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The motion of an inertial particle in a Gaussian random field is studied. This is a model
for the phenomenon of preferential concentration, whereby inertial particles in a turbu-
lent flow can correlate significantly. Mathematically the motion is described by Newton’s
second law for a particle on a 2-D torus, with force proportional to the difference be-
tween a background fluid velocity and the particle velocity itself. The fluid velocity is
defined through a linear stochastic PDE of Ornstein—Uhlenbeck type. The properties of
the model are studied in terms of the covariance of the noise which drives the stochastic
PDE.

Sufficient conditions are found for almost sure existence and uniqueness of particle
paths, and for a random dynamical system with a global random attractor. The random
attractor is illustrated by means of a numerical experiment, and the relevance of the
random attractor for the understanding of particle distributions is highlighted.

Keywords: Inertial particles; Ornstein—Uhlenbeck process; random velocity field; prefer-
ential concentration.
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1. Introduction

There is considerable evidence, both experimental and numerical, showing that the
distribution of inertial particles in a turbulent velocity field is highly correlated
with the turbulent motions, [12-14, 17, 30, 32, 33-35].

Figure 1, taken from paper [17], shows the distribution of lycopodium particles
in a turbulent fluid. Figure 2, also from [17], is obtained by overlaying a square
grid on Fig. 1 and counting the number of particles inside each square of the grid.
The resulting histogram quantifies the observation that, in Fig. 1, there is sub-
stantial area where particle density is very low, and where it is very high, when
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Fig. 1. Photograph of 28 pm Lycopodium particles illuminated by a laser sheet on the centerplane
of a vertical turbulent channel flow [17]. (Reprinted with permission from [17].)
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Fig. 2. Distribution of particle number density for 28 um Lycopodium particles, St = 0.7 on a
2 mm square grid. Also plotted is Poisson, or random distribution, for the same mean number of
particles per box [17]. (Reprinted with permission from [17].)

compared with the Poisson distribution; this phenomenon is known as preferential
concentration.

In paper [32] we propose a model to investigate preferential concentration. The
model exhibits good agreement with experimental data, allows efficient numerical
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simulation of large number of particles, including the effect of inter-particle colli-
sions if desired, and is, to a certain extent, amenable to mathematical analysis. The
model consists of Stokes’s law for the particle motion:

7E(t) = v(z,t) — (L)

with the background velocity field v being modelled by a linear stochastic PDE for
a stream function, generating an incompressible velocity field.

The aim of this paper is to highlight the interesting properties of such particle
motion laws, and to show that the language of random dynamical systems provides
a natural framework for their study. The mathematics is straightforward building,
to a large extent, on material in [8]. However the numerical experiments show very
interesting mathematical structure and suggest that more detailed mathematical
study is called for. In Sec. 2 we describe the model itself. Section 3 summarizes the
existence, uniqueness and regularity properties of the stream function, utilizing the
theory in [8,9]. In Sec. 4 we study particle motions as a random dynamical system,
proving the existence of a global random attractor. In Sec. 5 we conclude with a
numerical experiment illustrating the properties of the random attractor.

The papers Kraichnan [24], Careta et al. [2], Marti et al. [28], Juneja et al. [20],
the review article Majda and Kramer [26] and the book [18, pp. 108-113], contain
useful discussions of the creation of random fields which mimic turbulence. Our
velocity field v is most closely related to the one constructed in [18]. There is very
little mathematical analysis of inertial particles in a random field. However, there
is considerable literature concerned with the study of fluid particles, or passive
tracers, in the non-inertial context 7 = 0. Relevant references include Taylor [36],
Kraichnan [24], Fannjiang and Komorowski [15], Komorowski and Papanicolaou
[22] and Carmona and Xu [4]. The review article [26] gives extensive background
on the subject.

In this paper we are interested in N-point motions in a random field; in particu-
lar we are interested in the case of N > 1 so that we can study particle distributions
in a meaningful way. Thus we are studying a stochastic flow [25], and the study
of two-point motions plays a central role. There is some literature on the topic
of two-point motion for non-inertial passive tracers, see [11,16,21]. The papers by
Carmona et al. [3], Cranston at al. [5] and Dolgopyat et al. [10] consider the evolu-
tion of sets of initial conditions under the stochastic flow induced by passive tracer
motion. Most studies of passive tracers in a random velocity field concern incom-
pressible flow fields. Recently Gawedski and Vergassola [19] have initiated study of
particle tracer correlations in compressible random flows; this has a relation to the
model we study which, when viewed in the phase space of particle positions and
velocities, is driven by a vector field with nonzero divergence.

