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Abstract

The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The
ergodicity of SDEs is established by using techniques from the theory of Markov chains on gen-
eral state spaces, such as that expounded by Meyn–Tweedie. Application of these Markov chain
results leads to straightforward proofs of geometric ergodicity for a variety of SDEs, including
problems with degenerate noise and for problems with locally Lipschitz vector (elds. Applica-
tions where this theory can be usefully applied include damped-driven Hamiltonian problems
(the Langevin equation), the Lorenz equation with degenerate noise and gradient systems.

The same Markov chain theory is then used to study time-discrete approximations of these
SDEs. The two primary ingredients for ergodicity are a minorization condition and a Lyapunov
condition. It is shown that the minorization condition is robust under approximation. For glob-
ally Lipschitz vector (elds this is also true of the Lyapunov condition. However in the locally
Lipschitz case the Lyapunov condition fails for explicit methods such as Euler–Maruyama; for
pathwise approximations it is, in general, only inherited by specially constructed implicit dis-
cretizations. Examples of such discretization based on backward Euler methods are given, and
approximation of the Langevin equation studied in some detail. c© 2002 Elsevier Science B.V.
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1. Introduction

The primary objective of this paper is to study ergodicity of dynamical systems sub-
ject to noise, especially stochastic di;erential equations (SDEs) with additive noise and
their time discretizations. In particular, we are interested in problems where the noise
is degenerate and the vector (eld governing the deterministic Gow is not necessarily
globally Lipschitz. Such situations arise frequently in applications. It is well-known,
see Roberts and Tweedie (1996), that explicit approximation methods, such as Euler–
Maruyama, can fail to be ergodic, even when the underlying SDE is geometrically
ergodic; we introduce variants of the backward Euler method and prove that they
overcome this diHculty. Our analysis of the ergodicity of numerical methods is the
main contribution of this paper; the discussion of ergodicity for SDEs may also be of
interest, especially the choice of Lyapunov function for the (non-reversible) Langevin
equation and the study of Lorenz-like equations subject to degenerate noise.
Section 2 contains the statement of a theory of geometric ergodicity for Markov

chains. (We use the term geometric ergodicity to mean the existence of an invari-
ant measure � to which there is exponentially fast convergence.) No essentially new
ideas are presented in Section 2, but the treatment is self-contained and applicable in
a straightforward way to both continuous and discrete time; in addition it is unen-
cumbered by machinery required for situations more general than those of interest to
us. Our treatment is essentially the same as that of Meyn and Tweedie (1992) (see
also Durrett, 1996; Has’minskii, 1980). In fact Theorem 2.5 is basically a speci(c
instance of Theorem 15.0.1 in Meyn and Tweedie (1992). Many of the ergodicity re-
sults in this paper could be proved by combining various results in Meyn and Tweedie
(1992), Meyn and Tweedie (1992,1993) and Down et al. (1995). However, by stating
and proving a theorem tailored to our needs, we believe that the subsequent material
is made more accessible as, in order to analyze the e;ect of time-discretization, we
deconstruct the proof of ergodicity; the straightforward coupling argument of Meyn
and Tweedie (1992), streamlined for our assumptions, is repeated in Appendix A
for this reason. Our approach, when proving ergodicity for SDEs, is to use knowl-
edge of the deterministic Gow explicitly. Restricting to globally Lipschitz drift terms
and a non-degenerate di;usion matrix, it is possible to prove ergodicity with little
knowledge of the Gow. Yet many interesting equations which do not meet these
stringent conditions are nonetheless tractable, given a little knowledge of the under-
lying noise free dynamics; this is the case for non-linear stochastic equations that
have deterministic counterparts for which the geometry of the phase space is well
understood.
Sections 3–5 are devoted to a variety of applications. In all cases, the noise free equa-

tions are dissipative in the general sense of Hale (1988). The Lyapunov functions used
to prove this dissipativity are natural candidates for establishing the supermartingale
structure (outside a compact set) which underlies the theory of geometric ergodicity in
Section 2; see Fayolle et al. (1995) for a treatise on the use of Lyapunov functions
to study the ergodicity of countable state–space Markov chains. Our results are com-
plementary to the work of Kleimann (Arnold and Kliemann, 1987; Kliemann, 1987)
where invariant control sets are used to partition the state space, and Markov chain
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properties studied on these distinct control sets. We essentially work in settings where
there is exactly one invariant control set.
Section 3 is concerned with the Langevin equation, describing the motion of a par-

ticle subject to a central force and interacting with a heat bath (Ford and Kac, 1987).
The noise is degenerate because it acts directly only on the momentum co-ordinates and
not positions. We generalize previous results in Tropper (1977) where semigroup tech-
niques were employed. Section 4 is concerned with monotone and dissipative problems
where the underlying deterministic Gow has an equilibrium point with non-trivial stable
manifold. The basic idea for monotone problems comes from E and Mattingly (2001)
where it is used to study Galerkin approximations of the Navier–Stokes equation at
arbitrary Reynolds number and subject to degenerate noise. In the Navier–Stokes equa-
tions, the underlying deterministic Gow is monotone; here the approach is generalized
considerably to allow study of a variety of dissipative problems, including the Lorenz
equations subject to degenerate noise. Ideas similar to those in Section 4 are employed
in Section 5 to study gradient systems with, possibly degenerate, noise. Gradient sys-
tems with non-degenerate noise are thoroughly investigated in Roberts and Tweedie
(1996) where, confusingly in the context of this paper, such problems are referred to
as Langevin di;usions; here we reserve the terminology Langevin di;usions for the
particle-in-a-heat-bath models of Section 3, noting that in the absence of inertia these
models reduce to the gradient problems of Section 5.
The Meyn–Tweedie (Meyn and Tweedie, 1992) framework for ergodicity, which we

employ, rests on two fundamental assumptions. The (rst is the existence of a Lyapunov
function. This implies that outside some compact region C in the center of the phase
space the dynamics move inward on average. Loosely, this allows us to restrict our
attention to this central compact region. The second is that there exists a neighborhood
N of some distinguished point in C which is uniformly reachable from inside C and
the probability densities are smooth in C; this leads to a minorization condition. If the
Lyapunov function decays exponentially in mean, outside C, then this may be combined
with the minorization structure to yield exponential convergence to invariant measures.
Polynomial rates of convergence are studied in Veretennikov (1997). There are of
course other frameworks to work within; perhaps most notably are assumptions which
lead to log-Sobolev or hypercontractivity estimates. These naturally lead to estimates in
norms weighted by the invariant measure rather than the Lyapunov function weighting
used here. These log-Sobolev approaches, and the one used in this paper, are not strictly
equivalent and each seems to have its place depending on the setting. See Ledoux and
Bakry (1997) for more in this direction.
The remaining sections study the e;ect of time-discretization on the problems in

Sections 3–5. See Pages (2001) for a useful introduction. Since the noise may be
degenerate, and the vector (elds not globally Lipschitz, existing theories establishing
ergodicity of numerical methods (Talay, 1990, 1991; Grorud and Talay, 1996) do not
apply. We show that the geometric ergodicity theory of Section 2 can be used to prove
ergodicity of a variety of approximation methods applied to these problems. The key
points to understand are how time-discretization a;ects a minorization condition and
how it e;ects a Lyapunov structure. The former is robust to a wide range of approxi-
mations (see Section 6), being a property on a compact set. The Lyapunov condition,
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however, is more sensitive: by constructing examples, we show that explicit meth-
ods such as Euler–Maruyama are transient, and hence not ergodic, for any choice of
time-step. The fact that the Euler–Maruyama scheme destroys the Lyapunov structure,
and hence can loose geometric ergodicity, was (rst highlighted and analyzed in Roberts
and Tweedie (1996) (see also Talay (1999) for an example). In Roberts and Tweedie
(1996) a remedy for this problem was proposed based on rejecting=accepting Euler–
Maruyama steps according to a Metropolis criterion. If the objective of solving the
SDE is to sample from the invariant distribution then this strategy is an attractive one.
If, however, sample paths of the SDE are of interest then other approaches are called
for and we pursue one such avenue in this paper: we study the construction of implicit
time-stepping algorithms designed to mimic the Lyapunov structure of the SDE itself,
and which are pathwise accurate; an alternative approach, the use of explicit methods
with adaptive time-steps, is pursued in Mattingly and Stuart (in preparation). Another
alternative is discussed in Stramer and Tweedie (1999a,b) and Hansen (2002). This is
based on a linearization technique, which requires calculation of the derivative of the
drift. Although this work is very interesting, the need for the derivative of b means
that it is unlikely to be competitive in high dimensions. Furthermore, experience in
the deterministic case (Stuart and Humphries, 1996) indicates that the use of implicit
methods is a more systematic approach to overcoming numerical instability caused
by using explicit methods on rapidly growing non-linearities; analysis of linearization
schemes tends to be more ad hoc than the rather general tools applicable to implicit
methods.
Implicit methods require solution of nonlinear equations at each step. However, ex-

istence and uniqueness is frequently guaranteed under rather mild hypotheses on the
time-steps (see Stuart and Humphries, 1996, Chapter 5) and the methods are highly
competitive in the deterministic setting. It would hence be of interest to study the
Metropolis-adjusted discrete time algorithm of Roberts and Tweedie (1996) employing
the implicit algorithms studied here as the candidate distribution, rather than the ex-
plicit Euler–Maruyama method studied in Roberts and Tweedie (1996). It would also
be of interest to pursue the extent to which the use of implicit discretization e;ects
the optimality results (in high-dimensional spaces) for discrete-time approximation of
gradient Gows subject to noise (Roberts and Rosenthal, 1998b).
In Section 7, we study globally Lipschitz di;usions where the Lyapunov structure is

inherited by a wide range of approximations, including Euler–Maruyama. In Section 8
we study di;usions where the drift is not globally Lipschitz, showing that certain im-
plicit numerical methods can be constructed to inherit a Lyapunov structure; this work
builds on related studies of deterministic problems (see Stuart and Humphries, 1996,
Chapters 4 and 5). This deterministic work shows that it is diHcult to develop a general
approach to the construction of Lyapunov functions for implicit methods and explains
our focus on several speci(c problem classes. Some illustrative numerical experiments
are described in Section 9. Detailed conclusions about numerical approximation are
summarized at the start of Section 6. In this paper we focus mainly on proving ergod-
icity of approximating methods. The question of the convergence, as time-step goes to
zero, of the approximate invariant measures is only touched on brieGy. This important
question is the subject of the papers (Talay, 1990, 1991; Grorud and Talay, 1996) and,
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for damped-driven Hamiltonian problems similar to those we consider in Section 3, in
Talay (1999, 2002).

