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Geometric Ergodicity of Some Hypo-Elliptic
Diffusions for Particle Motions

J.C. Mattingly1 and A.M. Stuart2

Abstract

Two degenerate SDEs arising in statistical physics are studied. The first is a
Langevin equation with state-dependent noise and damping. The second is the equa-
tion of motion for a particle obeying Stokes’ law in a Gaussian random field; this field
is chosen to mimic certain features of turbulence. Both equations are hypo-elliptic
and smoothness of probability densities may be established. By developing appropri-
ate Lyapunov functions and by studying the necessary control problems, geometric
ergodicity is proved.
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1 Introduction

The first objective of this note is to highlight a straightforward approach to proving geometric
ergodicity for Markov chains on uncountable state spaces. The techniques are based on the
approaches in [10, 8, 9, 2, 3]. We follow a recent development of these ideas described in [7],
tailored to the study of degenerate diffusions, and their discretizations. We make a minor
extension of the theory in [7] (from state space X = Rd to state space X = Td1 × Rd2)
and then use this to pursue the second objective of the note: to prove geometric ergodicity
of some naturally occuring models in statistical physics. As the approach to ergodicity is
designed to handle degenerate diffusions it is hence ideal for problems arising in mechanics
where noise arises as a force acting directly only on momenta and not on positions.

In section 2 we state the basic theory. In section 3 we give an application to the Langevin
equation for the motion of a particle in a periodic potential, subject to state-dependent noise
and damping obeying the fluctuation-dissipation relation. In section 4 we give an application
to the random dynamical system formed by considering the motion of particles obeying
Stokes’ law in a (synthetic) turbulent velocity field; this velocity field may be viewed as the
solution of a linear stochastic PDE.

2 Geometric Ergodicity

In this section we state Theorem 2.3, guaranteeing geometric ergodicity. The proof is a trivial
modification of that in [7] (only the state space has changed) and so we omit it. In any case
the statement and proof of the theorem are close to existing treatments in the literature
[10, 8, 9, 2, 3] and the main advantage of our formulation is simply that it is well-adapted
to the study of possibly degenerate diffusions and their time discretizations.

Consider a homogenous Markov process x(t) (t ∈ R+) or Markov chain x(t) (t ∈ Z+) on
a state space (X,B(X)) where X = Td1 ×Rd2 with d1, d2 non-negative integers. 1 Here B(X)
denotes the Borel σ-algebra on X. To help combine our treatment of continuous and discrete
time, we set T = R+ (resp. Z+) for the Markov process (resp. chain) case. Throughout the
remainder of the paper Bδ(x) denotes the open ball of radius δ centred at x ∈ X. We denote
the transition kernel of the Markov process or chain by

Pt(x, A)
def
= P(x(t) ∈ A|x(0) = x), t ∈ T , x ∈ X, A ∈ B(X) .

Now define the Markov chain with the kernel P (x, A)
def
=PT (x, A), formed by sampling at the

rate T ∈ T . The following assumptions will give geometric ergodicity.

Assumption 2.1 Minorization Condition There is a choice of T ∈ T , compact C, an η > 0,
and a probability measure ν, with ν(Cc) = 0 and ν(C) = 1, such that

P (x, A) ≥ ην(A) ∀A ∈ B(X), x ∈ C.

1We set d′ = d1 + d2 in general, and it is convenient in the Langevin case to set d1 = d2 = d.
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The minorization condition is a particular case of the general concept of small set, devel-
oped for the purposes of proving ergodicity of Markov chains on general states spaces; see
[10, 8].

Let {xn}n∈Z+ be the Markov chain generated by the kernel P (x, A). We use a Lyapunov
function to control the return times to C. In the following Fn denotes the σ-algebra of events
up to and including the nth iteration. E denotes expectation induced by the Markov chain
or process. We use the notation Ey when we wish to indicate dependence on the starting
point y of the chain.

Assumption 2.2 Lyapunov Condition There is a function V : X → [1,∞), with lim
‖x‖→∞

V (x) =

∞, and real numbers α ∈ (0, 1), and β ∈ [0,∞) such that

E[V (xn+1)|Fn] ≤ αV (xn) + β.

The use of such Lyapunov conditions to prove ergodicity for uniformly elliptic diffusions
is a well-developed subject; see [3, 5, 8].

