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The preferential concentration of inertial particles in a turbulent velocity field occurs when the
particle and fluid time constants are commensurate. We propose a straightforward mathematical
model for this phenomenon and use the model to study various scaling limits of interest and to study
numerically the effect of interparticle collisions. The model comprises Stokes’ law for the particle
motions, and a Gaussian random field for the velocity. The primary advantages of the model are its
amenability to mathematical analysis in various interesting scaling limits and the speed at which
numerical simulations can be performed. The scaling limits corroborate experimental evidence
about the lack of preferential concentration for a large and small Stokes number and make new
predictions about the possibility of preferential concentration at large times and lead to stochastic
differential equations governing this phenomenon. The effect of collisions is found to be negligible
for the most part, although in some cases they have an interesting antidiffusive effect. ©2002
American Institute of Physics.@DOI: 10.1063/1.1517603#
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I. INTRODUCTION

Empirical evidence indicates that, in some parameter
gimes, the distribution of particles in a turbulent veloc
field is highly correlated with the turbulent motions, a ph
nomenon that has been termedpreferential concentration.1

The basic physics underlying this phenomenon is the
that inertial particles spin out from the center of eddies; if
particle and fluid time constants are commensurate, so
the eddy persists on this spinout time scale, then the part
will concentrate in regions where straining domina
vorticity.1,2

Our aims in this work are the following:~i! to describe a
simple model for preferential concentration;~ii ! to use the
model to elucidate a number of interesting scaling limits;~iii !
to study preferential concentration through a numerical sim
lation of the model; and~iv! to study whether collisions be
tween particles become important in view of the high parti
densities present, where preferential concentration occur

We study two-dimensional problems, using Stokes’ l
to describe particle motions, and modeling the velocity a
Gaussian random field that is incompressible, homogene
isotropic, periodic in space, stationary and Markovian
time. The resulting model is both cheap to simulate and a
nable to analysis in various important scaling limits. The
two facts give the model its primary advantage over mod
that employ direct numerical simulation~DNS!, or large
eddy simulation, for the velocity field.

To illustrate the physical phenomena of interest, we
scribe some experimental data. Figure 1 is taken from F
sleret al.3 It shows the distribution of particles in a turbule
fluid at a Stokes number~the ratio of the particle to fluid time
constants! of order 1. Figure 2, also taken from Fess

a!Present address: deCODE Genetics, 101 Reykjavik, Iceland.
4351070-6631/2002/14(12)/4352/10/$19.00
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et al.,3 is a quantitative representation of the information
Fig. 1. It is obtained by overlaying a square grid on Fig.
then counting the number of particles inside each squar
the grid and making a histogram of the resulting collection
numbers. The comparison is with a Poisson distributi
which is what would be observed if the particles were plac
independently at random, with a mean number of particle
a volume element being proportional to volume. The co
parison quantifies the observation that, in Fig. 1, there
substantial areas where particle density is very low, a
where it is very high. Experiments at high or low Stok
number do not exhibit this phenomenon.

In Sec. II we introduce the mathematical model, a
highlight the main parameters: shape of the energy spectr
time scale ratio, eddy correlation time, and eddy correlat
length; we also discuss the limitations of the model. In S
III we describe various scaling limits in which the mod
simplifies, using the methodology described in Majdaet al.4

and Kramer and Majda.5 Section IV contains the results o
numerical simulations for varying Stokes number, show
agreement with experimental evidence such as that in Fig
The effects of elastic collisions are also studied in this s
tion. In Sec. V we show various simulations of the large tim
scaling limits derived in Sec. III.

There is an extensive literature describing experime
on inertial particles in turbulent flows; see Eaton and Fess1

for a review of the subject, and for further references. Th
has also been work studying inertial particles in turbule
flows, using DNS of the Navier–Stokes equations; relev
references include Squires and Eaton,2,6,7 which describe nu-
merically generated data on particle distributions, and th
relation to experimental data and to invariants of the flu
velocity field, and Hoganet al.8 and Elperinet al.,9,10 who
study the finer properties of the particle distributions such
self-similarity; Crisantiet al.11 is also of interest in this con
2 © 2002 American Institute of Physics
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4353Phys. Fluids, Vol. 14, No. 12, December 2002 A model for preferential concentration
text, although the model for particle motion differs slight
from that used here and in the other references. Sunda
and Collins12 study the effect of collisions using DNS of th
Navier–Stokes equations. There is also work, motivated
planet formation, for example, on particle aggregation in
tating flows.13 The mechanism in this case is related to, b
distinct from, that which we study here.

