 283-321.

Chueshow, I.D. (1993). Global attractors for nonlinear problems of
mathematical physics. Russian Math. Surv., 48, 133-161.
Constantin, P. and Foias, C. (1988). Navier—Stokes Equations. Chicago
University Press.

Constantin, P., Foias, C. and Temam, R. (1985). Attractors represent-
ing turbulent flows. Mem. Amer. Math. Soc., 314.

Constantin, P., Foias, C., Nicolaenko, B. and Temam, R. (1989). In-
tegral manifolds and Inertial Manifolds for Dissipative Partial Differ-
ential Equations. Appl. Math. Sciences, Springer Verlag, New York.




er-

ion
sial

cal
14,
cal

itic
lon

er-

m-
CS,

ial

of

\go

nt-

In-
er-

Perturbation Theory for Infinite Dimensional Dynamical Systems 273

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Demengel, F. and Ghidaglia, J.M. (1989). Time-discretization and in-
ertial manifolds. Math. Mod. and Num. Anal., 23, 395-404.

Dettori, L. (1990). Spectral approximations of attractors of a class of
semilinear parabolic equations. CALCOLO, 27, 139-168.

Devulder, C., Marion, M. and Titi, E.S. (1993). On the rate of conver-
gence of the nonlinear Galerkin methods. Math. Comp., 60, 495-514.
Doan, H.T. (1985). Invariant curves for numerical methods. Quart.
Appl. Math., 3, 385—-393.

Eden, A., Michaux, B. and Rakotoson, J.M. (1990). Semi-discretized
nonlinear evolution equations as discrete dynamical systems and error
analysis. Ind. J. Math., 39, 737-784. ‘

Eirola, T. (1988). Invariant curves for one-step methods. BIT, 28,
113-122.

Elliott, C.M. (1989). The Cahn-Hilliard model for the kinetics of phase
separation. Mathematical models for phase change problems, edited by
J.F. Rodrigues. Birkhauser, Berlin.

Elliott, C.M. and Kostin, I. (1994). Lower semicontinuity of a non-
hyperbolic attractor for the viscous Cahn—Hilliard equation. Submit-
ted to Nonlinearity.

Elliott, C.M. and Larsson, S. (1992). Error estimates with smooth and
nonsmooth data for a finite element method for the Cahn—Hilliard
equation. Math. Comp., 58, 603-630.

Elliott, C.M. and Stuart, A.M. (1993). Global dynamics of discrete
semilinear parabolic equations. SIAM J. of Num. Anal., 30, 1622—
1663.

Elliott, C.M. and Stuart, A.M. (1994). The viscous Cahn-Hilliard
equation. Part II: analysis. Submitted.

Eriksson, K., Estep, ‘D.,‘Hansbo, P. and Johnson, C. (1995). Adaptive
Finite Element Methods. To appear in Acta Numerica, Cambridge
Univeréity Press, Cambridge.

Foias, C., Jolly, M.S., Kevrekidis, I.G. and Titi, E.S. (1991). Dissipa-
tivity of numerical schemes. Nonlinearity, 4, 591-613.

Ferrari, A.B. and Titi, E.S. (1994). Gevrey regularity of solutions of

a class of analytic nonlinear parabolic equations. Submitted to Com-
munications in PDEs.

Foias, C. and Prodi, G. (1967). Sur le comportement global des solu-
tions non stationnaires des equations de Navier—Stokes en dimension
2. Rend. Sem. Mat. Univ. Padova, 39.

Foias, C., Manley, O.P. and Temam, R. (1988). Modelization of the
interaction of small and large eddies in two dimensional turbulent
flows. Math. Mod. and Num. Anal. M?AN, 22, 93-114.




274

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

o4.

55.

Andrew Stuart

Foias, C., Sell, G. and Temam, R. (1988). Inertial manifolds for non-
linear evolutionary equations. J. Diff. Eq., 73, 309-353.

Foias, C., Sell, G. and Titi, E.S. (1989). Exponential tracking and
approximation of inertial manifolds for dissipative nonlinear equations.
J. Dynamics and Diff. Fq., 1, 199-243.

Friedman, A. (1964). Partial Differential Equations of Parabolic Type.
Prentice Hall.

Garay, B.M. (1993). Discretization and some qualitative properties
of ordinary differential equations about equilibria. Acta Math. Univ.
Comenianae, 62, 249-275.

Garay, B.M. (1994). Discretization and Morse-Smale dynamical sys-
tems on planar discs. Acta Math. Univ. Comenianae, 63, 25—-38.
Garay, B.M. (1994). Discretization and normal hyperbolicity. Z.
Angew. Math. Mech., 74, T662-T663.

Aulbach, B., and Garay, B.M. (1994). Discretization of semilinear dif-
ferential equations with an exponential dichotomy. Computers Math.
Applic., 28, 23-35.