In what follows, we will use the shorthand notation |g| ≤ V to mean |g(x)| ≤ V (x) for
all x and define

G = {measurable g : X → R with |g| ≤ V }.

Theorem 2.3 Let x(t) denote the Markov chain or process with transition kernel Pt(x, A).
Let {xn}n∈Z+ denote the embedded Markov chain with transition kernel P (x, A) = PT (x, A).
Assume that there is a T > 0 for which the following holds: the Markov chain {xn}n∈Z+

satisfies the Minorization Condition and the Lyapunov Condition with C given by

C =

{
x : V (x) ≤ 2β

γ − α

}
(2.1)

for some γ ∈ (α
1
2 , 1). Then there exists a unique invariant measure π. Furthermore there is

r(γ) ∈ (0, 1) and κ(γ) ∈ (0,∞) such that for all measurable g ∈ G

|Ex0g(xn)− π(g)| ≤ κrnV (x0).

This theorem is very similar to existing results in the literature; see Chapter 15 of [8]
and the references therein. The proof uses standard coupling techniques. The main interest
is that the theorem has been tailored for application to degenerate SDEs.

Throughout this note we will use Theorem 2.3 to study the following SDE:

dx = Y (x)dt + Σ(x)dW, x(0) = y, (2.2)

where x ∈ X, Y : X → Rd′
and W is a standard m-dimensional Brownian motion. Thus

Σ : X → Rd′×m. To establish geometric ergodicity for this SDE we use the following approach.

Assumption 2.4 There is a function V : X → [1,∞), with lim‖x‖→∞ V (x) = ∞, and real
numbers a ∈ (0,∞), d ∈ (0,∞) such that

A{V (x)} ≤ −a{V (x)}+ d, (2.3)

3



where A is the generator for (2.2) given by

Ag =
d∑

i=1

Yi
∂g

∂xi

+
1

2

d∑
i,j=1

[
ΣΣT

]
ij

∂2g

∂xi∂xj

. (2.4)

Lemma 2.5 Let Assumption 2.4 hold. Then the Lyapunov Condition holds.

Sketch Proof (see also [5], Theorem 11.9.1). This is just the infinitesimal version of As-
sumption 2.2. If Fs is the σ−algebra of all events up to time s, it follows that

Ey{V (x(t))|Fs} ≤ e−a(t−s)V (x(s)) +
d

a
[1− e−a(t−s)] . (2.5)

If xn = x(nT ), so that {xn}∞n=0 is a Markov chain, then (2.5) shows that Assumption 2.2
holds for this Markov chain: with α = e−aT and β = d/a. 2

Assumption 2.6 The Markov process generated by (2.2) with transition kernel Pt(x, A)
satisfies, for some fixed compact set C ∈ B(X), the following:

i) for some y∗ ∈ int(C) there is, for any δ > 0, a t1 = t1(δ) ∈ T such that

Pt1

(
x,Bδ(y

∗)
)

> 0 ∀x ∈ C;

ii) for t ∈ T the transition kernel possesses a density pt(x, y), precisely

Pt(x, A) =

∫
A

pt(x, y)dy ∀x ∈ C, A ∈ B(X) ∩ B(C),

and pt(x, y) is jointly continuous in (x, y) ∈ C × C.

Lemma 2.7 Let Assumption 2.6 hold. Then the Minorization Condition holds for the same
set C.

This is proved in [7].

Corollary 2.8 Let x(t) denote the solution of the SDE (2.2) with transition kernel Pt(x, A).
Assume that there is a T > 0 for which the following holds: the SDE satisfies Assumptions
2.4 and 2.6 with C given by

C =

{
x : V (x) ≤ 2β

γ − α

}
for some γ ∈ (α

1
2 , 1). Then there exists a unique invariant measure π. Furthermore there is

µ(γ) ∈ (0, 1) and κ(γ) ∈ (0,∞) such that for all measurable g ∈ G

|Eyg(x(t))− π(g)| ≤ κe−µtV (y).

Sketch Proof Assumptions 2.4 and 2.6 prove that an appropriately sampled chain is ergodic.
To extend the proof to continuous time we use an argument from [9], also employed in [7],
Theorem 3.2. 2
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3 The Langevin Equation

In this section we prove geometric ergodicity of a Langevin equation for the motion of a
particle in a periodic potential, subject to state-dependent noise and damping obeying the
fluctuation-dissipation relation. This result is stated in Theorem 3.2.