2. Mathematical Model

In this section we describe the model. Let K = 27Z2\{(0,0)}, ex(z) = € and let
{Br}rek be a sequence of standard complez-valued Brownian motions; this means
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Re Br, and Im (3 are independent real-valued Brownian motions, each with variance
1/2 and different (B are independent except that 3_p = ;. For £ € K choose
Ak = C(|k|) for some ¢ : Rt — Rt with

/ sl 1. 2.1)
R

In non-dimensional variables our model for a particle with position z in a velocity
field v is

Ti(t) = v(z(8),t) - £(1),

U= Vld)y
o (_9_“1 2.2
W(t,z) =) vV er(z)Br(t).
keK

Equations (2.2) are augmented with periodic boundary conditions in z € T2,
and initial data (zo,vo, %) for (z, Z, ). We usually choose initial data so that ¢ is
stationary. This ensures that v itself is stationary.

The PDE for 7 is an infinite dimensional Ornstein—Uhlenbeck (OU) process. To
get an idea of the solution we use separation of variables, writing

b(t,z) = Y Pr(t)er(®), (2:3)

kEK

forz[:k:R%(C, k € K. Then
v(z,t) = Y Pp(t)VEer(z) =D d(t)ex(z).

kEK keK

Let ax = |k|? so that Aer = —ageg. It follows that

¢
D (t) = e 2 (3o, ex) + \/u/\k/o e7vet=9)dg, (s). (2.4)

If we separate the series into the deterministic part ¥°(¢,z) due to the initial
conditions, and a stochastic part ¢! (¢, ), then the Fourier coefficients of the two
functions are

t
¢2(t) = e "y, e, 1/’;(15) Y )\ku/ e_"o"“(t"s)dﬂk(s) : (2.5)
0
We will use the fact that the variance of 1&,19 is
~ A
E[p(t)f = 51— e (2.6)
20

which is a simple application of the Itd isometry.
If we choose initial data so that each Fourier component of v is stationary, then

t
Do) = vl / e—var(t=9)dg, (s) @.7)
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For this stationary solution
- Ak 1
Ziiey o 2 == 2
Elu(®)f = 22 = Bl = 3 (28)

Choosing A defines the energy spectrum. Note also that

Elv(a, O = 3 3 M =3 3 ¢k ~ o / .

4
keK keK R

Choosing ((z) = £2{o(¢z) with

/]Rng(z)dz =

ensures the normalization (2.1); the function (p gives the shape of the energy spec-
trum, and £ sets the length-scale. Two choices that we have used in our numerical
studies, here and in [32], are the Kraichnan spectrum [24]

CO(Z) = z2e_|z|2 !
and the Kdrman—Obukhov spectrum [18]
Co(2) = 22(1 + 22)7/3.

Given a shape (p for the spectrum, typically with a single peak at kg, three
parameters remain in the problem:

7 particle time constant/fluid time constant;

L] non-dimensional velocity correlation time;
V€ non-dimensional correlation length — where ¢ peaks at O(1/£).
In this paper we consider 7 > 0. The phenomenon of preferential concentration is
observed experimentally, and numerically, only for 7 of order one [12, 32].

The limit of rapidly decorrelating velocity field, v — oo, is of some interest and
we study this in [32]. In the qualitative analyzes we present here in Secs. 3 and 4, 7
plays no significant role, provided it is positive; however the singular limit 7 — 0 is
of some interest and we will study this limit in future work. The study of N-point
motions as £ — 0, requiring spatial homogenization, is also of interest, and we also
leave this for future study.

3. The Linear Stochastic PDE

In this section we study existence, uniqueness, stationarity and regularity of so-
lutions to the linear SPDE arising in (2.2). We set up this stochastic PDE as an
ODE in a Hilbert space, to facilitate statement of the existence, uniqueness and
regularity results for 1. Most of these results follow from material in [8,9] and are



300 H. Sigurgeirsson & A. M. Stuart

collected together here for convenience. As v plays no significant role here and in
Sec. 4 we set it to 1. Abstractly we write (2.2) as

dip(t) = Ay(t)dt +dW(t), %(0) = o, (3.1)
7E(t) = v(z(t),t) — £(t), z(0) =zo, £(0) =9, (3.2)

where v = V11, and A = A is the Laplacian in the unit square O = [0,1] x [0,1]
in R? with periodic boundary conditions. The operator A sets the relative decay of
correlation in different length scales of v, which we have fixed by choosing A = A.
However, since other choices may be of interest, we formulate our results here in
terms of an arbitrary negative-definite, self-adjoint A.

