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Abstract. In this paper we present a rigorous analysis of a scaling limit related to the motion of
an inertial particle in a Gaussian random field. The mathematical model comprises Stokes’s law for
the particle motion and an infinite dimensional Ornstein–Uhlenbeck process for the fluid velocity field.
The scaling limit studied leads to a white noise limit for the fluid velocity, which balances particle
inertia and the friction term. Strong convergence methods are used to justify the limiting equations.
The rigorously derived limiting equations are of physical interest for the concrete problem under
investigation and facilitate the study of two-point motions in the white noise limit. Furthermore, the
methodology developed may also prove useful in the study of various other asymptotic problems for
stochastic differential equations in infinite dimensions.
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1. Introduction. Many problems in the sciences and engineering involve the
interaction of particles with a field (continuum). Examples include cell-migration in
a chemical field [21], neuron modeling [28], and the modeling of spray combusters [1].
It is often the case that the field is active at a broad range of length and time scales
and that it is natural to model it by an appropriate stochastic process. Furthermore,
if the random field decorrelates rapidly when compared with particle time scales, then
it is natural to seek a reduced description of the particle motions in which the effect
of the field is replaced by white noise.

For finite dimensional problems containing two widely different time scales, the
derivation of effective stochastic differential equations (SDEs) for the slow variables
has been thoroughly studied, either through techniques of weak convergence (e.g.,
[14, 22]) or strong convergence [6]. Recently, a new methodological framework for
the study of such problems has been developed with application to problems in the
atmospheric sciences [17] and the modeling of membranes immersed in a fluid [12, 13].
These last two examples are notable in that they are infinite dimensional in charac-
ter. However, although the formalism developed in [14] is used, there are currently
no infinite dimensional analogues of the weak convergence theorems which underpin
the asymptotic approach used in [12, 13, 17]. On the other hand, when the field is
described by a rapidly decorrelating Ornstein–Uhlenbeck (OU) process, strong conver-
gence techniques can be used to rigorously justify elimination of the field to produce
white noise effects on the particle motion. This idea is developed by Dowell [3] for a
special class of OU processes on manifolds. In this paper we use Dowell’s approach
to tackle a concrete problem in which the underlying infinite dimensional OU process
is quite general. In so doing we describe an approach to the rigorous justification of
the elimination of fast scales in stochastic differential equations in infinite dimensions
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(SPDEs) which may be useful in a variety of applications. In addition we provide
an instance of dimension reduction for our concrete problem. We generalize Dowell’s
analysis in two primary directions. First, the contraction semigroup generating the
noise is a quite general OU process. Second, we prove mean square convergence in
the space of continuous functions, while Dowell proves mean square convergence for
each fixed time.

The concrete problem we study is the motion of an inertial particle in a turbu-
lent velocity field. The particle moves on the two-dimensional (2D) unit torus T2

according to Stokes’s law in a 2D incompressible random velocity field. We consider
the mathematical model that was introduced in [27] and analyzed in [26]. We look at
certain scalings of time and nondimensional parameters in which the field is rapidly
decorrelating. By applying the methodology in [12, 13, 17] SDEs were derived which
describe particle motions in this asymptotic limit of rapid decorrelation in [27]. Here
we give rigorous justification of this procedure.

One of the important applications of the model studied here is the analysis of
N -point motions of inertial particles. Thus we are interested in the stochastic flow.
Although we do not prove it, the techniques of Dowell [3] can also be used to prove
convergence to the limiting SDEs as a stochastic flow, justifying the use of the SDEs
to study N -point motions in the relevant asymptotic limits. In this context it is
relevant to mention the work of Kesten and Papanicolaou [9, 8]. They study two-point
motions in a rapidly spatially decorrelating field, with time decorrelation introduced
through Lagrangian motion. The N -point motions for passive tracers moving in a
Gaussian, homogeneous, mean zero random field which is delta-correlated in time
(GRDT model) have also been studied [16, sect. 4]. Closed equations for the N -
particle passive scalar correlation functions have been obtained, and it has been shown
that the passive tracer particles move according to coupled Brownian motions. In a
recent work Kramer [11] rigorously demonstrated that, when thinking of the GRDT
model as the limit of velocity fields with short correlation time, care has to be taken
as to how the limit is taken: only under the diffusive rescaling is the limiting behavior
of the passive tracer particles adequately described by the GRDT model. Our model
corresponds to a diffusive rescaling for the inertial particles, and the stochastic flow
generated by the limiting SDEs describes the N -point motions.

1.1. The model. The model for the motion of an inertial particle is described
by the following system of equations in nondimensional form:

τ ẍ(t) = v(x(t), t) − ẋ,(1.1a)

v(x, t) = ∇⊥ψ(x, t),(1.1b)

∂ψ

∂t
= −νAψ +

√
ν
∂W

∂t
,(1.1c)

W (x, t) =
∑

k∈K

√
λk ek(x)βk(t),(1.1d)

where (x, y) ∈ T2 × R2, K = 2πZ2 \ {(0, 0)}, and the dots denote differentiation
with respect to time t. Moreover, ∇⊥ denotes the skew gradient: ∇⊥ = ( ∂

∂x2
, − ∂

∂x1
).

The set {βk}k∈K comprises standard complex valued Brownian motions: {Reβk}k∈K
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and {Imβk}k∈K are families of independently and identically distributed real valued
Brownian motions with variance 1

2 . They are independent for different indices, except
for the condition βk = β̄−k.1 Further, we let ek(x) = eik·x. Note that the condition
βk = β̄−k ensures that the Wiener process W (x, t) is real valued. The spectrum of
the Wiener process {λk}k∈K is normalized by [27, sect. 2]

∑

k∈K

λk = 1.(1.2)

The shape of the spectrum of the Wiener process is specified by a function ζ:

λk = ζ(|k|),(1.3)

where ζ(z) = )2ζ0()z) for some appropriately normalized function ζ0 : R+ → R+.
Notice that if ζ0 has a single maximum, then the spectrum is maximized for |k| of
order O(1/)). The nondimensional parameter ) is the correlation length. Moreover, ν
is the inverse of the correlation time of the velocity field and τ is the time-scale ratio
of the particle to the fluid.

We take A to be a positive self-adjoint operator on the space H = {f ∈ L2
per(T2);

〈f〉 = 0} with domain of definition D(A) ⊂ H.2 In the subsequent analysis we
shall assume that the operator A is a diagonal operator diag{αk}k∈K in the basis
{ek(x)}k∈K . We will also assume that

αk = ξ(|k|).(1.4)

The fact that A is a positive operator implies that all of the diagonal entries are
positive. For example, A can be −∆. In this case D(A) = Ḣper(T2) := {f ∈ H2(T2);
〈f〉 = 0}, which is dense in H, and ek(x) are the eigenfunctions of A with correspond-
ing eigenvalues αk = |k|2. In the subsequent analysis we shall consider problem (1.1)
for a general operator A with particular emphasis on the case A = −∆. Physically,
the function ξ determines the relative rates of decorrelation of structures at different
length scales. Empirically, it is reasonable to assume that ξ(z) → ∞ as z → ∞, and
we make this assumption here. This simplifies the statement of the conditions on the
spectrum of the Wiener process but is not necessary from a mathematical point of
view. We remark that in Dowell’s analysis [3] only the case where A is the identity
operator is considered.

Finally, the system of equations (1.1) is augmented with initial conditions
{x0, y0,ψ0}. In this paper we shall assume that x0, y0 are random variables with
finite dimensional moments (precise conditions will be given in the theorems below)
and that ψ0 is statistically stationary in a sense to be described precisely below.