2. Geometric ergodicity

In this section we state Theorem 2.5, guaranteeing geometric ergodicity, which is
suHciently general to enable application to both a variety of SDEs (possibly with
degenerate noise) and various time-discrete approximations. The proof is essentially
that of Meyn and Tweedie (1992), Theorem 15.0.1. However it is considerably more
self-contained than the proof in Meyn and Tweedie (1992), employing a particular, but
useful, reachability structure which arises in many applications to SDEs. Because we
will need to refer to the proof explicitly when discussing time-discretization in later
sections, it is given in Appendix A. Note, however, that we are making no claims to
the originality of the proof we give.
Consider a Markov process x(t) (t ∈R+) or a Markov chain x(t) (t ∈Z+) on a state

space (Rd;B(Rd)). Here B(Rd) denotes the BMorel 	-algebra on Rd. To help combine
our treatment of continuous and discrete time, we set T=R+ (resp. Z+) for the Markov
process (resp. chain) case. Throughout the remainder of the paper B
(x) denotes the
open ball of radius 
 centered at x: We denote the transition kernel of the Markov
process or chain by

Pt(x; A)
def= P(x(t)∈A|x(0) = x); t ∈T; x∈Rd; A∈B(Rd):

Assumption 2.1. The Markov chain or process {x(t)} with transition kernel Pt(x; A)
satis:es; for some :xed compact set C ∈B(Rd); the following:
(i) for some y∗ ∈ int(C) there is; for any 
¿ 0; a t1 = t1(
)∈T such that

Pt1 (x;B
(y∗))¿ 0 ∀x∈C;

(ii) for t ∈T the transition kernel possesses a density pt(x; y); precisely

Pt(x; A) =
∫
A
pt(x; y) dy ∀x∈C; A∈B(Rd) ∩B(C)

and pt(x; y) is jointly continuous in (x; y)∈C × C.

Consider the Markov chain formed by sampling at the rate T ∈T, with the kernel

P(x; A) def= PT (x; A). Let {xn}n∈Z+ be the Markov chain generated by this kernel. We
use a Lyapunov function to control the return times to C. In the following Fn denotes
the 	-algebra of events up to and including the nth iteration.

Assumption 2.2. There is a function V : Rd → [1;∞); with limx→∞ V (x) = ∞; and
real numbers �∈ (0; 1); and �∈ [0;∞) such that

E[V (xn+1)|Fn]6 �V (xn) + �:
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The basic conclusion of the next lemma, whose proof is given in Appendix A,
is known as the minorization condition. (This is a simpli(ed version of Theorem
5.2.2 in Meyn and Tweedie (1992), exploiting the simple reachability structure of
Assumption 2.1.)

Lemma 2.3. Let Assumption 2.1 hold. There is a choice of T ∈T; an �¿ 0; and a
probability measure �; with �(Cc) = 0 and �(C) = 1; such that

P(x; A)¿ ��(A) ∀A∈B(Rd); x∈C:

Throughout this paper we will study the following SDE and its approximations:

dx = Y (x) dt + � dW; x(0) = y; (2.1)

where x∈Rd, Y : Rd → Rd and W is a standard m-dimensional Brownian motion
for some m6d. The (xed matrix � is in Rd×m and is assumed to have linearly
independent columns. We use Ey to denote expectation under (2.1), with the given
initial data. To establish geometric ergodicity for this SDE we may use the following
assumption which implies Assumption 2.2.

Assumption 2.4. There is a function V : Rd → [1;∞); with limx→∞ V (x) = ∞; and
real numbers a∈ (0;∞); d∈ (0;∞) such that

A{V (x)}6− a{V (x)}+ d; (2.2)

where A is the generator for (2.1) given by

Ag=
d∑

i=1

Yi
@g
@xi

+
1
2

d∑
i; j=1

[��T ]ij
@2g

@xi@xj
: (2.3)

This is just the in(nitesimal version of Assumption 2.2. To see this note that, by
the ItQo formula,

dV =A{V} dt +Martingale

so that, if Fs is the 	-algebra of all events up to time s, it follows that:

Ey{V (x(t))|Fs}6 e−a(t−s)V (x(s)) +
d
a
[1− e−a(t−s)]: (2.4)

If xn = x(nT ), so that {xn}∞n=0 is a Markov chain, then (2.4) shows that Assumption
2.2 holds for this Markov chain: with �= e−aT and � = d=a.
In what follows, we will use the shorthand notation |f|6V to mean |f(x)|6V (x)

for all x.

Theorem 2.5. Let x(t) denote the Markov chain or process with transition kernel
Pt(x; A). Let {xn}n∈Z+ denote the embedded Markov chain with transition kernel
P(x; A) = PT (x; A). Assume that there is a T ¿ 0 for which the following holds: the
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Markov chain {xn}n∈Z+ satis:es the minorization condition (or Assumption 2.1) and
Assumption 2.2 (or Assumption 2.4 with xn = x(nT ) for (2.1)) with C given by

C =
{
x:V (x)6

2�
$− �

}
(2.5)

for some $∈ (�1=2; 1). Then there exists a unique invariant measure �. Furthermore
there is r($)∈ (0; 1) and &($)∈ (0;∞) such that for all measurable f: |f|6V

|Ex0f(xn)− �(f)|6 &rnV (x0):

3. The Langevin equation

In this section we prove geometric ergodicity of the Langevin equation. The ergodic-
ity of this equation is established in Tropper (1977) by semigroup methods, but under
somewhat restrictive hypotheses on the drift, requiring its (rst and second derivatives
to be globally bounded, and on the class of functions whose expectations converge to
values under the limit measure; furthermore, no rate of convergence is given. By em-
ploying the Markov chain techniques of Section 2, we obtain geometric convergence,
for a large class of test function, under considerably weaker conditions on the drift.
This result is stated in Theorem 3.2. Our main contribution is to identify a useful
Lyapunov structure inherent in such problems. This issue is developed further in Talay
(2002) where a more general damped-driven Hamiltonian problem is studied.
Let W be a standard d-dimensional Brownian Motion, F : Rd → R, 	∈Rd×d and

(i ∈Rd be the ith column of 	; we assume that the (i are linearly independent so that
	 is invertible. Consider the Langevin SDE for q; p∈Rd the position and momenta of
a particle of unit mass, namely

dq= p dt; (3.1)

dp=−$p dt −∇F(q) dt + 	 dW: (3.2)

Here $¿ 0 to ensure a damped-driven Hamiltonian. In the case d=1 and 	=
√
2, for

example, there is a known invariant measure with density

((p; q)˙ exp
{
−$

[
p2

2
+ F(q)

]}
:

We apply the theory of Section 2 to prove ergodicity of (3.1)–(3.2) under the following
condition:

Condition 3.1. The function F ∈C∞(Rd;R) and satis:es

(i) F(q)¿ 0 for all q∈Rd.
(ii) There exists an �¿ 0 and �∈ (0; 1) such that

1
2
〈∇F(q); q〉¿ �F(q) + $2

�(2− �)
8(1− �)

‖q‖2 − �:
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A polynomial F growing at in(nity like ‖q‖2l, with l a positive integer, will satisfy
the assumptions; a simple example for expository purposes is

F(q) = 1
4 (‖q‖2 − 1)2: (3.3)

Under Condition 3.1 it is possible, using the Lyapunov function V below, to prove
global in time existence and uniqueness of solutions to (3.1)–(3.2)—see Chapter III,
Theorem 4.1 in Has’minskii (1980). It is expedient to write (3.1)–(3.2) in the abstract
form (2.1) where now

x =

(
q

p

)
∈R2d; W =




W1

...

Wd


∈Rd; Y (x) =

(
p

−$p−∇F(q)

)
;

�=

(
O

	

)
: (3.4)

Here each Wi is an independent standard one-dimensional Brownian motion and
O∈Rd×d is the zero matrix. Note that we may write

� dW =
d∑

i=1

Xi dWi; Xi =

(
0

(i

)
; 0∈Rd and (i ∈Rd: (3.5)

For (3.1)–(3.2), it is useful to de(ne the Lyapunov function

V (x) def=
1
2
‖p‖2 + F(q) +

$
2
〈p; q〉+ $2

4
‖q‖2 + 1 (3.6)

with which we de(ne

Gl = {measurable g : R2d → R with |g|6V l}: (3.7)

Theorem 3.2. Let Condition 3.1 hold. Then the SDE (3.1)–(3.2) with x(t) = (q(t)T;
p(t)T)T has a unique invariant measure � on R2d. Fix any l¿ 1. If x(0) = y then
there exists C = C(l)¿ 0; -= -(l)¿ 0 such that; for all g∈Gl;

|Eyg(x(t))− �(g)|6CV (y)le−-t for all t¿ 0: (3.8)

Proof. The result follows from an application of Theorem 2.5. First note that

V (x)¿ 1 +
1
8
‖p‖2 + $2

12
‖q‖2 (3.9)

using Condition 3.1(i). Thus V (x)l → ∞ as ‖x‖ → ∞. Lemma 3.3 shows that if A
is the generator of the process governed by (3.1)–(3.2); that is

Ag=
2d∑
i=1

Yi
@g
@xi

+
1
2

2d∑
i; j=1

[��T ]ij
@2g

@xi@xj
(3.10)

then

A{V (x)l}6− al{V (x)l}+ dl
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for some al; dl ¿ 0. Thus; by the discussion at the end of Section 2; Assumption 2.2
holds for the time T sampled chain xn = x(nT ).
To verify Assumption 2.1(ii), we de(ne

L= Lie{Y; X1; : : : ; Xd};

namely the Lie algebra generated by {Y; X1; : : : ; Xd}. Let L0 be the ideal in L gener-
ated by {X1; : : : ; Xd}. By Theorem 38.16 in Rogers and Williams (2000) (or results in
Bell (1987), Norris (1986) and Kunita (1978)), it suHces to show that L0 spans R2d

to verify Assumption 2.1(ii). Note that

Xi =

(
0

(i

)
and [Xi; Y ] = (DY )Xi =

(
0 I

−d2F(q) −$I

)(
0

(i

)
=

(
(i

−$(i

)
:

Thus, since 	 has linearly independent columns {(i}di=1,

{X1; : : : ; Xd; [X1; Y ]; : : : ; [Xd; Y ]}

span R2d as required.
Lemma 3.4, found at the end of this section, proves that, in any positive time, any

open set may be reached with positive probability. Thus Assumption 2.1(i) holds with
any choice of C and y∗. Hence Theorem 2.5 shows that for some r ∈ (0; 1) and &¿ 0

|Eyg(xn)− �(g)|6 &rnV l(y);

where xn = x(nT ), any T ¿ 0. To complete the proof we use an argument from Meyn
and Tweedie (1993). Let tn = nT + 
, 
∈ [0; T ). Then, by conditioning on F
,

|Eyg(x(tn))− �(g)|= |Eyg(x(nT + 
))− �(g)|6 &rnEyV (x(
))l:

Applying (2.4) gives

|Eyg(x(tn))− �(g)|6 &rn
[
e−al
V (y)l +

dl

al

]
;

de(ning - by e−-=r1=T we obtain the required result by re-de(ning & → &(1+dl=al)e-T :

|Eyg(x(tn))− �(g)|6 &e−-tn[1 + V (y)l];

where e−- = r1=T : The proof is complete.

The previous theorem rests on two lemmas which we now establish.