Garay, B.M. (1994). On structural stability of ordinary differential
equations with respect to numerical methods. Submitted to Numer.
Math.

Garay, B.M. (1994). The discretized flow on domains of attraction: a
structural stability result. Submitted to Fund. Math.

Garay, B.M. (1994). On C7-closeness between the solution flow and
its numerical approximations. Submitted to J. Difference Eq. Appl.

Garay, B.M. (1994). On various closeness concepts in numerical ODEs.
Submitted to Computers Math. .

Hale, J.K. (1969) Orindary Differential Equations. Wiley, Chichester.
Hale, J.K. (1988). Aréymptotz'c Behavior of Dissipative Systems. AMS
Mathematical Surveys and Monographs 25, Rhode Island.

Hale J.K., Lin, X.-B. and Raugel, G. (1988). Upper Semicontinuity of
Attractors for Approximations of Semigroups and Partial Differential
Equations. Math. Comp., 50, 89-123.

Hale, J.K. and Raugel, G. (1989). Lower Semicontinuity of Attractors
of Gradient Systems and Applications. Annali di Mat. Pura. Applic.,
CLIV, 281-326.

Hartman, P. (1969). Ordinary Differential Equations. Wiley, Chich-
ester.

Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equa-
tions. Lecture Notes in Mathematics, Springer-Verlag, New York.

Heywood, J.G. and Rannacher, R. (1986). Finite element approxima-
tions of the Navier—Stokes problem. Part II: Stability of solutions and




Perturbation Theory for Infinite Dimensional Dynamical Systems 275

56.

o7.

28.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

error estimates uniform in time. SIAM J. Num. Anal., 23, 750-777.

Hill, A.T. and Siili, E. (1993). Upper semicontinuity of attractors for
linear multistep methods approximating sectorial evolution equations.
Submitted to Math. Comp.

Hill, A.T. and Siili, E. (1994). Set convergence for discretizations of
the attractor. Submitted to Numer. Math.

Humphries, A.R. (1994). Approximation of attractors and invariant
sets by Runge-Kutta methods. In preparation.

Humphries, A.R., Jones, D.A. and Stuart, A.M. (1994). Approxima-
tion of dissipative partial differential equations over long time inter-
vals. Numerical Analysis, Dundee, 1993, edited by D.F. Griffiths and
G.A. Watson. Longman, New York.

Jolly, M.S., Kevrekidis, I.G. and Titi, E.S. (1990). Approximate in-
ertial manifolds for the Kuramoto—Sivashinsky equation: analysis and
computations. Physica D, D44, 38-60.

Johnson, C., Larsson, S., Thomee, V. and Wahlbin, L.B. (1987). Error
estimates for spatially discrete approximations of semilinear parabolic
equations with non-smooth initial data. Math. Comp., 49, 331-357.
Jones, D.A. (1994). On the Behavior of Attractors under Finite Dif-
ference Approximation. Submitted to Nonlinearity.

Jones, D.A., Margolin, L.G: and Titi, E.S. (1994). On the effectiveness
of the approximate inertial manifold — a computational study. To
appear in J. Thero. Comp Fluid Mech.

Jones. D.A. and Titi, E.S. (1994). C' Approximations of Inertial Man-
ifolds for Dissipative Nonlinear Equations. Submitted to J. Diff. Eq.
Jones, D.A. and Stuart, A.M. (1995). Attractive Invariant Manifolds
Under Approximation. To appear in J. Diff. Eq.

Kaptanskii, L.V. and Kostin, I.N. (1991). Attractors of nonlinear evo-
lution equations and their approximations. Leningrad Math. J., 1, 97—
117

Kloeden, P. and Lorenz, J. (1986). Stable attracting sets in dynamical
systems and their one-step discretizations. SIAM J. Num. Anal., 23,
986-995.

Kloeden, P. and Lorenz, J. (1989). Liapunov stability and attractors
under discretization. Differential Equations, proceedings of the equadiff
conference, edited by C.M. Dafermos, G. Ladas and G. Papanicolaou.
Marcel-Dekker, New York.

Kloeden, P. and Palmer, K.J. (1993). Chaotic Numerics, American

Mathematical Society, Contemporary Mathematics no. 172, Provi-
dence.

Kostin, I.N. (1992). A regular approach to a problem on the attractors




276 Andrew Stuart

of singularly perturbed equations. J. Sov. Math., 62, 2664—2688.

71. Kostin, I.N. (1994). Lower semicontinuity of a non-hyperbolic attrac-
tor. Submitted to J. London Math. Soc.

72. Ladyzhenskaya, O. (1991). Attractors for Semigroups and Evolution
Equations. Cambridge University Press, Cambridge, 1991.