Let W be a standard d-dimensional Brownian Motion, F : Td → R, σ : Td → Rd×d,
γ : Td → Rd×d and ρi : Td → Rd the ith column of σ. Consider the Langevin SDE for
q, p ∈ Rd the position and momenta of a particle of unit mass, namely

dq = pdt, (3.1)

dp = −γ(q)pdt−∇F (q)dt + σ(q)dW. (3.2)

(Throughout this section ∇ represents a gradient with respect to q). Note that the SDE is
degenerate, with noise only in the momenta. However the problem is hypo-elliptic and the
theory developed in the previous section will be applicable.

We assume the fluctuation-dissipation relation (∝ denotes proportional upto a constant
independent of (q, p))

γ(q) ∝ σ(q)σ(q)T ∀q ∈ Td

which implies the existence of a canonical invariant measure for (3.1)-(3.2). In the case
d = 1, γ(q) = ασ(q)2/2, for example, there is a known invariant measure with density

ρ(p, q) ∝ exp{−α[
p2

2
+ F (q)]}.

Assumption 3.1 We assume that σ and F are both C∞, that

1 ≤ F (q) ≤ F+ < ∞ ∀q ∈ Td (3.3)

and that γ is uniformly positive-definite: for some γ− > 0

γ−‖z‖2 ≤ 〈z, γ(q)z〉 ∀q ∈ Td, z ∈ Rd. (3.4)

From this assumption it follows that σ(q) is invertible for all q ∈ Td and hence that the
{ρi}d

i=1 are linearly independent everywhere in Td.
Under these conditions it is possible to prove global in time existence and uniqueness

of solutions to (3.1)–(3.2) using the fact that all vector fields are globally Lipschitz on
X = Td × Rd. It is expedient to write (3.1)–(3.2) in the abstract form (2.2) where now

x =

(
q
p

)
∈ Td × Rd, W =

W1
...

Wd

 ∈ Rd, Y (x) =

(
p

−γ(q)p−∇F (q)

)
, Σ(x) =

(
O

σ(q)

)
.

(3.5)

Here each Wi is an independent standard one-dimensional Brownian motion and O ∈ Rd×d

is the zero matrix. Note that we may write

Σ(x)dW =
d∑

i=1

Xi(q)dWi, Xi =

(
0

ρi(q)

)
, 0 ∈ Rd. (3.6)
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For (3.1)–(3.2), it is useful to define the Lyapunov function

V (x)
def
=

1

2
||p||2 + F (q) (3.7)

which is, of course, the Hamiltonian for the Langevin equation in the absence of noise and
damping.

We may now define

Gl = {measurable g : Td × Rd → R with |g| ≤ V l}.

Theorem 3.2 Let Assumption 3.1 hold. The SDE (3.1)–(3.2) with x(t) = (q(t)T , p(t)T )T

has a unique invariant measure π on Td × Rd. Fix any l ≥ 1. If x(0) = y then there exists
C = C(l) > 0, λ = λ(l) > 0 such that, for all g ∈ Gl,∣∣Eyg(x(t))− π(g)

∣∣ ≤ CV (y)le−λt for all t ≥ 0. (3.8)

Proof The result follows from an application of Theorem 2.3. First note that

V (x) ≥ 1 +
1

2
||p||2 (3.9)

since F is bounded below by 1. Thus V (x)l → ∞ as ||x|| → ∞. Lemma 3.3 shows that if
A is the generator of the process governed by (3.1)–(3.2), that is, in the form (2.2) with the
definitions (3.5),

Ag =
2d∑
i=1

Yi
∂g

∂xi

+
1

2

2d∑
i,j=1

[
ΣΣT

]
ij

∂2g

∂xi∂xj

(3.10)

then

A{V (x)l} ≤ −al{V (x)l}+ dl

for some al, dl > 0. Thus Assumption 2.4 (the Lyapunov condition) holds.
Lemma 3.4, found at the end of this section, proves that, in any positive time, any open

set may be reached with positive probability. Thus Assumption 2.6(i) holds with any choice
of C and y∗. We show that Assumption 2.6(ii) holds below and so we have the minorization
condition; hence Corollary 2.8 gives the desired result.

