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A model for preferential concentration
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Mathematics Institute, Warwick University, Coventry, CV4 7AL, England
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The preferential concentration of inertial particles in a turbulent velocity field occurs when the
particle and fluid time constants are commensurate. We propose a straightforward mathematical
model for this phenomenon and use the model to study various scaling limits of interest and to study
numerically the effect of interparticle collisions. The model comprises Stokes’ law for the particle
motions, and a Gaussian random field for the velocity. The primary advantages of the model are its
amenability to mathematical analysis in various interesting scaling limits and the speed at which
numerical simulations can be performed. The scaling limits corroborate experimental evidence
about the lack of preferential concentration for a large and small Stokes number and make new
predictions about the possibility of preferential concentration at large times and lead to stochastic
differential equations governing this phenomenon. The effect of collisions is found to be negligible
for the most part, although in some cases they have an interesting antidiffusive effe2002
American Institute of Physics[DOI: 10.1063/1.1517603

I. INTRODUCTION et al,® is a quantitative representation of the information in
Fig. 1. It is obtained by overlaying a square grid on Fig. 1,

Empirical evidence indicates that, in some parameter rethen counting the number of particles inside each square of
gimes, the distribution of particles in a turbulent velocity the grid and making a histogram of the resulting collection of
field is highly correlated with the turbulent motions, a phe-numbers. The comparison is with a Poisson distribution,
nomenon that has been termprkferential concentratioh  which is what would be observed if the particles were placed
The basic physics underlying this phenomenon is the fachdependently at random, with a mean number of particles in
that inertial particles spin out from the center of eddies; if thea volume element being proportional to volume. The com-
particle and fluid time constants are commensurate, so th@farison quantifies the observation that, in Fig. 1, there are
the eddy persists on this spinout time scale, then the particlesbstantial areas where particle density is very low, and
will concentrate in regions where straining dominateswhere it is very high. Experiments at high or low Stokes
vorticity.*? number do not exhibit this phenomenon.

Our aims in this work are the followingi) to describe a In Sec. Il we introduce the mathematical model, and
simple model for preferential concentratiofii)) to use the hjighlight the main parameters: shape of the energy spectrum,
model to elucidate a number of interesting scaling linfits]  time scale ratio, eddy correlation time, and eddy correlation
to study preferential concentration through a numerical simutength; we also discuss the limitations of the model. In Sec.
lation of the model; andiv) to study whether collisions be- ||| we describe various scaling limits in which the model
tween particles become important in view of the high particlesimp"ﬁes, using the methodology described in Magdal?
densities present, where preferential concentration occurs. gnd Kramer and Majd&.Section IV contains the results of

We study two-dimensional problems, using Stokes’ lawyymerical simulations for varying Stokes number, showing
to describe particle motions, and modeling the velocity as &greement with experimental evidence such as that in Fig. 2.
Gaussian random field that is incompressible, homogeneougne effects of elastic collisions are also studied in this sec-
isotropic, periodic in space, stationary and Markovian intion |n Sec. V we show various simulations of the large time
time. The resulting model is both cheap to simulate and aMescaling limits derived in Sec. IlI.
nable to analysis in various important scaling limits. These  There is an extensive literature describing experiments
two facts give the model its primary advantage over modelgy, jnertial particles in turbulent flows; see Eaton and Feksler
that employ direct numerical simulatioDNS), or large o1 a review of the subject, and for further references. There
eddy simulation, for the velocity field. _ has also been work studying inertial particles in turbulent

To illustrate the physical phenomena of interest, we deyjg,ys using DNS of the Navier—Stokes equations; relevant
scribe some experimental data. Figure 1 is taken from Fe§gferences include Squires and EatéHwhich describe nu-

