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EXPONENTIAL MEAN-SQUARE STABILITY OF NUMERICAL
SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS

DESMOND J. HIGHAM, XUERONG MAO and ANDREW M. STUART

Abstract

Positive results are proved here about the ability of numerical simula-
tions to reproduce the exponential mean-square stability of stochastic
differential equations (SDEs). The first set of results applies under
finite-time convergence conditions on the numerical method. Under
these conditions, the exponential mean-square stability of the SDE
and that of the method (for sufficiently small step sizes) are shown
to be equivalent, and the corresponding second-moment Lyapunov
exponent bounds can be taken to be arbitrarily close. The required
finite-time convergence conditions hold for the class of stochastic
theta methods on globally Lipschitz problems. It is then shown that
exponential mean-square stability for non-globally Lipschitz SDEs
is not inherited, in general, by numerical methods. However, for a
class of SDEs that satisfy a one-sided Lipschitz condition, positive
results are obtained for two implicit methods. These results highlight
the fact that for long-time simulation on nonlinear SDEs, the choice
of numerical method can be crucial.

1. Introduction

Suppose that we are required to find out whether a stochastic differential equation (SDE) is
exponentially stable in mean square. In the absence of an appropriate Lyapunov function,
we may carry out careful numerical simulations using a numerical method with a ‘small’
step size �t . Two key questions then follow.

(Q1) If the SDE is exponentially stable in mean square, will the numerical method be
exponentially stable in mean square for sufficiently small �t?

(Q2) If the numerical method is exponentially stable in mean square for small �t ,
can we infer that the underlying SDE is exponentially stable in mean square?

These questions deal with an asymptotic (t → ∞) property, and hence they cannot be
answered directly by applying traditional finite-time convergence results.

Results that answer (Q1) and (Q2) for scalar, linear systems can be found in [6, 14,
15]. Baker and Buckwar [2] consider pth mean stability of numerical methods for scalar
constant delay SDEs under assumptions of global Lipschitz coefficients and the existence
of a Lyapunov function. Schurz [15] also has results for nonlinear SDEs, which we mention
further in Section 4.
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Exponential mean-square stability

In Section 2.1 we give our definitions of exponential stability in mean square for the SDE
and numerical method. We then introduce in Section 2.2 a natural finite-time strong con-
vergence condition, Condition 2.3, for the numerical method. Under this condition, Theo-
rem 2.6 shows the equivalence, for sufficiently small step sizes, of the mean-square stability
of the SDE and that of the method. In Section 2.3 we strengthen the finite-time convergence
condition, and we show that a similar result, Theorem 2.10, can then be proved more simply.
In Section 3 we prove related results, Theorems 3.3 and 3.4, for second-moment Lyapunov
exponent bounds. The important feature of all these results is that they transfer the asymp-
totic question into a verification of a finite-time convergence condition. In Appendix A we
show that the required finite-time convergence condition from Section 2.2 holds for the
stochastic theta method on globally Lipschitz SDEs. A similar approach could be used to
establish the stronger finite-time convergence condition required in Section 2.3 – in this
case, the range of ‘sufficiently small’ step sizes for which Theorem 2.10 holds would be
smaller than that for Theorem 2.6. Section 4 begins with a counterexample to illustrate
that the Euler–Maruyama method does not, in general, preserve exponential mean-square
stability for nonlinear SDEs that do not have a globally Lipschitz drift. We then show in
Theorem 4.4 and Corollary 4.5 that positive results can be obtained for implicit methods
under a one-sided Lipschitz condition on the drift.

2. Exponential stability

2.1. Definitions

Throughout this paper, let (�, F , {Ft }t�0, P) be a complete probability space with a
filtration {Ft }t�0 satisfying the usual conditions (that is, it is right continuous and F0
contains all P-null sets). Let w(t) = (w1(t), . . . , wm(t))T be an m-dimensional Brownian
motion defined on the probability space. Let | · | denote both the Euclidean norm in R

n and
the trace (or Frobenius) norm in R

n×m. Also, let L2
Ft

(�; R
n) denote the family of all Ft -

measurable random variables ξ : � −→ R
n such that E |ξ |2 < ∞.

Consider an n-dimensional Itô SDE,

dy(t) = f (y(t))dt + g(y(t))dw(t) (1)

on t � 0, with initial data y(0) = ξ ∈ L2
F0

(�; R
n). We suppose that a numerical method is

available which, given a step size �t > 0, computes discrete approximations xk ≈ y(k�t),
with x0 = ξ . We also suppose that there is a well-defined interpolation process that extends
the discrete approximation {xk}k∈Z+ to a continuous-time approximation {x(t)}t∈R+ , with
x(k�t) = xk . Such a process is illustrated for the class of stochastic theta methods in
Appendix A.

We always assume that f : R
n −→ R

n and g : R
n −→ R

n×m are such that the SDE (1)
has a unique solution for any initial data y(0) = ξ ∈ L2

F0
(�; R

n), and for all t � 0. For
detailed conditions on the existence and uniqueness of SDE solutions, we refer the reader
to [1, 12]. In this section we consider the exponential stability in mean square of the origin,
which we define as follows (see [4, 9, 10, 11]). We frame our definitions in terms of the
stability properties of the SDE and the numerical method, rather than the zero solution, as
this allows for possible perturbation of the zero solution under discretization.