We now show that Assumption 2.6(ii) holds. Define

L = Lie{Y,X1, . . . , Xd},

namely the Lie algebra generated by {Y, X1, . . . , Xd}. Let L0 be the ideal in L generated
by {X1, . . . , Xd}. By Theorem 38.16 in [11] (or results in [1, 4]), it suffices to show that L0

spans R2d to verify Assumption 2.6(ii). Note that

Xi =

(
0

ρi(q)

)
and [Xi, Y ] =

(
ρi(q)

−{∇ρi(q)}p− γ(q)ρi(q)

)
.

6



Here ∇f(q), for f : Rd → Rd, is the matrix with ijth entry ∂f i(q)/∂qj, with f i(q) the ith

component of f(q). (Note that ρi : Rd → Rd). Since σ has linearly independent columns σi,

{X1, . . . , Xd, [X1, Y ], . . . , [Xd, Y ]}

span R2d everywhere in X, implying the required smoothness. 2

The previous theorem requires the following two lemmas:

Lemma 3.3 For every l ≥ 1, there exists al ∈ (0,∞) and dl ∈ (0,∞) such that, for equation
(3.1)–(3.2) with A given by (3.10),

A{V (x)l} ≤ −al{V (x)l}+ dl .

Proof We do the case l = 1 first. Let

Yi(x) = pi, i = 1, · · · , d

Yi(x) = −{γ(q)p}i −
∂F

∂qi

(q), i = d + 1, ..., 2d

∂V

∂xi

=
∂F

∂qi

(q), i = 1, . . . , d

∂V

∂xi

= pi i = d + 1, . . . , d.

Thus we obtain
2d∑
i=1

Yi
∂V

∂xi

= 〈p,∇F (q)〉 − 〈p, γ(q)p〉 − 〈p,∇F (q)〉

so that
2d∑
i=1

Yi
∂V

∂xi

= −〈p, γ(q)p〉 ≤ −γ−‖p‖2.

Also,

ΣΣT =

(
0 0
0 σσT

)
and thus

1

2

2d∑
i,j=1

[ΣΣT ]ij
∂2V

∂xi∂xj

=
1

2

d∑
i,j=1

[σσT ]ij
∂2V

∂xd+i∂xd+j

=
1

2

d∑
i=1

[σσT ]ii
∂2V

∂p2
i

.

But
∂2V

∂p2
i

= 1 &
1

2

d∑
i=1

[σσT ]ii =
1

2

d∑
i,j=1

σ2
ij =

1

2
‖σ‖2

F ,

7



where ‖ · ‖F is the Frobenius norm on matrices. Combining and using the uniform positivity
of γ(q), we have

AV (x) ≤ −2γ−V (x) + 2γ−F (q) +
1

2
‖σ(q)‖2

which, since q is in a compact set and F, σ are smooth, gives the required result for l = 1.
Now we calculate A{V (x)l}. To this end, note that

∂

∂xi

{
V (x)l

}
= l{V (x)}l−1 ∂V

∂xi

∂2

∂xi∂xj

{
V (x)l

}
=

∂

∂xj

{
l{V (x)}l−1 ∂V

∂xi

}
,

and A{V (x)l} = l{V (x)}l−1AV +
1

2

d∑
i,j=1

[σσT ]ijl(l − 1)V (x)l−2∂V

∂pi

∂V

∂pj

.

But
∂V

∂pi

= pi

and hence, by using (3.9), we obtain

1

2
l(l − 1)

d∑
i,j=1

[σσT ]ij
∂V

∂pi

∂V

∂pj

≤ χV (x)

for some χ > 0. Thus

AV (x)l ≤ lV (x)l−1AV (x) + χV (x)l−1 .

By the calculation for l = 1,

AV (x)l ≤ lV (x)l−1[d− aV (x)] + χV (x)l−1

= −alV (x)l + (ld + χ)V (x)l−1.

By choosing al < al and dl sufficiently large we obtain

AV (x)l ≤ −alV (x)l + dl

as required. 2

Lemma 3.4 For all x ∈ Td × Rd, t > 0 and open O ⊂ Td × Rd, the transition kernel for
(3.1)–(3.2) satisfies Pt(x,O) > 0.