Set ex(z) = e**® for k € K = 2nZ2\{(0,0)}. Then {ex}reck are eigenfunctions
of A, and

Aer = —ageg .

For A = A we have oy, = |k|? := k? + k2. The set {ex}rek is an orthonormal basis
for the Hilbert space

#-{verz.O: [ i o}

equipped with the usual inner product and norm

(u,v)z/ou(z)v*(:c)d:c, u,v € H, ||u||2=/0|u(z)12d:c,

where v* denotes the complex conjugate of v. We denote the Sobolev spaces of
periodic functions whose s*® derivative is in H by H*. The domain of A, D(A), is
ik

W is a Wiener process in H meaning that it is an H-valued stochastic process,
defined by the expansion

W) =D VAcBe(t)ex -
keK

Since we have chosen A_r = A and S_r = B; we see that W is real-valued.
We will find it convenient to define the operator @ : H — H as the operator
having eigenvectors {ex}rex and spectrum {Ag}rek,

Qek = )\kek s
We refer to Q as the covariance operator of W, since for any u,v € H,
E(W (), u){(W(¢),v)" = t(Qu,v) .

(See Proposition 4.1 in [8] where this result is established.)

The spectrum of @ plays a central role in the analysis. It can be chosen so
that the resulting energy spectrum of v = V14 matches conjectured forms for 2D
turbulent flows. Furthermore, its decay as |k| — +oco determines the regularity of
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the velocity field v. In this context it is convenient to define the operators Q; : H —
H and Q- : H— H by
A A
Qtek = (1 = 6—2akt)-2—olf—k€k and QOOEk = -2—0%616 . (33)
The conditions that Q; or Q are trace class, TrQ; < +o0 or Tr Q. < +o00, are
both equivalent to

By a weak solution of (3.1) we mean a process 9 : [0,7] — H such that the
trajectories of ¥ are a.s. Bochner integrable and
t
B0.0 = W0 + [ W) 4 Qds+ W0 VC e DA).
Formally the solution is given by (2.3) with Fourier coefficients given by (2.4) with
v = 1. Note that from (2.5)—(2.8) it follows that 1 is an ergodic SDE with invariant
measure a Gaussian N(0, \x/2ax). This strongly suggests that the SPDE has a

unique invariant measure on H, namely the mean zero Gaussian with covariance
operator Q.

Theorem 3.1. Assume Tr Qoo = ) e 2’:1—"': < +o0. If g € H then Eq. (3.1) has
a unique weak solution. Furthermore, Eq. (3.1) has a unique invariant measure v
on H which is Gaussian with mean zero and covariance operator Q. The family

of measures {p:}+>0 on H induced by the weak solution of (3.1) is tight and p; = v
in H ast — oo.

Proof. Theorem 5.4 in (8] gives existence and uniqueness of weak solutions. Exis-
tence of the invariant measure follows from Theorem 6.2.1 of [9] and convergence
to it is a straightforward consequence; see [31]. O

In the following theorem we slightly abuse notation and write X € C for a Gaus-
sian process X to mean that there is a Gaussian process with the same covariance
as X that has a version with sample paths in C.

Theorem 3.2. Let 9 be the stationary Ornstein—Uhlenbeck process solving (3.1)
and assume that

A

. & |k[2™+27 < 400

2
kek Ok

for some v € (0,1). Then ¥ € C"/?~¢(R; C™t"/2-¢(©)), any & > 0.

Proof. This follows by a straightforward generalization of Theorem 5.20 in [8]; see
[31] for details. =
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The following corollary is our main use of this theorem. We consider particle
paths given by (3.2) and ask, for a given realization of v, whether there is a unique
local solution (z,%) € C*([0,T],T? x R?) for some time 7' which depends upon
realization.

Corollary 3.1. If Y, x 5’\&5;|k|4+“: < 400 for some € > 0 then (3.2) has a unique
local solution a.s.