73. Larsson, S. (1989). The long-time behavior of finite element approxi-
mations of solutions to semilinear parabolic problems. STAM J. Num.
Anal., 26, 348-365.

74. Larsson, S. (1992) Non-smooth data error estimates with applications
to the study of long-time behavior of finite element solutions of semi-
linear parabolic problems. Pre-print, Chalmers University, Sweden.

75. Larsson, S. and Sanz-Serna, J.M. (1994). The behavior of finite ele-
ment solutions of semilinear parabolic problems near stationary points.
SIAM J. Num. Anal., 31, 1000-1018.

76. Lions, J.L. (1969). Quelques Methodes de Resolution des Problemes
auz Limites Non Lineaires. Dunod, Paris.

77. Lord, G.J. and Stuart, A.M. (1994) Discrete Gevrey Regularity and
Attractors for a Finite Difference Approximation of the Ginzburg—
Landau equation. Submitted to Num. Func. Anal. Opt.

78. Mallet-Paret, J. and Sell, G.R. (1988). Inertial manifolds for reaction-
diffusion equations in higher space dimensions. J. Amer. Math. Soc.,
1, 805-864.

79. Miklav¢ié, M. (1985). Stability for semilinear equations with nonin-
vertible linear operator. Pac. J. Math., 118, 199-214.

80. Orszag, S.A. (1970). Transform method for calculation of vector cou-
pled sums: Application to the spectral form of the vorticity equation.
J. Atmos. Sci., 27,-890-895. ’

81. Pazy, A. (1983) Semigroups of Linear Operators and Applications to

. Partial Differential Equations. Springer-Verlag, New York.

82. Pugh, C. and Shub, M. (1988). C" stability of periodic solutions and
solution schemes. Appl. Math. Lett., 1, 281-285.

83. Russell, R.D., Sloan, D.M. and Trummer, M.R. (1992). On the struc-
ture of Jacobians for spectral methods for nonlinear PDEs. SIAM J.
Sci. Stat. Comp., 13, 541-549.

84. Russell, R.D., Sloan, D.M. and Trummer, M.R. (1993). Some numeri-
cal aspects of computing inertial manifolds. SIAM J. Sci. Stat. Comp.,
14, 19-43.

85. Sanz-Serna, J.M. and Stuart, A.M. (1992). A note on uniform in
time error estimates for approximations to reaction-diffusion equa-
tions. IMA J. Num. Anal., 12, 457-462.

86. Shen, J. (1989). Convergence of approximate attractors for a fully




irac-
ition

roxi-
fum.

frons
emi-

. ele-
ints.

emes

and
urg—

tion-
Soe.,

onin-

cou-
tion.

ns to
5 and

struc-
M J.

meri-
omp.,

‘m in
equa-

fully

Perturbation Theory for Infinite Dimensional Dynamical Systems 277

87.

88.

89.

90.

91.

92,

93.

94.

95.

96.

97.

98.

99.

discrete system for reaction-diffusion equations. Numer. Funct. Anal.
and Opt., 10, 1213-1234.

Stetter, H. (1973). Analysis of Discretization Methods for Ordinary
Differential Equations. Springer-Verlag, New York.

Stuart, A.M. (1994). Numerical Analysis of Dynamical Systems. Acta
Numerica 1994, Cambridge University Press, Cambridge.

Stuart, A.M. and Humphries, A.R. (1994). Model problems in nu-
merical stability theory for initial value problems. SIAM Review, 36,
226-257.

Stuart, A.M. and Humpbhries, A.R. (1995). Analysis of local error con-
trol for dynamical systems. To appear in SIAM J. Num. Anal
Temam, R. (1979). Navier—Stokes equations. North-Holland, Amster-
dam.

Temam, R. (1988). Infinite Dimensional Dynamical Systems in Me-
chanics and Physics. Springer, New York.

Temam, R. (1989). Attractors for the Navier—Stokes equations: local-
ization and approximation. J. Fac. of Sci., The Univ. of Tokyo, IA,
36, 629-647.

Titi, E.S. (1990). On approximate inertial manifolds to the Navier—
Stokes equations. J. Math. Anal. Appl., 149, 540-557.

Titi, E.S. (1991). Un critere pour l’approximation des solutions
périodiques des équations de Navier—Stokes. C.R. Acad. Sci. Paris,
312, 41-43.

Thomée, V. (1984) Galerkin Finite Element Methods for Parabolic
Problems. Springer-Verlag, New York.

Wells, J.C. (1976). Invariant manifolds of nonlinear operators. Pac. J.
Math., 62, 285-293. -

Wiggins, S. (1994). Normally Hyperbolic Invariant Manifolds in Dy-
namical Systems. Springer-Verlag, New York.

Yin-Yan (1993). Attractors and error estimates for discretizations of

incompressible Navier—Stokes equations. Submitted to SIAM J. Num.
Anal.