FIG. 1. Photograph of 28mm lycopodium particles illuminated by a lase
sheet on the center plane of a vertical turbulent channel flow. Reprodu
with permission, from Ref. 3.

FIG. 2. The distribution of particle number density for 28mm lycopodium
particles, St50.7 on a 2 mmsquare grid. Also plotted is Poisson, or rando
distribution, for the same mean number of particles per box. Reprodu
with permission, from Ref. 3.
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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Concerning literature on inertial particles in synthe
turbulence, that is, a random velocity field model chosen
match some of the statistics of turbulence, there are few
erences; see Maxey14 for work in this direction. However,
there is considerable literature on random velocity fields
models of turbulence in the noninertial context; the semi
paper by Kraichnan15 indicated the viability of this approach
and the more recent papers of Caretaet al.,16 Martı́ et al.,17

and Junejaet al.18 employ the particular periodic implemen
tation of Kraichnan’s idea that we use here. In particular,
papers Caretaet al.,16 and Martı´ et al.,17 and the book by
Garcı́a-Ojalvo and Sancho~Ref. 19, pp. 108–113!, describe
the PDE formulation of synthetic turbulent velocity field
that we use, together with advocating the use of the Fou
transform to simulate such velocity fields efficiently on
computer, an approach that we follow.

Also of interest are studies of fluid particles, or pass
tracers, in synthetic turbulence,

ẋ~ t !5v~x~ t !,t !, ~1!

since they are closely related to our model~7! in the limit of
zero time scale ratio (t→0). This work dates back to an
early model of Taylor20 with a recent study of this problem
being described in, for example, Fannjiang a
Komorowski21 and Komorowski and Papanicolaou.22 The
papers by Carmona and Xu,23 Carmona et al.24 and
Fannjiang and Komorowski21 employ, and study the proper
ties of, the formulation of the Gaussian random field throu
use of an Ornstein–Uhlenbeck process, as we do here.
review article by Majda and Kramer25 gives an extensive
background on the subject of passive tracers in turbu
fluid and, in particular, overviews the subject of how to cr
ate random fields that model certain characteristics of tur
lent fluids.

In this paper we are interested inN-point motions in a
random field: the study of correlations amongN particles
moving in a ~model for a! turbulent fluid; in particular, we
are interested in the case ofN@1 so that we can study par
ticle distributions in a meaningful way. Mathematical
speaking, we are studying a stochastic flow,26 and in this
field the study of two-point motions plays a central ro
There is some literature on the topic of two-point motion
the context of particle tracers.27,28

In conclusion we show the following:~i! that a simple
Gaussian random field model for the velocity field, coupl
with Stokes’ law for particle motion, provides remarkab
good agreement with some of the experimental data conc
ing preferential concentration;~ii ! the model allows for an
elucidation of various scaling limits that either confirm e
perimental observation~for small or large Stokes number! or
provide new insight into large time behavior, predicting pre
erential concentration in some cases, and giving stocha
differential equations governing the phenomenon;~iii ! the
model is fast to simulate, giving an order of magnitu
speedup over DNS simulations;~iv! the effect of collisions
can be studied numerically, using the fast algorithm
Sigurgeirssonet al.,29 and our results show that the effect
collisions is negligible here; to the extent that they are n

d,

d,
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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ticeable they create an interesting antidiffusive behav
sharpening concentration lines in the particle distribution

II. MATHEMATICAL MODEL

We consider the motion of a particle in two dimensio
with position x(t) at time t, moving in a fluid according to
Stokes’ law:

t ẍ~ t !5v~x~ t !,t !2 ẋ~ t !. ~2!