Lemma 3.3. Let Condition 3.1 hold. For every l¿ 1; there exists al ∈ (0;∞) and
dl ∈ (0;∞) such that; for Eqs. (3.1)–(3.2) with A given by (3.10);

A{V (x)l}6− al{V (x)l}+ dl:
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Proof. We do the case l= 1 (rst. Let

Yi(x) = pi; i = 1; : : : ; d;

Yi(x) =−$pi − @F
@qi

(q); i = d+ 1; : : : ; 2d;

@V
@xi

=
@F
@qi

(q) +
$
2
pi +

$2

2
qi; i = 1; : : : ; d;

@V
@xi

= pi +
$
2
qi; i = d+ 1; : : : ; d:

The following inequality; proved in Lemma 2.2 of Sanz-Serna and Stuart (1999) as a
consequence of Condition 3.1; will be useful to us:

− 1
2
‖p‖2 − 1

2
〈∇F(q); q〉6 �− �[V (x)− 1]: (3.11)

Using (3.11) to bound the inner-product we obtain

2d∑
i=1

Yi
@V
@xi

= 〈p;∇F(q)〉+ $
2
‖p‖2 + $2

2
〈p; q〉

− $‖p‖2 − 〈p;∇F(q)〉 − $2

2
〈p; q〉 − $

2
〈q;∇F(q)〉

= − $
2
‖p‖2 − $

2
〈q;∇F(q)〉

6 $[�− �(V − 1)]

= $[�+ �]− $�V:

Also

��T =

(
0 0

0 		T

)

and thus

2d∑
i; j=1

[��T]ij
@2V
@xi@xj

=
d∑

i; j=1

[		T]ij
@2V

@xd+i@xd+j
=

d∑
i=1

[		T]ii
@2V
@p2

i
:

But

@2V
@p2

i
= 1 and

1
2

d∑
i=1

[		T]ii =
1
2

d∑
i; j=1

	2
ij =

1
2
‖	‖2F def= E;
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where ‖ · ‖F is the Frobenius norm on matrices. Combining; we have

AV (x)6 $
[
�+ � +

E

$
− �V

]
;

as required. Now we calculate A{V (x)l}. To this end; note that

@
@xi

{V (x)l}= l{V (x)}l−1 @V
@xi

;

@2

@xi@xj
{V (x)l}= @

@xj

{
l{V (x)}l−1 @V

@xi

}
;

and

A{V (x)l}= l{V (x)}l−1AV +
1
2

d∑
i; j=1

[		T]ijl(l− 1)V (x)l−2 @V
@pi

@V
@pj

:

But

@V
@pi

= pi +
$
2
qi

and hence; by using (3.9); we obtain

1
2
l(l− 1)

d∑
i; j=1

[		T]ij
@V
@pi

@V
@pj

6 0V (x)

for some 0¿ 0. Thus

AV (x)l6 lV (x)l−1AV (x) + 0V (x)l−1:

By the calculation for l= 1;

AV (x)l6 lV (x)l−1[d− aV (x)] + 0V (x)l−1

= −alV (x)l + (ld+ 0)V (x)l−1:

By choosing al ¡al and dl suHciently large we obtain

AV (x)l6− alV (x)l + dl

as required.

Lemma 3.4. Let Condition 3.1 hold. For all x∈R2d; t ¿ 0 and open O ⊂ R2d; the
transition kernel for (3.1)–(3.2) satis:es Pt(x;O)¿ 0.

Proof. It suHces to consider the probability of hitting an open ball of radius 
; B
;
centered at y+. Consider the associated control problem; derived from (3.1)–(3.2);

dX
dt

= Y (X ) + �
dU
dt

: (3.12)
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For any t ¿ 0; any y∈R2d; and any y+ ∈R2d; we can (nd smooth U ∈C1([0; t];Rd)

such that (3.12) is satis(ed and X (0) = y; X (t) = y+. To see this set X = (QT; dQdt
T
)T

and note that

d2Q
dt2

+ $
dQ
dt

+∇F(Q) = 	
dU
dt

:

Choose Q to be a C∞ path such that; for the given t ¿ 0;
 Q(0)

dQ
dt

(0)


= y;


 Q(t)

dQ
dt

(t)


= y+:

This can be achieved; for example; by polynomial interpolation between the end points;
using a cubic in time with vector coeHcients in Rd. Since 	 is invertible; dU=dt is
de(ned by substitution and will be as smooth as ∇F – hence C∞. Also U (0) can be
taken as 0.
Now

x(t) = y +
∫ t

0
Y (x(s)) ds+ �W (t);

X (t) = y +
∫ t

0
Y (X (s)) ds+ �U (t):

Note that the event

sup
06s6t

‖W (t)− U (t)‖6 4

occurs with positive probability for any 4¿ 0, since the Weiner measure of any such
tube is positive (Theorem 4.20 of Stroock (1982)). Assuming this event occurs, note
that

‖x(t)− X (t)‖6
∫ t

0
‖Y (x(s))− Y (X (s))‖ ds+ ‖�‖4:

Since F is locally Lipschitz so is Y and thus it follows that:

sup
06t6T

‖x(t)− X (t)‖ → 0 as 4 → 0:

By choice of 4, we can hence ensure ‖x(t) − X (t)‖6 
 and the result follows. (See
Stroock and Varadhan (1972), Theorem 5.2 for more detail.)

4. Monotone and dissipative problems

We now consider the SDE (2.1) where again x∈Rd; W ∈Rm; Y :Rd → Rd and
�∈Rd×m; m6d. The columns of �, {(j}mj=1, are assumed to be linearly indepen-
dent. We prove geometric ergodicity in Theorem 4.4 under the following dissipativity
condition concerning the deterministic Gow.
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Condition 4.1. The function Y ∈C∞(Rd;Rd) and ∃�; �¿ 0:

〈Y (x); x〉6 �− �‖x‖2:

This condition means that, suHciently far from the origin, the Markov process de-
(ned by (2.1) moves inward on average. For the deterministic counterpart (� ≡ 0), it
implies dissipativity in the sense of Hale (1988). If m = d the work of Has’minskii
(1980) implies ergodicity under this condition. Below we add Condition 4.3 which will
enable us to establish ergodicity even when m¡d. Calculations analogous to those in
Lemma 3.3 enable proof of the following:

Lemma 4.2. Let Condition 4.1 hold. For every l¿ 1 there exists al ∈ (0;∞) and
dl ∈ (0;∞) such that; for Eq. (2.1) with A given by (2.3);

A{‖x‖2l}6− al{‖x‖2l}+ dl:

From (2.4) it follows that:

E{‖x(t)‖2l|Fs}6 e−al(t−s)‖x(s)‖2l + dl

al
[1− e−al(t−s)]

so that

E{[1 + ‖x(t)‖2l]|Fs}6 e−al(t−s)[1 + ‖x(s)‖2l] + dl + al
al

[1− e−al(t−s)]: (4.1)

Theorem 3.6 in Mao (1997, Chapter 2) establishes global existence and uniqueness for
(2.1), under Condition 4.1. By the discussion at the end of Section 2 we deduce that
Assumption 2.2 holds for the time T sampled SDE.
We now make assumptions that, when combined with the Lyapunov structure (4.1),

will induce ergodicity. The assumptions are stated entirely in terms of the dynamics of
the deterministic counterpart of (2.1) (� ≡ 0) and the vectors (i forming the columns
of �. Under Condition 4.1 Eq. (2.1) without noise must have at least one equilibrium
point. Without loss of generality, we place this at the origin. We let 5(· ; t) denote
the deterministic Gow for (2.1) with � ≡ 0 and denote by S the stable manifold of
0. The next condition encodes the basic idea that, if by a combination of alternating
pure noise and pure deterministic Gow we can reach S, it will be possible to satisfy
Assumption 2.1(i).

Condition 4.3. For some :xed R; T1 ¿ 0 the following holds: given any 
¿ 0 and
any x∈BR(0) there exists an integer N; and a sequence of non-negative 8i with∑N

i=1 8i ¡T1; and {ai; j}N;mi; j=1 with ai; j ∈R; so that 5(zN (x); t)∈B
(0) for all t ∈ [0; T1].
Here zN (x) is de:ned by

z0 = x;

zn+1 = 5(zn; 8n+1) +
m∑
j=1

an+1; j(j; n= 0; : : : ; N − 1:
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De(ne

Gl = {measurable g : Rd → R with |g(x)|6 1 + ‖x‖2l}:
Let T = T1 and de(ne, for $l ∈ (�1=2l ; 1),

�l =
dl + al

al
; �l = e−alT ; rl =

2�l
$l − �l

:

Theorem 4.4. Let Conditions 4.1; 4.3 hold with R chosen so that {x: 1 + ‖x‖2l6 rl}
⊆ BR(0); some l¿ 0. If the transition kernel for (2.1) has density pt(x; y) which is
jointly continuous in (x; y) for every :xed t ¿ 0 then (2.1) has a unique invariant
measure � and; if x(0)=y then there exists &=&(l)¿ 0 and -= -(l)¿ 0 such that;
for all g∈Gl;

|Eyg(x(t))− �(g)|6 &[1 + ‖y‖2l] e−-t for all t¿ 0: (4.2)

Proof. We use Theorem 2.5. Lemma 4.2 (Eq. (4.1)) implies that Assumption 2.2 holds
with V (x) = 1 + ‖x‖2l. We have assumed Assumption 2.1(ii); so it remains to show
part (i) of that assumption. De(ne T0 =

∑N
i=1 8i noting that T0 ¡T1. The set C is

{x:V (x)6 rl} ⊆ BR(0). Now for any 
1 ¡T1 − T0 de(ne U (t) by; for l= 1; : : : ; N ;

U (t) =




0 t ∈ I−l
def= [tl−1; tl−1 + 8l);

N

1

m∑
j=1

al; j(j t ∈ I+l
def=[tl−1 + 8l; tl);

0 t ∈ [tN ; T1];

where

tl =
l
1
N

+
l∑

j=1

8j; |I−l |= 8l; |I+l |=

1
N
:

Notice that by construction tN 6T0 + 
1 and hence tN ¡T1. If

X (t) = x +
∫ t

0
Y (X (s)) ds+ U (t)

then by choosing 
1 suHciently small; so that the e;ect of U dominates the drift Y
for t ∈ I+l ; we have that X (t)∈B3
=2(0) for t ∈ [tN ; tN +T1] and any initial x∈C. Since
tN ¡T16T1 + tN we have that X (T1)∈B3
=2(0) for any initial x∈C.
By continuity, there is some tube about U (t) so that the system forced by a Brownian

motion in that tube will have X (T1)∈B2
(0). Since the Weiner measure of any such
tube is positive (Theorem 4.20 of Stroock, 1982) Assumption 2.1(i) is proven. (See
Theorem 5.2 of Stroock and Varadhan (1972) for details.)
Thus we have proved geometric ergodicity for the Markov chain found by sampling

the SDE at rate T=T1. To obtain convergence for the continuous time Markov process
from that of the embedded chain we proceed as in Theorem 3.2 for the Langevin
equation.
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Remark. It is worth noting that a similar theorem could be proved whenever; in the
absence of noise; one has some globally attracting compact structure. Here we consider
the simplest case when the structure is a point. Similar ideas can be used when; for
example; there is an attracting periodic orbit in the deterministic Gow; such as in the
Van Der Pol oscillator.