There are three nondimensional numbers in the system of equations (1.1), namely
the inverse correlation time ν, the time-scale ratio τ , and the correlation length ).
For time scales of order one the particle distributions generated by (1.1) are well
understood [26]. Our goal is to study the large-time behavior of the inertial particles
system under appropriate scalings of the correlation time ν−1 and the time-scale ratio
τ , while keeping the correlation length ) fixed. To this end, we set

t = s γ, τ = τ0 γ
α, ν = ν0 γ

β(1.5)

1We will use the notation b̄ to denote the complex conjugate of a number b and the notation b∗

to denote the conjugate transpose of a vector or matrix b, or the adjoint of an operator b.
2We use the notation 〈f〉 =

∫
T2 f(x) dx.
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and study the regime γ + 1.3 Both τ0 and ν0 are O(1) numbers. It is clear from (1.5)
that the exponent α controls the time-scale ratio, whereas the exponent β controls the
fluid correlation time. Let also v0(x, s) be the velocity field which is obtained from
(1.1c) for ν = 1. In the following we write W (·, x) and βk(t) for Wiener processes
equivalent in law to the previous occurrences with the same notation. We repeatedly
use the equivalence in law of B(c t) and c1/2B(t) for Brownian motion [7, Chap. 2,
Lem. 9.4, par. 9.4]. We substitute the rescalings (1.5) in (1.1) to obtain

τ0γ
α−2 d

2 x

d s2
= v0(x, ν0 γ

1+β s) − γ−1 d x

d s
,(1.6a)

v0(x, s) = ∇⊥ψ0(x, s),(1.6b)

∂ψ0

∂s
= −Aψ0 +

∂W

∂s
,(1.6c)

W (x, s) =
∑

k∈K

√
λk ek(x)βk(s).(1.6d)

In the following we replace s by t, the conventional time variable. We multiply (1.6a)
through by γ2−α and again use the scaling properties of Brownian motion to rewrite
(1.6) in the following form:

τ0
d2 x

d t2
= γ2−αv(x, t) − γ1−α d x

d t
,(1.7a)

v(x, t) = ∇⊥ψ(x, t),(1.7b)

∂ψ

∂t
= −ν0γ1+βAψ +

√
ν0γ

1+β
2
∂W

∂t
,(1.7c)

W (x, t) =
∑

k∈K

√
λk ek(x)βk(t).(1.7d)

Depending upon the specific values of α and β there are three different distinguished
limits which lead to a nontrivial white noise effect. In this paper we will study the
distinguished limit resulting from the choice α = β = 1, with γ = ε−1, ε , 1. The
other two cases will be briefly discussed in section 6.

For the choice of α = β = 1 the system of equations (1.7) becomes

τ0ẍ =
1

ε
v(x, t) − ẋ,(1.8a)

v(x, t) = ∇⊥ψ(x, t),(1.8b)

3From a physicist’s point of view it would be more natural to write the rescaling in the form
τ = τ0 γ, t = s γα, ν = ν0 γβ , that is, to think of the appropriate time scale at which we get a nontriv-
ial limit, given an assumption about the size of τ . Of course, the two rescalings are mathematically
equivalent.
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∂ψ

∂t
= −ν0

1

ε2
Aψ +

√
ν0

1

ε

∂W

∂t
,(1.8c)

W (x, t) =
∑

k∈K

√
λk ek(x)βk(t).(1.8d)

In equations (1.8) the velocity field amplitude is the square root of its time scale,
which formally leads to a white noise as ε → 0. Moreover, it is evident from this
equation that both friction and inertia balance the white noise as ε→ 0.

The goal of this paper is to analyze the limiting behavior of the equations of
motion (1.8a) as ε→ 0. To simplify the notation we set ν0 = τ0 = 1. We prove strong
convergence of the solution of (1.8) to the solution of a limiting SDE. Note, however,
that equations (1.8) are related to (1.1) only weakly, through the rescaling (1.5).

The solution of the SPDE (1.8c) can be written in the following form:

ψ(x, t) =
∑

k∈K

ek(x) ηk(t),

where ηk are complex valued OU processes satisfying the reality condition ηk = η̄−k,
otherwise independent, and solving

dηk = − 1

ε2
αk ηk dt +

1

ε

√
λk dβk, k ∈ K.(1.9)

We assume that the initial conditions for each mode are mutually independent and
statistically stationary, i.e., that ηk(0) ∈ N (0, λk

2αk
). This choice makes ψ0, and hence

v0, statistically stationary (except for the reality condition).
It will be more convenient for the subsequent analysis to write (1.8) as a first order

system with the equation for the stream function being written in Fourier space:

d x = y dt,(1.10a)

d y =

(
f(x) η

ε
− y

)
dt,(1.10b)

dη = − 1

ε2
A ηdt +

1

ε
dW.(1.10c)

Here η := {ηk}k∈K ∈ ĈK := {η ∈ CK ; ηk = η̄−k}. We use the notation CK to denote
the complex Hilbert space of square summable sequences on the 2D lattice K equipped
with the )2 inner product and norm: (ζ, ξ)%2 =

∑
k∈K ζk ξ̄k and ‖ζ‖2

%2 =
∑

k∈K |ζk|2 <

∞, respectively. We now redefine the operator A : ĈK → ĈK by Aγ =
∑

k∈K αk γk,

γ ∈ ĈK . The operator f(x) : ĈK → R2, for fixed x ∈ T2, is defined as

f(x)γ =
∑

k∈K

∇⊥ek(x)γk, γ ∈ ĈK .(1.11)

Finally, the Wiener process W (t) has the following Fourier representation:

W (t) =
∑

k∈K

√
λk êk βk(t),(1.12)



532 G. A. PAVLIOTIS AND A. M. STUART

where {êk}k∈K is the standard basis in CK , êk = [0, . . . , 1, . . . ]T—the eigenfunctions
of the operator A. Note that (1.3) and (1.4) imply that λk = λ−k and that αk = α−k.
We will not use (1.3) directly, but we do assume the form (1.4), with ξ(z) → ∞ as
z → ∞, in order to simplify the spectral conditions arising. In any case, (1.3), (1.4)
are natural from an applied perspective.

1.2. Statement of main results. Our goal is to show that the solutions x(t), y(t)
of (1.10) converge strongly, as ε → 0, to the solutions {X(t), Y (t)} of the limiting
SDE:

dX = Y dt,(1.13a)

d Y = f(X)A−1dW − Y dt,(1.13b)

with the same initial conditions {x0, y0}. Formally, this equation is derived by noting
that (1.10c) gives

ε−1ηdt = A−1dW − εdη,

substituting this in (1.10b) and setting ε = 0. The limiting SDE is well posed. In
fact, we have the following theorem.

Theorem 1.1. Consider the limiting SDE (1.13) with t ∈ [0, T ]. Assume that
the initial conditions are random variables satisfying E

(
|x0|2 + |y0|2

)
< ∞ and are

independent of the σ-algebra generated by the Wiener process W (t). Assume further
that the spectrum of the Wiener process W (t) satisfies

∑

k∈K

|k|4λk
α2
k

< ∞.

Then the SDE (1.13) has a unique t-continuous solution {X(t), Y (t)} which is adapted
to the filtration generated by the initial conditions and the Wiener process and satisfies
E
[
|X(t)|2 + |Y (t)|2

]
< ∞.

In order to prove convergence of the solutions of (1.10) to the solutions of (1.13)
we will need to obtain various estimates on functionals of x(t) and y(t) which are valid
uniformly in ε. These estimates will lead to various conditions on the spectrum of
the Wiener process. For the convenience of the reader we summarize these conditions
below:

∑

k∈K

(αk)
δ λk < ∞ for some δ > 0,(1.14a)

∑

k∈K

|k|4λk
α2
k

< ∞,(1.14b)

∑

k∈K

|k|4

α3+δ
k

< ∞ for some δ > 0,(1.14c)

∑

k∈K

|k|2λk
α3
k

log(αk) < ∞,(1.14d)
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∑

k∈K

|k|4+ε λk
αk

< ∞ for some ε > 0.(1.14e)

For the particularly interesting case where −A is the Laplacian we have αk = |k|2
and conditions (1.14b), (1.14c), and (1.14d) are automatically satisfied on account of
the normalization condition (1.2) and the fact that we are in the 2D lattice. Among
the remaining two conditions, (1.14e) is clearly more restrictive and becomes

∑

k∈K

|k|2+ελk < ∞ for some ε > 0.(1.15)

It is easy to check that this condition is satisfied for the Kraichnan spectrum where
ζ0(z) = z2e−z2

[10, 27]. On the other hand, it is not satisfied for the Kármán–Obukhov
spectrum where ζ0(z) = z2(1+z2)−7/3 [5, 27]. However, this is not a serious drawback
since the Kármán–Obukhov spectrum is valid only in the inertial range and should
be modified to decay more rapidly in the dissipative range.