Definition 2.1. The SDE (1) is said to be exponentially stable in mean square if there is
a pair of positive constants λ and M such that, for all initial data ξ ∈ L2

F0
(�; R

n),

E |y(t)|2 � ME |ξ |2e−λt , for all t � 0. (2)
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Exponential mean-square stability

We refer to λ as a rate constant, and to M as a growth constant.

We point out that (2) forces

f (0) = 0 and g(0) = 0 (3)

in equation (1). To see this, take the initial value ξ = 0. By (2), the solution of equation (1)
must then remain zero, and so

0 = 0 +
∫ 1

0
f (0)ds +

∫ 1

0
g(0)dw(s) = f (0) + g(0)w(1).

Taking expectations on both sides yields f (0) = 0. Consequently, g(0)w(1) = 0, which
implies that g(0) = 0 too, since w(1) is a normally distributed random variable. By a change
of origin, other problems can be considered, but there is necessarily an a ∈ R

n such that
f (a) = 0 and g(a) = 0.

Following Definition 2.1, we now define exponential stability in mean square for a nu-
merical method that produces, through interpolation, a continuous-time approximation x(t).

Definition 2.2. For a given step size �t > 0, a numerical method is said to be exponentially
stable in mean square on the SDE (1) if there is a pair of positive constants γ and N such
that with initial data ξ ∈ L2

F0
(�; R

n),

E |x(t)|2 � NE |ξ |2e−γ t , for all t � 0. (4)

2.2. Assumption and results

We wish to know whether the numerical method shares exponential mean-square stability
with the SDE. Theorem 2.6 below resolves the issue positively for numerical methods that
satisfy the following natural finite-time convergence condition.

Condition 2.3. For all sufficiently small �t , the numerical method applied to (1) with
initial condition x0 = y(0) = ξ satisfies, for any T > 0,

sup
0�t�T

E |x(t)|2 < Bξ,T ,

where Bξ,T depends on ξ and T , but not upon �t , and

sup
0�t�T

E |x(t) − y(t)|2 �
(

sup
0�t�T

E |x(t)|2
)

CT �t, (5)

where CT depends on T but not on ξ and �t .

Our notation emphasizes the dependence of C upon T , as this is important in the subse-
quent analysis.

We remark that (5) says that the method has a strong finite-time convergence order of at
least 1/2, with a ‘squared error constant’ that is linearly proportional to sup0�t�T E |x(t)|2.
In Appendix A we show that the stochastic theta method satisfies Condition 2.3 when f

and g are globally Lipschitz.
It is useful to note that Condition 2.3 implies that the solution of equation (1) satisfies

sup
0�t�T

E |y(t)|2 < ∞, ∀T > 0. (6)

The following lemma gives a positive answer to question (Q1) from Section 1.
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Exponential mean-square stability

Lemma 2.4. Assume that the SDE (1) is exponentially stable in mean square and satisfies
(2). Under Condition 2.3 there exists a �t� > 0 such that for every 0 < �t � �t�, the
numerical method is exponentially stable in mean square on the SDE (1) with rate constant
γ = (1/2)λ and growth constant N = 2Me(1/2)λT .

Proof. Choose T = 1 + (4 log M)/λ, so that

Me−λT � e−(3/4)λT . (7)

Now, for any α > 0,

E |x(t)|2 � (1 + α)E |x(t) − y(t)|2 + (1 + 1/α)E |y(t)|2. (8)

Using Condition 2.3 and (2), we see that

sup
0�t�2T

E |x(t)|2 � (1 + α) sup
0�t�2T

E |x(t)|2C2T �t + (1 + 1/α)ME |ξ |2.

If we take �t sufficiently small, this rearranges to

sup
0�t�2T

E |x(t)|2 � (1 + 1/α)ME |ξ |2
1 − (1 + α)C2T �t

. (9)

Now, taking the supremum over [T , 2T ] in (8), using Condition 2.3 and the bound (9), and
also the stability condition (2), gives

sup
T �t�2T

E |x(t)|2 � (1 + α)(1 + 1/α)ME |ξ |2
1 − (1 + α)C2T �t

C2T �t + (1 + 1/α)ME |ξ |2e−λT .

We write this as

sup
T �t�2T

E |x(t)|2 � R(�t)E |ξ |2, (10)

where

R(�t) := (1 + α)(1 + 1/α)

1 − (1 + α)C2T �t
C2T �tM + (1 + 1/α)Me−λT .

Putting α = 1/
√

�t and using (7), we see that for sufficiently small �t ,

R(�t) � 2
√

�tC2T M + (
1 + √

�t
)
e−(3/4)λT .

The right-hand side of this inequality is equal to e−(3/4)λT when �t = 0, and increases
monotonically with �t . Hence, by taking �t sufficiently small, we may ensure that

R(�t) � e−(1/2)λT . (11)

In (10) this gives

sup
T �t�2T

E |x(t)|2 � e−(1/2)λT
E |ξ |2,

which we weaken to

sup
T �t�2T

E |x(t)|2 � e−(1/2)λT sup
0�t�T

E |x(t)|2.