Example. If 5(· ; t) is exponentially monotone so that; for some c¿ 0

〈Y (a); a〉6− c‖a‖2 ∀a∈Rd;

then Condition 4.1 holds with �= 0 and � = c. Also

‖5(x; t)‖6 e−ct‖x‖
and so Condition 4.3 holds for any 0¡
¡R with N = 1; 81 = (1=c) ln(R=
) and
a1; j ≡ 0. Any T1 ¿81 can be used. This is independent of the form of the noise which
can hence be degenerate; provided the underlying smooth density assumption can be
satis(ed. As a speci(c instance of this example consider the problem

dy = [− y + yz] dt + dw;

dz = [− z − y2] dt:

Here (1 = (1; 0)T; [[Y; (1]; (1] = (0;−2)T and so smoothness follows from Theorem
38.16 in Rogers and Williams (2000); recalling the de(nition and signi(cance of L0

from Section 3. Geometric ergodicity follows from Theorem 4.4. This approach is used
to establish the ergodicity of arbitrary Galerkin approximations of the Navier Stokes
equations (at any Reynolds number) in E and Mattingly (2001).

Example. Consider a problem in the form

dv= a(v; z) dt + 	 dw;

dz = [− bz + c(v; z)] dt;

where b¿ 0. We assume that; for each t; v∈Rd; w∈Rd and z ∈R; whilst 	∈Rd×d is
invertible; we also assume that (v; z)=(0; 0) is an equilibrium point of the deterministic
Gow 5(· ; t) (	 ≡ 0) and that a(0; z) ≡ 0 and c(0; z) ≡ 0. Clearly v ≡ 0 is part of the
stable manifold of (0; 0). To establish Condition 4.3 the idea is to choose noise to move
onto the stable manifold and then Gow to the origin without noise. As 	 is invertible
then Condition 4.3 can be realized with N = 2; 81 = 0 and 82 = (1=b)ln(R=
); there
exists p∈Rd such that 	p = −v(0) and then (a1;1; a1;2)T = p whilst (a2;1; a2;2)T = 0.
Any T1 ¿82 can be used.
This approach applies to the Lorenz equations

dx = [	(y − x)] dt + dW1;

dy = [rx − y − xz] dt + dW2; (4.3)

dz = [xy − bz] dt
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with v = (x; y). Condition 4.1 holds here for a range of parameter values (including
those where chaos is observed, see Sparrow (1982)) and (recalling the de(nition and
signi(cance of L0 from Section 3), for (1 = (1; 0; 0)T and (2 = (0; 1; 0) we have
[[Y; (2]; (1] = (0; 0; 1)T so that the density is smooth (Theorem 38.16 in Rogers and
Williams, 2000). Hence the equations are geometrically ergodic by Theorem 4.4.

5. Gradient systems

In this section we study Eq. (2.1) in the case where Y (x) =−∇F(x) and is hence
a gradient. Speci(cally we consider the problem

dx =−∇F(x) dt + � dW; x(0) = x0; (5.1)

where x∈Rd; W ∈Rm; F :Rd → R; �∈Rd×m and m6d. The columns of � are
assumed to be linearly independent. We also de(ne B= ��T ∈Rd×d.

This problem is studied in Roberts and Tweedie (1996), Stramer and Tweedie
(1999a), Stramer and Tweedie (1999b) and Hansen (2002), also by use of the theory
of geometrically ergodic Markov chains, as employed in this paper. In Roberts and
Tweedie (1996) the case m = d (non-degenerate noise) and the Lyapunov function
used is V (x) = exp{=F(x)}, for some =∈ (0; 1). Here we allow degenerate noise and
use V (x) = 1 + F(x)l leading to weaker dependence of the time to equilibrium on
initial data than in Roberts and Tweedie (1996), but also to correspondingly smaller
classes of allowable test function; however in some cases the overall bounds may lead
to improved estimates of the necessary time to approximate a stationary distribution.
In Stramer and Tweedie (1999a,b) m = d = 1 and the noise is non-degenerate. How-
ever variable di;usion is allowed, and the drift chosen so that the desired measure
is stationary and ergodic for the SDE. In one dimension this can always be achieved
and, by clever choice of variable di;usion, very desirable convergence rates achieved;
the essential idea is to choose the noise so that it is inversely proportional to some
measure of the size of the desired equilibrium density. The idea can, in some cases,
be extended to higher dimensions.
We make the following conditions concerning F :

Condition 5.1. The function F satis:es:

(i) F ∈C∞(Rd;R); F¿ 0; F(a) → ∞ as |a| → ∞.
(ii) For all l¿ 0 there are �′l ¿ 0; �′

l ¿ 0 with

|∇F(a)|2 + �′l¿
1
2
B : @2F(a) +

(l− 1)
2F(a)

(∇F(a)∇F(a)T) : B+ �′
lF(a):

In the preceding, the colon denotes the inner-product on matrices which induces the
Frobenius norm. The conditions are satis(ed if, for example, F(x) is smooth, bounded
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below and, as ‖x‖ → ∞, grows as follows, for some integer p¿ 1:

F(x) ∼ ‖x‖2p

∇F(x) ∼ ‖x‖2p−1 as ‖x‖ → ∞:

@2F(x) ∼ ‖x‖2p−2

The next lemma is the key result that follows from these conditions.

Lemma 5.2. Let Condition 5.1 hold. Then; for Eq. (5.1) with A given by (2.3);

A{F(x)l}6 l{�l − �lF(x)l}
for all l¿ 0. Thus; for any l¿ 0;

E{F(x(t))l|Fs}6 �l
�l
[1− e−l�l(t−s)] + e−l�l(t−s)F(x(0))l:

Proof. Straightforward calculation shows that

A{F(x)l}=
d∑

i=1

lF(x)l−1 @F
@xi

[
− @F

@xi

]

+
1
2

d∑
i; j=1

{
lF(x)l−1 @2F

@xi@xj
Bij + l(l− 1)Fl−2 @F

@xi

@F
@xj

Bij

}
:

The (rst result follows; by use of Condition 5.1(ii) and the fact that

�′xl−1 − �′xl6 �− �xl ∀x¿ 0

for suitably chosen �; �. The second follows from the discussion at the end of
Section 2.

As in the previous section, we now make Condition 4.3 which, when combined with
the Lyapunov structure of Lemma 5.2, will induce ergodicity. Also we de(ne

Gl = {measurable g : R2d → R with |g(x)|6 1 + F(x)l}:
The following theorem may be proved in exactly the same way that Theorem 4.4 is
proved, with rl as de(ned there:

Theorem 5.3. Let Conditions 5.1; 4.3 hold with R chosen so that {x: 1+F(x)l6 rl} ⊆
BR(0) for some l¿ 0. If the transition kernel for (5.1) has density pt(x; y) which
is jointly continuous in (x; y) for every :xed t ¿ 0 then (5.1) has a unique invariant
measure � and; if x(0)=y then there exists &=&(l)¿ 0 and -= -(l)¿ 0 such that;
for all g∈Gl;

|Eyg(x(t))− �(g)|6 &[1 + F(y)l] e−-t for all t¿ 0: (5.2)
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Example. Let d= 2; x = (u; v) and

F(x) =
1
4
(1− u2)2 +

v2

2
:

Clearly Condition 5.1(i) is satis(ed and a little calculation reveals that Condition 5.1(ii)
can be satis(ed. Thus; to apply Theorem 5.3; it remains to check the smoothness
condition on the transition kernel together with Condition 4.3. It is useful here to recall
the de(nition of the ideal L0(x) from Section 3 and that existence and smoothness of
the transition kernel density pt(x; y) follows if L0 has full rank at all points. In this
example this condition requires that rank(L0(x))=2 for all x. If m=1 and �=(a; b)T

then three cases arise:

• a=0; b=1. In this case, the smoothness fails because L0 is spanned by (0; 1)T as
is apparent from the fact that no noise enters the u equation. Furthermore there is no
point reachable from the whole space R2 with positive probability: u(0)¿ 1 (resp.
¡ − 1) implies u(t)¿ 1 (resp. ¡ − 1) with probability one. Hence the problem
cannot be ergodic on R2.

• a = 1; b = 0. In this case, the smoothness fails because L0 is spanned by (1; 0)T

as is apparent from the fact that no noise enters the v equation. However, Condition
(4.3) can be satis(ed here, using (u; v) = (1; 0) in place of the origin, taking N = 1
and then 81 = 0. The problem is ergodic, but the invariant measure is singular in v
and so Theorem 5.3 does not apply.

• a �=0 and b �=0. The same argument as in the previous case shows that Condition
(4.3) holds. Smoothness of pt(x; y) is also satis(ed since {�; [Y; �]; [[Y; �]; �]} spans
R2 at each x = (u; v). Hence the problem is geometrically ergodic in this case.

6. Time discretization

6.1. Introduction

Our primary objective in this, and subsequent sections, is to study the ergodic prop-
erties of discretizations of the SDE (2.1). Recall that the case of degenerate noise,
m¡d, is allowed here. We will make a variety of assumptions about Y and � that
imply the geometric ergodicity of the SDE. Our aim is then to study whether discretiza-
tions provided by numerical methods have an analogous property. (We emphasize that
these questions are the (rst step in an analysis of the convergence of invariant mea-
sures of discretizations to those of the SDE itself. The pioneering work in this direction
is Talay (1990).) We study an abstract family of approximations and focus on three
speci(c numerical methods. With the notation

SWn
def= W (tn+1)−W (tn); tn = nSt; Xn ≈ x(tn) (6.1)

we see that the SWn form an i.i.d. family distributed as
√
StN(0; I), with I the m×m

identity.
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The (rst scheme, known as the forward Euler or Euler–Maruyama scheme, is as
follows (Kloeden and Platen, 1991):

Xn+1 = Xn +StY (Xn) + �SWn: (6.2)

The second, which we call the stochastic Backward Euler method, is

Xn+1 = Xn +StY (Xn+1) + �SWn: (6.3)

The third, which we call the split-step stochastic Backward Euler method, is

X? = Xn +StY (X?);

Xn+1 = X? + �SWn: (6.4)

Note that (6.2) is an explicit method, whereas (6.3) and (6.4) are implicit, requiring
the solution of a (generally) non-linear equation at each step. All the methods are
examples of the general family

Xn+1 = H (Xn;SWn); X0 = y; (6.5)

solvability of the implicit equations must be established for the implicit methods to be
written in this form.
We brieGy summarize our results for the numerical approximation of (2.1).

• The two keys points in the approach to proving ergodicity underlying Theorem 2.5
are the existence of a minorization condition on a compact set C, together with
a Lyapunov function inducing repeated returns into C. The minorization condition
tends to persist for all reasonable approximations, relying on properties on a com-
pact set (this persistence is established later in this section). The Lyapunov condition,
since it is a property on non-compact sets, is more sensitive to the choice of dis-
cretization and is inherited only by specially constructed methods.

• If the vector (eld Y is not globally Lipschitz then the Euler–Maruyama scheme
does not preserve ergodicity, in general (Roberts and Tweedie, 1996). We give an
example of an ergodic SDE whose Euler–Maruyama approximation tends to in(nity
for any St ¿ 0, with positive probability (established later in this section).