Heret5m/(mC) wherem is the particle mass,m is the fluid
viscosity, C is a universal nondimensional constant, a
v(x,t) is the prescribed velocity field of the fluid. We negle
the finite-end effect corrections toC that make the law non
linear, through a logarithmic dependence on particle R
nolds number30 in two dimensions. Furthermore, by assum
ing that the force on the particle is linear in the differen
between particle and fluid velocity, we are making an a
proximation whose validity may break down at large veloc
differences.31

Under our assumption that the velocity is tw
dimensional~2-D! and incompressible, we may introduce
streamfunctionc, so that

v5“

'cªS ]c

]x2
,2

]c

]x1
D .

Our assumptions that the velocity field is Gaussian, Mark
ian, and homogeneous are satisfied by assuming thatc is the
solution to the partial differential equation,

]c

]t
~x,t !5nDc~x,t !1Aj

]W

]t
~x,t !, ~3!

xPO,R2, t>0, ~4!

where]W/]t is a Gaussian process, white in time. We w
takeO to be the square of side lengthL in two dimensions,
namely@0,L#2, and extend to the whole of the plane (R2) by
periodicity. ThenW has the expansion

W~x,t !5 (
kPK

AlkekS x

L Dbk~ t !. ~5!

Here K52pZ2\$(0,0)%, ek(x)5eik•x, and $bk%kPK is a se-
quence of standard complex-valued Brownian motions, in
pendent exceptb2k5bk* . Thespectrum$lk%kPK is normal-
ized so that

(
kPK

lk51. ~6!

The parameterslk will be chosen so that the velocity fiel
reproduces the desired energy spectra. However, it is im
tant to realize that such linear Gaussian models for the
locity field do not capture important effects present in r
turbulent fluids such as the energy cascade between sc
and non-Gaussian tails at fixed scales.

We introduce nondimensional variables. To that end
t5Tt8, x(t)5Lx8(t8), c(x,t)5(L2/T)c8(x8,t8), and
v(x,t)5(L/T)v8(x8,t8). Thenv85“x8

' c8 and Eqs.~2!, ~3!,
and ~5! become
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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d2x8

dt82 ~ t8!5v8~x8~ t8!,t8!2
dx8

dt8
~ t8!,

]c8

]t8
5

nT

L2 Dx8c81
TAT

L2 Aj
]W8

]t8
,

W8~ t8,x8!5 (
kPK

Alkek~x8!bk8~ t8!.

Here we setbk(t)5ATbk8(t8) so that$bk8%kPK are also stan-
dard Brownian motions. By choosing the length scaleL, the
problem is posed on the unit torus,T2, and we choose the
time scaleT such thatTAj5LAn. We show below that this
choice ensures that the mean square velocity is consta
every point in space and time; hence,T is a natural fluid time
constant. Definingt85t/T andn85nT/L2 and dropping the
primes gives

t ẍ~ t !5v~x~ t !,t !2 ẋ~ t !,

v5“

'c,
~7!

]c

]t
5nDc1An

]W

]t
,

W~x,t !5 (
kPK

Alkek~x!bk~ t !.

Henceforth we work in these dimensionless variables. T
equations are augmented with periodic boundary conditi
in xPT2 and initial data (x0 ,y0 ,c0) for (x,y,c). The initial
data forc are chosen so that it is stationary and we sh
how to do this below. Doing so ensures thatv itself is sta-
tionary.

The stochastic processc is an infinite-dimensional
Ornstein–Uhlenbeck~OU! process. To get an idea of th
solution, we use a separation of variables,

c~x,t !5 (
kPK

ĉk~ t !ek~x!, ~8!

for ĉk : R→C, kPK. Then we use the Fourier representati
~7! of W giving

dĉk52aknĉkdt1Anlkdbk , ĉk~0!5ĉk
0, ~9!

whereĉk
0
ª^c0 ,ek& andDek52akek . The unique solution

of this stochastic differential equation is the OU process,

ĉk~ t !5e2naktĉk
01AnlkE

0

t

e2nak~ t2s!dbk~s!.

The stationary distribution of this SDE is a Gaussi
N(0,lk/2ak). If we choose initial data from this distribution
thenc is stationary in each of its Fourier components an

Euv~x,t !u25
1

2 (
kPK

lk5
1

2
.