Proof. Set ¢ = 7/2 and m = 2 in Theorem 3.2 to get ¥ € C(R;C?(0)) which
suffices for (3.2) to have a unique solution, since then v = V1) is Lipschitz in space
and continuous in time. O

Applying Theorem 3.2 to an algebraically decaying spectrum for @ gives the
following corollary.

Corollary 3.2. Let ¢ be the stationary Ornstein—Uhlenbeck process solving (3.1)
and assume that \x ~ |k|=° for some s > 0 and that ay ~ |k|?. Then

Y € CI*(R;C™37°(0))
form=|%| andy= % —m.

For the Kraichnan spectrum we have A\; ~ |k|2e=!*” and it follows that
¥ € C27¢(R*;C™(0O)) for any m. This implies almost surely the existence and
uniqueness for the ODE (3.2) governing particle motions.

For the Kdrman-Obukhov spectrum A ~ |k|?(1 + |k|2)~7/3. Here M\ ~ |k|~8/3
so applying Corollary 3.2 gives ¢ € C5~¢(R*; C1*5~¢(0)). Thus we are not able
to prove that the Kérman—Obukhov spectrum is regular enough for (3.2) to have a
unique solution.

By treating time and space differently it is likely that one can get the stronger
result that ¢ € CZ~¢(R; C™t7~%(©)) under the conditions of Theorem 3.2. How-
ever, even this does not give enough regularity for a unique solution of (3.2) in
the Karman—Obukhov case. Generalized notions of solution for particle trajectories
have recently been introduced for the passive tracer problem in situations where
the velocity field is not Lipschitz; see, for example, [23]. This idea could be adapted
to the model for inertial particles studied here.

By a strong solution to (3.1) we mean a process ¢ : [0,7] — H that satisfies
(3.1) in the sense that

(t) = o + / Au(s)ds + W (t)

for all t € (0,7). For this to make sense we require in addition that, almost surely,
¥(t) € D(A), the domain of A, for all t € [0,T], and Ay € L}(R*; H).

Theorem 3.3. Assume Y g Me|k|?> < 0o and consider the case where A= A on
T2. If o € D(A), then Eq. (3.1) has a unique strong solution.
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Proof. See Theorem 5.29 in (8]. O

When studying random attractors in the next section, the following generaliza-
tion of Theorem 3.3 will be of interest. Notice that, when A = A,0 = (—A)%v
solves the linear SPDE

00 ON
Ea, (3.4)
N(t,z) = > iV hk(ka, —k1)T|k[*ex(2)Bx () -
keK

For future reference we observe that the two components of the noise N are trace
class Wiener processes if

> Aelk20+29) < oo, (3.5)
keK

Application of Theorem 5.29 in [8] gives the following result.

Theorem 3.4. Assume Y, Ak|k|*+®) < co and consider the case where A = A
on T2. Let vo = V4 and assume that (—A)*vy € D(A). Then Eg. (3.4) has a
unique strong solution ©(t) = (—A)%v(t) € D(A).

4. Particle Motion as a Random Dynamical System

In this section we exhibit spectral conditions on @ under which (3.2) has a global
random attractor. We use the formalism of random dynamical systems (RDS) in
the sense of Arnold [1]. The key technical issue is to derive logarithmic bounds
on paths of ¢. In [29] it is shown that if (3.1) is finite dimensional (initial data
compactly supported in Fourier space) then the random dynamical systems defined
by (3.2) is ergodic. Work is currently in progress to extend this result to the infi-
nite dimensional case under consideration here. The invariant measure for (z, £) is
supported on the random attractor [6].
Throughout this section we assume that

> AklkftE < 00 (4.1)
keK
for some £ > 0. By Theorem 3.2 this implies that all stationary solutions of (3.1)
satisfy
P € Q:= C(R,C**(0))
for any § € (0,e/4). Throughout the following we fix § in this open interval.

4.1. Setup as a RDS

Recall that a measurable mapping ¢ : 7 xQ2x X — X is a random dynamical system
if it is a cocycle over a metric dynamical system ({2, F,P, ) called the noise [1].

To model the stationary noise ¢ from (3.1) which drives the solution to Eq. (3.2),
we take the following metric dynamical system, denoted above by (2, F, P, 6):



304 H. Sigurgeirsson & A. M. Stuart

1. For Q we take 2 = C(R; C**%(0)); then (3.2) has a unique (local) solution for

every ¥ € Q.

For the o-algebra F we take the Borel o-algebra on ).