• If the vector (eld Y is globally Lipschitz and the Lyapunov function is essentially
quadratic (a term de(ned below) then any reasonable method, including (6.2)–(6.4),
will inherit ergodicity of (2.1) for time-steps below a suHciently small level that
is independent of initial data. The key point is that all reasonable methods inherit
the Lyapunov structure under these conditions on the vector (eld and the Lyapunov
function for the SDE (Section 7), provided the time-step is suHciently small. (A
preliminary result in this direction is in Roberts and Tweedie (1996), Section 3.2,
case � = 2.)

• Under a variety of natural structural assumptions, for which Y is not necessarily
globally Lipschitz, one or other of the stochastic backward Euler methods may be
proved ergodic, for suHciently small time-step independent of initial data. The key
point is to (nd methods which replicate the Lyapunov structure (Section 8).

• In many cases where the numerical method is ergodic, the invariant measure for the
method converges to that for (2.1), in a metric closely related to that induced by
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a (Lyapunov-function) weighted total variation norm, as the time-step converges to
zero (Sections 7 and 8, Shardlow and Stuart, 2000; Talay, 1990, 2002).

Our basic tool for proving ergodicity is Theorem 2.5. Its proof relies on two key
facts concerning a Markov chain {xn}n∈Z+ with transition kernel P(x; A). Assumption
2.1 implies (see Lemma 2.3) the minorization condition: ∃�¿ 0 and a probability
measure � with �(C) = 1− �(Cc) = 1 satisfying

P(x; A)¿ ��(A) ∀A∈B(Rd); x∈C: (6.6)

Assumption 2.2 is the Lyapunov condition. Thus understanding the e;ect of numerical
approximation of an SDE on ergodicity boils down, in this context, to understanding
how the minorization and Lyapunov conditions are a;ected by approximation. We will
see that the former is rather insensitive, since it is a property on a compact set C,
whilst the latter can be destroyed unless special discretizations are employed, since it
is a property on the whole space.

6.2. The minorization condition

Let {x(t)}t∈R+ be a Markov process generated by (2.1) and let {Xn}n∈Z+ be a
strong approximation generated by the numerical method (6.5), constructed so that
Xn ≈ x(nSt). De(ne

Pt(x; A)
def= P(x(t)∈A|x(0) = x);

Pn;St(x; A)
def= P(Xn ∈A|X0 = x):

The following condition holds for a wide variety of numerical methods, including those
of interest to us, when applied to a wide variety of SDEs. In particular the convergence
criterion is a consequence of standard strong convergence results, which are uniform
across compact sets of initial data.

Condition 6.1. Fix nSt = t and then the following hold for all St suBciently small.
For any open set O and compact C

sup
x∈C

|Pn;St(x;O)− Pt(x;O)| → 0

as St → 0. Furthermore; for n¿ n0; Pn;St has a density pn;St ; so that

Pn;St(x; A) =
∫
A
pn;St(x; y) dy

and pn;St(x; y) is diCerentiable in (x; y) with derivative bounded independently of St
suBciently small; for nSt :xed.

The last part of this condition can be hard to verify for non-uniformly elliptic
di;usions.

Theorem 6.2. Let Assumption 2.1 hold for x(t) solving (2.1) and assume; in addition;
that the density pt(x; y) is jointly continuous in (t; x; y)∈T×C×C. Assume also that
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Condition 6.1 holds. Then there is a choice of M ∈Z+ such that the minorization con-
dition (6.6) holds for the chain {XnM}n∈Z+ generated by the numerical
method (6.5).

Proof. Assumption 2.1(i); together with continuity of the density in t; implies that

Pt(y∗;B
′(y∗))¿ $¿ 0 ∀t ∈ [t2 − B; t2 + B]:

Hence; for all t ∈ [t2 − B; t2 + B]; there is a z∗ ∈B
′(y∗) such that

pt(y∗; z∗)¿ 24¿ 0:

Thus; for the same interval of t; Assumption 2.1(ii) implies that there exists z∗; 41; 42 ¿ 0
such that

pt(y; z)¿ 4¿ 0 for all y∈B41 (y
∗) and z ∈B42 (z

∗): (6.7)

By reduction of 42 if necessary; we may ensure that B42 (z
∗) ⊂ C. Let n¿ n0 and

assume for contradiction that for nSt = t there exists y∈B41 (y
∗) such that

pn;St(y; z)6 1
2 4 for all z ∈B42 (z

∗):

This implies that

inf
y∈B41 (y

∗)
Pn;St(y;B42 (z

∗))6
1
2
424;

whereas (6.7) gives

inf
y∈B41 (y

∗)
PnSt(y;B42 (z

∗))¿ 424:

Reduction of St; and use of Condition 6.1; gives a contradiction. Thus; provided

nSt ∈ [t2 − B; t2 + B]; St6Stc; n¿ n0 (6.8)

we deduce that there exists Tz ∈B42 (z
∗):

pn;St(y∗; Tz)¿ 1
2 4

and then; by continuity; that

pn;St(y; z)¿ 1
4 4 for all y∈B
1 (y

∗) and z ∈B
2 ( Tz):

Note that 
1; 
2 and Tz may depend upon St but that we can assume B
2 ( Tz) ⊂ C without
loss of generality; and that 
1; 
2 ¿ 0 uniformly for St suHciently small; because of
the derivative conditions on the density for the method.
Thus, assuming (6.8),

Pn;St(y; A) =
∫
A
pn;St(y; z) dz

¿
∫
A∩B
2 ( Tz)

pn;St(y; z) dz

¿
1
4
4-(A ∩B
2 ( Tz))

for all y∈B
1 (y
∗). (Here -(·) is Lebesgue measure on Rd.)
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By Assumption 2.1(i), we know that t1 may be chosen so that

Pt1 (x;B
1 (y
∗))¿ 0 ∀x∈C:

The continuity of p·(· ; y) can be transferred to P·(· ; A) by dominated convergence.
Hence we have, since C is compact

inf
x∈C

Pt(x;B
1 (y
∗))¿ $¿ 0

for all t ∈ [t1 −B; t1 +B], possibly by reduction of B. By approximation, reducing Stc
if necessary and using Condition 6.1, we deduce that

inf
x∈C

Pn;St(x;B
1 (y
∗))¿

1
2
$¿ 0

for all n;St satisfying

nSt ∈ [t1 − B; t1 + B]; St6Stc; n¿ n0:

By reducing B further so that it is less than Stc we can (nd, for all St6Stc, integers
ni such that

niSti ∈ [ti − B; ti + B]; i = 1; 2:

Now set M = n1 + n2 and note that, for all x∈C,

PM;St(x; A)¿
∫
B
1 (y

∗)
pn1 ;St(x; y)Pn2 ;St(y; A) dy

¿
1
4
4-(A ∩B
2 ( Tz))

∫
B
1 (y

∗)
pn1 ;St(x; y) dy

=
1
4
4-(A ∩B42 ( Tz))Pn1 ;St(x;B
1 (y

∗))

¿
1
8
4$-(B
2 ( Tz))�(A);

where �(·) is Lebesgue measure restricted to B
2 ( Tz) and normalized to be a probability
measure. Thus we have

PM;St(x; A)¿ ��(A) ∀A∈B(Rd)

and x∈C where �= 1
8 4$-(B
2 ( Tz)). Since B
2 ( Tz) ⊂ C, we have �(Cc) = 0 and �(C) =

�(B
2 ( Tz)) = 1, as required.

Note that, alternatively, the minorization condition (6.6) can often be established
directly, by mimicking the techniques used for the SDE; we do this in Sections 7 and 8.

6.3. The Lyapunov condition

Although the minorization condition (6.6) is robust to discretization, the Lyapunov
condition is not and ergodicity can be lost under Euler–Maruyama, and other explicit,
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discretization (Roberts and Tweedie, 1996). Consider the SDE (2.1) with d=1, Y (x)=
−x3 and �= 1 so that

dx =−x3 dt + dW: (6.9)

From Section 4 we know that this SDE is ergodic and, for example, V (x) = 1 + x2 is
a Lyapunov function since

Ax2 =−2x4 + 16− 4x2 + 3:

When the Euler–Maruyama method (6.2) is applied to (6.9) this Lyapunov structure is
lost, as Lemma 6.3 shows: it follows from Lemma 6.3(i) that the numerical solution
is not ergodic in the sense we have used it so far—namely exponential convergence
of induced measures to a unique limit—and from Lemma 6.3(ii) that it is not ergodic
in a second commonly used sense—namely almost sure convergence of time-averages
to a limit independent of the sample path. Hence the lemma shows that, in the case of
non-globally Lipschitz vector (elds, numerical methods do not automatically preserve
ergodicity, even for small stepsizes. The example motivates the work in Section 8
where positive results about ergodicity are proved for certain implicit methods. Note,
however, that if the Lyapunov function V is quadratic, and the vector (eld Y globally
Lipschitz, then the Lyapunov condition is preserved for all reasonable approximations,
not just specially constructed ones—see Section 7.

Lemma 6.3. Consider the SDE (6.9); noting that it is geometrically ergodic (see
Section 4). When the Euler–Maruyama method (6.2) is applied to the SDE; the
following results hold:

(i) If E[X 2
0 ]¿

2
St then E[X 2

n ] → ∞ as n → ∞.
(ii) For any X0 ∈R and any St ¿ 0

P
(
|Xn|¿ 2n√

St
; ∀ n¿ 1

)
¿ 0:

Proof. (i) We have

Xn+1 = Xn(1−StX 2
n ) + SWn: (6.10)

Squaring and taking expected values gives

E[X 2
n+1] = E[X 2

n (1− 2StX 2
n +St2X 4

n )] + St: (6.11)

Since 1− 2z + z2 ¿− 1 + 1
2 z

2 for all z ∈R; we may weaken (6.11) to

E[X 2
n+1]¿ E[− X 2

n + 1
2St2X 6

n ] + St =−E[X 2
n ] +

1
2St2E[X 6

n ] + St: (6.12)

We have
(
E[X 2

n ]
)3
6 E[X 6

n ] from Jensen’s inequality; and hence

E[X 2
n+1]¿ E[X 2

n ](
1
2St2 E[X 2

n ]
2 − 1) + St: (6.13)

Now if E[X 2
0 ]¿

2
St then we see from (6.13) that E[X 2

1 ]¿ E[X 2
0 ] + St and iterating

this argument we (nd that

E[X 2
n ]¿ E[X 2

0 ] + nSt:

Hence E[X 2
n ] → ∞ as n → ∞. This proves (i).
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(ii) We deal (rst with the case where |X0|2 ¡ 4=St. Assume that the following
events arise:

|SW0|¿ 4√
St

+St
(

2√
St

)3
; (6.14)

|SWn|6 2n√
St

for n¿ 1: (6.15)

Since |X0|2 ¡ 4=St, it follows from (6.14) that

|SW0|¿ 2√
St

+ |X0|+St|X0|3:

Hence, using (6.10),

|X1|¿ |SW0| − |X0| −St|X0|3¿ 2√
St

: (6.16)

Now, consider the induction hypothesis

|Xk |¿ 2k√
St

; 16 k6 n; (6.17)

which, from (6.16), holds for n= 1. Using (6.17) gives

[1−StX 2
n ]6 1− 22n6 1− 4 =−3

and hence, from (6.10), (6.15),

|Xn+1|¿ 2n√
St

3− |SWn|¿ 2n+1
√
St

:

So, by induction, (6.17) holds for all n.
It remains to show that the events (6.14)–(6.15) occur with positive probability.