To see this, note that

v~x,t !5 (
kPK

ĉk~ t !“'ek~x!. ~10!
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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4355Phys. Fluids, Vol. 14, No. 12, December 2002 A model for preferential concentration
As v is real, we havev̂2k5 v̂k* . ForkPK the energyE(t) of
Fourier mode k is given by ~using stationarity! Ek(t)
5Euv̂k(0)u2. In the stationary distribution we haveEuĉku2

5lk/2ak andEuv̂ku25uku2Euĉku25uku2lk/2ak . As ak5uku2

this implies that, to achieve a given mean kinetic ene
spectrum$Ek%kPK , we set

lk52Ek . ~11!

To ensure isotropy it is customary to specify the energy sp
trum in terms of the total energy in all Fourier modes of t
same length, via

Ek5z~ uku!. ~12!

Choosingz(z)5 l 2z0( lz), for appropriately normalizedz0 ,
will give ~6! ~approximately!, for every choice ofl, as can be
seen by comparison with an integral.

Noting thatz0 defines the shape of the spectrum$lk%, it
follows that, given this shape, three parameters remain in
problem: t, particle time constant/fluid time constant; 1/n,
nondimensional velocity correlation time; andl, nondimen-
sional correlation length—wherez peaks atO(1/l ).

We have mentioned that the Stokes number plays a
tral role in the effect of preferential concentration. T
Stokes number is defined as the ratio of the aerodyna
particle time constant to anappropriate turbulence time
scale. One possible candidate for the Stokes number is th
fore the parametert, with a fluid time constant based on th
root mean square fluid velocity and length scaleL. The pa-
rameterl sets the length scale of the coherent structure
the velocity fieldv while n indicates how fast coherent stru
tures decay, and new ones are born. In this paper we ref
t asthe time scale ratio, n21 as the correlation timeandl as
the correlation length. Note that definitions of a Stokes num
ber other thant can be obtained by combining values of t
three parameterst, l, andn. In this paper we willnot study
the effect of varying the correlation lengthl, and it will be
fixed at order one. However, the limitl→0 is of interest, and
we will study it in future work.

We study two different spectra in our numerical expe
ments: theKraichnanspectrum,15

z0~z!}z2e2z2
,

and theKármán–Obukhovspectrum,19

z0~z!}z2~11z2!~27/3!.

Both produce similar results. For this paper all the numer
illustrations are performed using the second choice. Th
are some mathematical issues concerning the lack of reg
ity of the velocity field resulting from the second choice, b
numerical experiments indicate that these are not manife
the quantities we measure here.32

III. SCALING LIMITS

In this section we discuss the model~7! in various scal-
ing limits of interest. In Sec. III A, we study the variation o
the time scale ratiot for fixed correlation timen21; we
elucidate the structure of the problem fort!1 andt@1. In
Sec. III B we study variation withn for fixed t, elucidating
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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the structure of the problem forn!1 andn@1. In Sec. III C
we study various large-time scaling limits in which the v
locity field is rapidly decorrelating, leading to Itoˆ SDEs for
the particle motion. Recall that, throughout, we fix the c
relation lengthl at order one. We study the casest5O(1)
andn5O(1) numerically in Sec. IV.

A. Varying the time scale ratio

We study particle distributions according to the mod
~7! as t, the time scale ratio, varies whilen21, the correla-
tion time, andl, the correlation length, are fixed. We firs
summarize known properties in the limitst50, ` in order to
set the numerical experiments in context. Fort50 we obtain
the model for particle tracers:

ẋ5v~x,t !,

with v a Gaussian random field in space–time. These mo
do not exhibit preferential concentration. This can be seen
follows. Since particles follow incompressible fluid traject
ries, passing to a continuum limit for a densityr(x,t) of
particles located at positionx at time t, we obtain the Liou-
ville equation,

]r

]t
1v"¹r50.

If r(x,0) is uniform thenr(x,t) is uniform for all time,
preventing preferential concentration.

For t5` we obtain the equation for particles in
vacuum,

ẍ50.

Again, a Liouville argument, now for a densityr(x,ẋ,t),
shows that uniform particle distributions in position spacex
are preserved in time, provided that the initial velocitiesẋ are
independent of the initial positions, and preferential conc
tration is ruled out.