8



Proof It suffices to consider the probability of hitting an open ball of radius δ, Bδ, centered
at y+. Consider the associated control problem, derived from (3.1)–(3.2),

dX

dt
= Y (X) + Σ(X)

dU

dt
. (3.11)

For any t > 0, any y ∈ Td×Rd, and any y+ ∈ Td×Rd, we can find smooth U ∈ C1([0, t], Rd)

such that (3.11) is satisfied and X(0) = y, X(t) = y+. To see this set X = (QT , dQ
dt

T
)T and

note that

d2Q

dt2
+ γ(Q)

dQ

dt
+∇F (Q) = σ(Q)

dU

dt
.

Choose Q to be a C∞ path such that, for the given t > 0,(
Q(0)
dQ
dt

(0)

)
= y,

(
Q(t)
dQ
dt

(t)

)
= y+.

Since σ is everywhere invertible, dU
dt

is defined by substitution and will be as smooth as ∇F
and σ−1 – hence C∞. Also U(0) can be taken as 0.

Note that the event

sup
0≤s≤t

||W (s)− U(s)|| ≤ ε

occurs with positive probability for any ε > 0, since the Wiener measure of any such tube
is positive (Theorem 4.20 of [14]). From this it is possible to deduce the required open set
irreducibility; see [15], Theorem 5.2 or [7], Lemma 3.4. 2

4 Particles in a Random Velocity Field

We consider the following model for particles x ∈ T2, the two-dimensional torus, moving in
a random velocity field:

τ ẍ = v(x, t)− ẋ,

dη = νAη + dW,

where v = ∇⊥η, and
∇⊥ = (−∂x2 , ∂x1)

T .

Thus x denotes the position of a particle moving according to Stokes’ law in a 2D incompress-
ible velocity field. Here A = −∆ with D(A) = Ḣper(Ω) (periodic functions in W 2,2(Ω) with
mean zero) and Ω the unit square [0, 1]× [0, 1]. W (t) is an infinite dimensional Wiener pro-
cess expressible as a weighted sum of the product of eigenfunctions of A with standard i.i.d
Brownian motions. In this simple model these weights are chosen to ensure a prescribed en-
ergy spectrum for the velocity field v in statistical equilibrium, allowing various charicatures
of turbulence to be studied. The fact that statistical equilibrium should be expected can be
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understood by noting that the equation for η is an infinite dimensional Ornstein-Uhlenbeck
process. Under appropriate assumptions on the covariance of the noise it is indeed ergodic.
For a review of the literture related to such models, and for some mathematical analysis
of the model, including formulation as a random dynamical system, existence of a random
global attractor and the ergodicity of η see [13].

Our aim here is to show that the ergodicity of η induces ergodicity in the particles. We
assume that the noise and initial data excite only a finite number of Fourier components.
A more sophisticated analysis will be required for the infinite dimensional problem. To be
concrete, out finite-dimensionality assumption is to assume that

η =
∑
k∈K

yk cos(k · x) + zk sin(k · x)

where
K = {2π(k1, k2), ki ∈ {1, . . . ,M}}m

where M ≥ 2. The form of the model means that yk and zk are scalar Ornstein-Uhlenbeck
processes with, for fixed k, the same parameters, but different noises:

dyk = −αkykdt +
√

λkdBy
k ,

dzk = −αkzkdt +
√

λkdBz
k

and the families {By
k}k∈K, {Bz

k}k∈K are mutually independent families of i.i.d standard Brow-
nian motions. We assume that

α := min
k∈K

{αk} > 0.

We set N = M2 and define u = (xT , pT , yT , zT ) ∈ T2×R2×RN ×RN where the vector y
(respectively z) contains the N yk (respectively zk). In this notation our problem becomes

du = Y (u)dt + ΣdB, u(0) = v (4.1)

where B ∈ R2N is a vector of i.i.d standard Brownian motions. Here, for D an appropriate
diagonal matrix made up of the αk, we have

Y (u) =


p

1
τ

∑
k∈K{yk∇⊥ cos(k · x) + zk∇⊥ sin(k · x)} − p

τ

−Dy
−Dz

 ∈ R2N+4,

and

Σ =


O2×N O2×N

O2×N O2×N

IN×N ON×N

ON×N IN×N

 ∈ R2N+4×2N .

Here Om×n (resp. Im×n) is the m× n zero (resp. identity) matrix. Note that

ΣdB =
∑
k∈K

√
λk{ey

kdBy
k + ez

kdBz
k}
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where ey
k = (0T , 0T , eT

k , 0T )T , ez
k = (0T , 0T , 0T , eT

k )T and ek is the unit vector in RN with
non-zero entry only at the entry corresponding to index k.