Sleret al? It shows the distribution of particles in a turbulent erica|ly generated data on particle distributions, and their
fluid at a Stokes numbgthe ratio of the particle to fluid time  rg|ation to experimental data and to invariants of the fluid
constants of order 1. Figure 2, also taken from FeSS|erveIocity field, and Hogaret al® and Elperinet al,>° who

study the finer properties of the particle distributions such as
dPresent address: deCODE Genetics, 101 Reykjavik, Iceland. self-similarity; Crisantiet al! is also of interest in this con-
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Concerning literature on inertial particles in synthetic
turbulence, that is, a random velocity field model chosen to
match some of the statistics of turbulence, there are few ref-
erences; see Max&for work in this direction. However,
there is considerable literature on random velocity fields as
models of turbulence in the noninertial context; the seminal
paper by Kraichnah indicated the viability of this approach
and the more recent papers of Caretal.® Marti et al,!’
and Junejat al'® employ the particular periodic implemen-
tation of Kraichnan’s idea that we use here. In particular, the
papers Caretat al,'® and Martiet al,!” and the book by
Garca-Ojalvo and Sanch(Ref. 19, pp. 108—11)3 describe
the PDE formulation of synthetic turbulent velocity fields
that we use, together with advocating the use of the Fourier
transform to simulate such velocity fields efficiently on a
computer, an approach that we follow.

Also of interest are studies of fluid particles, or passive
tracers, in synthetic turbulence,

X(t)=v(x(1),t), )

since they are closely related to our mog@@lin the limit of
zero time scale ratiof—0). This work dates back to an
early model of Tayld?® with a recent study of this problem
being described in, for example, Fannjiang and
Komorowsk?! and Komorowski and PapanicolaétiThe
papers by Carmona and X&, Carmona etal® and
FIG. 1. Photograph of 2&m lycopodium particles illuminated by a laser Fannjiang and Komorows&i employ, and study the proper-
sheet on the center plane of a vertical turbulent channel flow. Reproducec%i f the f lati fthe G . d field th h
with permission, from Ref. 3. es of, the formu gtlon of the Gaussian random field throug
use of an Ornstein—Uhlenbeck process, as we do here. The
review article by Majda and Kramrgives an extensive

. . . . background on the subject of passive tracers in turbulent
text, although the model for particle motion differs slightly fluid and, in particular, overviews the subject of how to cre-

from tha_t “ged here and in the othgr refergnces. Sundarag&e random fields that model certain characteristics of turbu-
and Colling? study the effect of collisions using DNS of the lent fluids
Navier—Stokes equations. There is also work, motivated by '

lanet f tion. f | el tion i In this paper we are interested Mypoint motions in a
plane orm?3|on, or example, on particle aggregation In 1o+, n4om field: the study of correlations amohfparticles
tating flows:> The mechanism in this case is related to, but

- i moving in a(model for a turbulent fluid; in particular, we
distinct from, that which we study here. are interested in the case W1 so that we can study par-
ticle distributions in a meaningful way. Mathematically
speaking, we are studying a stochastic ffdvand in this
LA ERLAEL S AL R R field the study of two-point motions plays a central role.
There is some literature on the topic of two-point motion in
the context of particle tracefé:2®

o
]
RAENS
b

o.oa&- / In conclusion we show the followingdi) that a simple
s / Gaussian random field model for the velocity field, coupled
g o.osE- / with Stokes’ law for particle motion, provides remarkably
g [ / good agreement with some of the experimental data concern-
= ol ing preferential concentratioriji) the model allows for an
E"WJ;(]\I‘ elucidation of various scaling limits that either confirm ex-
0.02 / perimental observatiotfor small or large Stokes numbesr
L provide new insight into large time behavior, predicting pref-
o: R erential concentration in some cases, and giving stochastic
0 10 differential equations governing the phenomengii) the

particlea/box model is fast to simulate, giving an order of magnitude
speedup over DNS simulationGy) the effect of collisions
particles, S&£0.7 on a 2 mnsquare grid. Also plotted is Poisson, or random can be studied numenca”y’ using the fast algorlthm in

: - 29
distribution, for the same mean number of particles per box. Reproduced,s'gw_gews_sorm a_l.,_ and our results show that the effect of
with permission, from Ref. 3. collisions is negligible here; to the extent that they are no-

FIG. 2. The distribution of particle number density for 2é lycopodium

Downloaded 12 Sep 2013 to 137.205.50.42. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