In Sec. IV, we present numerical evidence to show t
these conclusions aboutt50, ` give an accurate picture o
what happens fort!1 andt@1, at intermediate time scales
For t of order one, however, we will demonstrate nume
cally that preferential concentration is observed. These fi
ings are in agreement with experimental evidence, and
dence based on DNS, that preferential concentration oc
if and only if the Stokes number is of order one.1

B. Varying the fluid correlation time

We discuss how the model~7! behaves asn21, the fluid
correlation time, varies whilet, the time scale ratio, andl,
the correlation length, is fixed. Forn50 ~infinite correlation
time! the velocity field is frozen and the equation of motio
is

t ẍ5v~x!2 ẋ,

with v a homogeneous, isotropic Gaussian random field
space. This equation is dissipative with a global attrac
physically this means that, asymptotically for large times,
particle velocities are bounded independently of their start
values. In fact, they are bounded asymptotically by the p
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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fluid velocity. Over a short time, preferential concentration
not observed, but on a longer time interval the large ti
dynamics typically lead to preferential concentration. N
merical experiments indicate that for almost all initial con
tions the solution converges to one of a finite number
isolated periodic orbits and then preferential concentra
occurs. This limit is mathematically interesting, but far fro
any regimes observed in the experiments reviewed in Ea
and Fessler.1 We do not pursue it further here.

To understand the limitn→`, when the fluid decorre-
lates rapidly, we make a digression into the properties of
processes. Leth solve

dh

dt
1anh5Aln

db

dt
, ~13!

with b a standard Brownian motion and with stationary in
tial data. Then

h~ t !5AlnE
2`

t

e2an~ t2s!db~s!.

This is a Gaussian process with mean 0 and covariance

Eh~ t1T!h~ t !5
l

2a
e2anT.

For n@1, we have

e2ant'
2d~ t !

an
,

implying thath(t) is approximately a white noise:

h~ t !'Al/na2
db

dt
. ~14!

Although this calculation is simply a heuristic, it is possib
to make it precise by considering the solutions of equati
driven byh solving ~13!, in the limit n→`. Theorems can
be proved in the sense of weak33 and strong convergence34 in
various contexts. None of these results apply directly to
situation because of the particular infinite-dimensional fo
of our OU processes. Therefore we limit ourselves to a d
vation of the limit equations, following the methodology
Majdaet al.4 and Kramer and Majda.5 We leave the question
of making the derivation rigorous for future study.

Using ~13!, ~14! in ~10!, ~9! we see that

v~x,t !'
1

An
(
kPK

“

'eik.x
Alk

ak

dbk

dt
ª

1

An
s~x!

dB

dt
. ~15!

Here B5$bk%kPK is an infinite-dimensional Brownian mo
tion, ands(x): CK→C2 is defined by

s~x!g5 (
kPK

“

'eik•x
Alk

ak
gk ,

for g5$gk%kPKPCK. Whenever one has a continuous a
proximation to white noise, the Stratonovich limit is to b
expected. For the second-order dynamics~7!, the noise in
~15! may be interpreted in the Itoˆ sense as the Itoˆ and
Stratonovich formulations do not differ because the diffus
coefficient depends only on particle position, not particle
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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locity. However, in the case of first-order dynamics~1!, a
more complicated argument also shows that the Itoˆ and
Stratonovich integrals are the same. This is because

s~x!s~x!* 5 (
kPK

lk

ak
2 “

'eik•x~“'eik•x!*

5 (
kPK

lk

ak
2 S k2

2k1
D ~k2 2k1!

5 (
kPK

lk

ak
2 S k2

2 2k1k2

2k1k2 k1
2 D

5S (
kPK

lk

2ak
2 uku2D I ,

so s(x)s(x)* }I ~which is the Kubo formula here!. Hence
the Stratonovich–Itoˆ conversion term disappears after notin
that s is divergence-free. Substituting~15! into ~7!, we ob-
tain the approximation

t
d2x

dt2
5

1

An
s~x!

dB

dt
2

dx

dt
. ~16!

Letting n→`, we deduce that, for an infinitely rapidl
decorrelating fluid, particle motion is governed by

t ẍ52 ẋ. ~17!