Global in time existence and uniqueness for (4.1) follows from the fact that all vector
fields are globally Lipschitz on X. For (4.1) it is useful to define the Lyapunov function

V (u) = 1 +
1

2
{‖y‖2 + ‖z‖2 + a‖p‖2} (4.2)

where a > 0 is a constant to be determined.
Now we define

Gl = {measurable g : T2 × R2N+2 → R with |g| ≤ V l}.

Theorem 4.1 The SDE (4.1) with u(t) = (x(t)T , p(t)T , y(t)T , z(t)T )T has a unique invariant
measure π on T2 ×R2N+2. Furthermore there is an a > 0 for which the following holds. Fix
any l ≥ 1. There exists C = C(l) > 0, λ = λ(l) > 0 such that, for all g ∈ Gl, u(0) = v,∣∣Evg(u(t))− π(g)

∣∣ ≤ CV (u)le−λt for all t ≥ 0. (4.3)

Proof The result follows from an application of Corollary 2.8. First note that V (u)l →∞
as ||u|| → ∞. Lemma 4.2 shows that there is a choice of a > 0 such that, if A is the generator
of the process governed by (4.1), then

A{V (x)l} ≤ −al{V (x)l}+ dl

for some al, dl > 0. Thus Assumption 2.4 (the Lyapunov condition) holds.
Lemma 4.3 proves that, in any positive time, any open set may be reached with positive

probability. Thus Assumption 2.6(i) holds with any choice of C and y∗. We prove below that
Assumption 2.6(ii) holds and so we have the minorization condition by Lemma 2.7. Hence
Corollary 2.8 gives the desired result.

It remains to establish Assumption 2.6(ii). We observe that

f y
k := [Y, ey

k] =


0

1
τ
∇⊥ cos(k · x)
−αkek

0

 ,

f z
k := [Y, ez

k] =


0

1
τ
∇⊥ sin(k · x)

0
−αkek


and then that

[Y, f y
k ] =


1
τ
∇⊥ cos(k · x)

×
×
×

 ,
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[Y, f z
k ] =


1
τ
∇⊥ sin(k · x)

×
×
×

 .

Here × denotes entries immaterial in the following. Together⋃
k∈K

{ey
k, e

z
k, [Y, ey

k], [Y, ez
k], [Y, f y

k ], [Y, f y
k ]}

span R2N+4 because

∇⊥ cos(k · x) =

(
−k2

k1

)
sin(k · x),∇⊥ sin(k · x) =

(
k2

−k1

)
cos(k · x).

Since M ≥ 2 there are at least two distinct directions generated by the vectors k, and since
at least one of sin(k · x) and cos(k · x) is non-zero at every point of T2, the result follows.
2

The previous theorem requires the following two lemmas:

Lemma 4.2 For every l ≥ 1, there exists al ∈ (0,∞) and dl ∈ (0,∞) such that, for equation
(4.1) with A given by (3.10),

A{V (u)l} ≤ −al{V (u)l}+ dl .

Proof For any δ > 0

〈Y (u),∇V (u)〉 ≤ −a

τ
‖p‖2 +

aκ

τ
[
1

2δ
‖y‖2 +

1

2δ
‖z‖2 + δN‖p‖2]− α‖y‖2 − α‖z‖2,

where
α = min

k∈K
αk > 0, κ = max

k∈K
{‖∇⊥ cos(k · x)‖, ‖∇⊥ sin(k · x)‖}.

Choose δ so that 2δNκ = 1 and then choose a so that aκ = ατδ. It follows that

〈Y (u),∇V (u)〉 ≤ − a

2τ
‖p‖2 − α

2
‖y‖2 − α

2
‖z‖2.

Using the fact that Σ is constant we deduce that

AV (u) ≤ −a1V (u) + d1

with a1 = min{a
τ
, α}.
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Now we calculate A{V (u)l}. To this end, note that

∂

∂ui

{
V (u)l

}
= l{V (u)}l−1 ∂V

∂ui

∂2

∂ui∂uj

{
V (u)l

}
=

∂

∂uj

{
l{V (u)}l−1 ∂V

∂ui

}
,

and A{V (u)l} = l{V (u)}l−1AV +
1

2

N∑
i=1

l(l − 1)V (u)l−2

(
∂V

∂u4+i

)2

+
1

2

N∑
i=1

l(l − 1)V (u)l−2

(
∂V

∂u4+N+i

)2

.