Now we are ready to present the main theorem.
Theorem 1.2. Let {x(t), y(t)} be the solutions of equations (1.10) with initial

conditions {x0, y0} satisfying E(|x0|2 + |y0|4) < ∞. Assume further that the spectrum
of the Wiener process W (t) satisfies conditions (1.14). Then {x(t), y(t)} converge,
as ε → 0, to the solutions of the limiting SDE (1.13) {X(t), Y (t)}, with the same
initial conditions, in the following sense:

E
(

sup
0≤t≤T

{
|y(t) − Y (t)|2 + |x(t) −X(t)|2

})
≤ C ε2−σ(1.16)

for any σ > 0. The constant C depends on the moments of the initial conditions, the
spectrum of the Wiener process, the operator A, the maximum time T , and on σ.

1.3. Discussion of the main theorem. In the main theorem we consider a
model for the motion of inertial particles in a Gaussian random field model of tur-
bulence. We study a rescaled model which describes particle motions at large times
in situations where the correlation time of the fluid, and the particle/fluid time-scale
ratio, are also scaled to achieve white noise behavior for the effect of the Gaussian
random field on the particles. We reduce an infinite dimensional problem to an SDE in
T2×R2. The techniques that we describe will apply to the elimination of rapidly vary-
ing infinite dimensional OU processes in quite general situations. Loosely speaking,
we study the limit ε→ 0 for the equation

d2x

dt2
=

f(x)

ε
η0

(
t

ε2

)
− dx

dt
,

with η0 an infinite dimensional OU process with correlation time equal to O(1). We
obtain the limiting equations

d2X

dt2
= σ(X)

dW

dt
− dX

dt
,(1.17)

where W is an infinite dimensional Wiener process.
It is shown in [27], using (1.3) and (1.4), that the operator σ(x) = f(x)A−1

satisfies

σ(X)σ(X)∗ = σ̂2I,(1.18)
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and σ̂ is constant, where I is the identity on R2. Hence the limiting SDE is equivalent
in law to the SDE

d2X

dt2
= σ̂

dB

dt
− dX

dt
.(1.19)

The limiting equations (1.17), (1.19) arise when both the inverse fluid correlation
time and the particle/fluid time-scale ratio scale linearly with the time dilation factor
so that the fluid is rapidly decorrelating and the particles are heavy, giving rise to
the distinguished limit studied in this paper. Note that the Itô and Stratonovich
interpretations of (1.17) are the same because the multiplicative noise term appears
only in the equation for particle velocity and depends only on the particle position.
The particle motion described by (1.17) is equivalent in law to an OU process for
the velocity d x

d t on R2 (see (1.19)). This is, consequently, ergodic and gives rise to a
stationary Gaussian measure for the particle velocity. This in turn yields a stationary
uniform measure for the particle positions on T2.

Equation (1.17) has more interesting behavior when studied from the viewpoint
of two-point motions. Although we have not proved it, techniques similar to those
used here will prove convergence of (1.10a), (1.10b) to (1.17) as a flow.4 Thus it is
interesting to study (1.17) as a random dynamical system. We leave such a study for
a future publication.

1.4. Overview. The remainder of this paper is organized as follows. In section
2 we present some background material on infinite dimensional SDEs and write the
system of equations (1.8) as an abstract SDE in infinite dimensions. In section 3 we
prove existence and uniqueness of solutions for the limiting SDE (1.13). In section 4
we obtain the estimates that are necessary for the proof of the convergence theorem,
Theorem 1.2. In section 5 we prove the convergence theorem. Section 6 is devoted
to conclusions and discussion of generalizations of the main theorem of this paper.
Finally, the appendix is devoted to the derivation of various estimates for the infinite
dimensional OU process (1.10c).

2. Abstract formulation. In order to carry out the subsequent analysis we
shall need to use the infinite dimensional versions of the Itô lemma and the Itô isom-
etry. It is possible to verify that (1.10) satisfies the necessary conditions for these
theorems to hold. For background material on stochastic equations in infinite dimen-
sions we refer the reader to [24].

Let H and U be two separable Hilbert spaces, and let W (t) be a U -valued Q-
Wiener process. Here Q is the covariance operator of W (t), and the spectrum of this
operator defines the spectrum of the Wiener process. Further, let U0 = Q

1
2 (U), and

let L0
2 = L2(U0, H) denote the space of Hilbert–Schmidt operators from U0 to H.

Let now Φ(t), t ∈ [0, T ], be a measurable L0
2-valued process. Further, we define the

Hilbert space N 2
W := N 2

W (0, T ;L0
2) consisting of all L0

2-predictable processes Φ(t) such

that |||Φ|||2T := E
∫ t
0 Tr[ΦQΦ∗] ds < ∞. Then, we can define the stochastic integral∫ t

0 Φ(s) dW (s) ∀Φ(t) ∈ N 2
W . This process is a continuous, square integrable H-valued

martingale on [0, T ], and the Itô isometry holds:

E
∣∣∣∣
∫ t

0
Φ(s) dW (s)

∣∣∣∣
2

= |||Φ|||2t = E
∫ t

0
Tr[ΦQΦ∗] ds, t ∈ [0, T ].(2.1)

4This will require further conditions on the spectrum of the Wiener process.
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Let us consider now the process

X(t) = X(0) +

∫ t

0
φ(s) ds +

∫ t

0
Φ(s) dW (s),(2.2)

where Φ ∈ N 2
W , φ is an H-valued predictable process Bochner integrable on [0, T ]

P-a.s. and X(0) is an F0-measurable H-valued random variable. Under these condi-
tions the process (2.2) is well defined. Let now F : [0, T ] × H → R be a uniformly
continuous function on bounded subsets of [0, T ] × H, together with its derivatives
Ft, Fx, Fxx.5 Then the Itô formula holds P-a.s. ∀ t ∈ [0, T ]:

F (t,X(t)) = F (0, X(0)) +

∫ t

0
〈Fx(s,X(s)),Φ(s) dW (s)〉

+

∫ t

0

{
Ft(s,X(s)) + 〈Fx(s,X(s)),φ(s)〉

+
1

2
Tr
[
Fxx(s,X(s))

(
Φ(s)Q

1
2

)(
Φ(s)Q

1
2

)∗]}
ds,(2.3)

where 〈·〉 denotes the inner product in H.
Now we wish to apply this abstract formulation to our problem.6 To this end, we

define the spaces U = CK and H = T2 × R2 × CK . H is a Hilbert space equipped
with the following inner product:

(f1, f2)H = (x1, x2) + (y1, y2) + (z1, z2)%2 ,

where fi = [xi yi zi]T , i = 1, 2 with xi ∈ T2, yi ∈ R2, zi ∈ CK . Here (·, ·) and (·, ·)%2
denote the Euclidean and )2 inner products, respectively.

W (t) is a U -valued Q-Wiener process where the covariance operator Q : U → U
has eigenvalues {λk}k∈K and eigenvectors {êk}k∈K which form a complete orthonor-
mal basis in CK . The Fourier representation of the Wiener process W (t) is given by
formula (1.12).