3. For P we take the probability measure induced on 2 by the unique invariant
measure y on H for the SPDE (3.1); under (4.1) this is supported on €.

4. We let the dynamical system @ be the shift map,

0:9(t) =9t +s) fory € Q.

For the RDS we set the time 7 = R, the state space X = T? x R? where T is
the unit circle (so T? is the 2D torus), and define the cocycle ¢ as the solution to
(3.2). That is, for o(t,¥)z = ¢(t, v, z),

<P(t, "1’)(“70, vﬂ) — (Jl(t), .'IJ(t)) ’
where (z(t),#(t)) € T? x R? is the solution at time ¢ to
Ti(t) = Vo(2(t),t) — (), 2(0) =20, #(0)=1vo. (4.2)

Implicit here is the assumption that (3.2) has a unique solution, locally in time, for
which it suffices that ¢ € C(R; C?(0)); this holds for all ¢ € Q. In fact the solution
is global on R as the techniques giving a global random attractor show. Thus the
co-cycle property

Pt +5,9) = p(t,0:9) op(s, ) Vs,t€R,p €

holds identically.

N

4.2. Random attractor

‘We review the standard framework for attractors of a RDS. A random set A attracts
another random set B if

Jlim_d(p(t,6-:)BO-$), A®)) =0 as.
Here d is the nonsymmetric distance
d(B,A) = inf d(z,y),
s s el dle)

where d is the metric on X. A random set K absorbs the random set B if for almost
all ¢ there exists a time tp (1)) such that

o(t,0-19)B(0-¢v) C K(d) Vi>tp(¥).

We say that a random set A is strictly p-forward invariant if

Pt V) A(Y) = A(:y) Vi>0.

As this is the only notion of invariance that we will deal with, we refer to such a set
as simply invariant. A compact random set is a global random attractor for o if it
is invariant and attracts every bounded (non-random) subset of X . Global random
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attractors are unique when they exist [6]. It is proved in [7] that, if there exists a
compact random set absorbing all bounded non-random sets, then there exists a
global random attractor. That is, to prove existence of an attractor it is enough to
show that for any ¢ € ) there exists a compact set K = K (1) such that for any
bounded non-random set B C X there is a t*(B, 1) > 0 such that

o(t,0_4)B C K(3) Vt>t*(B,v).

We use this approach to establish the existence of a random attractor for (3.2).
Recall that the state space is X = T? x R?. For any B C X, ©(t,0_:)B is the set

{ (o) mmmstoims osen (G D)}

X is compact in the position coordinate so it is only necessary to establish that
z(t) is ultimately bounded independently of data. Taking the inner product of the
equation

TE(s) = v(z(s),s — t) — z(s)

with #(s) and using 2z - y < |z|2 + |y|?, where |z| denotes the Euclidean norm of
z € R, gives

Té%wwﬁ=¢@ywd@ﬁ—ﬂ-ﬁ®W

IA

Alv(a(s),s — O + (s — la(s)]?

1 1
= 5]v(:z:(s),s —t) - §|$(3)|2

Multiplying by ;2,-63/ ™ on each side gives

d 4
s/T|4 2l s/t R
2 e la(s)? < Tello(a(s), s ~ O (43)

Now assume for the moment that there exist, almost surely, C(¢), D(¢) > 0 such
that

sup |v(z,t)|2 < C+ Dlog(1+t]) Vt<O0. (4.49)
z€eO

In the next subsection (Corollary 4.1) we will show that, provided that A is the
Laplacian on T? and (4.1) holds, this is indeed the case. Note that C and D depend
on the realization of the OU process, but not on time ¢. Integrating the inequality
(4.3) from 0 to t we get

ewwmﬁ—wmﬁsljlww@w»—mws
T Jo

i
% %/ e/T[C + Dlog(1 + |s — t|)]ds
0
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so that

()2 < e t7|£(0)]? + % /t e~ =9)/7[C + Dlog(1 + (t — s)))ds
0

i
= e t7|£(0)2 + ; / e™/7[C + Dlog(1 + u)du
0

“+oo
< e ¥7|2(0)|% + % / e%7[C + Dlog(1 + u)|du
0

< e ¥7|2(0)2+ C + Dlog(1 + 7).

The last inequality is an application of Jensen’s inequality. This gives the required
absorption in X and hence the following:

Theorem 4.1. If >, i Mk|k|$T¢ < 400 for some € > 0 then the random dy-
namical system defined by (3.2), with A the Laplacian on T2, has a global random
attractor.