4354 Phys. Fluids, Vol. 14, No. 12, December 2002 H. Sigurgeirsson and A. M. Stuart

ticeable they create an interesting antidiffusive behavior, + d2x’ X'
sharpening concentration lines in the particle distributions. T gz (t)=v (X' (t'),t") = = (1),
oy vT COTNT oW

II. MATHEMATICAL MODEL W: FAx"/f + Lz \/E_at’ ,

We consider the motion of a particle in two dimensions
with positionx(t) at timet, moving in a fluid according to W (1, x")= 2, Ae(x') Bi(t’).
Stokes’ law: kek

() =v(X(1),t) —X(1). ) Here we sep(t) = TB.(t') so that{ B/}, .k are also stan-

dard Brownian motions. By choosing the length sdal¢he

Herer=m/(xC) wheremis the particle mass is the fluid  problem is posed on the unit toru#?, and we choose the
viscosity, C is a universal nondimensional constant, andtime scaleT such thafT &é=L+/». We show below that this
v(xt) is the prescribed velocity field of the fluid. We neglect choice ensures that the mean square velocity is constant at
the ﬁnite-end eﬁect COI’reCtiOI’lS fbthat make the IaW non- every point in Space and t|me1 hend’es a natura' f|u|d t|me
linear, through a logarithmic dependence on particle Reygonstant. Defining”’ = 7/T and v’ = »T/L? and dropping the
nolds numbe? in two dimensions. Furthermore, by assum- primes gives
ing that the force on the particle is linear in the difference .
between particle and fluid velocity, we are making an ap-  7X(D)=v(x(1),t) =X(1),
proximation whose validity may break down at large velocity b=V'y
differences’? '

Under our assumption that the velocity is two- Yy IW
dimensional(2-D) and incompressible, we may introduce a o vAy+ \/;7,
streamfunctiony, so that

v:vwzz(ﬁ _%), Wixt)= 3, Ne(BD.

Xy ' IXq

)

Our assumptions that the velocity field is Gaussian, MarkovHenceforth we work in these dimensionless variables. The

ian, and homogeneous are satisfied by assumingjtigthe equations are augmented with periodic boundary conditions

. 2 . wge . wge
solution to the partial differential equation, in xe T and initial data ko, Yo, o) for (x,y,#). The initial
data for ¢ are chosen so that it is stationary and we show

2 _ IW how to do this below. Doing so ensures thattself is sta-
E(X’t)_VAw(X’t)+\/EW(X’t)’ ©® tionary.

2 The stochastic procesg is an infinite-dimensional
xe OCR?, t=0, (4)

Ornstein—UhlenbeckOU) process. To get an idea of the
where dW/dt is a Gaussian process, white in time. We will solution, we use a separation of variables,

take O to be the square of side lengthin two dimensions,

namely[0,L]?, and extend to the whole of the plarig?) by Y= > dhl(t)edx), (8)
periodicity. ThenW has the expansion kek

X for g.: R—C, ke K. Then we use the Fourier representation
W(x,t)= 2 \/)\—kek T Bk(t)- (5) (7) of W givin
ke K L g g
Here K=2x72{(0,0)}, el (x)=e** and{B}x.« is a se- di = — arpdt+ Vo dBe,  P(0)= 4, 9)

guence of standard complex-valued Brownian motions, inde-

~0 _ ) _
pendent excepB_,= 3% . Thespectrum{\ ..« is normal-  Wherei:=(¢o,&g andAe = —aye,. The unique solution
of this stochastic differential equation is the OU process,

ized so that
N N t
> =1 (6) d(t)=e" oty + VVkaoe_ 94 By(s).
keK

The parameters, will be chosen so that the velocity field The stationary distribution of this SDE is a Gaussian
reproduces the desired energy spectra. However, it is imporV(0.\i/2ay). If we choose initial data from this distribution
tant to realize that such linear Gaussian models for the vethen is stationary in each of its Fourier components and
locity field do not capture important effects present in real

: 1 1
turbulent fluids such as the energy cascade between scales, E|v(x,t)[?== >, \e==.
and non-Gaussian tails at fixed scales. 2k 2