Again, a Liouville equation argument shows that initial
uniform particle distributions in position space will be pr
served, provided the velocities are chosen independentl
positions—preferential concentration does not occur. Ph
cally the velocity field is decorrelating so quickly that pa
ticles are unable to correlate with the fluid.@Note that, by
rescaling time toO~n!, Eq. ~14! gives a nonzero white nois
approximation asn→`. In the next section we show tha
this can lead to preferential concentration over long ti
intervals, fort@1 andn@1.]

The casen5O(1) is the same ast5O(1) discussed in
the previous section: numerical evidence presented in S
IV shows that preferential concentration does occur in t
regime.

C. Large time behavior and rapidly decorrelating
velocity field

By looking to large time and under appropriate scalin
of the correlation timen21 and the time scale ratiot, we can
derive SDEs for particle motion. We rescale time, the tim
scale ratio, and the correlation time by setting

t5sg, t5t0ga, n5gb.

Hereg@1. Let v0 denote a velocity field obtained from~7!
with n51.

Stokes’ law then gives

t0

d2x

ds2 5g22av0~x,g11bs!2g12a
dx

ds
. ~18!

Alternatively, multiplying byga21, we may write this as
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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ga21t0

d2x

ds2 5gv0~x,g11bs!2
dx

ds
. ~19!

Note thatv(x,t) appearing in~15! is given byv0(x,tn).
Thus,~15! shows that, fore!1,

v0~x,t/e!'Ae (
kPK

“

'eik.x
Alk

ak

dbk

dt
ªAes~x!

dB

dt
.

~20!

In order to obtain a balance between the effect of the velo
field and the inertial terms, it is necessary to choose
amplitude of the rescaled velocity field to scale as the squ
root of the time dilation factor. Thus, to retain an interesti
white noise effect in~18!, we must choose 2(22a)511b
so that 2a1b53. To retain an interesting white noise effe
in ~19! we must chooseb51. Ensuring that white noise
remains in the limitg→`, and that it balances at least on
of the remaining terms, leads to the following three cas
describing the limitg→`. When interpreting the three case
note thata,0/a.0 corresponds to small/large time sca
ratios, whileb,0/b.0 corresponds to long/short fluid co
relation times.

Case 1. aP(2`,1), b51: here inertial effects are neg
ligible and we recover the passive tracer model,

dx

ds
5s~x!

dB

ds
. ~21!

Sinces(x)s(x)* }I this predicts Brownian motion for the
positionof a single particle, and is a well-known limit~Ref.
25, Sec. 4.1!. We do not expect preferential concentration
this limit because the velocity fields(x)dB/dt is still incom-
pressible.

Case 2. aP(1,2), b5322aP(21,1): here the large
particle mass~more precisely the large time scale ratio! leads
to a balance between the inertial terms and the fluid veloc
with particle drag being negligible. The resulting limit is th
equation

t0

d2x

ds2 5s~x!
dB

ds
. ~22!

Sinces(x)s(x)* }I , this predicts Brownian motion for the
velocityof a single particle. Preferential concentration can
occur in this regime in situations where initial particle dist
butions are uniform in position and velocity space; numeri
experiments are needed to determine what happens for in
data which are not of this form.

Case 3. a5b51: this case describes the large-time b
havior of a heavy particle~more precisely, with a large time
scale ratio! in a rapidly decorrelating fluid. This results in a
equation where inertial effects balance viscous drag and f
ing due to the fluid velocity, resulting in the equation

t0

d2x

ds2 5s~x!
dB

ds
2

dx

ds
. ~23!

Since s(x)s(x)* }I , this predicts an Ornstein–Uhlenbec
process for the velocity of a single particle. Preferential c
centration is possible in this regime and numerical results
presented in Sec. V. The physical mechanism for the pre
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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ential concentration observed in Case 3 is as follows. W
viewed in positionand velocityspace simultaneously, th
dynamics of~7! is compressible—volumes are contracte
forcing particles into tiny regions of velocity/position spa
after times of ordert. By looking at a scaling in which time
is or ordert, andt is assumed large, and the velocity dec
rrelates rapidly, these tiny regions in velocity/position spa
where particles gather exhibit fluctuations in time and enc
sulate the preferential concentration.