We can write (1.10) in the following abstract form:

dZ = b(Z) dt + V dW,

where Z(t) = [x y η]T ∈ H, the drift term b(Z) ∈ H is

b(Z) =




y

f(x)η
ε − y

− 1
ε2A η



 ,

and the operator V : U → H is

V =




O2×∞
O2×∞

1
ε I



 ,(2.4)

5Fx and Fxx are understood in the sense of Fréchet derivatives.
6A slightly different, though completely equivalent, formulation of system (1.10) was used in [19,

sect. 4].
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where O2×∞ is the zero operator in L(ĈK ,R2) and I is the identity operator in L(ĈK).
We can think of V as an infinite dimensional matrix with entries:

Vij =

{
0 : i = 1, . . . , 4, j = 1, . . . ,∞,

1
ε δij : i = 5, . . . ,∞, j = 1, . . . ,∞.

In order to be able to apply the Itô lemma and Itô isometry we have to check that
V ∈ L0

2 = L2(U0, H). In other words,

Tr[V QV ∗] < ∞.(2.5)

For the operator V defined in (2.4) condition (2.5) reduces to

1

ε2

∑

k∈K

λk < ∞.(2.6)

Condition (2.6) is satisfied for every fixed, finite ε on account of the normalization
condition (1.2). The condition on the drift term is also satisfied since it is clearly
Bochner integrable. Later on we will have occasion to use both formulas (2.1) and
(2.3).

3. Existence and uniqueness of solutions for the limiting SDE. In this
section we prove Theorem 1.1, which ensures existence and uniqueness of solutions for
the limiting SDE (1.13). The proof differs from the standard existence and uniqueness
proof for SDEs [18, 20] in that the system (1.13) is driven by an infinite dimensional
noise.

In the following we frequently use the following lemma whose proof is straight-
forward and omitted for brevity.

Lemma 3.1. Let D : ĈK → ĈK be diagonal with entries {di}i∈K ∈ R. Let

G ∈ L(ĈK ,R2) be defined for γ ∈ ĈK by

G γ =
∑

k∈K

gkγk, gk ∈ C2, gk = ḡ−k.

Then

GD (GD)∗ =
∑

k∈K

d2
kgkg

∗
−k.

Before proceeding with the proof of Theorem 1.1 we present a calculation that
we need. We take the Hilbert space U to be the same as in the previous section, and
we set H = T2 × R2. Let T > 0 and t ∈ [0, T ]. Then from Itô isometry (2.1), using
(1.11) and Lemma 3.1 with D = A−1Q1/2 and G = f(x) we have

E
∣∣∣∣
∫ t

0
f(X(s))A−1 dW (s)

∣∣∣∣
2

= E
∫ t

0
Tr
[(
f(X(s))A−1

)
Q
(
f(X(s))A−1

)∗]
ds

= E
∫ t

0

∑

k∈K

|∇⊥ek(X(s))|2 λk
α2
k

ds

≤ T
∑

k∈K

|k|2λk
α2
k

≤ C1 T,(3.1)
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where C1 =
∑

k∈K
|k|2λk

α2
k

. This is a finite quantity under (1.14b). Similarly, in view

of the Lipschitz continuity of f(X), we have

E
∣∣∣∣
∫ t

0

(
f(X(s)) − f(X̂(s))

)
A−1 dW (s)

∣∣∣∣
2

≤
(
∑

k∈K

λk |k|4

α2
k

)∫ t

0
E|X(s) − X̂(s)|2 ds

= C2

∫ t

0
E|X(s) − X̂(s)|2 ds,(3.2)

with C2 =
∑

k∈K
|k|4λk

α2
k

< ∞ on account of condition (1.14b). We also remark that,

since the stochastic integral
∫ t
0 f(X(s))A−1 dW (s) is a continuous, square integrable

R2-valued martingale on [0, T ] we can use Theorem 3.8 from [24], together with (3.1),
in order to obtain

E
(

sup
0≤t≤T

∣∣∣∣
∫ t

0
f(X(s))A−1 dW (s)

∣∣∣∣
2
)

≤ 4 sup
0≤t≤T

E
(∣∣∣∣
∫ t

0
f(X(s))A−1 dW (s)

∣∣∣∣
2
)

≤ 4C1 T.

Similarly, we have

E
(

sup
0≤s≤t

∣∣∣∣
∫ s

0

(
f(X(r)) − f(X̂(r))

)
A−1 dW (r)

∣∣∣∣
2
)

≤ 4C2

∫ t

0
E
(

sup
0≤r≤s

∣∣∣X(r) − X̂(r)
∣∣∣
2
)

ds.(3.3)

Proof of Theorem 1.1. We only sketch the proof, as it is a straightforward exten-
sion of the existence and uniqueness proof for ordinary SDEs to the case of infinite
dimensional noise.

We start with uniqueness. By using (3.3) we obtain

E
(

sup
0≤s≤t

(
|X(s) − X̂(s)|2 + |Y (s) − Ŷ (s)|2

))

≤ C

∫ t

0
E
(

sup
0≤r≤s

(
|X(r) − X̂(r)|2 + |Y (r) − Ŷ (r)|2

))
ds.(3.4)

This implies uniqueness.

We now proceed with the existence part of the proof using Picard’s iteration
scheme. We define X(0) = X(0) = x0, Y (0) = Y (0) = y0 and define the n + 1 term
inductively as follows:

X(n+1)(t) = x0 +

∫ t

0
Y (n)(s) ds,

Y (n+1)(t) = y0 +

∫ t

0
f(X(n)(s))A−1dW (s) −

∫ t

0
Y (n)(s) ds.
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A similar calculation to the one for the uniqueness proof yields

E
(
|X(n+1)(t) −X(n)(t)|2 + |Y (n+1)(t) − Y (n)(t)|2

)
≤ Cn tn

n!
, t ∈ [0, T ],(3.5)

where the constant C is a function of T , E|y0|2, the spectrum of the Wiener process,
and operator A. On the other hand, we have, using arguments similar to those used
in (3.3) and by (3.5),

E
(

sup
0≤t≤T

(|X(n+1)(t) −X(n)(t)|2 + |Y (n+1)(t) − Y (n)(t)|2)
)

≤ C3
Cn Tn

n!

under condition (1.14c).
The rest of the existence proof follows the steps of the corresponding proof in

the case of a finite dimensional Wiener process [18, Thm. 2.3.1], [20, Thm. 5.2.1]:
the above estimates enable us to prove that {Xn(t), Y n(t)} converge uniformly in
[0, T ] for a.a. ω as well as strongly in L2(P ) to {X(t), Y (t)}. Consequently, the limit
{X(t), Y (t)} has all the properties mentioned in the statement of Theorem 1.1, and
the only thing left to check is that they are solutions of (1.13). For this it suffices to
ensure that

E
(∣∣∣∣
∫ t

0
(f(Xn(s)) − f(X(s)))A−1 dW (s)

∣∣∣∣

)2

→ 0 as n → ∞.

This follows from (3.2) and the strong convergence in L2(P ) of Xn(s) to X(s). The
proof of the theorem is now complete.

4. Necessary estimates for the convergence theorem. In this section we
obtain various estimates that we will need in the proof of the two convergence theo-
rems. We start by integrating (1.10b) in time to obtain

y(t) − y(0) =
1

ε

∫ t

0
f(x(s))η(s) ds−

∫ t

0
y(s) ds.(4.1)

We now use the infinite dimensional version of Itô’s lemma in order to rewrite (4.1)
in a more convenient form. We remark that, since the integrand in the first integral
is linear in η and noise appears in (1.10) only in the equation for η, no higher order
corrections will appear, and the integration by parts formula from standard calculus
holds.