Now, let ŷ(t) be the solution to the SDE (1) for t ∈ [T , ∞), with the initial condition
that ŷ(T ) = x(T ). Copying the previous analysis, we have

E |x(t)|2 � (1 + α)E |x(t) − ŷ(t)|2 + (1 + 1/α)E |ŷ(t)|2. (12)
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Exponential mean-square stability

Taking the supremum over [T , 3T ], and using the Markov property for the SDE, we may
shift (2) and Condition 2.3 to [T , 3T ], obtaining

sup
T �t�3T

E |x(t)|2 � (1 + α) sup
T �t�3T

E |x(t)|2C2T �t + (1 + 1/α)ME |x(T )|2.

This gives
sup

T �t�3T

E |x(t)|2 � (1 + 1/α)ME |x(T )|2
1 − (1 + α)C2T �t

.

Now, taking the supremum over [2T , 3T ] in (12), in place of (10) we arrive at

sup
2T �t�3T

E |x(t)|2 � R(�t)E |x(T )|2.

Continuing this approach and using (11) gives

sup
(i+1)T �t�(i+2)T

E |x(t)|2 � e−(1/2)λT
E |x(iT )|2, for i � 0. (13)

From (13) we see that

sup
(i+1)T �t�(i+2)T

E |x(t)|2 � e−(1/2)λT e−(1/2)λT sup
(i−1)T �t�iT

E |x(t)|2
... (14)

� e−(1/2)λT (i+1) sup
0�t�T

E |x(t)|2.

Now, using α = 1/
√

�t in (9), for sufficiently small �t we see that

sup
0�t�T

E |x(t)|2 � 2ME |ξ |2. (15)

It follows from (14) and (15) that

sup
(i+1)T �t�(i+2)T

E |x(t)|2 � e−(1/2)λT (i+1)2ME |ξ |2

= 2Me(1/2)λT
E |ξ |2e−(1/2)λT (i+2).

Hence the numerical method is exponentially stable in mean square with γ = (1/2)λ and
N = 2Me(1/2)λT .

The next lemma gives a positive answer to question (Q2) from Section 1.

Lemma 2.5. Assume that Condition 2.3 holds. Assume also that for a step size �t > 0, the
numerical method is exponentially stable in mean square with rate constant γ and growth
constant N . If �t satisfies

C2T eγT
(
�t + √

�t
) + 1 + √

�t � e(1/4)γ T and CT �t � 1, (16)

where T := 1 + (4 log N)/γ , then the SDE (1) is exponentially stable in mean square with
rate constant λ = (1/2)γ and growth constant M = 2Ne(1/2)γ T .

Proof. First, note that

e−(3/4)γ T N � e−(1/2)γ T . (17)

For any α > 0, we have

E |y(t)|2 � (1 + α)E |x(t) − y(t)|2 + (1 + 1/α)E |x(t)|2. (18)
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Exponential mean-square stability

Using Condition 2.3 and (4) in (18), we obtain

sup
T �t�2T

E |y(t)|2 � (1 + α) sup
T �t�2T

E |x(t) − y(t)|2 + (1 + 1/α) sup
T �t�2T

E |x(t)|2

� (1 + α)C2T �t sup
0�t�2T

E |x(t)|2 + (1 + 1/α) sup
T �t�2T

E |x(t)|2

� (1 + α)C2T �tNE |ξ |2 + (1 + 1/α)NE |ξ |2e−γ T

�
[
(1 + α)C2T �teγT + (1 + 1/α)

]
NE |ξ |2e−γ T . (19)

Setting α = 1/
√

�t gives

sup
T �t�2T

E |y(t)|2 �
[
C2T eγT

(
�t + √

�t
) + 1 + √

�t
]
NE |ξ |2e−γ T . (20)

Using (16) and (17), we then have

sup
T �t�2T

E |y(t)|2 � e−(3/4)γ T NE |ξ |2

� e−(1/2)γ T
E |ξ |2

� e−(1/2)γ T sup
0�t�T

E |y(t)|2. (21)

Now let x̂(t) for t ∈ [T , ∞) denote the approximation that arises from applying the
numerical method with x̂(T ) = y(T ). Then, using similar arguments to those that produced
(19) and (20), we have

sup
2T �t�3T

E |y(t)|2 � (1 + α) sup
2T �t�3T

E |x̂(t) − y(t)|2 + (1 + 1/α) sup
2T �t�3T

E |x̂(t)|2

� (1 + α)C2T �t sup
T �t�3T

E |x̂(t)|2 + (1 + 1/α) sup
2T �t�3T

E |x̂(t)|2

� (1 + α)C2T �tNE |y(T )|2 + (1 + 1/α)NE |y(T )|2e−γ T

�
[
(1 + α)C2T �teγT + (1 + 1/α)

]
NE |y(T )|2e−γ T

� e−(3/4)γ T NE |y(T )|2
� e−(1/2)γ T

E |y(T )|2
� e−(1/2)γ T sup

T �t�2T

E |y(t)|2.

Generally, this approach may be used to show that

sup
iT �t�(i+1)T

E |y(t)|2 � e−(1/2)γ T sup
(i−1)T �t�iT

E |y(t)|2, i � 1.