But the quadratic structure of V means that, for some χ > 0,

AV (u)l ≤ lV (u)l−1AV (u) + χV (u)l−1 .

By the calculation for l = 1,

AV (u)l ≤ lV (u)l−1[d− aV (u)] + χV (u)l−1

= −alV (u)l + (ld + χ)V (u)l−1.

By choosing al < al and dl sufficiently large we obtain

AV (u)l ≤ −alV (u)l + dl

as required. 2

Lemma 4.3 For all u ∈ Td × Rd, t > 0 and open O ⊂ Td × Rd, the transition kernel for
(4.1) satisfies Pt(u,O) > 0.

Proof To start with we just consider the probability of reaching an open set in the co-
ordinates concerned with particle position and momentum (x, p) ∈ T2 × R2. At the end we
describe the simple modification to the full-space T2 × R2N+2.

We first study the control problem of connecting (x(0), p(0)) = (x−, p−) with (x(t), p(t)) =
(x+, p+). Note that, for any k ∈ K, either cos(k · x) 6= 0 or sin(k · x) 6= 0 for either x = x−

or x = x+. Let k1, k2 ∈ K be two non-parallel vectors with ki = (ki
1, k

i
2)

T . For simplicity
we assume that cos(k1 · x), cos(k2 · x) 6= 0 for x = x− and x = x+. Similar arguments to
the following can be used by replacing cos by sin in the following and, possibly, by piecing
together two arguments of the same type; we discuss this below.

Now let x(s), 0 ≤ s ≤ t, be any smooth path connecting (x−, p−) and (x+, p+) and
avoiding the set

{x ∈ T2 : cos(k1 · x) = 0 or cos(k2 · x) = 0}. (4.4)

Then the control problem to find U1(t), U2(t) ∈ C∞([0, t], R2) such that the differential
equation

τ ẍ + ẋ = U1(t)∇⊥ sin(k1 · x) + U2(t)∇⊥ sin(k2 · x) (4.5)
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passes along this path, 0 ≤ s ≤ t, is uniquely solvable. This follows because(
k1

2 cos(k1 · x) k2
2 cos(k2 · x)

−k1
1 cos(k1 · x) −k2

1 cos(k2 · x)

) (
U1(t)
U2(t)

)
= τ ẍ + ẋ

and the matrix has determinant which is non-zero because it avoids the set (4.4) and because
k1 and k2 are not parallel.

If both sin(k1·x) and sin(k2·x) are non-zero at both end-points then a similar construction
works using the equation

τ ẍ + ẋ = U1(t)∇⊥ cos(k1 · x) + U2(t)∇⊥ cos(k2 · x)

and a smooth path avoiding points where sin(k1 · x) and sin(k2 · x) disappear. Similar
arguments work if sin(k1 · x) and cos(k2 · x) are non-zero at both end-points or if sin(k2 · x)
and cos(k1 · x) are non-zero at both end-points. However, if the non-zero quantities differ
at the two ends of the path then it is necessary to break the controls U1(s), U2(s) into two
smooth paths, one for s ∈ [0, t/2] and one for s ∈ [t/2, t]. Choosing the smooth path x so
that none of

sin(k1 · x), sin(k2 · x), cos(k1 · x), cos(k2 · x)

disappear at x = x(t/2), and then using two arguments of the preceeding type, shows that
a piecewise smooth path may be chosen controlling x from (x−, p−) to (x+, p+).

Ornstein-Uhlenbeck processes can be forced to lie within a small tubular neighbourhood
of any smooth curve, using the analogous property for Brownian motion. This completes
the open set irreducibility in T2 ×R2. However, to extend the result to T2 ×R2N+2 we need
to allow the Ornstein-Uhlenbeck processes themselves to arrive into any open set at time t.
For this it is necessary to modify the paths U1(s) and U2(s) in the neighbourhood of s = t so
that they end at a prescribed point. By making this change on a sufficiently small interval
near t, and using continuity of (4.5) or related control problems in U1(t), U2(t), we can still
ensure the required reachability in T2×R2, as well as in the y and z variables. Theorem 5.2
of [15] gives the desired result, noting that for this problem the Ito and Stratonovich forms
of the SDE are the same. 2
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