Before presenting the formula that results from the integration by parts let us
define carefully the various operators that we will use (we shall think of η as an
infinite dimensional complex vector which is bounded in the )2 norm). The operator

f(x) is defined by (1.11). The operator df(x)y(s) ∈ L(ĈK ,R2) is defined by

{df(x)y(s)}γ =
∑

k∈K

ik · y∇⊥ek(x)γk.(4.2)

The operator Aδ : D(Aδ) ∈ CK → CK , δ > 0, is the diagonal operator with entries
{(αk)δ}k∈K . Its domain of definition consists of all elements η ∈ CK for which
||Aδη||%2 < ∞.
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The integration by parts formula gives

y(t) − y(0) =
1

ε

∫ t

0
f(x(s))η(s) ds−

∫ t

0
y(s) ds

= −ε
∫ t

0
f(x(s))A−1 dη(s) +

∫ t

0
f(x(s))A−1 dW (s) −

∫ t

0
y(s) ds

= −ε
(
f(x(t))A−1η(t) − f(x(0))A−1η(0)

)
+ ε

∫ t

0
df(x(s))y(s)A−1η(s) ds

+

∫ t

0
f(x(s))A−1 dW (s) −

∫ t

0
y(s) ds

:= I1 + I2 + I3 + I4.(4.3)

Our goal in this section is to show that the terms I1 and I2 are small in mean square.
The terms I3 and I4 give the required contribution to the limiting equations.

We start by obtaining bounds on the second and fourth moments of y(t). Our
method will be to first obtain a bound on the fourth moment of the form,

E|y(t)|4 ≤ C ε−4,

and then use this to obtain a uniform bound on the second moment:

E|y(t)|2 ≤ C.

Lemma 4.1. Let y(t) be the solution of (1.10), and assume that the initial con-
ditions y0 satisfy E|y0|4 < ∞. Assume further that condition (1.14e) holds. Then we
have

E|y(t)|4 ≤ C ε−4,(4.4)

where the constant C is a function of T , the initial conditions, the spectrum of the
Wiener process, and the operator A.

Proof. Let us consider the first component of (1.10b):

dy1 =

(
v1(x(t), t)

ε
− y1(t)

)
dt,(4.5)

where v1(x, t) is the first component of the velocity field, v(x, t) = f(x) η(t). We
multiply (4.5) by (y1(t))3 to obtain

d(y1(t))
4 =

(
4

ε
y1(t)

3v1(x(t), t) − 4y1(t)
4

)
dt.

We integrate the above equation and get

(y1(t))
4 = (y1(0))4 +

4

ε

∫ t

0
(y1(s))

3v1(x(s), s) ds− 4

∫ t

0
(y1(s))

4 ds.
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A similar expression holds for the second component of y(t). Now we have

|y(t)|4 ≤ 2
(
(y1(t))

4 + (y2(t))
4
)

≤ 2 |y(0)|4 + 8
2∑

i=1

(
1

ε

∫ t

0
(yi(s))

3vi(x(s), s) ds−
∫ t

0
(yi(s))

4 ds

)

≤ 2 |y(0)|4 +
1

ε4

2∑

i=1

∫ t

0
(vi(x(s), s))4 ds

≤ 2 |y(0)|4 +
1

ε4

∫ t

0
|v(x(s), s)|4 ds.

In the above derivation we used the inequality a b ≤ δ ap +C(δ) bq with p−1 + q−1 = 1
and C(δ) = (δ p)−

q
p q−1 [4, p. 622] with δ = ε, p = 3

4 , q = 4, C(ε) = 27
256ε

−3 < 1
8ε

−3.
Now we take the expectation value of the above expression to obtain

E|y(t)|4 ≤ 2 E|y(0)|4 +
1

ε4

∫ t

0
E|v(x(s), s)|4 ds

≤ C ε−4,

where the bound on the fourth moment of the velocity field which is derived in section
A.2 is used. The lemma is proved.

Now we are ready to bound the second moment of y(t) uniformly in ε.

Lemma 4.2. Let y(t) be the solution of (1.10), and assume that the initial con-
ditions y0 satisfy E|y0|4 < ∞. Assume further that the spectrum satisfies conditions
(1.14a), (1.14b), (1.14c), and (1.14e). Then we have

E|y(t)|2 ≤ C,(4.6)

where the constant C is a function of T , the initial conditions, the spectrum of the
Wiener process, and the operator A.

Proof. Step 1. The solution of (1.10b) is

y(t) =
1

ε
e−t

∫ t

0
esf(x(s))η(s) ds + y(0)e−t.(4.7)

We perform an integration by parts on the integral on the right-hand side of the above
expression and then use Itô’s formula for the function G(s, x, η) = esf(x(s))A−1η(s)
to obtain7

y(t) = ε e−t

∫ t

0
esf(x(s))A−1η(s) ds + εe−t

∫ t

0
esdf(x(s))y(s)A−1η(s) ds

+ e−t

∫ t

0
esf(x(s))A−1 dW (s) − ε

(
f(x(t))A−1η(t) − e−tf(x(0))A−1η(0)

)
+ y0 e

−t

:= J1 + J2 + J3 + J4 + J5.

7Due to the fact that G(s, x, η) is linear in η and that only the equation for η contains a noise
term, the Itô formula reduces to ordinary calculus.
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Consequently, we have

E|y(t)|2 ≤ 5
(
E|J1|2 + E|J2|2 + E|J3|2 + E|J4|2 + E|J5|2

)
.(4.8)

We shall treat each term from the right-hand side of (4.8) separately.

Step 2. We start with the first term. A simple variant of the proof of Theorem
A.2 reveals that

E
∣∣f(x(s))A−1η(s)

∣∣2 = CA < ∞(4.9)

under condition (1.14e).8 We now use estimate (4.9) to deduce

E|J1|2 = ε2E
∣∣∣∣e

−t

∫ t

0
etf(x(s))A−1η(s) ds

∣∣∣∣
2

≤ ε2e−2tT

∫ t

0
e2s
∣∣f(x(s))A−1η(s)

∣∣2 ds

≤ ε2 T 2 CA,

where the constant CA depends only on the spectrum of the Wiener process and the
operator A.

Step 3. Now we proceed with the second term. We have

E|J2|2 = ε2e−tE
∣∣∣∣
∫ t

0
esdf(x(s))y(s)A−1η(s) ds

∣∣∣∣
2

≤ T ε2 E
∫ T

0

∣∣df(x(s))y(s)A−1η(s)
∣∣2 ds

= ε2 E
∫ T

0

∣∣∣df(x(s))y(s)A−1A− 1+δ
2 A

1+δ
2 η(s)

∣∣∣
2
ds

≤ ε2 E
∫ T

0
||df(x(s))y(s)A− 3+δ

2 ||2
L(ĈK ,R2)

||A
1+δ
2 η(s)||2%2 ds

= ε2 E
∫ T

0
‖B‖2

L(ĈK ,R2)
||A

1+δ
2 η(s)||22 ds,(4.10)

where B := df(x(s))y(s)A− 3+δ
2 and || · ||L(ĈK ,R2) denotes the operator norm on

L(ĈK ,R2). Now we have to obtain a bound on ‖B‖L(ĈK ,R2).

Step 4. The action of B on η ∈ ĈK is

Bη =
∑

k∈K

[ik2, −ik1]
T eik·xik · y 1

α
3+δ
2

k

ηk.(4.11)

8In fact, the above estimate is valid under the condition
∑

k∈K |k|4+ε λk
α2
k

= CA < ∞ for some

ε > 0 which is less restrictive than (1.14e). This is because v(x, t) = f(x(t)) η(t), and so the bound
in Theorem A.2 requires stronger decay estimates than (4.9), which contains an extra A−1, and we
have assumed that ξ(z) grows with z.
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Now we can compute the operator norm of B : ĈK → R2 using Lemma 3.1:

‖B‖2
L(ĈK ,R2)

= sup
‖η‖#2≤1

‖Bη‖2
R2

= sup
‖η‖#2≤1

∑

k∈K

|k|2|k · y|2 1

α3+δ
k

|ηk|2

≤
∑

k∈K

|k|2|k · y|2 1

α3+δ
k

≤ |y|2
∑

k∈K

|k|4

α3+δ
k

.