Hence

sup
iT �t�(i+1)T

E |y(t)|2 � e−(1/2)γ iT sup
0�t�T

E |y(t)|2. (22)

Now, using (16), we see that

sup
0�t�T

E |y(t)|2 � sup
0�t�T

E |x(t) − y(t)|2 + sup
0�t�T

E |x(t)|2

� (CT �t + 1)NE |ξ |2
� 2NE |ξ |2.
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Exponential mean-square stability

In (22), this gives

sup
iT �t�(i+1)T

E |y(t)|2 � e−(1/2)γ (i+1)T e(1/2)γ T 2NE |ξ |2,

which proves the required result.

Lemmas 2.4 and 2.5 lead to the following theorem.

Theorem 2.6. Suppose that a numerical method satisfies Condition 2.3. Then the SDE
is exponentially stable in mean square if and only if there exists a �t > 0 such that the
numerical method is exponentially stable in mean square with rate constant γ , growth
constant N , step size �t and global error constant CT for T := 1 + (4 log N)/γ satisfying
conditions (16).

Proof. The ‘if’ part of the theorem follows directly from Lemma 2.5. To prove the ‘only
if’ part, suppose that the SDE is exponentially stable in mean square with rate constant λ

and growth constant M . Lemma 2.4 shows that there is a �t� > 0 such that for any step
size 0 < �t � �t�, the numerical method is exponentially stable in mean square with
rate constant γ = (1/2)λ and growth constant N = 2Me(1/2)λT . Noting that both of these
constants are independent of �t , it follows that we may reduce �t if necessary until (16)
becomes satisfied.

We emphasize that Theorem 2.6 is an ‘if and only if’ result, which shows that, under
Condition 2.3 and for sufficiently small �t , the exponential stability of the method is
equivalent to the exponential stability of the SDE. Thus it is feasible to investigate the
exponential stability of the SDE from careful numerical simulations.

2.3. Stronger assumption and results

In this subsection, we strengthen the bound (5) in Condition 2.3 by forcing the ‘squared
error constant’ to be linearly proportional to E |ξ |2, rather than sup0�t�T E |x(t)|2. The
motivation for this is twofold: (a) the proofs of the two key lemmas become simpler and
more symmetric, and (b) the stronger bound (23) can be established for the case of the
stochastic theta method on globally Lipschitz SDEs using an extension of the techniques
given in Appendix A. However, the constant CT in (23) arising from that analysis is, in
general, much larger than the CT in (5), and hence the restriction on �t in Theorem 2.6 is
typically much less stringent than that in Theorem 2.10.

Condition 2.7. For sufficiently small �t , the numerical method applied to (1) with initial
condition x0 = y(0) = ξ satisfies, for any T > 0,

sup
0�t�T

E |x(t)|2 < Bξ,T ,

where Bξ,T depends on ξ and T , but not upon �t , and

sup
0�t�T

E |x(t) − y(t)|2 � CT �tE |ξ |2, (23)

where CT depends on T but not on ξ and �t .

Lemma 2.8. Assume that the SDE (1) is exponentially stable in mean square and satisfies
(2), and that Condition 2.7 holds. Let T := 1 + (4 log M)/λ. Choose �t� > 0 such that
for all 0 < �t � �t�, (

�t + √
�t

)
CT + (√

�t + 1
)
M � 2M, (24)
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Exponential mean-square stability

and (
�t + √

�t
)
C2T + (√

�t + 1
)
e−(3/4)λT � e−(1/2)λT . (25)

Then for all 0 < �t � �t� the numerical method is exponentially stable in mean square
with rate constant γ = (1/2)λ and growth constant N = 2Me(1/2)λT .

Proof. Starting with (8), choosing α = 1/
√

�t and using Condition 2.7 and (24), we have

sup
0�t�T

E |x(t)|2 �
[(

�t + √
�t

)
CT + (√

�t + 1
)
M

]
E |ξ |2

� 2ME |ξ |2.
(26)

Now, let ŷ[i](t) be the solution to the SDE (1) for t ∈ [iT , ∞), with the initial condition
ŷ[i](iT ) = x(iT ). Then, using (8),

sup
(i+1)T �t�(i+2)T

E |x(t)|2 � (1 + α) sup
iT �t�(i+2)T

E |x(t) − ŷ[i](t)|2

+
(

1 + 1

α

)
sup

iT �t�(i+2)T

E |ŷ[i](t)|2.

Choosing α = 1/
√

�t , using Condition 2.7 and (25), and noting that Me−λT � e−(3/4)λT ,
we find that

sup
(i+1)T �t�(i+2)T

E |x(t)|2

�
(
�t + √

�t
)
C2T E |x(iT )|2 + (√

�t + 1
)
Me−λT

E |x(iT )|2 (27)

�
[(

�t + √
�t

)
C2T + (√

�t + 1
)
e−(3/4)λT

]
sup

iT �t�(i+1)T

E |x(t)|2

� e−(1/2)λT sup
iT �t�(i+1)T

E |x(t)|2. (28)

Combining (26) and (28), we deduce that

sup
nT �t�(n+1)T

E |x(t)|2 � e−(1/2)λnT sup
0�t�T

E |x(t)|2

� 2Me(1/2)λT e−(1/2)λ(n+1)T
E |ξ |2,

and the result follows.

The following lemma is proved by techniques almost identical to those used in the
preceeding one.