We introduce nondimensional variables. To that end sefq see this, note that

t=Tt', x()=Lx'(t'), ¢(xH)=(L¥T)y'(x',t'), and
v(x,t)=(L/T)v'(x',t"). Thenv’=Vi,:,b’ and Eqgs(2), (3),
and(5) become

v(x,t>=k§K (Ve (x). (10
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Asv is real, we havé =0} . ForkeK the energy(t) of  the structure of the problem for<1 andv>1. In Sec. IlIC
Fourier modek is given by (using stationarity &(t) we study various large-time scaling limits in which the ve-
=F|0,(0)|%. In the stationary distribution we hav [pk|2 locity field is rapidly decorrelating, leading to It8DEs for
=\ 2a; and E ﬁk|2=|k|2JE| ;ﬂk|2:|k|2)\k/2ak- As ak=|k|2 the particle motion. Recall that, throughout, we fix the cor-

this implies that, to achieve a given mean kinetic energy€/ation lengthl at order one. We study the cases O(1)
spectrum{ &k, We set and »=0(1) numerically in Sec. IV.

A= 2&. (1) A. varying the time scale ratio

To ensure isotropy it is customary to specify the energy spec-  We study particle distributions according to the model

trum in terms of the total energy in all Fourier modes of the(7) as 7, the time scale ratio, varies white !, the correla-

same length, via tion time, andl, the correlation length, are fixed. We first
S=C(|K)). (12) summarize known properties in the limits=0, e in order to

. 5 ] ) set the numerical experiments in context. Fer0 we obtain
Choosing(z)=14¢y(1z), for appropriately normalized,, the model for particle tracers:
will give (6) (approximately, for every choice of, as can be

seen by comparison with an integral. X=v(x),

Noting that¢, defines the shape of the spectrii}, it with v a Gaussian random field in space—time. These models
follows that, given this shape, three parameters remain in thgo not exhibit preferential concentration. This can be seen as
problem: 7, particle time constant/fluid time constanty1/  follows. Since particles follow incompressible fluid trajecto-
nondimensional velocity correlation time; ahdnondimen-  yies passing to a continuum limit for a densjiyx,t) of
sional correlation length—whergpeaks atO(1/). particles located at positionat timet, we obtain the Liou-

We have mentioned that the Stokes number plays a cenyjjie equation,
tral role in the effect of preferential concentration. The
Stokes number is defined as the ratio of the aerodynamic 5_I3jL V=0
particle time constant to amappropriate turbulence time gt UYPTH
scale. One possible candidate for the Stokes number is ther
fore the parameter, with a fluid time constant based on the ; . .

. . preventing preferential concentration.

root mean square fluid velocity and length schleThe pa- > ; . . .

. For =« we obtain the equation for particles in a
rameterl sets the length scale of the coherent structures N~ cuum
the velocity fieldv while v indicates how fast coherent struc- '
tures decay, and new ones are born. In this paper we refer to X=0.
asthe time scale ratipr ! as the correlation timand| as
the correlation lengthNote that definitions of a Stokes num-
ber other thanr can be obtained by combining values of the
three parameters, |, andv. In this paper we willnot study
the effect of varying the correlation lengthand it will be
fixed at order one. However, the limit- 0 is of interest, and
we will study it in future work.

We study two different spectra in our numerical experi-
ments: theKraichnan spectrum-®

i p(x,0) is uniform thenp(x,t) is uniform for all time,

Again, a Liouville argument, now for a densify(x,X,t),
shows that uniform particle distributions in position space
are preserved in time, provided that the initial velocitiesre
independent of the initial positions, and preferential concen-
tration is ruled out.

In Sec. IV, we present numerical evidence to show that
these conclusions abouat=0, « give an accurate picture of
what happens for<1 and7> 1, at intermediate time scales.
For 7 of order one, however, we will demonstrate numeri-
go(z)oczze—zz, cally that preferential concentration is observed. These find-
ings are in agreement with experimental evidence, and evi-
dence based on DNS, that preferential concentration occurs
go(z)a22(1+22)<—7/3)_ if and only if the Stokes number is of order che.