The sum on the right-hand side of the above estimate is summable on account of
condition (1.14c). Thus, we conclude that

||B||2
L(ĈK ,R2)

≤ C|y|2,(4.12)

where C :=
∑

k∈K
|k|4

α3+δ
k

. Since the initial conditions for η(t) are statistically station-

ary, the process A
1+δ
2 η is a Gaussian process with mean zero and covariance operator

Q̂ζ =
∑

k∈K α
δ
kλkζkêk, ζ = {ζk}. Condition (1.14a) ensures that Q̂ is a trace class

operator. Now, Corollary 2.17 from [24] enables us to bound higher order moments
of Gaussian processes in terms of the second moment:

E‖A
1+δ
2 η‖4

%2 ≤ C
(
Tr(Q̂)

)2
= C

(
∑

k∈K

αδkλk

)2

≤ C(4.13)

on account of condition (1.14a).
We use bounds (4.12) and (4.13) in (4.10) to obtain

E|J2|2 ≤ ε2 C T E
∫ t

0
|y(s)|2||A

1+δ
2 η(s)||2%2 ds

≤ ε4C T

2

∫ t

0
E|y(s)|4 ds +

C T

2

∫ t

0
E||A

1+δ
2 η(s)||4%2 ds

≤ C T.

Step 5. In order to bound E|J3|2 we just use Itô isometry (3.1) and Lemma 3.1:

E|J3|2 = e−2t

∫ t

0
E
(
esTr

[(
f(x(s))A−1Q

1
2

)(
f(x(s))A−1Q

1
2

)∗])
ds

≤
(
∑

k∈K

λk |k|2

α2
k

)
≤ C T

on account of condition (1.14b).
Step 6. Now we consider J4:

E|J4|2 = ε2 E
(
f(x(t))A−1η(t) − e−tf(x(0))A−1η(0)

)2

≤ ε2 E
∣∣f(x(t))A−1η(t)

∣∣2 + 2 ε2 E
∣∣f(x0)A

−1η0
∣∣2

≤ 4 ε2 CA
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on account of condition (1.14e) and (4.9).
Step 7. For J5 we obviously have E|J5|2 ≤ E|y0|2. Putting everything together

we obtain

E|y(t)|2 ≤ C,

and the lemma is proved.
Now we proceed with estimating I2 in (4.3). We have the following lemma.
Lemma 4.3. Assume that the spectrum of the Wiener process satisfies condition

(1.14c). Assume further that the conditions of Lemmas 4.1 and 4.2 hold. Then for
any integer N > 1 the following estimate holds:

E
(

sup
0≤t≤T

∣∣∣∣ε
∫ t

0
df(x(s))y(s)A−1η(s) ds

∣∣∣∣
2
)

≤ C ε2−σ,

where σ = 4/(N + 1). The constant C is a function of T , N , the initial conditions,
the spectrum of the Wiener process, and the operator A.

Proof. Step 1. We start with the following estimate:

E
(

sup
0≤t≤T

|I2(t)|2
)

= ε2E
(

sup
0≤t≤T

∣∣∣∣
∫ t

0
df(x(s))y(s)A−1η(s) ds

∣∣∣∣
2
)

≤ T ε2 E
∫ T

0

∣∣df(x(s))y(s)A−1η(s)
∣∣2 ds

= T ε2 E
∫ T

0

∣∣∣df(x(s))y(s)A−1A− 1+δ
2 A

1+δ
2 η(s)

∣∣∣
2
ds

≤ T ε2 E
∫ T

0
||df(x(s))y(s)A− 3+δ

2 ||2
L(ĈK ,R2)

||A
1+δ
2 η(s)||2%2 ds

= T ε2 E
∫ T

0
||B||2

L(ĈK ,R2)
||A

1+δ
2 η(s)||2%2 ds

≤ C1 T ε
2

∫ T

0
E
(
|y(s)|2||A

1+δ
2 η(s)||2%2

)
ds.(4.14)

In the above calculations we used the bounds for the second and fourth moments of
y(t), estimates (4.4) and (4.6), together with the definition of the operator B and the
bound (4.12).

Step 2. We fix γ ∈ (0, 1) and use Holder’s inequality to obtain

E
(
|y|2||A

1+δ
2 η||2%2

)
≤
(
E|y|2(1+γ)

) 1
1+γ E

(
‖A

1+δ
2 η‖2 1+γ

γ

%2

) γ
1+γ

.(4.15)

Another application of Holder’s inequality gives

E|y|2(1+γ) = E
(
|y|2(1−γ)|y|4γ

)

≤
(
E|y|2

)1−γ (E|y|4
)γ ≤ Cε−4γ .

We chose γ = 1/N with N a large integer to obtain

(
E|y(s)|2(1+γ)

) 1
1+γ ≤ C ε−

4
N+1 .(4.16)
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Step 3. Now we need to obtain a uniform bound on the 2(N + 1) moment of

||A 1+δ
2 η(s)||%2 . We use [24, Cor. 2.17] as in the derivation of estimate (4.13) to obtain

E‖A
1+δ
2 η‖2(N+1)

%2 ≤ CN

(
Tr(Q̂)

)N+1
= CN

(
∑

k∈K

αδkλk

)N+1

≤ ĈN ,(4.17)

by condition (1.14a). We remark that this condition is independent of N .
Step 4. We use bounds (4.16) and (4.17) in (4.15) with γ = 1/N and then use

this estimate in (4.14) to obtain

E
(

sup
0≤t≤T

|I2(t)|2
)

≤ C T ε2−σ,(4.18)

with σ = 4/(N + 1), which can be made arbitrarily small by increasing N . This
completes the proof of the lemma.

Let us now proceed with obtaining a bound for the term I1 in (4.3). We have the
following lemma.

Lemma 4.4. Assume that the spectrum of the Wiener process satisfies condition
(1.14d). Then, for ε sufficiently small, the following estimate holds:

E
(

sup
0≤t≤T

∣∣ε
(
f(x(t))A−1η(t) − f(x(0))A−1η(0)

)∣∣2
)

≤ C ε2−σ

for every σ > 0. The constant C depends on the spectrum of the Wiener process and
the operator A.

Proof. We calculate

f(x)A−1η(t) =
∑

k∈K

∇⊥ek(x)
ηk
αk

=
∑

k∈K

[i k2, −i k1]
T ek(x)

ηk
αk

.

Now we use the bound (A.1), together with condition (1.14d), to obtain

E
(

sup
0≤t≤T

|f(x)A−1η(t) − f(x0)A
−1η(t)|2

)

≤ 2 ε2E sup
0≤t≤T

|f(x)A−1η(t)|2 + 2 ε2E|f(x0)A
−1η(0)|2

≤ 2 ε2
∑

k∈K

|k|2

α2
k

E sup
0≤t≤T

|ηk(t)|2 + 2 ε2
∑

k∈K

|k|2

α2
k

E|ηk(0)|2

≤ 2 ε2
∑

k∈K

|k|2

α2
k

C0
λk
2αk

log

(
αkT

ε2

)
+ 2 ε2

∑

k∈K

|k|2

α2
k

C0
λk
2αk

+ 2 ε2
∑

k∈K

|k|2

α2
k

λk
2αk

≤ C0 ε
2
∑

k∈K

|k|2λk
α3
k

log(αk) + C0 ε
2
∑

k∈K

|k|2λk
α3
k

log

(
T

ε2

)
+ C ε2

∑

k∈K

|k|2λk
α3
k

≤ C1 ε
2 + C2 ε

2 log

(
T

ε2

)

≤ C ε2−σ(4.19)

for every σ > 0. This completes the proof.
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5. Proof of the convergence theorem. Based on the analysis of the previous
section, the integral equations for {x(t), y(t)} can be written in the following form:

y(t) − y(0) =

∫ t

0
f(x(s))A−1 dW (s) −

∫ t

0
y(s) ds + I2(t) + I3(t),(5.1a)

x(t) − x(0) =

∫ t

0
y(s) ds,(5.1b)

where E(sup0≤t≤T |I2(t)|2) ≤ Cε2−σ, σ > 0 and E(sup0≤t≤T |I3(t)|2) ≤ C ε2, σ > 0.
In this section we shall prove the convergence theorem, Theorem 1.2.