Lemma 2.9. Assume that the numerical method is exponentially stable in mean square with
rate constant γ and growth constant N for some step size �t > 0, and that Condition 2.3
holds. Let T := 1 + (4 log N)/γ . Then, if(

�t + √
�t

)
CT + (√

�t + 1
)
N � 2N, (29)

and (
�t + √

�t
)
C2T + (√

�t + 1
)
e−(3/4)γ T � e−(1/2)γ T , (30)

then the SDE (1) is exponentially stable in mean square with rate constant λ = (1/2)γ and
growth constant M = 2Ne(1/2)γ T .

Just as Lemmas 2.4 and 2.5 combined to give Theorem 2.6, the next theorem follows
from Lemmas 2.8 and 2.9.
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Exponential mean-square stability

Theorem 2.10. Suppose that a numerical method satisfies Condition 2.7. Then the SDE
is exponentially stable in mean square if and only if there exists a �t > 0 such that the
numerical method is exponentially stable in mean square with rate constant γ , growth
constant N , step size �t and global error constant CT for T := 1 + (4 log N)/γ satisfying
(29) and (30).

3. Lyapunov exponents

In Lemmas 2.4, 2.5, 2.8 and 2.9, we found new rate constants that were within a factor of
1/2 of the given ones; the price we paid for this was an uncontrolled increase in the growth
constants. If we are interested only in asymptotic decay rates, then it is useful to adopt the
following alternative definitions, which eliminate the growth constant completely.

Definition 3.1. Equation (1) is said to have second-moment Lyapunov exponent bounded
by −λ < 0 if, with initial data ξ ∈ L2

F0
(�; R

n),

lim sup
t→∞

1

t
log

(
E |y(t)|2) � −λ. (31)

Definition 3.2. For a given step size �t > 0, a numerical method is said to have second-
moment Lyapunov exponent bounded by −γ < 0 on the SDE (1) if, with initial data
ξ ∈ L2

F0
(�; R

n),

lim sup
t→∞

1

t
log

(
E |x(t)|2) � −γ. (32)

We note that the λ appearing as a rate constant in Definition 2.1 is equivalent to the λ

appearing in the second-moment Lyapunov exponent bound in Definition 3.1, and similarly
for γ in Definitions 2.2 and 3.2. Theorem 3.3 below shows that by taking �t sufficiently
small, we can make the second-moment Lyapunov exponent bounds for the SDE and the
numerical method arbitrarily close.

Theorem 3.3. Assume that Condition 2.3 holds. If the SDE (1) is exponentially stable in
mean square with rate constant λ, then, given any ε ∈ (0, λ), there exists a �t� > 0 such
that for all 0 < �t � �t� the numerical method has second-moment Lyapunov exponent
bounded by −λ + ε. Conversely, if the numerical method is exponentially stable in mean
square for sufficiently small step size �t with fixed values of γ and N , then the SDE has
second-moment Lyapunov exponent bounded by −γ .

Proof. This proof is similar to the proofs of Lemmas 2.4 and 2.5. Suppose that the SDE (1)
has rate constant λ and growth constant M . Given ε, choose T = 1 + (2 log M)/ε, so that

Me−λT � e−(λ−(1/2)ε)T . (33)

Now, as in the proof of Lemma 2.4, the inequality (10) holds. (Note that T , and hence also
the constant C2T , depend upon ε.) Using (33), we have, for sufficiently small �t ,

R(�t) � 2
√

�tC2T M + (
1 + √

�t
)
e−(λ−(1/2)ε)T ,

and hence there exists a �t� such that for all �t � �t�,

sup
T �t�2T

E |x(t)|2 � e−(λ−ε)T
E |ξ |2

� e−(λ−ε)T sup
0�t�T

E |x(t)|2.
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Continuing as in the proof of Lemma 2.4, we find that for each �t � �t� the numerical
method is exponentially stable in mean square with γ = λ − ε and N = 2Me(λ−ε)T . The
first part of the theorem then follows. (Note, however, that T depends upon ε, and hence
we cannot conclude that N = N(ε) is uniformly bounded.)

To prove the converse, for any ε ∈ (0, γ ), we may choose T = 1 + (2 log N)/ε so that

Ne−γ T � e−(γ−(1/2)ε)T ,

and then in place of (21) we have

sup
T �t�2T

E |y(t)|2 � e−(γ−ε)T sup
0�t�T

E |y(t)|2.

Continuing in this way, we find that the SDE is exponentially stable in mean square with
λ = γ − ε and M = 2Ne(γ−ε)T . This means that the SDE has second-moment Lyapunov
exponent bounded by −γ + ε. Since the ε is arbitrary, the result then follows. (Note that,
as for the first part of the proof, T depends upon ε, and hence we cannot conclude that
M = M(ε) is uniformly bounded.)

In the proof of Theorem 3.3 we found it necessary to have T increasing with ε in order to
control the intermediate growth allowed by a growth factor greater than unity. In the special
case where the growth factor equals unity, we have the following stronger result.

Theorem 3.4. Assume that Condition 2.3 holds. If the SDE (1) is exponentially stable in
mean square with rate constant λ and growth constant M = 1, then, given any ε ∈ (0, λ),
there exists a �t� > 0 such that for all 0 < �t � �t� the numerical method is exponentially
stable in mean square with rate constant −λ + ε and growth constant 2eλ. Conversely, if
the numerical method is exponentially stable in mean square for sufficiently small step size
�t with fixed values of γ and N = 1, then the SDE is exponentially stable in mean square
with rate constant −γ and growth constant 2eγ .