and theKarman—Obukhovspectrum-®

Both pr_oduce similar results. F_or this paper all the _numerlcah_ Varying the fluid correlation time

illustrations are performed using the second choice. There . - .
are some mathematical issues concerning the lack of regular- We discuss how the mod€T) behaves as ™, the fluid
ity of the velocity field resulting from the second choice, butcorrelation time, varies while, the time scale ratio, ang

numerical experiments indicate that these are not manifest ithe correlation length, is fixed. Far=0 (infinite correlation
the quantities we measure héfe. time) the velocity field is frozen and the equation of motion
is

IIl. SCALING LIMITS ™X=0v(X)—X,

In this section we discuss the mod@) in various scal- with v a homogeneous, isotropic Gaussian random field in
ing limits of interest. In Sec. Il A, we study the variation of space. This equation is dissipative with a global attractor;
the time scale ratior for fixed correlation timer~1; we  physically this means that, asymptotically for large times, the
elucidate the structure of the problem fo1 andr>1. In  particle velocities are bounded independently of their starting
Sec. Il B we study variation with’ for fixed 7, elucidating values. In fact, they are bounded asymptotically by the peak
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fluid velocity. Over a short time, preferential concentration islocity. However, in the case of first-order dynamidy, a
not observed, but on a longer time interval the large timemore complicated argument also shows that the dtw
dynamics typically lead to preferential concentration. Nu-Stratonovich integrals are the same. This is because
merical experiments indicate that for almost all initial condi- \
tions the solution converges to one of a finite number of (X)) =D ZXvielkx(ytelkxx

@y

isolated periodic orbits and then preferential concentration Kek
occurs. This limit is mathematically interesting, but far from
any regimes observed in the experiments reviewed in Eaton — 2 )\—5( K )(kz —ky)
and Fesslet.We do not pursue it further here. Kek ajc| —ka
To understand the limiv—, when the fluid decorre- K2 koK
lates rapidly, we make a digression into the properties of OU _ 2 ﬂ( 2 L 2)
processes. Lep solve KeK aﬁ — kKo ki
d d \
d—:’-i-avnzmd—f, (13 =(|§Kr&|k|2)l,

with 8 a standard Brownian motion and with stationary ini-

) so a(X)a(x)* «I (which is the Kubo formula hejeHence
tial data. Then

the Stratonovich—it@onversion term disappears after noting

C s that o is divergence-free. Substitutind5) into (7), we ob-
n(t)= \/ﬁf_xe wEYdB(s). tain the approximation
This is a Gaussian process with mean 0 and covariance, d’x 1 dB dx
T =—o0(X) = (16)

N ae” W a
Eq(t+T)p(t)= =—e @7,
2a Letting v—~, we deduce that, for an infinitely rapidly

For »>1, we have decorrelating fluid, particle motion is governed by
ot 20(1) X=—X. (17)
e avt —_—,
av Again, a Liouville equation argument shows that initially
implying that (t) is approximately a white noise: uniform particle distributions in position space will be pre-
q served, provided the velocities are chosen independently of
()~ )\/vaz—'g. (14)  Positions—preferential concentration does not occur. Physi-
dt cally the velocity field is decorrelating so quickly that par-

Although this calculation is simply a heuristic, it is possible ficles are unable to correlate with the fluidNote that, by

to make it precise by considering the solutions of equationéescaling time ta(»), Eq. (14) gives a nonzero white noise
driven by 7 solving (13), in the limit y—. Theorems can &PProximation as’—. In the next section we show that
be proved in the sense of wédland strong convergentn j[hIS can lead to preferential concentration over long time
various contexts. None of these results apply directly to ouftervals, forr>1 andv>1] _ .
situation because of the particular infinite-dimensional form ~ The casev=0(1) is the same as=0(1) discussed in

of our OU processes. Therefore we limit ourselves to a derithe previous section: numerical evidence presented in Sec.
vation of the limit equations, following the methodology in \ §hows that preferential concentration does occur in this
Majdaet al* and Kramer and MajdaWe leave the question €9Ime.

of making the derivation rigorous for future study.