Proof of Theorem 1.2. The integral formulation of the limiting SDEs is

X(t) − x0 =

∫ t

0
Y (s) ds,

Y (t) − y0 =

∫ t

0
f(X(s))A−1 dW (s) −

∫ t

0
Y (s) ds.

First we bound the difference between x(t) and X(t):

E
(

sup
0≤t≤T

|X(t) − x(t)|2
)

= E
(

sup
0≤t≤T

∣∣∣∣
∫ t

0
(Y (t) − y(t)) ds

∣∣∣∣

)2

≤ T

∫ T

0
E
(

sup
0≤s≤t

|Y (s) − y(s)|2
)

dt.(5.2)

For the difference between Y (t) and y(t),

E
(

sup
0≤t≤T

|Y (t) − y(t)|2
)

= E
(

sup
0≤t≤T

(∫ t

0
(f(X(s)) − f(x(s)))A−1 dW (s)

−
∫ t

0
(Y (s) − y(s)) ds + I2(t) + I3(t)

)2
)

≤ 4 E sup
0≤t≤T

(∫ t

0
(f(X(s)) − f(x(s)))A−1 dW (s)

)2

+ 4 E sup
0≤t≤T

(∫ t

0
(Y (s) − y(s)) ds

)2

+ 4 E
(

sup
0≤t≤T

|I2(t)|2
)

+ 4 E
(

sup
0≤t≤T

|I3(t)|2
)

≤ C

∫ T

0
E
(

sup
0≤s≤t

|X(s) − x(s)|2
)

dt + 4T

∫ T

0
E
(

sup
0≤s≤t

|Y (s) − y(s)|2
)

dt

+ C ε2−σ,(5.3)

where we have assumed that the spectrum of the Wiener process satisfies condition
(1.14c). We have also used the computation (3.2).
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We introduce now the notation ζ(r) := E sup0≤t≤r

(
|X(t)−x(t)|2+|Y (t)−y(t)|2

)
.

We combine estimates (5.2) and (5.3) to obtain

ζ(T ) ≤ C2

∫ T

0
ζ(t) dt + C1 ε

2−σ.

We apply Gronwall’s lemma to obtain

ζ(T ) ≤ C1 ε
2−σeC2 T ,

from which estimate (1.16) follows. The theorem is proved.

6. Future work. As we have already remarked, the distinguished limit studied
in this paper corresponds to the case where both inertia and friction balance the
white noise term as ε→ 0. Other distinguished limits are possible, however. Choosing

α ∈ (1, 2), β = 3−2α ∈ (−1, 1), and γ = ε−
2

1+β in (1.7) leads to the rescaled equation:

d2x

dt2
=

f(x)

ε
η0

(
t

ε2

)
− ε

1−β
1+β

dx

dt
.

This distinguished limit corresponds to the case where inertia balances the white noise,
but friction becomes negligible at the limit as ε → 0. By employing the techniques
used in this paper, it is not hard to show that in this case the limiting equation is

d2X

dt2
= σ(X)

dW

dt
.(6.1)

As expected, in this case the convergence rate depends on the exponent β:

E sup
0≤t≤T

(
|x(t) −X(t)|2 + |y(t) − Y (t)|2

)
≤ C1ε

2−σ + C2ε
2 1−β

1+β .(6.2)

From (1.18) we see that (6.1) is equivalent in law to the following equation:

d2X

dt2
= σ̂

dB

dt
.(6.3)

From (6.3) we deduce that the velocity will perform Brownian motion on R2,
and hence does not have a stationary probability measure. The study of two-point
motions for (6.1) is also of mathematical interest, and we will pursue this in a future
publication. We note, however, that physically it is more relevant to study the prob-
lem at a longer time scale and a rescaled spatial scale and that the long time limit
(6.1) is not central. The exact form of the spatial scale will be determined by the
requirement that all terms in the equation of motion balance each other and appear
at the asymptotic limit.

A third possible distinguished limit results from choosing α ∈ (−∞, 1), β = 1,
and γ = ε−1 in (1.7) which leads to the following equation:

εδ
d2x

dt2
=

f(x)

ε
η0

(
t

ε2

)
− dx

dt
,(6.4)

with δ = 1−α ∈ (0,∞). In this case the particle position converges to a diffusion pro-
cess, whereas the particle velocity converges to white noise. The value of δ determines
whether or not a Stratonovich or Itô interpretation should be given to the limiting
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equation for the particle position. For the particular problem under investigation the
limiting equation will always be interpreted as an Itô SDE, since for the inertial par-
ticles problem the Stratonovich correction disappears by (1.18) and incompressibility
of the fluid velocity. Thus, the limiting SDE is

dX

dt
= σ(X)

dB

dt
(6.5)

∀ δ > 0 in (6.4). Equation (6.5), on account of (1.18), implies that the inertial particles
perform Brownian motion on T2.

The situation becomes more interesting when considering the white noise limit
of Langevin equations of general type with multiplicative noise because there is a
transition between the Itô and Stratonovich limits as γ passes through 2. The analysis
of this problem will be presented elsewhere [23].

Finally, we mention that it is also of interest to study the model in the limit of
small correlation lengths, )→ 0. In particular, studying the limits )→ 0 and ν → ∞
simultaneously is natural in the modeling of turbulent fluids.

Appendix A. Bounds on the OU process. In this appendix we shall obtain
various bounds that we needed in the proof of the convergence theorem. In section
A.1 we obtain a bound for E(sup0≤t≤T |η(t)|2). In section A.2 we obtain estimates for
the second and fourth moments of the velocity field.

A.1. Bound on E(sup0≤t≤T |η(t)|2). In this section we obtain the following

bound.9

Theorem A.1. Let ηk(t) be the complex valued OU process:

dηk = − 1

ε2
αkηkdt +

1

ε

√
λkdWk,

with statistically stationary initial conditions Re(ηk(0)), Im(ηk(0)) ∈ N (0, λk
2αk

),
where Wk(t) is a standard complex valued Brownian motion. Then the following
estimate holds:

E
(

sup
0≤t≤T

|ηk(t)|2
)

≤ C0

(
λk
2αk

log

(
αkT

ε2
+ 2

)
+
λk
2αk

)
.(A.1)

Proof. We first consider a real valued OU process with α = λ = 1 and statistically
stationary initial data:

dY = −Y dt + dW.(A.2)

The process Y (t) is equivalent in law to the process X(t):

X(t) =
1√
2
e−tW (e2t).

To check this, note that X(t) is a Gaussian process with mean zero and that, for
t > s,

E(X(t)X(s)) =
1

2
e−(t−s).(A.3)

9The proof is due to N. O’Connell, from a private communication.
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Now we have

E sup
0≤t≤T

|Y (t)|2 = E sup
0≤t≤T

|X(t)|2

= E sup
0≤t≤T

∣∣∣∣
1√
2
e−tW (e2t)

∣∣∣∣
2

= E sup
1≤s≤S

∣∣∣∣
1√
2s

W (s)

∣∣∣∣
2

≤ E sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣

2

log log(2 + S)

≤ E sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣

2

(1 + log(2 + T ))

:= M(S)(1 + log(2 + T )),(A.4)

where s := e2t ⇒ S = e2T and M(S) := E sup1≤s≤S | W (s)√
2s log log(2+s)

|2. Moreover, we

have used the inequality log log(2 + e2t) ≤ 1 + log(2 + t). Consequently, if we can
prove that M is uniformly bounded independently of S, then from (A.4) we will be
able to conclude that

E sup
0≤t≤T

|Y (t)|2 ≤ C log(2 + T ) + C.(A.5)

Let us define the function

N(S) := sup
1≤s≤S

W (s)√
2s log log(2 + s)

.(A.6)

Now, W (s) is a.s. finite in any finite time interval [1, S0] and so is 1√
2s log log(2+s)

.