(Recall that the SWn are independent, N(0;St) random variables.) Clearly (6.14)
occurs with positive probability. Now, for some constants D, E and n̂ we have, for
n¿ n̂,

P
(
|SWn|6 2n√

St

)
= 1− 2√

2�St

∫ ∞

2n=
√
St

exp(−x2=(2St)) dx

= 1− D
∫ ∞

2n=
√
2St

exp(−y2) dy

¿ 1− D
∫ ∞

2n=
√
2St

exp(−y) dy

¿ 1− D exp(−2nE):

By increasing n̂ if necessary we have

log(1− D exp(−2nE))¿− 2D exp(−2nE)¿− Frn; n¿ n̂
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for constants F and r with 0¡r¡ 1. It follows that:

log

(∏
n¿n̂

P
(
|SWn|6 2n√

St

))
¿−

∑
n¿n̂

Frn =−G

for some (nite constant G¿ 0. Hence∏
n¿n̂

P
(
|SWn|6 2n√

St

)
¿ exp(−G)¿ 0:

Since each of the (nite number of independent events |SWn|6 2n+1=
√
St for n¡ n̂

has positive probability, the result follows.
In the case where |X0|2¿ 4=St a similar approach can be used, based on the events

|SWn|6 2n√
St

for n¿ 0:

A rather general, but less detailed, analysis of similar issues may be found in Section
3 of Roberts and Tweedie (1996). (We retain our explicit calculations with a concrete
example as they are instructive for intuition.) Furthermore a similar result to our Lemma
6.3(i) is also contained in the recent paper (Talay, 1999).

7. Globally Lipschitz vector +elds

We assume that, by appropriate choice of t1; t2, etc. the transition kernel Pt(x; A) for
the SDE (2.1) satis(es Assumptions 2.1 and 2.2. Theorem 2.5 then implies that the
SDE is geometrically ergodic. We would like to establish conditions under which the
same can be said of the three numerical methods (6.2)–(6.4). We do this by appealing
to Theorem 2.5. However, we start simply by considering the e;ect of approximation
on Lyapunov conditions.
We consider the general family of methods (6.5) for (2.1) and then look at the

three Euler methods as special cases. Writing xn=x(nSt), where x(t) solves (2.1), we
consider the following conditions concerning (6.5) and its relation to (2.1).

Condition 7.1. The function H ∈C∞(Rd × Rm;Rd) and satis:es:
(i) there exist c1 ¿ 0; s¿ 0; independent of St ¿ 0; such that E‖X1− x1‖26 c1[1+

‖y‖2]Sts+2 for all y∈Rd;
(ii) there exists c2 = c2(r)¿ 0; independent of St ¿ 0; such that E‖X1‖r6 c2[1 +

‖y‖r]; for all r¿ 1 and y∈Rd;

The next result gives conditions under which the numerical method (6.5) inherits a
Lyapunov function from the SDE (2.1). We say that V is essentially quadratic if there
exist Ci ¿ 0 so that

C1[1 + ‖x‖2]6V (x)6C2[1 + ‖x‖2]; |∇V (x)|6C3[1 + ‖x‖]: (7.1)
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Theorem 7.2. Let Assumption 2.4 hold for (2.1) with V → V l; l¿ 1 and let V be
essentially quadratic. If Condition 7.1 holds; then Assumption (2.2) holds for (6.5)
with V → V l.

Proof. We have that

E{V (X1)l}6 E{V (x1)l}+ E|V (X1)l − V (x1)l|:
Assumption 2.4 implies that

E{V (x(t))l}6 e−altV (x(0))l +
dl

al
[1− e−alt]:

Since V (x) is essentially quadratic it follows from (7.1) that there are cl ¿ 0 such that

E‖x(t)‖2l6 c+l [1 + ‖y‖2l]: (7.2)

Thus; by Assumption 2.4 with V → V l and since ∇V is linearly bounded and V
quadratically bounded

E{V (X1)l}6 e−alStV (y)l +
dl

al
+ E

∫ 1

0
|〈∇V l(sX1 + (1− s)x1); X1 − x1〉| ds

6 e−alStV (y)l +
dl

al
+ k1E{[1 + ‖X1‖2l−1 + ‖x1‖2l−1]‖X1 − x1‖}

6 e−alStV (y)l +
dl

al
+ k2{E[1 + ‖X1‖4l−2

+‖x1‖4l−2]}1=2{E‖X1 − x1‖2}1=2:
Using (7.2); Condition 7.1(ii) to bound E‖x1‖4l−2; E‖X1‖4l−2 and Condition 7.1(i)
to bound E‖X1 − x1‖2; we (nd from (7.1) that

E{V (X1)l}6 e−alStV (y)l +
dl

al
+ k3{1 + ‖y‖4l−2}1=2{1 + ‖y‖2}1=2St1+s=2

6 e−alStV (y)l +
dl

al
+ k4{1 + ‖y‖2l}St1+s=2

6 [e−alSt + k5St1+s=2]V (y)l +
dl

al
+ k6St1+s=2:

Thus; for ãl ∈ (0; al);

E{V (X1)l}6 e−ãlStV (y)l +
dl

ãl
(7.3)

by choice of St suHciently small. This is the desired result.

If Condition 7.1 holds then we may prove the following result, which employs the
de(nition (3.7) and

G′
l = {g∈Gl: |g(a)− g(b)|6 k[1 + ‖a‖2l−1 + ‖b‖2l−1]‖a− b‖ ∀a; b∈Rd}:
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Theorem 7.3. Let Assumptions 2.1 and 2.4 hold; with V → V l; l¿ 1; and let V
be essentially quadratic. Thus Theorem 2.5 holds and (2.1) is geometrically ergodic
with invariant measure �. If Condition 7.1 holds and if the numerical method (6.5)
satis:es the minorization condition (6.6) when sampled at rate M; then for all St
suBciently small; the method has a unique invariant measure �St on Rd. For l¿ 1
there exists C̃ = C̃(l;St)¿ 0 and -̃= -̃(l;St)¿ 0 such that; for all g∈Gl;

|Eg(Xn)− �St(g)|6 C̃V (y)le−-̃nSt ∀n¿ 0:

If; in addition;

E‖Xn − xn‖26 c3e2c4T [1 + ‖y‖2]Sts for all 06 nSt6T; (7.4)

then there is K =K(l)¿ 0 and G∈ (0; 1=2) independent of l such that; for all g∈G′
l;

|�(g)− �St(g)|6KStsG�(V l): (7.5)

Proof. Condition 7.1 implies the Lyapunov condition and we have assumed the mi-
norization condition (6.6) holds for the sampled chain {XnM}. Thus; by Theorem 2.5;
the sampled chain is geometrically ergodic:

|Eyg(XlM )− �(g)|6 &H l[1 + V (y)l]:

From this we deduce that the unsampled chain is ergodic since; if n = lM + j for
integer j∈ [0; M − 1]; conditioning on Fj gives; for all g∈Gl;

|Eyg(XlM+j)− �(g)|6 &H l[1 + EyV (Xj)l]:

Using (7.3) gives the desired result

|Eyg(Xn)− �(g)|6 &1Hn1[1 + EyV (X0)l]

for all g∈Gl.
To obtain the second result on convergence of invariant measures we apply Theorem

3.3 in Shardlow and Stuart (2000). We need only show

|Eyg(x(nSt)− Eyg(Xn)|6Ce�tV (y)lSts; 06 nSt6 t

for all g∈G′
l. Now, for 06 nSt6 t,

E|g(x(nSt))− g(Xn)|6CE{[1 + ‖x(nSt)‖2l−1 + ‖Xn‖2l−1]‖x(nSt)− Xn‖}

6CE{1 + ‖x(nSt)‖4l−2

+ ‖Xn‖4l−2}1=2E{‖x(nSt)− Xn‖2}1=2;
so that, by (7.1), (7.2), Condition 7.1(ii) and (7.4),

|Eg(x(nSt))− Eg(Xn)|6C[1 + ‖y‖2l−1]ec4nSt[1 + ‖y‖]Sts=2

6C4e�tV (y)lSts=2:

The required result follows.
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Remark. If (7.5) holds for all g∈Gl then it states that � and �St are close in a total
variation norm; weighted according to the Lyapunov function. The additional constraints
implied by requiring g∈G′

l lead to a more complex metric.

The essential point of this theorem is that approximation properties alone allow us,
in the case of globally Lipschitz Y (which suHces to establish Condition 7.1) and es-
sentially quadratic V , to deduce ergodicity for the numerical method; this is since they
imply both the minorization and Lyapunov conditions. Recall, however, that it is some-
times straightforward to deduce the minorization condition directly for the numerical
method, without resort to approximation, and that we will use this approach in what
follows for the Langevin equation; for other problems, however, it may sometimes be
easier to use approximation.
We now give two examples where Condition 7.1 holds, and hence Theorem 7.3

applies, for the three numerical methods de(ned above. The (rst example involves the
Langevin equation. Note that the hypotheses on F in Corollary 7.4 below are automat-
ically satis(ed if F is a positive de(nite quadratic form. In this case, an appropriate
choice for V , which ensures that Assumption 2.4 holds, is (3.6). Using this V , Eq.
(3.1)–(3.2) is proved to be geometrically ergodic in Section 3.

Corollary 7.4. Consider the Langevin equation (3.1)–(3.2) where F : Rm → R is
essentially quadratic and 	∈Rm×m. Suppose that the columns of 	 are linearly
independent; and that F has the following properties:
(i) F ∈C∞(Rm;R);
(ii) ∇F is globally Lipschitz;
(iii) F(q)¿ 0;
(iv) there exists an �¿ 0 and �∈ (0; 1) such that

1
2
〈∇F(q); q〉¿ �F(q) + $2

�(2− �)
8(1− �)

‖q‖2 − �:

For St suBciently small the three numerical methods (6.2); (6.3) and (6.4) satisfy
Condition 7.1; the minorization condition (6.6) when sampled at rate M = 2; and
(7.4); hence Theorem 7.3 applies.