Note that Case 1 follows from Eq.~19! while Case 2
follows from ~18!. Case 3 is the marginal case between th
two. We do not allowa>2 because then 11b<0 and the
velocity field v0(x,g11bs) is not rapidly decorrelating.

IV. EFFECT OF TIME SCALE RATIO: NUMERICS

In this section and the next we present results of num
cal simulations of the model~7!. Our numerical method is
comprised of three parts:~i! an evolution ofc and v in
Fourier space, using the FFT to return to physical space;~ii !
a linearly implicit evolution of the ODEs for particle motion
~iii ! the use of a fast and accurate collision detection al
rithm for particles in a time-evolving field.29 The use of a
random field model for the velocity field leads to an order
magnitude saving when compared with DNS based on
Navier–Stokes equation.

For our experiments we use the Ka´rmán–Obukhov spec-
trum and fix the turbulence length scalel at order one. Thus
the two free parameters are the time scale ratiot and the
correlation timen21. In addition, when collisions are calcu
lated, the percentage of volume occupied by the particlesr,
is relevant. Our experiments can be summarized as follo
we fix n51022 and then~1! let t vary from 1022 to 101; ~2!
add collisions and, fort50.1 andt51, let the particle vol-
ume densityr vary from 0.01% to 10%.

FIG. 3. Particle distributions for~7!, without collisions, atn51022, for t
510k, k522,21,0,1 ~left to right, top to bottom!.
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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Figures 3–8 show the resulting particle distributions
T53.

The main results of the simulations without collisio
can be summarized as follows:preferential concentration oc
curs whent is of order one, but not at large or small value
of t. This fact is evident from Fig. 3, in that the partic
distribution is nonuniform att50.1 andt51, but spatially
homogeneous fort50.01 andt510.0. This is quantified in
Fig. 4, which compares particle distributions with the Po
son case; onlyt50.1 andt51 show significant departur
from Poisson behavior. Comparing Fig. 4 to the real exp
mental data in Fig. 2, we see that at the intermediate ‘‘Sto
number,’’t51, even thequantitativeagreement with experi
ment is remarkably good.

Now to the addition of collisions. Again we can summ
rize the results in a single sentence:elastic collisions do not

FIG. 4. Particle distributions for~7!, without collisions, atn51022.

FIG. 5. Particle distributions, for~7!, with collisions, atn51022 and t
50.1, for r50%, 0.1%, 1%, and 10%~left to right, top to bottom!.
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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greatly affect particle distributions at low densities. This is
evident from Figs. 5 and 7; the effect of collisions is hard
noticeable untilr510%. Figures 6 and 8 also clearly sho
that adding collisions does not change the quantitative c
parison with Fig. 2 significantly.

The only noticeable effect of collisions at low densiti
is, however, quite interesting. Note from Fig. 3 that pref
ential concentration is more pronounced att50.1 thant
51 in that the particles concentrate more tightly fort
50.1. One might therefore expect that the effect of collisio
would be greater att50.1 than att51. Surprisingly, the
opposite is true, as Figs. 5 and 7 indicate. The observa
can probably be explained by the variation in particle velo
ity field in space and time, variation that is probably grea
at t51 than att50.1; we have not verified this, however, a

FIG. 6. Particle distributions for~7!, with collisions, atn51022 and t
50.1.

FIG. 7. Particle distributions for~7!, with collisions, atn51022 and t
51, for r50%, 0.1%, 1%, and 10%~left to right, top to bottom!.
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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it requires substantial work. This observation is further qu
tified in Figs. 6 and 8. In particular, Fig. 8 shows an antid
fusive effect introduced by collisions: collisions enhance
sharp concentration lines in particle distributions.

We also run the algorithm tracking the motion of a sing
particle. We use the same setup as before withn51022 and
vary t from 1022 to 10. Some results are shown in Figs.
and 10. The velocity distribution is Gaussian; the depic
distribution is of thex1 component of the velocity att
50.1, and other values oft give indistinguishable results
Also, long-range correlations exist at larget since then the
particle is not greatly affected by the velocity field. At sma
t the correlations are only short lived, but remain finite
t→0; the remaining correlations are inherited from the v
locity field.