278 Andrew Stuart

10 Appendix A — Sectorial evolution equations

In this appendix we outline the basic theory of sectorial evolution equations
in a separable Hilbert space X with norm | e |. The results are all taken
from Henry [54] and Pazy [81] with the exception of Lemma 10.12. Note
however that the precise definition of “solution” used here is that given
in Miklavéié [79] since that used in Henry [54] does not necessarily yield
uniqueness. The results in Henry are not changed in any essential way
by this change of definition Hale [50]. We let A denote a linear, densely
defined operator in a Hilbert space X with compact inverse and eigenvalue
and eigenfunction pairs {)\;, ¢;} ordered so that

Re{)\i} S RG{AH_l}.

Recall that the resolvent set of A is the set of A in the complex plane for
which (A — AI)~! is a bounded linear operator in X. The norm and inner
product on X are denoted by | e |, (e, e) respectively.

Definitions 10.1, 10.2 and Lemma 10.3 are Definitions 1.3.1, 1.3.3 and
and Theorem 1.3.4 of Henry respectively.

Definition 10.1 A linear, closed, densely defined operator A in the Hilbert
space X is said to be sectorial if, for some p € (0,7/2),M > 1 anda € R,
its resolvent set R satisfies

R DS :={N¢ < |arg(A —a)| < m, A #a}
and, furthermore
(M — A)7 < M/|]A—a] VAE€S.

Definition 10.2 An analytic semigroup on a Hilbert space X is a family
of continuous linear operators on X, {T'(t)}+>0, satisfying

(i) T(0) =I1,Tt)T(s)=T(t+s), Vt,s>0;
(i) T(t)x — = ast — 0" for each = € X;
(#i) t v T'(t)z is real analytic on 0 <t < oo for each z € X.

The infinitesimal generator L of T'(t) is defined by
Lz = lim {_—T(t)x - m}

t—0+ t
with domain D(L) consisting of all x € X for which this limit exists.

Lemma 10.3 If A is a sectorial operator, then —A is the infinitesimal
generator of an analytic semigroup T (t).

Formally we may think of 7'(t) = e~“*. Indeed if A is self-adjoint with
respect to the inner product (e, ), so that any v € X can be represented
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as

o0
v= Zvjcpj, v; = (v, 9;), (10.1)
=1
then it is appropriate to consider T'(t) as being given by
o0
Tt =e v = Ze_’\jtngoj. (10.2)
j=1

In the case where A is not sectorial an analogous definition can be made.
Henceforth we will use e~4* to denote 7'(t). In the non self-adjoint case the
precise definition of 7T°(t) is through a contour integral, evaluation of which
coincides with the approach outlined here in the self-adjoint case.

With these definitions we may define fractional powers of the operator
A; the following definition (from Henry, Definition 1.4.1) can be shown to
make sense by use of the properties of sectorial operators; I'(e) denotes the
[-function. -

Definition 10.4 If A is a sectorial operator with Re{\1} > 0 then, for
a > 0, define the fractional powers of A by

1 o i <AL
A~ = —/ gt Ay
['(a) Jo

A% =T and A% = (A=%)"! with D(A%) = R(A™°).

Returning to the case where A is self-adjoint so that any v € X can be
represented as in (10.1) we find that

o0
FLESD \"vjp; Vo € R. (10.3)

i=F

The following two results follow from Henry, Definition 1.4.7 and The-
orems 1.4.2, 1.4.3 and 1.4.8.

Lemma 10.5 If A is a sectorial operator, then the space X* = D(AY) is
a Hilbert space with norm |e|, = |A e|, where A; = A+al for any a such
that A, has positive eigenvalues. If A has compact resolvent and o > 3 > 0
then the inclusion X* C XP is compact.

Lemma 10.6 If A is a sectorial operator then for any a < 0 there exists
K = K(a) < oo such that
|A%| < K.

Furthermore, if Re{A\1} > &6 > 0 then, for any a > 0 there exists C =
C(a) < oo such that

le=4t, < Ct~%e™% vt > 0.
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We sketch the proof of a related result for the case when A is self-adjoint.
From (10.3) and (10.2) we have that

o
a —At, __ o, —Ajt,.
ey = E Aje M v ;.
j=1 ]

Hence
oo

= Af, 2 Ze~2X;t, 2
le" "ol = E Af¥e™ N g,
i=1

assuming the normalization lpj|* =1V5. Ift =0 and o < 0 we have
[vla < ATV
so that A% is bounded on X.