Thus, N(S0) is a.s. finite for any S0. On other hand, since N(S) is continuous it
follows from the law of iterated logarithm that

N(S) ≤ N(∞) := N0 < ∞,

where N0 depends on the specific realization. Since N is the supremum of a Gaus-
sian process, from the general theory of Gaussian processes [2, Thm. 2.8] the above
inequality implies

R(S) := EN(S) ≤ EN(∞) = EN0 := R0 < ∞.

Borell’s inequality tells us that, for λ >R (S), we have

P (N(S) > λ) ≤ 2 e
− 1

2
(λ−R(S))2

σ2
S ,(A.7)

where

σ2
S := sup

1≤s≤S
E
∣∣∣∣∣

W (s)√
2s log log(2 + s)

∣∣∣∣∣

2

=
1

2 log log(3)
.(A.8)
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We use the inequality 2λR(s) ≤ λ2 ε+ 1
εR(s)2 with ε = 1

2 in (A.7) to obtain

P (N(S) > λ) ≤ 2 e
− λ2

2σ2
S e

−R(S)2

2σ2
S e

2λR(S)

2σ2
S

≤ 2 e
R(S)2

2σ2
S e

− λ2

4σ2
S

≤ C e
− λ2

4σ2
S ,

the constant C being independent of S. Now we have

P



 sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣

2

> x



 = P
(

sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣ >
√
x

)

≤ 2 P
(
N(s) >

√
x
)

≤ 2C e
− x

4σ2
S .

Now we can bound M(S):

M(S) =

∫ ∞

0
P



 sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣

2

> x



 dx

=

∫ R(S)

0
P



 sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣

2

> x



 dx

+

∫ ∞

R(S)
P



 sup
1≤s≤S

∣∣∣∣∣
W (s)√

2s log log(2 + s)

∣∣∣∣∣

2

> x



 dx

≤
∫ R0

0
dx + 2C

∫ ∞

0
e
− x

4σ2
S dx

≤ K,(A.9)

the constant K being independent of S. Thus, the bound (A.5) on the unit OU
process holds.

Now we use the fact that, in law, the processes Re(ηk(t)), Im(ηk(t)), and X(t)
are equivalent in the following sense:

Re(ηk(t)) =

√
λk
2αk

X

(
αk t

ε2

)
,

and similarly for the imaginary part of the OU process. Consequently, an estimate of
the form

E sup
0≤t≤T

|X(t)|2 ≤ C(T )

for ηk(t) becomes

E sup
0≤t≤T

|ηk(t)|2 ≤ E sup
0≤t≤T

|Re(ηk(t))|2 + E sup
0≤t≤T

|Im(ηk(t))|2

≤ λk
αk

C

(
αk T

ε2

)
.
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Consequently, the estimate (A.5) for the rescaled OU process ηk(t) becomes

E
(

sup
0≤t≤T

|ηk(t)|2
)

≤ C0

(
λk
2αk

log

(
αkT

ε2
+ 2

)
+
λk
2αk

)
,

and the theorem is proved.
Remark A.1. The above upper bound can be obtained from inequality (4.50)

from [2, p. 106]. The next inequality on the same page of [2] proves that a similar
lower bound holds, which proves the sharpness of estimate (A.1). Various results of
this form have appeared in the literature, for example in [25, 6], however not in the
explicit form that we needed for the proof of the convergence theorem.

A.2. Bounds on the moments of the velocity field. In this section we
obtain bounds on the moments of the velocity field.

Theorem A.2. Consider the velocity field v(x, t) = ∇⊥ψ(x, t), where the stream
function ψ(x, t) is the infinite dimensional OU process which is obtained from the
solution of (1.8c) with statistically stationary initial data and ν0 = 1. Assume further
that the spectrum of the Wiener process satisfies condition (1.14e). Then the second
and fourth moments of the velocity field are uniformly bounded in space and time:

E|v(x, t)|2 ≤ C2,

E|v(x, t)|4 ≤ C4.

Proof. First we observe that

v(x, t) = ∇⊥ψ(x, t)

=
∑

k∈K

∇⊥eik·xηk(t)

= f(x)η(t),

where the operator f(x) : ĈK → R2 is defined in (1.11) and {ηk}k∈K is an element of

ĈK equipped with the )2-inner product and corresponding norm. Let us first consider
the second moment of the velocity field. First we compute

|v(x, t)|2 = |f(x)η(t)|2

= |f(x)BB−1η(t)|2

≤ ‖f(x)B‖2
L(ĈK ,R2)

‖B−1η(t)‖2
%2 ,

where ‖ ·‖ L(ĈK ,R2) denotes the operator norm and B : ĈK → ĈK is the diagonal

operator that multiplies by |k|γ the kth component of the vector on which it acts.
The exponent γ is arbitrary at this point but will be determined later on. Our goal
now it to obtain a bound on the operator norm of B := f(x)B.

The operator norm of B is defined as

||B||L(ĈK ,R2) = sup
λ
{
√
λ ; λ ∈ σ(B∗B)}.

Now, B∗B : ĈK → ĈK , which makes the computation of the spectrum difficult.
However, a compact operator has the same nonzero singular values as its adjoint
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[15, p. 331]. The operator B is compact, provided that γ < −2, since it can be
approximated by operators of finite rank (consider a finite dimensional truncation of
the sum over the lattice K). Thus, B∗B has the same nonzero eigenvalues with its
adjoint BB∗ : C2 → C2. The problem of estimating the norm of B reduces to that of
estimating the maximum eigenvalue of the 2 × 2 matrix BB∗ = (f(x)B)(f(x)B)∗ =
f(x)B2f(x)∗. We apply Lemma 3.1 with G = f(x) and D = B to obtain

BB∗ =
∑

k∈K

|k|2γ
[

k2
2 −k1k2

−k1k2 k2
1

]
.

The trace of BB∗ is

Tr (BB∗) =
∑

k∈K

|k|2(γ+1).(A.10)

Moreover, the determinant of BB∗ is positive. This enables us to bound the maximum
eigenvalue of BB∗ by its trace:

λmax ≤
∑

k∈K

|k|2(γ+1).

Consequently, we get the following bound on the operator norm of B:

‖B‖2
L(ĈK ,R2)

≤
∑

k∈K

|k|2(γ+1).

Since the set K is a 2D lattice, the choice γ = −2 − ε
2 , ε > 0, ensures that the above

sum is summable:

‖B‖2
L(ĈK ,R2)

≤
∑

k∈K

1

|k|2+ε
= C1 < ∞.

Moreover, we have

‖B−1η(t)‖2
%2 =

∑

k∈K

|k|4+ε|ηk|2.

Now we can obtain a bound on the second moment of the velocity field:

E|v(x, t)|2 = C1

∑

k∈K

|k|4+εE|ηk|2

= C1

∑

k∈K

|k|4+ε λk
2αk

:= C2 < ∞

on account of condition (1.14e).
Now we proceed with the bound on the fourth moment of the velocity field. Since

the initial data for η(t) are stationary, the process B−1η(t) is Gaussian with mean
zero and [24, Cor. 2.17] applies:
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E|v(x, t)|4 ≤ E
(
‖f(x)B‖4

L(ĈK ,R2)
‖B−1η(t)‖4

%2

)

≤ C E‖B−1η(t)‖4
%2

= Ĉ
(
E‖B−1η(t)‖2

%2
)2

≤ C4.

The proof of the theorem is now complete.
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