Using (13), (14) in (10), (9) we see that C. Large time behavior and rapidly decorrelating
' ' velocity field
v(X,t)~ i S ylelkx iy % 1 dB By looking to large time and under appropriate scalings

vkeK Ofk dt

.:ﬁa'(x) 5 (19

of the correlation times~ ! and the time scale ratig we can
derive SDEs for particle motion. We rescale time, the time

Here B={fid .« Is an infinite-dimensional Brownian mo- .. ratio, and the correlation time by setting

tion, ando(x): CK—(C? is defined by

\/—k t=sy, 71=79y% v= yﬁ.

: A
— 1 Aik-x
o(x)y l;E:K Ve ay Yo Here y>1. Letv, denote a velocity field obtained frof)

with v=1.

_ K . _
for y={wdrek € C". Whenever one has a continuous ap Stokes' law then gives

proximation to white noise, the Stratonovich limit is to be
expected. For the second-order dynamics the noise in d?x dx

(15 may be interpreted in the ltsense as the lt@nd TogzYzfavo(X,YHBS)—Vl*“E- (18)
Stratonovich formulations do not differ because the diffusion

coefficient depends only on particle position, not particle ve-Alternatively, multiplying byy®*~1, we may write this as
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2
a1, 9X_ 1+5g)_ I 19
Y TG 2 Yoo(X, ¥y " Ps) s (19

Note thatv (x,t) appearing in15) is given byvy(Xx,tv).
Thus, (15) shows that, fore<1,

Y\ dBy

. dB

~ 1 |k.x__:: -

vo(X,tle) \/GKEEK, V-e @ di Vea(X) TR
(20

In order to obtain a balance between the effect of the velocity
field and the inertial terms, it is necessary to choose the
amplitude of the rescaled velocity field to scale as the square
root of the time dilation factor. Thus, to retain an interesting
white noise effect i18), we must choose 2(2a)=1+p
so that 2¢v+ B8=3. To retain an interesting white noise effect
in (190 we must choosed=1. Ensuring that white noise
remains in the limity—, and that it balances at least one
of the remaining terms, leads to the following three cases,
describing the limity— . When interpreting the three cases
note thata<<0/a>0 corresponds to small/large time scale
ratlos, Wh”eB<0/B>0 corresponds to long/short fluid cor- FIG. 3. Particle distributions fof7), without collisions, atv=10"2, for 7
relation times. =10, k=-2,—1,0,1 (left to right, top to bottom

Case lae(—=,1), B=1: here inertial effects are neg-
ligible and we recover the passive tracer model,

dx dB ential concentration observed in Case 3 is as follows. When

— = (X) —. (21)  viewed in positionand velocityspace simultaneously, the

ds ds dynamics of(7) is compressible—volumes are contracted,
Since o(x) o(x)* | this predicts Brownian motion for the forcing particles into tiny regions of velocity/position space
positionof a single particle, and is a well-known limiRef. ~ after times of ordetr. By looking at a scaling in which time

25, Sec. 4.1 We do not expect preferential concentration iniS or orders, andr is assumed large, and the velocity deco-
this limit because the velocity field(x)dB/dt is still incom-  frelates rapidly, these tiny regions in velocity/position space

pressible. where particles gather exhibit fluctuations in time and encap-
Case 2 @e(1,2), B=3—2ac(—1,1): here the large Ssulate the preferential concentration.
particle masgmore precisely the large time scale ratieads Note that Case 1 follows from Eq19) while Case 2

to a balance between the inertial terms and the fluid velocityfollows from (18). Case 3 is the marginal case between these
with particle drag being negligible. The resulting limit is the tWo. We do not allowa=2 because then#5<0 and the

equation velocity field vo(x,y**Ps) is not rapidly decorrelating.
dx dB
TOE_ZU(X) s (22) IV. EFFECT OF TIME SCALE RATIO: NUMERICS

) . _ _ ] _ In this section and the next we present results of numeri-
Sincea(x)a(x)* =1, this predicts Brownian motion for the 5| simulations of the model7). Our numerical method is
velocityof a single particle. Preferential concentration Can”OTcomprised of three partsi) an evolution ofy and v in
occur in this regime in situations where initial particle distri- g rier space, using the FFT to return to physical spéide:
bUt'Or!S are uniform in position and.velocny Space, numel_rlga_\la linearly implicit evolution of the ODEs for particle motion;
experlmgnts are needed_ to determine what happens for |n|t|@-lii) the use of a fast and accurate collision detection algo-
data which are not O_f this form. _ . rithm for particles in a time-evolving fieltf The use of a