A simple calculation reveals that

max y2ae—2yt 2c e—?a /t2a )
y>0

=

Hence there exists C = C(a) such that
le™ 4|, < C/te.
It is also of use to note that
le= 4 <1 Vt>0 (10.4)

if A is self-adjoint.
Now we consider solving the equation
du '
p: + Au = f(t,u), t >0, u(0)=1uo (10.5)

Here, for U an open subset of Rt x X#, f : U +— X satisfies the following:
for every {t,z) € U there is a neighborhood V C U and constants L > 0,
0 < 6 <1, such that

|£(t1,21) — f(t2, z2)| < L(|t1 — tal® + |21 — 2| ). (10.6)
For simplicity we will denote
V=XP and |elg=]e]|.
Formally we see then that the equation

% +Au =0, u(0)=1u, (10.7)

has solution u(t) = T'(t)uo = e~ “tu,. This can be made precise by using the
definition of “solution” given in Definition 10.8. With this in mind we will
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frequently use the variation of constants formula obtained formally from
(10.5) by using e~“? as an integrating factor to yield the integral equation

u(t) = e"4*u(0) + /O e A=) f(s,u(s))ds. (10.8)

In this context we define (see Pazy, Definition 4.2.3):

Definition 10.7 A mild local solution of eqn (10.5) is a function u in

C([0,T),X) satisfying (10.8). A mild solution of (10.5) is a mild local
solution for each T' > 0.

Having constructed such solutions it is important to understand when
they are classical solutions of the equation. With this in mind we define
(see Miklavéic [79] and Hale [50])

Definition 10.8 A local solution of (10.5) is a function u : [0,T) — V
such that u(t) € C([0,T), X), us(t) exists in X fort > 0, u(t) € D(A),t >
0, f(e,u(e)) € C([0,T),X) and (10.5) is satisfied ont € [0,T). A solution
of (10.5) is a local solution of (10.5) for each T > 0.

The following theorem is given in Pazy, Theorems 6.3.1 and 6.3.3.

Theorem 10.9 Assume that A is sectorial, that —A generates a semi-
group T(t) satisfying
IT(¢)| <M

and that f(t,z) satisfies (10.6) for some 3 € [0,1). Then for any uo € V
there exists T = T(ug) and, for each t* < 7, a constant C = C(||uol|,t*)
such that (10.5) has a solution on [0,7) and

%‘(tna <ctf-o1 vae[B-1,1), te (0,t%).

Furthermore, if there exists continuous, mon-decreasing, real-valued k(t)
such that o

|f(t,x)| <k(@®)(1+|z|) Vt=>0,z€V, (10.9)
then 7 =00.

For convenience we denote the solution operator for the nonlinear prob-
lem (10.5) by S(uo,t) so that u(t) = S(uo, t). This indicates the dependence
of the solution on the time ¢ and initial data uy. The following theorem con-
cerns the regularity of the operator S(e,e). Let dS(e,t) denote the Frechet
derivative of S(z,t) with respect to = and let df(t,) denote the Frechet
derivative of f(t,z) with respect to . The next result is contained in Henry,
Theorem 3.4.4 and Corollary 3.4.5.

Theorem 10.10 Suppose that A is a sectorial operator in a Hilbert space
X and that (10.6) holds. Suppose further that f : U — X is C" with
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derivatives continuous on U uniformly in t for (t,z) in a neighborhood of
each point in U. Then the map (x,t) — S(z,t) is C™ for each t > 0 on its
interval of existence. Furthermore, v(t) = dS(z,t)§ is a mild solution of
the equation

vy + Av = df (t,u)u, v(0) =¢&.

We frequently use the variation of constants formula (10.8), together
with Lemma 10.6, to analyse the solution of (10.5) and its approximations.
In this context the next lemma, from section 1.2.2 of Henry (see also Elliott
and Larsson [30]) is fundamental.

Lemma 10.11 Assume that B,C >0, a,8 € [0,1) and T € (0,00). Then
there exists M = M (B, a, 8,T) < co such that for any integrable function
u: [0,T] — R satisfying

0<u(t)<Ct™*+B / t(t — 5)7Pu(s)ds
0

fort a.e. in [0,T), we have
0<u(t) <CMt™®, t ae. in [0,T].

The following specific case of the Gronwall lemma will also be of im-
portance to us; a related result is proved in Henry, Theorem 7.1.1.

Lemma 10.12 Assume that B,C,y > 0 and v € (0,1]. Then there is a
constant K = K(v) > 0 such that for any bounded function u : [0,00) — R
satisfying

t _—vy(t—s)
OS u(t) A 06_7"’ St B‘/O (:—_F’U,(S‘)ds,

it follows that =
- u(t) < 2C exp{(KBY" — ~)t}.