FIG. 8. Particle distributions for~7!, with collisions, atn51022 and t
51.

FIG. 9. Typical distribution of a velocity component ofx, from the time
series of a single particle obeying~7!, compared with the Gaussian distribu
tion.
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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V. RAPIDLY DECORRELATING VELOCITY FIELD:
NUMERICS

Our aim in this section is to study Eq.~23!, governing
the large time behavior of the particle positionx whent and
n are large, by means of numerical experiments. Recall
for t and/orn large preferential concentration is not expect
at order one times. First note that, once again, particle ve
ity distributions are approximately Gaussian—see Fig.
For smallt0 , we expect to see a delta-like velocity autoco
relation, asx is then approximately Brownian motion@recall
that s(x)s(x)* }I ]. This is indeed the case—Fig. 12 show
the autocorrelation for differentt0 , clearly showing conver-
gence to a scaled delta function ast0→0.

The numerical experiments are similar to those in
previous section, but in the rapidly decorrelating limit
largen. We integrate the white noise approximation~23! to
time s5104. Figure 13 shows particle distributions at th

FIG. 10. Autocorrelation function of a single velocity component for
particle obeying~7!, for different t.

FIG. 11. Typical distribution of a velocity component ofx, from the time
series of a single particle obeying~23!, compared with the Gaussian distr
bution.
 Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions
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time, for varyingt0 , and Fig. 14 shows the particles-per-b
histogram from the same data. It is clear that preferen
concentration is indeed observed for a range oft0 .

Thus, the model~7! predicts that, over long time inter
vals, inertial particles can correlate with one another, e
when placed in a rapidly decorrelating vector field. It wou
be of interest to determine whether this prediction is bo
out in real experiments and/or simulations using DNS of
Navier–Stokes equations, or whether it is caused by the s
plistic nature of the Gaussian random field model for
velocity.

FIG. 12. Autocorrelation function of a single velocity component for
particle obeying~23!, for different t0 .

FIG. 13. Particle distributions for~23!, without collisions, in the white noise
limit at n51 for t0510k, k522,21,0,1 ~left to right, top to bottom!.
Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract.
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VI. CONCLUSIONS

In this paper we have presented a simple model for
motion of inertial particles in a turbulent fluid. The mod
comprises Stokes’ law for the particle motion, with fluid v
locity modeled by a Gaussian random field. The mode
very fast to simulate from, including the effect of collision
and is also amenable to mathematical analysis. Its prim
limitations stem from the limited validity of Stokes’ law
when the fluid and particle velocities differ substantially, a
from the inability of the Gaussian random field model of
turbulent fluid to capture energy transfer between scales.
though our work is in two dimensions, it would be possib
to generalize the approach to three dimensions by work
with a pair of independent linear stochastic PDEs whose
lutions at wave vectork span the 2-D orthogonal comple
ment ofk, leading to a divergence-free velocity field with
prescribed spectrum.

Despite the limitations of the model, it compares w
with real experimental data in the sense that, for a time sc
ratio of order one, particle distributions differ substantia
from Poisson behavior. It would be of interest to make mo
detailed comparisons between the model and the wealt
experimental data and data based on DNS for the fluid.

Using the simple model we have investigated nume
cally the effect of collisions on preferential concentratio
showing that it is negligible for the low densities at whic
our model is valid; however, an interesting antidiffusive e
fect is observed at moderate particle densities. The mo
also allows the derivation of stochastic differential equatio
governing particle distributions over large times; in partic
lar, when time, the particle/fluid time scale ratio, and t
inverse correlation time of the fluid are all large, then t
stochastic model again predicts preferential concentratio
further comparison with DNS will be required to determin
whether this prediction of the model reflects a real physi
phenomenon, or whether it reflects the simple statist
model used for the fluid velocity. Assuming that the pred
tions are valid, it is noteworthy that the model used here th

FIG. 14. Particle distributions for~23!, without collisions, in the white noise
limit at n51 for differentt0 .
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provides a substantial advantage over DNS models bec
the scaling analysis leading to stochastic differential eq
tions facilitates the probing of parameter regimes that are
amenable to DNS.
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