Case 3a=p=1: this case describes the large-time be-ranqom field model for the velocity field leads to an order of

havior of a heavy particlemore precisely, with a large time - agnitude saving when compared with DNS based on the
scale ratig in a rapidly decorrelating fluid. This results in an Ngvier—Stokes equation.

equation where inertial effects balance viscous drag and forc-  £q; our experiments we use thé iggn—Obukhov spec-

ing due to the fluid velocity, resulting in the equation trum and fix the turbulence length scalat order one. Thus,
d2x dB  dx the two free parameters are the time scale ratiand the
rogza(x) ds ds (23 correlation timer~ 1. In addition, when collisions are calcu-

lated, the percentage of volume occupied by the partigles,
Since o(x)o(x)* =1, this predicts an Ornstein—Uhlenbeck is relevant. Our experiments can be summarized as follows:
process for the velocity of a single particle. Preferential conwe fix v=10 2 and then(1) let 7 vary from 10 2 to 10"; (2)
centration is possible in this regime and numerical results aradd collisions and, for=0.1 andr=1, let the particle vol-
presented in Sec. V. The physical mechanism for the prefersme densityp vary from 0.01% to 10%.
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FIG. 6. Particle distributions fot7), with collisions, atv=10"2 and =
=0.1.

FIG. 4. Particle distributions fof7), without collisions, aty=10"2.

Figures 3—8 show the resulting particle distributions at
T=3. greatly affect particle distributions at low densiti€ghis is
The main results of the simulations without collisions evident from Figs. 5 and 7; the effect of collisions is hardly
can be summarized as followsreferential concentration oc- noticeable untilp=10%. Figures 6 and 8 also clearly show
curs whenr is of order one, but not at large or small values that adding collisions does not change the quantitative com-
of 7. This fact is evident from Fig. 3, in that the particle parison with Fig. 2 significantly.
distribution is nonuniform at=0.1 and7=1, but spatially The only noticeable effect of collisions at low densities
homogeneous for=0.01 andr=10.0. This is quantified in is, however, quite interesting. Note from Fig. 3 that prefer-
Fig. 4, which compares particle distributions with the Pois-€ntial concentration is more pronounced 0.1 thanr
son case; onlyr=0.1 andr=1 show significant departure =1 in that the particles concentrate more tightly for
from Poisson behavior. Comparing Fig. 4 to the real experi= 0.1. One might therefore expect that the effect of collisions
mental data in Fig. 2, we see that at the intermediate “Stokewould be greater at=0.1 than atr=1. Surprisingly, the
number,” 7=1, even thequantitativeagreement with experi- Opposite is true, as Figs. 5 and 7 indicate. The observation
ment is remarkably good. can probably be explained by the variation in particle veloc-
Now to the addition of collisions. Again we can summa- ity field in space and time, variation that is probably greater
rize the results in a single sentenedastic collisions do not at7=1 than atr=0.1; we have not verified this, however, as

Y

FIG. 5. Particle distributions, fof7), with collisions, aty=10"2 and =
=0.1, forp=0%, 0.1%, 1%, and 10%eft to right, top to bottom

FIG. 7. Particle distributions fot7), with collisions, aty=10"2 and
=1, for p=0%, 0.1%, 1%, and 10%eft to right, top to bottormn
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FIG. 8. Particle distributions fot7), with collisions, atv=10"2 and

1 FIG. 10. Autocorrelation function of a single velocity component for a

particle obeying7), for different 7.