Proof By setting
q(t) = exp{(y — KB"t}u(t)/C
we see that it is sufficient to prove that

llglloo :=supg(t) < 2.
t>0
Now if K BY/Y = 1 then

qt)<e 4+ B /Ot(t — 8) M exp{—(t — 5)/6}q(s)ds.
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Hence

e—u/é

ul——u

du

t
a(t) Sl+BMmA

(o%e] e-—u/& .
1+mmu/ o
0

ul—u

IA

(2

v
Ul_ydv

IA

1+mmwA

oo ~—4
lalle [ €

= 1+ K", vl_”v

lgllo!
> "

(©°] —v
i= / ;1—11 dv.
0
Since v > 0 we may choose K such that 2I = K" to obtain

q(t) <1+ [lglleo/2-

Since this is true for all ¢ > 0 we have the required result. O

= 1+

where

The following three results are useful when the independent variable u
is translated to v = u — 4, hence introducing a new linear operator C. This
occurs, for example, when studying properties of (10.5) in the neighborhood
of an equilibrium point. Let o(A) denote the spectrum of an operator A.
The next result follows from CoroHary 1.4.5 and Theorem 1.4.8 of Henry.

Lemma 10.13 If A is sectorial with Re{o(A)} > 0, and if C is a linear
operator with (C — A)A~* bounded for some a € [0,1), then C is sectorial.
Furthermore D(C’lﬁ) = D(AP) if c is chosen so that C; = C + cI has
Re{c(C1)} > 0; the norms |AP e | and |C? e | are equivalent.

The following theorem is Theorem 1.5.2 in Henry:

Theorem 10.14 Let C be a closed linear operator in X and let 01(C)
denote a bounded spectral set of C and o2(C) its complement in o(C) U oo.
Then X =Y & Z where Y, Z are the projections of X associated with the
two spectral sets o1 and 0. Furthermore, Y and Z are invariant under C.

Theorem 10.15 Let A and C satisfy the conditions of Lemma 10.13
and Theorem 10.14. Let oy satisfy —6 < Re{o1(C)} < —y < 0 and
Re{o2(C)} > v > 0. Then there exists K1 > 0 such that for all a € [0,1]
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and o — 3 € [0,1]

|A%e~Cty| < K1€ftly|, Yy eY,t>0;
|A%e“ty| < Kie™™|y|, Vy e Y,t>0;
|A%e~Ctz| < K1t~ (@ Ple 4P|, Vze Z,t > 0.

Finally, there is a constant Ko = Ko(T) > 0 such that
|A%~Cty| < Kot~ P)|APy|, Ww eV, t e (0,T).

Proof The first two results follow from the fact that C' restricted to Y is

a bounded linear operator and all norms are equivalent on Y; see Henry
Theorems 1.5.2 and 1.5.3.

For the third result, let a be such that C; = C + al has spectrum
with positive real part. By Henry, Theorem 1.4.4 and 1.5.3, we have for
a € [0,1],

e Dyl 2 Z%e"ytlz| Vz € Z.

Hence, if 0 < a — <1, then

o PSPz < ﬁe_'7t|CiBz| Vz e Z.

¢
B
Thus .

e Phg) £ za—_—ﬁ-e_“’t]C’lﬁzl Vze Z.
By the norm equivalence of A and C; given in Henry, Theorem 1.4.8, the
third point follows. The final point follows by combining the first and third
points and noting that C; is a bounded operator on Y. O

11 Appendix B — Contraction principles and Taylor
expansions e

In this appendix we recall the contraction mapping theorem and two im-
portant corollaries. The first result is standard and its proof can be found
in numerous texts on analysis.

Theorem 11.1 (Contraction Mapping Theorem) Suppose that F' :
B +— B where B is a closed subset of a Banach space X with norm || e ||.
Suppose also that F(e) is a contraction on B with constant p < 1, so that

1E(v) = F(w)|| < pllv —wl|l, VYv,w e B.

Then there is exactly one point u € B such that u = F(u).

The next two simple corollaries of the contraction mapping theorem are
extremely useful.

Theorem 11.2 (Uniform Contraction Principle) Let B be a closed
subset of a Banach space X with norm ||e||. Consider a contraction mapping
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F : B — B with contraction constant p < 1 and fized point u and a one
parameter family of contraction mappings F : B — B with contraction
constant p and fized point uy for A € (0, ;). If, for any A € (0,).) there
exists €(A) > 0, such that

|Fx(v) — F(v)|| <e(A) YveB
then

A
)
1—p

Proof We have
Flu)y=u, Filu,)=u,.

Thus, using contractivity and the error bound, we have

lu—uxll = [[F(u) = Fx(un)ll
< IF(u) = F(un)|l + | F(ux) — Fx(w)]] (11.1)

< pllu = uyn| +e(N).
This gives the desired result. O

Theorem 11.3 (Commuting Contraction Principle) Let B be a clos-
ed subset of a Banach space X with norm || e||. Consider a one parameter
family of contraction mappings F : B — B with contraction constant
© < 1 and fized point uy for A € (A1, A2). Then, if

F)\OFUIF.,IOF)\ VT],AE(O,AQ)
it follows that )
(i) uy is independent of A € (M, )\2) and we denote it by G,

(i) if Fxu € B. for A\ € (0,\) then @ is a fized point of Fy for all
A€ (0,)\0)

Proof Let

FTI(U’TI) = Up, F)\(u,\) = U) ‘I],)\ = ()\1,)\2).