Proof. The result can be proved in a similar manner to Theorem 3.3, using T = 1.

4. Non-globally Lipschitz results

The lemma below shows that the theorems of the previous two sections do not extend, in
general, to the case where f and g are not globally Lipschitz. We note that a similar result,
using the same function f and a different g, has been derived in the context of ergodicity
[8, 13, 18].

Lemma 4.1. For the SDE (1) with m = 1, n = 1, f (x) = −x − x3 and g(x) = x, we have

E y(t)2 � E ξ2e−t , t � 0. (34)

Consider the Euler–Maruyama method applied to this problem, for any 0 < �t � 2.
Assume that E x6

k < ∞ for all k � 0. If

(
E ξ2)2 � 6

�t2 , (35)

then E x2
k � 2k

E ξ2, and hence limk→∞ E x2
k = ∞.

Proof. The inequality (34) follows from Theorem 4.2 below, because conditions (36)–(38)
hold with µ = 1 and c = 1.
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The Euler–Maruyama method applied to the SDE gives

xk+1 = xk − (xk + x3
k )�t + xk�wk,

where �wk := w((k + 1)�t) − w(k�t). It follows that

x2
k+1 = (1 − �t)2x2

k − 2x4
k�t(1 − �t) + �t2x6

k + p(xk, �t)�wk + �w2
kx

2
k .

Here, p(xk, �t) is a polynomial in xk and �t , whose precise form is not relevant to our
analysis. So, using the bound

2x2�t(1 − �t) � δ(1 − �t)2 + δ−1�t2x4, with δ = 2,

along with E X6 � (E X2)3, we have

E x2
k+1 � −(1 − �t)2

E x2
k + (1/2)�t2

E x6
k

� E x2
k

[
(1/2)�t2(E x2

k )2 − 1
]
.

If (35) holds, then, by induction, (E x2
k )2 � 6/(�t2) and E x2

k � 2k
E ξ2 for all k.

This example rules out the possibility of extending the results in Sections 2 and 3 to
general nonlinear SDEs. It is therefore reasonable to seek results for specific problem
classes and specific numerical methods, an approach that we briefly pursue here.

It is appropriate at this stage to mention the work of Schurz [15, Chapter 8]. Although
Schurz does not address questions (Q1) and (Q2) of Section 1 directly, he has results
in a similar spirit. Under conditions that include (36)–(38) below, Schurz proves a result
about the propagation of initial perturbations for the backward Euler method (39); see [15,
Theorem 8.3.4]. Also, under a condition that in the terminology of [17, p. 181] could be
called dissipativity, Schurz proves a result about the exponential mean-square stability of the
backward Euler method of the same type as Corollary 4.5 below; see [15, Corollary 8.5.2].

The structure that we impose on the SDE (1) is that there exist constants µ, c > 0, with
2µ > c, such that the functions f : R

n −→ R
n and g : R

n −→ R
n×m satisfy

〈u − v, f (u) − f (v)〉 � −µ|u − v|2, (36)

|g(u) − g(v)|2 � c|u − v|2, (37)

for all u, v ∈ R
n, and

f (0) = g(0) = 0. (38)

The inequality (36), which is sometimes referred to as a one-sided Lipschitz condition,
plays a useful role in the stability analysis of nonlinear ordinary differential equations
[3, 17]. It is, of course, intimately connected with the Lyapunov function V (x) = |x|2.
Conditions (36) and (37) are also used in [7], where finite-time strong convergence for
non-locally-Lipschitz SDEs is studied. We have the following stability result.

Theorem 4.2. Under conditions (36)–(38), any two solutions to (1) satisfy

E |x(t) − y(t)|2 � E |x(0) − y(0)|2e−(2µ−c)t

and the SDE is exponentially stable in mean square with rate constant λ = 2µ − c and
growth constant M = 1.

Proof. Application of the Itô lemma to (1/2)|x − y|2 shows that

(1/2)d|x − y|2 � 〈f (x) − f (y), x − y〉dt + (1/2)|g(x) − g(y)|2 dt + dM(x, t),
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where M(x, t) is a martingale. Under (36)–(38), integrating and taking expectations gives
the stated inequality. Since y(t) ≡ 0 is a solution, the exponential stability follows imme-
diately.

We now consider the following two discrete numerical methods for (1).

• The backward Euler method:

xk+1 = xk + f (xk+1)�t + g(xk)�wk. (39)

• The split-step backward Euler method:

x�
k = xk + f (x�

k )�t, (40)

xk+1 = x�
k + g(x�

k )�wk. (41)

The backward Euler method is identical to the stochastic theta method (47) with θ = 1.
The split-step backward Euler method is a variant that is more amenable to analysis in
some cases. The results in [6, 14, 15] show that the backward Euler method has good linear
mean-square stability properties, and in [8] it is shown that both methods can be effective
at reproducing ergodicity. Hence, these two methods are good candidates for analysis with
respect to exponential mean-square stability.

The following lemma is part of [7, Lemma 3.4].

Lemma 4.3. Under conditions (36)–(38), given b1, b2 ∈ R
n and h > 0, let a1, a2 ∈ R

n

satisfy the implicit equations

a(i) − hf
(
a(i)

) = b(i), i = 1, 2.