Proof. We begin with the Euler–Maruyama scheme (6.2); which gives

Qn+1 = Qn +StPn; (7.6)

Pn+1 = Pn −St$Pn −St∇F(Qn) + 	SWn: (7.7)

Here Qn ≈ q(nSt) and Pn ≈ p(nSt). Because 	 is invertible it follows that Pn(y; A)
has C∞ density for n¿ 2. Explicit construction shows that SW0; SW1 can be chosen to
ensure that (QT

2 ; P
T
2 )

T=y+ for any starting value y: note that Q1 is (xed independently
of the noise and hence P1 is forced to ensure Q2 takes the required value. This value
for P1 determines SW0 uniquely and then SW1 is determined uniquely to ensure the
desired value of P2. Thus Assumption 2.1 holds; and hence the minorization condition
by Lemma 2.3.
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Considered as an approximation to (2.1), the Euler–Maruyama method may be
written as

Xn+1 = Xn +StY (Xn) + �SWn:

Here Y is globally Lipschitz. Also

x(St) = y +
∫ St

0
Y (x(8)) d8+ �W (St):

Subtracting we (nd that

‖x(St)− X1‖6
∫ St

0
L‖x(8)− y‖ d8

so that

E‖x(St)− X1‖26StL2
∫ St

0
E‖x(8)− y‖2 d8:

Further calculation shows that

E‖x(8)− y‖26C8[1 + y2]

and Condition 7.1(i) follows with s= 1.
For (ii) notice that

‖X1‖p6C[‖y‖p +Stp‖Y (y)‖p + ‖�SW1‖p]

6C[‖y‖p +Stp[‖Y (0)‖+ L‖y‖]p + ‖�SW1‖p]

6C[1 + ‖y‖p + ‖	SW1‖p]
and taking expectations gives the desired result. Condition (7.4) is established in Shard-
low and Stuart (2000) with s= 1. Theorem 7.3 thus applies with V given by (3.6).
Applying the split-step stochastic backward Euler method (6.4) to (3.1)–(3.2) gives

Qn+1 = Qn +StP?; (7.8)

P? = Pn −St$P? −St∇F(Qn+1); (7.9)

Pn+1 = P? + 	SWn: (7.10)

By the techniques described in Section 8.1 it is possible to show that, for all St
suHciently small, the map (Qn; Pn) → (Qn; P?) is uniquely de(ned, whatever values
Qn; Pn and SWn take. Indeed we may write

Qn+1 = Qn +Stf(Qn; Pn);

Pn+1 = f(Pn; Qn) + 	SWn:

Here f is smooth in both arguments and f(q; ·) is invertible for all q∈Rd. Thus the
method is well-de(ned. Analysis very similar to that above for the Euler–Maruyama
scheme shows that Condition 7.1 holds, together with the minorization condition for
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the chain sampled at rate M = 2. The stochastic backward Euler method (6.3) for
(3.1)–(3.2) can be analyzed similarly.

Our second example where Theorem 7.3 applies involves a dissipativity condition.

Corollary 7.5. Consider (2.1) in the case where m = d; Y is globally Lipschitz and
the following properties hold:

(i) Y ∈C∞(Rd;Rd);
(ii) ∃�; �¿ 0 such that 〈Y (x); x〉6 �− �‖x‖2 for all x∈Rd.

For St suBciently small; the three numerical methods (6.2); (6.3) and (6.4) satisfy
Condition 7.1; the minorization condition (6.6) when sampled at rate M = 1; and
(7.4); hence Theorem 7.3 applies.

Proof. Note that for this SDE; an appropriate choice for the Lyapunov function V is
V (x)=‖x‖2+1; see Section 4; where the equation is proved to be geometrically ergodic.
Since the columns of � span Rd in this case it follows every point y+ is reachable
from y in just one step (N = 1) by appropriate choice of SW0. Thus minorization
is easily veri(ed for all three methods. The remaining arguments follow as in the
Langevin case.

Corollary 7.5 is essentially proved in Talay (1990) for the Euler–Maruyama scheme
though, in that paper, certain higher order methods are also studied and, furthermore,
the rates of convergence of �St to � is optimal. In contrast the use of Shardlow
and Stuart (2000) to prove convergence gives suboptimal rates in this case; it does,
however, apply to a di;erent set of test functions.

8. Locally Lipschitz vector +elds

We now consider Eq. (2.1) without the condition that Y is globally Lipschitz. To
be concrete we study the Langevin equation (3.1)–(3.2) but similar issues arise for
other problems and we brieGy outline generalizations at the end of the section.

8.1. The Langevin equation

For the Langevin problem we impose the structural property that

∃c¿ 0: 〈∇F(a)−∇F(b); a− b〉¿− c‖a− b‖2: (8.1)

This is a one-sided Lipschitz condition on ∇F and it implies that

F(a)− F(b)6 〈∇F(a); a− b〉+ c‖a− b‖2: (8.2)

In this subsection we replace condition (ii) of Corollary 7.4 by the one-sided Lipschitz
condition. The function (3.3) is a prototypical example that satis(es conditions (i),
(iii) and (iv) of Corollary 7.4 and (8.1). Analysis similar to that in the previous
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section shows that the Euler–Maruyama approximation of this problem is not ergodic
in general. Here we study the split-step backward Euler method.
Abusing notation and setting V (p; q) = V (x) for x = (qT; pT)T (with V given by

(3.6)) we de(ne

VSt(p; q)
def= V (p; q) +

St$
4

‖p‖2: (8.3)

The following lemma is key to what follows:

Lemma 8.1. Let (8.1) hold and let St6Stc where cSt2c = 1 + $Stc. Then the map
(Qn; Pn) → (Qn+1; P?) given by (7.8)–(7.9) is uniquely de:ned for all Qn; Pn and
SWn. Furthermore; if St6 4$�=8c for some 4∈ (0; 1); then we have

VSt(P?;Qn+1)− VSt(Pn; Qn)6 $St�− $(1− 4)St�VSt(P?;Qn+1):

Proof. Solvability is equivalent to (nding P? such that

P? − Pn + $StP? +St∇F(Qn +StP?) = 0

and hence to making
1
2
‖P? − Pn‖2 + $St

2
‖P?‖2 + F(Qn +StP?)

stationary. Since F is smooth and bounded below at least one such point must exist.
For uniqueness; consider two solutions p1 and p2 given (Pn; Qn) = (p; q). Then

(1 + $St)pi +St∇F(q+Stpi) = p:

Subtracting and using (8.1) gives

0¿ (1 + $St − cSt2)‖p1 − p2‖2

and uniqueness follows under the required condition on St.
For the properties of V de(ne Vn = V (Pn; Qn) and Vn+1 = V (P?;Qn+1); note that

Vn+1 − Vn =
1
2
〈P? − Pn; P? + Pn〉+ F(Qn+1)− F(Qn)

+
$
2
〈P? − Pn; Qn+1〉+ $

2
〈Pn; Qn+1 − Qn〉

+
$2

4
〈Qn+1 − Qn; Qn+1 + Qn〉:

From this it may be shown that

Vn+1 − Vn6 〈−$StP? −St∇F(Qn+1); P?〉+ F(Qn+1)− F(Qn)

+
$
2
〈−$StP? −St∇F(Qn+1); Qn+1〉

+
$
2
〈Pn;StP?〉+ $2

4
〈StP?; Qn+1 + Qn〉:



216 J.C. Mattingly et al. / Stochastic Processes and their Applications 101 (2002) 185–232

Thus

Vn+1 − Vn6
[
cSt2 − $2St2

4
− $St

2

]
‖P?‖2 + St$

2
〈Pn − P?; P?〉

− $St
2

〈∇F(Qn+1); Qn+1〉:
Using the fact that

〈a− b; b〉6 1
2
‖a‖2 − 1

2
‖b‖2

and (3.11) we see that

VSt(P?;Qn+1)− VSt(Pn; Qn)

6
[
cSt2 − $2St2

4
− $St

2

]
‖P?‖2 − $St

2
〈∇F(Qn+1); Qn+1〉

6
(
cSt2 − $2St2

4

)
‖P?‖2 + $St[�− �V (P?;Qn+1)]

6
(
cSt2 − $2St2

4
+

$2St2�
4

)
‖P?‖2 + $St[�− �VSt(P?;Qn+1)]:

Since �∈ (0; 1) it follows that, using VSt(p; q)¿ 1
8‖p‖2,

VSt(P?;Qn+1)− VSt(Pn; Qn)6
(
cSt2 − 4St�$

8

)
‖P?‖2 + $St�

− $(1− 4)St�VSt(P?;Qn+1)

and the required result follows.

Corollary 8.2. Consider the Langevin equation (3.1)–(3.2) under the assumptions of
Corollary 7.4 with part (ii) of the conditions on F replaced by (8.1). Let

St6 min
{
Stc;

4$�
8c

;
2
$

}
;

where Stc is as given in Lemma 8.1. Then the split-step stochastic Backward Euler
method is geometrically ergodic and the conclusions of Theorem 2.5 apply.

Proof. By (3.6) and (8.3) we see that; for Xn = (QT
n ; P

T
n )

T;

VSt(Xn+1) = VSt(P?;Qn+1) + (1 + St$=2)〈P?; 	SWn〉

+
1
2

(
1 +

St$
2

)
‖	SWn‖2 + $

2
〈	SWn;Qn+1〉:

Thus; assuming that St$¡ 2 to simplify the constants and noting that P∗; Qn+1 are
independent of SWn;

E{VSt(Xn+1)|Fn}= E{VSt(P?;Qn+1)|Fn}+ E‖	SWn‖2:
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Hence; if St== 1
2 E‖	SWn‖2; we have upon application of Lemma 8.1;

E{VSt(Xn+1)|Fn}= VSt(Xn) + St[$�+ 2=(1 + $(1− 4)St�)]
1 + $(1− 4)St�

:

Hence Assumption 2.2 holds. Smoothness of the density and reachability of any y+

from any y in N = 2 steps can be established as in Section 6; yielding Assumption
2.1. This proves ergodicity for the chain sampled every 2 steps. An argument similar
to that used in Theorem 7.3 to similar e;ect; gives ergodicity for the unsampled chain
{Xn}n∈Z+ .

8.2. Dissipative problems

Throughout this subsection we assume that Condition 4.1 holds. The split-step stoch-
astic backward Euler method applied to (2.1) gives (6.4). Standard calculations (see
Stuart and Humphries, 1996; Chapter 5) using conditions (i) and (ii) of Corollary 7.5
show that

‖X?‖26 {1 + St�}−1{‖Xn‖2 + �St}
and so

E{‖Xn+1‖2|Fn}6 (1 + St�)−l{‖Xn‖2 + �St + E‖�SWn‖2}:
Since E‖�SWn‖2 = O(St) we have the required Lyapunov function structure. Thus,
provided that the desired minorization condition can be proved, either by approximation
or directly, geometric ergodicity follows for this approximation method whenever the
underlying SDE (2.1) is geometrically ergodic and satis(es conditions (i) and (ii) of
Corollary 7.5.
A Lyapunov function for the stochastic Backward Euler method (6.3) follows from

the preceding analysis. If Xn solves (6.3) then

Zn
def= Xn −StY (Xn)

solves (6.4). Thus, since 1 + ‖Zn‖2 is a Lyapunov function for (6.4), we see that

V (x) def= 1 + ‖x −StY (x)‖2
is a Lyapunov function for (6.3). That V (x) → ∞ as ‖x‖ → ∞ follows under
Condition 4.1.