Then
(Fao Fp)(uy) = Fi(uy)
=  (FpeF))(uy) = Fx(u) (11.2)
= Flasl = s

Thus u, = uy. This proves (i). We denote the fixed point by .
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For (ii) let n € (A1, A2) and A € (0, Ag). Then

Fn(ﬁ) = @
=> (F\eFp)(a) = Fx(a) (11.3)
= (FpeF\)(@) = Fi(a)

Since F)(u) € B it follows by uniqueness of the fixed point in B that
F (@) = @ and the result follows. O

Once differentiability of nonlinear operators between Hilbert spaces has
been established it is natural to consider Taylor expansions; for a broad
introduction to the calculus of nonlinear operators in a Hilbert space see
Chow and Hale [16]. The following result may be found in that text. We
let Df? denote the j* Frechet derivative of f, a multilinear operator.

Theorem 11.4 (Taylor Expansions) Suppose that X,Y are Hilbert
spaces and that U C X is an open set. Then, if f € C*(U,Y),

flz+h)=f(z) + Df(z)h+...+ o) e 7 et

(k—1)!

1 1 n—1 n n
+m/0 (1-23s) Df™(x + sh)h™ds.

12 Appendix C — Attractive invariant manifolds

The material in this Appendix is generalized from Jones and Stuart [65].
The generalization is to consider maps which are written as graphs ® €
C(Y, Z) over a bounded ball in Y as well as the case where the graph is
over the whole of Y. The former case is useful for the study of unstable
manifolds and the latter for inertial manifolds.

We consider the general question of the existence of attractive invariant
manifolds for the map:

ks Wit = M(W,,), M(W)=LW + N(W). (12.1)

(Actually, as will be apparent from the theorem, the manifold may only be
locally invariant in the case where the graph of ® is defined over a compact
ball in the Y coordinate.) We assume that L : V +— V is linear and that
N : V +— V is nonlinear. The space V is decomposed into two subspaces Y
and Z which are assumed invariant under L. Thus

V=VaZ IN-Y LZ-Z (12.2)

We let P and QO denote the projections of V onto Y and Z respectively
and define p,, = PWp,,qm = QWy; thus Wy, = pp + ¢m. Throughout
the construction of the attractive invariant manifold we make the following
assumptions.
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Assumption 12.1 There exist positive constants a, b, c, By, By such that
|L2) < allz] ¥z € Z; (1)

VpeY,JweY st Lw=p and byl <||Lyll <clly| VyeY; (G2)
IR(N(u) = N())[| < Billu—vll, [RN(u)| < B, (G3)

for all u,v such that ||Pul|, ||Pv|| <, ||Qu|,||Qv| <7 and where R equals
either I,’P or Q. Furthermore, there exist constants a € (0,00) and p €
(0,1) such that

b 'Bi(1 + ) < p; (C1)
ay+ Bz < 7; (C2)
0 :=aa+ Bi(1 + a) < ap, (C3)

where ¢ :=b— B1(1+a) >0 by (C1);
a+Bi(1+a) < p. (C4)

Under these assumptions we will seek an invariant manifold for (12.1)
which is representable as the graph of a function ®, acting on a subspace
of Y, and satisfying

gm = ®(Pm) <= dm+1 = ®(Pms1) VM pmlls IPmiall <7 (12.3)

and is attractive in the sense that

llgm — @@m)ll < 1™ llgo — 2(po)ll Vm : [Pl < 7, llgnll <7, VR =0,...,m.
(12.4)
Let N

¥ ={pey:pl <r.
The appropriate space in Whicil we seek ® is now defined:
Definition 12.2 Let T' = I'(y,a) denote the closed subset of C(Y,Z)
satisfying

¥]lp := sup [[¥(p)]| <,

peEY

¥ (p1) — ¥(p2)|| < allp1 — p2|| Vp1,p2 €Y.

Theorem 12.3 (Existence of Attractive Invariant Manifolds) Sup-
pose that Assumptions 12.1 hold for the mapping (12.1) and that v >
(b—1)"'By if b > 1 and r = oo if b < 1. Then there exists a unique
® € I'(a,7y) such that (12.3) and (12.4)-hold.