Then a(1) and a(2) exist, are unique, and satisfy

(1 + 2hµ)
∣∣a(1) − a(2)

∣∣2 �
∣∣b(1) − b(2)

∣∣2
.

Theorem 4.4. Under conditions (36)–(38), both the backward Euler method and the split-
step backward Euler method produce a unique solution with probability 1, any two solutions
satisfy

E |xk+1 − yk+1|2 � (1 + c�t)

(1 + 2µ�t)
E |xk − yk|2, (42)

and any solution satisfies

E |xk+1|2 � (1 + c�t)

(1 + 2µ�t)
E |xk|2. (43)

Proof. Existence and uniqueness follow fom Lemma 4.3. For the backward Euler method
(39), Lemma 4.3 gives

(1 + 2�tµ)|xk+1 − yk+1|2 � |[xk − yk] + [g(xk) − g(yk)]�wk|2.
Thus

(1 + 2�tµ)|xk+1 − yk+1|2 � |xk − yk|2+|[g(xk) − g(yk)]�wk|2
+2〈xk − yk, [g(xk) − g(yk)]�wk〉.

Thus, taking conditional expectations and using the fact that

E |��w|2 = |�|2F �t (44)

for any � ∈ R
n×m and any �w ∈ R

n with independent identically distributed N (0, �t)
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entries, we find that

(1 + 2�tµ) E {|xk+1 − yk+1|2|Fk} � |xk − yk|2 + |g(xk) − g(yk)|2�t

� (1 + c�t)|xk − yk|2.
(Here Fk denotes the σ -algebra of events up to and including time tk .) Taking expectations
again yields the required contractivity result (42). A similar analysis gives (42) for the
split-step backward Euler method.

The inequality (43) follows because yk ≡ 0 is a solution.

Comparing Theorems 4.2 and 4.4, we see that the two backward Euler methods success-
fully capture the exponential mean-square stability of the SDE. Unlike the theorems in the
previous two sections, Theorem 4.4 applies for all �t > 0; this is because we are able to
exploit the particular structure of the methods, rather than appealing to general asymptotic
finite-time accuracy. We also note that as �t → 0, the decay rate approaches that for the
SDE. This is formalised in the following corollary.

Corollary 4.5. Under conditions (36)–(38), given any �t > 0, the backward Euler and
split-step backward Euler solutions satisfy

E |xk|2 � E |x0|2e−γ̂ (�t)k�t , k � 0, (45)
where

γ̂ (�t) := 1

�t
log

[
1 + 2µ�t

1 + c�t

]
> 0.

Also, given any ε > 0, there exists a �t� > 0 such that for all 0 < �t � �t�,

E |xk|2 � E |x0|2e(−(2µ−c)+ε)k�t , for all k � 0. (46)

Proof. The inequality (45) follows directly from Theorem 4.4, and (46) is then a conse-
quence of the fact that γ̂ (�t) = 2µ − c + O(�t).

Appendix A. Condition 2.3 for the stochastic theta method

We focus here on the class of stochastic theta methods, defined by

xk+1 = xk + (1 − θ)f (xk)�t + θf (xk+1)�t + g(xk)[w((k + 1)�t) − w(k�t)], (47)

where θ ∈ [0, 1] is a free parameter that is specified a priori. Generally, (47) represents a
nonlinear system that is to be solved for xk+1. With the choice θ = 0, definition (47) is the
widely-used Euler–Maruyama method. In this case, (47) is an explicit equation that defines
xk+1. We introduce the continuous approximation

x(t) = ξ +
∫ t

0
(1 − θ)f (z1(s)) + θf (z2(s)) ds +

∫ t

0
g(z1(s))dw(s), (48)

where

z1(t) =
∞∑

k=0

xk1[k�t,(k+1)�t)(t), and z2(t) =
∞∑

k=0

xk+11[k�t,(k+1)�t)(t),

with 1G denoting the indicator function for the set G. It is easily shown that x(k�t) = xk ,
and hence x(t) is an interpolant to the discrete stochastic theta method solution. We also
note that z1(k�t) = z2((k − 1)�t) = xk .

It is useful to note that if the stochastic theta method is exponentially stable in mean
square for some �t , then (3) holds. To show this, following the arguments in Section 1,
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we insert ξ = 0 in (47) to give 0 = f (0)�t + g(0)w(�t). Taking expected values gives
f (0) = 0, and since w(�t) is normally distributed, g(0)w(�t) = 0 implies that g(0) = 0.
In all the results of Sections 2 and 3, we assume that either the SDE or the numerical method
is exponentially stable in mean square; it follows that we will always have (3).

We impose a global Lipschitz condition on the coefficients of the SDE (1); that is,

|f (x) − f (y)|2 � K1|x − y|2 and |g(x) − g(y)|2 � K2|x − y|2, for all x, y ∈ R
n,

(49)
where K1 and K2 are constants. We also note that (49) and (3) combine to give the linear
growth bound

|f (x)|2 � K1|x|2 and |g(x)|2 � K2|x|2, for all x ∈ R
n. (50)

Our first lemma concerns the existence of solutions to the implicit equation (47). This is
a direct analogue of the classical deterministic theory; see, for example, [5, Theorem 7.2].

Lemma A.1. Under the global Lipschitz condition (49), if K1θ�t < 1, then equation (47)
can be solved uniquely for xk+1, with probability 1.