V. RAPIDLY DECORRELATING VELOCITY FIELD:

it requires substantial work. This observation is further quanNUMERICS
tified in Figs. 6 and 8. In particular, Fig. 8 shows an antidif- Our aim in this section is to study ER3), governing
fusive effect introduced by collisions: collisions enhance thepqo large time behavior of the particle positioahen 7 and
sharp concentration lines in particle distributions. ~vare large, by means of numerical experiments. Recall that

We also run the algorithm tracking the motion 923 singlefor 7 and/orv large preferential concentration is not expected
particle. We use the same setup as before wittl0 “ and ¢ order one times. First note that, once again, particle veloc-
vary 7 from 10°“ to 10. Some results are shown in Figs. 9 gistributions are approximately Gaussian—see Fig. 11.
and 10. The velocity distribution is Gaussian; the depicted:,r smallr,, we expect to see a delta-like velocity autocor-
distribution is of thex, component of the velocity at  (g|ation, asx is then approximately Brownian motidrecall
=0.1, and other values of give indistinguishable results. that o(x) o(x)* =<1]. This is indeed the case—Fig. 12 shows

Also, long-range correlations exist at largesince then the e autocorrelation for different,, clearly showing conver-
particle is not greatly affected by the velocity field. At small gence to a scaled delta function as—0.

T the.correlatior_]s_ are only s_hort Iived_, but_ remain finite as"  The numerical experiments are similar to those in the
7—0; the remaining correlations are inherited from the Ve-previous section, but in the rapidly decorrelating limit of

locity field. large v. We integrate the white noise approximati(#8) to
time s=10% Figure 13 shows particle distributions at this
0.5 , 05 : : : : . : :
0.25} 1 0.25¢ ]
9 0 4 Y 4

\

FIG. 9. Typical distribution of a velocity component &f from the time FIG. 11. Typical distribution of a velocity component xf from the time
series of a single particle obeyiri@), compared with the Gaussian distribu- series of a single particle obeyirig3), compared with the Gaussian distri-
tion. bution.
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particle obeying23), for different 7. limit at »=1 for differentry.

VI. CONCLUSIONS

time, for varyingry, and Fig. 14 shows the particles-per-box In this paper we have presented a simple model for the

histogram from the same data. It is clear that preferentiayotion of inertial particles in a turbulent fluid. The model
concentration is indeed observed for a rangegf comprises Stokes’ law for the particle motion, with fluid ve-
Thus, the mode(7) predicts that, over long time inter- |4city modeled by a Gaussian random field. The model is

vals, inertial particles can correlate with one another, eveRery fast to simulate from, including the effect of collisions,
when placed in a rapidly decorrelating vector field. It would 314 is also amenable to mathematical analysis. Its primary

be of interest to determine whether this prediction is borngjmitations stem from the limited validity of Stokes’ law,

out in real experiments and/or simulations using DNS of thgyhen the fluid and particle velocities differ substantially, and
Navier—Stokes equations, or whether it is caused by the sinfom the inability of the Gaussian random field model of a
plistic nature of the Gaussian random field model for theyyrpulent fluid to capture energy transfer between scales. Al-
velocity. though our work is in two dimensions, it would be possible
to generalize the approach to three dimensions by working
with a pair of independent linear stochastic PDEs whose so-
lutions at wave vectok span the 2-D orthogonal comple-
ment ofk, leading to a divergence-free velocity field with a
prescribed spectrum.

Despite the limitations of the model, it compares well
with real experimental data in the sense that, for a time scale
ratio of order one, particle distributions differ substantially
from Poisson behavior. It would be of interest to make more
detailed comparisons between the model and the wealth of
experimental data and data based on DNS for the fluid.

Using the simple model we have investigated numeri-
cally the effect of collisions on preferential concentration,
showing that it is negligible for the low densities at which
our model is valid; however, an interesting antidiffusive ef-
| fect is observed at moderate particle densities. The model
JHY also allows the derivation of stochastic differential equations
. A ! governing particle distributions over large times; in particu-

; : ¢ lar, when time, the particle/fluid time scale ratio, and the
] inverse correlation time of the fluid are all large, then the
i . stochastic model again predicts preferential concentration. A
T < further comparison with DNS will be required to determine

‘ N & whether this prediction of the model reflects a real physical
phenomenon, or whether it reflects the simple statistical
FIG. 13. Particle distributions fa23), without collisions, in the white noise Model used for the fluid velocity. Assuming that the predic-
limit at v=1 for =10, k= —2,—1,0,1 (left to right, top to bottorn tions are valid, it is noteworthy that the model used here then
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