Throughout the remainder of this section we assume that the conditions
of this theorem are satisfied without stating this explicitly in every result.
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The proof of the theorem will be given in a series of lemmas. We may write
(12.1) as

Pm+1 = Lpm + PN (Dm + am), (12.5)

The graph @ giving the invariant manifold is a fixed point of the operator
T:C(Y,Z)— C(Y,Z) defined by

p = LE+PNE+2IE) (12.7)

(T®)(p) = LO(§)+ QAN (£+ 2(8)). (12.8)

We employ the contraction mapping theorem to prove the existence of
a fixed point of 7. We first show that the map 7" is well defined.

Lemma 12.4 For any ® € T and p € Y there exists a unique £ € Y
satisfying (12.7).

Proof. We consider the case b > 1 and 7 > (b — 1)"1B,. The case b < 1
is similar. Note that by (G2) L~! exists on Y. Thus we may consider the
iteration

€4 = L™ p — PN(E* + 8(¢%))). (12.9)
If p € Y, then this map takes (¥ € ¥ into ¢€¥*! € Y since
[+ < b7 r + b7 By < b lr+ b7 b—)r =1

For any two sequences {¢¥}, {n*} generated by (12.9) we have, by (G2),
since ® € T,
=+ ~ gy b~ B|Ig" + (%) — n* ~ @(1")|

<
-< VB +a)ligt -t

By Condition (C1) the mapping is a contraction and the existence of &
given any p € Y follows. U

Thus, by Lemma 12.4, T® : Y — Z is well defined. We now show that
T maps ['(a, ) into itself.

Lemma 12.5 The mapping T defined by (12.8) satisfies T : ' — T.
Proof. From (12.8) and (G1), (G3) we have for allp€ Y and ® € T

I(T@)P) < all®E)|+ B2
< ay+ Bs.

Thus we have, by (C2), ||T®||r < 7.
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Let p1,p2 € Y. From Lemma 12.4 there exists {&}2_, such that (12.8)
is satisfied with p = {p;}2_,. Subtracting the two equations, we obtain

[(T®)(p1) — (T2)(p2)ll < al|®(&1) — 2(&2)]
+B1][(&1 — &2) + @(&1) — (&)

< [ao+ Bi(1+ a)]||& — &l

= 9”51 _62“7

where we have used (G1), (G3), (C3) and the properties of ® € I'. From
(G2), (G3) and (12.7) we have

bllér — &fl < ||L(& — &)
£ lp—pell + Bu(l +a)|6r — &

Using (C1) we deduce that ¢ > 0, and hence

IEx = &all < o1 - pal-
%)

Thus (C3) implies

: 6
[(T®)(p1) — (T®)(p2)|| < ;Ipl —p2|l < allpr — p2|-
Hence T':T' — T'. O

Now we may show that the map T is a contraction on the space I'.

Lemma 12.6 For any ®1,P5 € I' we have -

| T®; — T@éﬁr < pl|®1 — P2f|r.

-

Proof. By Lemma 2.3, for any p € Y and {®;}2., € " we can find {£}2_,
such that for i = 1,2

p=PM(& + 2:(&)) (12.10)
(T®;)(p) = QM (& + @:(&:)).
Using (G1), (G3) we have
[(T®1)(p) — (T22)(P)ll < (a+ B1)[[®1(&1) — P2(&2)ll + Bullér — &a;

adding and subtracting ®,(&;), using the triangle inequality and (C3), we
majorize the last inequality by

[(T®1)(p) — (T®2)(p)I| < (a+ B1)[[1(&1) — R2(&) ]| +01I& — &2l (12.11)
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Now, using (G2) and (12.10), we have similarly that
bl —&ll < L& — &) < Billér — & + @1(61) — P2(&2)l

< Bi(1+a)llér — &l + Bil|@1(61) — P2(&1)]-
Thus since ¢ > 0, by (C1)

1€ — &l < %H‘I’l(fl) = ®2(&0)|-
Returning to (12.11) and using (C3), (C4), we find
[(T®1)(p) = (T22) (D)l < pl|®1(&1) — R2(&)l- (12.12)

The result follows after taking the supremum over ¢; € Y and then p € Y.
O

Proof of Theorem 12.3 The existence of the manifold ® follows from
Lemmas 12.4-12.6. To establish the exponential attraction of solutions to
this manifold let W,,, = p,, + ¢, be an arbitrary trajectory of (12.5), (12.6)
with {|pm|l <7, [lgmll < 7. Set

P = Lpm + PN (pm + 2(pm)),
®(p) = L2(pm) + QN (Pm + B(pm))-
Then using (G1), (G2) we have

lgm+1 = @Emedl < llgmsr — 2@ + [12(p) = 2(Pmta)l
< (a+ Bi)llgm — 2(Pm)ll + allp — pmtall-

However, by (12.5), we have

- ”p = pm+1“ < Bl”Qm - (b(pm)“
Thus by (C4) we obtain

lgm+1 — (@Pm+1)ll < tllgm — 2(pm)||

and the result follows. O