Proof. Writing (47) as xk+1 = F(xk+1), we have, using (49),

|F(u) − F(v)| = |θf (u)�t − θf (v)�t |
� K1θ�t |u − v|.

The result follows from the classical Banach contraction mapping theorem [16].

Lemma A.2. Under (3) and the global Lipschitz condition (49), for sufficiently small �t ,
the discrete stochastic theta method solution (47) satisfies

E |xk+1|2 � 2E |xk|2, for all k � 0.

Proof. From (47) we have

E |xk+1|2 � 1.5E |xk|2+6�t2
E |(1 − θ)f (xk) + θf (xk+1)|2

+6E |g(xk)[w((k + 1)�t) − w(k�t)]|2.
Noting that

|(1 − θ)f (xk) + θf (xk+1)|2 � |f (xk)|2 + |f (xk+1)|2
and using (50), we further compute that

E |xk+1|2 � 1.5E |xk|2 + 6�t2K1(E |xk|2 + E |xk+1|2) + 6K2�tE |xk|2
= (1.5 + 6�t2K1 + 6K2�t)E |xk|2 + 6�t2K1E |xk+1|2.

If �t is sufficiently small for

6�tK1 < 1 and
1.5 + 6�t2K1 + 6K2�t

1 − 6�t2K1
� 2,

we then have

E |xk+1|2 � 2E |xk|2,
as required.
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Lemma A.3. Under (3) and the global Lipschitz condition (49), for sufficiently small �t ,
the stochastic theta method solution (48) satisfies

sup
0�t�T

E |x(t)|2 < ∞ (51)

and

sup
0�t�T

{
E |x(t) − z1(t)|2 ∨ E |x(t) − z2(t)|2

}
� (2K2 + 1)�t sup

0�t�T

E |x(t)|2, (52)

for all T > 0.

Proof. Given any 0 � t � T , let k = [T/�t], the integer part of T/�t , so k�t � t <

(k + 1)�t . It follows from (48) that

x(t) = xk + [(1 − θ)f (xk) + θf (xk+1)](t − k�t) + g(xk)(w(t) − w(k�t)).

Compute

E |x(t)|2 � 3
[
E |xk|2 + K1�t2(

E |xk|2 + E |xk+1|2
) + �tE |xk|2

]
.

By Lemma A.2, we obtain the assertion (51). To show that (52) holds, we note that

x(t) − z1(t) = [
(1 − θ)f (xk) + θf (xk+1)

]
(t − k�t)

+ g(xk)[w(t) − w(k�t)], (53)

and

z2(t) − x(t) = [
(1 − θ)f (xk) + θf (xk+1)

]
((k + 1)�t − t)

+ g(xk)[w((k + 1)�t) − w(t)]. (54)

By Lemma A.2, we compute from (53) that

E |x(t) − z1(t)|2 � 2�t2K1(E |xk|2 + E |xk+1|2) + 2�tK2E |xk|2
� 6�t2K1E |xk|2 + 2�tK2E |xk|2
� (2K2 + 1)E |xk|2
� (2K2 + 1) sup

0�t�T

E |x(t)|2,

if �t � 1/(6K1). Similarly, we can show the same upper bound for E |z2(t) − x(t)|2, and
hence the assertion (52) follows.

Theorem A.4. Under (3) and the global Lipschitz condition (49), for sufficiently small �t ,
the stochastic theta method solution (48) satisfies

sup
0�t�T

E |x(t) − y(t)|2 �
(

sup
0�t�T

E |x(t)|2
)
CT �t, for all T > 0, (55)

where

CT = 2T (2K2 + 1)(4K1T + K2)e
2T (K1T +K2),

which is independent of �t . This, together with Lemma A.3, shows that under (3) and the
global Lipschitz condition (49), the stochastic theta method satisfies Condition 2.3.
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Proof. It follows from (1) and (48) that for any 0 � t � T ,

x(t) − y(t) =
∫ t

0

(
(1 − θ)[f (z1(s)) − f (y(s))] + θ[f (z2(s)) − f (y(s))]) ds

+
∫ t

0
g(z1(s)) − g(y(s)) dw(s).

Hence

E |x(t) − y(t)|2

� 2

[
K1T

∫ t

0

[
E |z1(s) − y(s)|2 + E |z2(s) − y(s)|2

]
ds

+ K2

∫ t

0
E |z1(s) − y(s)|2 ds

]

� 2

[
(2K1T + K2)

{ ∫ t

0
E |z1(s) − x(s)|2 ds +

∫ t

0
E |x(s) − y(s)|2 ds

}

+ 2K1T

{ ∫ t

0
E |z2(s) − x(s)|2 ds +

∫ t

0
E |x(s) − y(s)|2 ds

}]
.

Using Lemma A.3, we then have

E |x(t) − y(t)|2 � (8K1T + 2K2)

∫ t

0
E |x(s) − y(s)|2 ds

+T (2K2 + 1)(8K1T + 2K2)�t
(

sup
0�t�T

E |x(t)|2
)
.

From an application of the continuous Gronwall lemma (see, for example, [12]), we obtain
a bound of the form

E |x(t) − y(t)|2 �
(

sup
0�t�T

E |x(t)|2
)
CT �t.

Since this holds for any t ∈ [0, T ], the assertion (55) must hold.
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