4.3. Almost sure pathwise estimates for v

To complete the proof of existence of a global random attractor it remains to prove
that, almost surely, there are constants C and D such that v satisfies (4.4). We use
the following result concerning OU processes.

Theorem 4.2. Assume that there is a unique strong solution to
dX = AXdt+dw , (4.5)

where A : H — H is a linear operator on a separable Hilbert space H, and W is a
B-Wiener process on H. If there exists a v > 0 such that

(h,Ah) < —y|RI*  VheH

then
t 2
lim sup M = S TrBas.
t—+oo logt o
Proof. This is a straightforward generalization of the finite dimensional result,
using the exponential martingale inequality; see [27], Chap. II, Theorem 5.5, for
the finite dimensional case and [31] for the infinite dimensional generalization. 0O

Application of this result, together with Sobolev embedding, gives the following
corollary which implies (4.4) by the time-reversibility of the stationary OU process.

Corollary 4.1. Assume that A = A on T2. Let v = V14 where 1 is a stationary
solution of (3.1). If Yy Mk|k|®F€ < 400, for some € > 0, then P-a.s.
2
limsupm <C< .
t—+oo lOgt :
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Proof. To obtain a bound on the supremum norm in space we use Sobolev embed-
ding. In two dimensions it suffices to bound v in H'*¢, any € > 0, to get supremum
norm bounds on v. We consider (3.4) in the case where A = A on T? so that bound-
ing v in H'*¢ is equivalent to bounding (—A)/?**v in L2. Under the stationary
measure P on ¢ we have that each component of

(~A)+=viy € C(R,C*(0)) C C(R,D(A))

for some £ > 0. This gives sufficient regularity to the initial data that we can
apply Theorem 3.4 (with s = % + €) to show that the two components of © =
(—A)Y/2+eV Ly are strong solutions of (4.5), for appropriate B. By (3.5), the two
appropriate choices of B are trace class provided that

> Aelk[*€ < 400
keK

which is implied by (4.1). Furthermore we have
(h, Ah) < —ou|h|*.

Thus we have the desired result by application of Theorem 4.2. O

5. Numerical Experiment

In this section we conclude with a numerical experiment which illustrates the long-
time behavior of the random dynamical system for particle motions and, in par-
ticular, demonstrates the existence, and relevance for numerical study of particle
distributions, of the random attractor.

We simulate numerically, for 25 time units, the motion of n = 5000 particles
according to the model (2.2), with 7 = 1/5, v = 1072 and £ = 1/2, using the
Kéarman—Obukhov spectrum.? We choose the initial conditions for ¥ so that 1) is
stationary, and the initial conditions for the particle velocities so that the particles
are initially at rest, #;(0) = 0. We perform two simulations differing only in the
initial conditions for the particle positions, z;(0):

1. On a regular lattice in the lower-half of the unit square,
24(0) = (2k+1 2l+1> i

2m ’
2. On a regular lattice in the upper-half of the unit square,

2:(0) = (2k+1 21+ 1

o = 2 = PSS L=

b

), E=0,....m—1; l=m,...,m—1.

2m 2m 2

Here m = v/2n = 100. The two simulations use the same realization of ).

2Recall that we cannot prove existence and uniqueness of particle paths in this case. However in
practice we do not observe significant mesh effects as we refine the spatial lattice.
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Figures 3 and 4 show the final positions of the 5000 particles which started in
the lower- and upper-half of the unit square respectively. The particle distributions
at later times are virtually indistinguishable, despite the vastly different initial
conditions used in the two simulations. This indicates that the particle positions

Fig. 3. Final positions of 5000 particles moving for 25 time units in a Karman-Obukhov velocity
field, initially located in the lower half of the unit square.

Fig. 4. Final positions of 5000 particles moving for 25 time units in a Kdrman-Obukhov velocity
field, initially located in the upper half of the unit square.
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and velocities have converged to a subset of the random attractor; the two figures
give a snapshot of the random attractor.

Note also the qualitative agreement between the simulated distributions in
Figs. 3 and 4, and the experimental particle distributions in Fig. 1. This illustrates
two important facts: (i) that the Gaussian random field model employed here is an
effective model for preferential concentration (and this is substantiated further in
[32]); (ii) that the random attractor is highly relevant for the study of preferential
concentration of inertial particles. Thus further mathematical and numerical study
of the model is called for.
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