8.3. Gradient systems

For gradient problems it is often the case that the dissipativity structure exploited
in the previous subsection also prevails and then the split-step backward Euler method
can be shown to be ergodic when applied to geometrically ergodic gradient systems
perturbed by noise. However there are examples where this is not the case. Although the
ultimate boundedness of F(Xn) implies the ultimate boundedness of ‖Xn‖2, exponential
dissipation in F(Xn) does not imply exponential dissipation in ‖Xn‖, as shown by the
example

F : R2 → R+; F(a1; a2) = (|a1|+ log |a2|)2:
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It is therefore possibly useful to (nd numerical methods which preserve the expected
Lyapunov structure which we exploited in studying gradient systems in Section 5.
However, whilst this is possible by use of ideas in Stuart and Humphries (1996), we
have been unable to (nd Lyapunov structures which are well-behaved in the limit
St → 0; this is aesthetically unsatisfactory and means that, in principle, the geometric
rates of convergence may depend badly on St → 0 (Roberts and Tweedie, 1999). In
practice we do not believe that this occurs and numerical experiments like those in the
next section substantiate this claim.

9. Numerical experiments

We now give some numerical results that are relevant to the foregoing analysis.
We use FE, BE and SSBE to denote the forward Euler method (6.2), the backward
Euler method (6.3) and the split-step backward Euler method (6.4), respectively. We
consider four problems that illustrate results in (sub) Sections 7, 8.1, 8.2 and 8.3,
respectively.

Lang-Global: the Langevin equation (3.1)–(3.2) with m=1, F(q)=q2=2−(log(q2+
1))=2, $=1 and 	=1, and initial data p0 = q0 = 1

2 . Here, the deterministic vector (eld
is globally Lipschitz.
Lang-Local: the Langevin equation (3.1)–(3.2) with m=1, F(q)= 1

4 (q
2−1)2, $=1

and 	 = 1, and initial data p0 = q0 = 1
2 . Here, the deterministic vector (eld is only

locally Lipschitz. In this case, the condition (8.1) holds with c=1, and hence Corollary
8.2 applies for SSBE.
Lorenz: the Lorenz equations (4.3) with ( = 10, r = 28 and b = 8

3 and initial data
x0 =y0 = z0 =0:5. This problem is dissipative in the sense of Section 4 and hence both
BE and SSBE have a Lyapunov function (see Section 8.2).
Grad-Diss: the gradient system (5.1) with d=2, F(x1; x2) = 1

2 (exp(x
2
1) + x22), 	= I ,

and initial data x1(0) = x2(0) = 0:5. The problem is also dissipative in the sense of
Section 4 and our calculations of Section 8.2 apply for BE and SSBE.

Computations are performed in Matlab (The MathWorks, Inc., 1992) using the func-
tion randn to generate independent N(0; 1) samples. To apply BE to Lang-Global and
Lang-Local, we (rst eliminate Pn+1, leaving a cubic for Qn+1. We take Qn+1 to be
the real root closest to Qn, and then substitute this value to give Pn+1. Similarly, we
apply SSBE to Lang-Global and Lang-Local by solving a cubic polynomial for Qn+1.
The same technique is used for the Lorenz equations (4.3); the non-linearity in the
implicit equations for BE and SSBE can be reduced to a cubic polynomial in Yn+1 for
BE and in Y? for SSBE. For Grad-Diss, we implement BE and SSBE by applying a
quasi-Newton type non-linear equation solver.
In all tests, we monitor an approximation to E‖Xn‖2 that is found by averaging over

1000 paths, using the same paths for each of the three methods. Here, Xn denotes the
numerical solution at t= tn and ‖ · ‖ denotes the L2 norm. We apply the methods over
06 t6 64 with four di;erent stepsizes.
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Fig. 1. Problem Lang-Local: E‖Xn‖2 against tn.

The Lang-Global results are given in Fig. 1. Here, we use Sti=2−i, for i=1; 2; 3; 4.
We see that all three methods are well behaved for these stepsizes. The long-time
second moments appear to converge to a common limit as St → 0, with BE and
SSBE settling down more quickly than FE.
Fig. 2 relates to Lang-Local, using the same Sti values as the previous example.

Note that in these (and subsequent) (gures the vertical axis for the FE picture uses
exponential scaling. We see that the FE solution behaves poorly for St = St1;St2,
suggesting unboundedness of E‖Xn‖2 as n → ∞. The BE and SSBE solutions behave
better, having second moments that are bounded, and appear convergent as St → 0 in
the large-time regime. The FE results for St =St3;St4 are compatible with those of
BE and SSBE.
Results for the Lorenz equations are given in Fig. 3. Here, we use Sti = 2−i−2, for

i = 1; 2; 3; 4. FE gives unbounded second moments for St1, St2 and St3. For BE and
SSBE, this quantity is always bounded and appears convergent to, approximately, the
same limit.
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Fig. 2. Problem Lorenz: E‖Xn‖2 against tn.

Fig. 4 gives results for Grad-Diss, with Sti = 2−i, for i = 1; 2; 3; 4. In this case,
FE has unbounded second moments for all stepsizes used. In contrast, BE and SSBE
perform well, and convergence in St is particularly fast for BE. In further tests with
smaller St and the same initial data, FE appeared to recover the good behavior of BE
and SSBE, as for the other examples.
The (rst common theme of all the experiments is that FE blows up unless the

time-step is small; we conjecture that, however small the time-step, this method will
eventually blow-up, given a long enough time interval. The second common theme is
that both BE and SSBE behave well—they produce moments which appear to converge,
as n → ∞, to a limiting value which itself converges as St → 0.
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Fig. 3. Problem Grad-Diss: E‖Xn‖2 against tn.

Appendix A. Proof of Theorem 2.5

The proof of Theorem 2.5, which is essentially a special case of Theorem 15.0.1
in Meyn and Tweedie (1992), proceeds in two steps. We emphasize that the proof
we describe here is essentially that in Meyn and Tweedie (1992), streamlined for our
particular conditions. We repeat it here because the analysis of the time-discretization
requires an appreciation of the details of the proof; because the assumptions of Theorem
15.0.1 of Meyn and Tweedie (1992) are more general than ours, the proof in that book
is distributed over many pages and is hard to deconstruct explicitly in the manner
required here. Nonetheless we emphasize that no new ideas are presented in this proof.
In Step 1, relying on Assumption 2.1 (and its consequence the minorization condition

(6.6)), we use a standard construction to (nd a chain, equivalent in law to Pt(x; A),
which makes explicit some uniform behavior.
In Step 2 we use a Lyapunov function to show that the chain repeatedly returns to a

region in which the uniform behavior is valid. Together the two steps give ergodicity.
Step 1: It is straightforward to see that Assumption 2.1 gives the following lemma.
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Fig. 4. Problem Lang-Global: E‖Xn‖2 against tn.

Lemma A.1. Let Assumption 2.1 hold. Then there is a t2 ∈T and a 
′ ¿ 0 such that

• B
′(y∗) ⊆ C and
• Pt2 (y

∗;B
′(y∗))¿ 0.

We now derive the minorization condition (6.6) on C, the basic conclusion of Lemma
2.3, which is used to characterize and quantify the uniform motion on the set C.
Minorization essentially means that the Markov Chain restricted to C satis(es the
classical Doeblin condition. The general theory of Markov chains (see Orey, 1971;
Meyn and Tweedie, 1992) proceeds by use of a deep result which shows that the
minorization condition can be satis(ed for some sampled version of {x(t)}, given
irreducibility. However, under our assumptions, which are natural for certain dynamical
systems perturbed by noise, we can deduce the minorization condition directly. Since
this gives rise to more transparent proofs and builds intuition, it is the approach we
take here.
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Recall that we study the Markov chain {xn} formed by sampling at the rate T ∈T,
with the kernel P(x; A) = PT (x; A).

Proof (Lemma 2.3): Lemma A.1 implies that Pt2 (y
∗;B
′(y∗))¿ 0 and it follows from

the existence of a density that there is a z∗ ∈B
′(y∗) ⊆ C such that for some 4¿ 0

pt2 (y
∗; z∗)¿ 24¿ 0:

By Assumption 2.1(ii), there exist 41; 42 ¿ 0 such that

pt2 (y; z)¿ 4¿ 0 for all y∈B41 (y
∗) and z ∈B42 (z

∗):

By reducing 42 if necessary, we may ensure that B42 (z
∗) ⊂ C.

Now

Pt2 (y; A) =
∫
A
pt2 (y; z) dz¿

∫
A∩B42 (z

∗)
pt2 (y; z) dz¿ 4-(A ∩B42 (z

∗))

for all y∈B41 (y
∗). (Here -(·) is Lebesgue measure on Rd.)

By Assumption 2.1(i), we know that t1 may be chosen so that Pt1 (x;B41 (y
∗))¿ 0 for

any x∈C. The continuity of pt1 (· ; y) given by Assumption 2.1(ii) can be transferred
to Pt1 (· ; A) by dominated convergence. Hence we have, since C is compact,

inf
x∈C

Pt1 (x;B41 (y
∗))¿ $

for some $¿ 0. Now let T = t1 + t2. Then, for all x∈C,

P(x; A) = PT (x; A)¿
∫
B41 (y

∗)
pt1 (x; y)Pt2 (y; A) dy

¿ 4-(A ∩B42 (z
∗))

∫
B41 (y

∗)
pt1 (x; y) dy

= 4-(A ∩B42 (z
∗))Pt1 (x;B41 (y

∗))

¿ 4$-(B42 (z
∗))�(A);

where �(·) is Lebesgue measure restricted to B42 (z
∗) and normalized to be a probability

measure. If �=4$-(B42 (z
∗)) then we have P(x; A)¿ ��(A) for all A∈B(R) and x∈C.

Since B42 (z
∗) ⊂ C, we have �(Cc) = 0 and �(C) = �(B42 (z

∗)) = 1, as required.

We now use the preceding lemma to build an equivalent Markov chain where the
uniform part of the motion is explicit. Recall that we study the Markov chain {xn}
formed by sampling at the rate T ∈T, with the kernel P(x; A) =PT (x; A). Because our
objective is primarily the study of a noisy dynamical system, we present the proof of
ergodicity using random iterated functions ( Kifer, 1988), although we emphasize that
this approach is not necessary; it is possible to work entirely with transition kernels.
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We assume that the original chain {xn}x∈Z+ , with kernel P(x; A), is generated by

xn+1 = h(xn; wn) (A.1)

with x0 given. Here the !n ∈M are i.i.d. random variables and we have P{xn+1 ∈A | xn}
= P(xn; A). Now de(ne a new transition kernel

P̃(x; A) =

{
P(x; A) ∀x∈Cc;
1

1−� [P(x; A)− ��(A)] ∀x∈C:
(A.2)

(Note that the minorization condition ensures that this kernel is well-de(ned.) We may
assume that P̃ is generated by iteration of the random family

h̃(x̃; w̃) with x̃∈Rd; !̃∈ M̃; (A.3)

again appealing to the construction in Kifer (1988). Then we de(ne the new Markov
chain

x′n+1 = h′(x′n; !
′
n): (A.4)

Here !′
n ∈M′ are i.i.d. random variables de(ned below. The function h′ is de(ned by

h′(x′; !′) = 1C(x′)[5h̃(x′; !̃) + (1− 5)G] + [1− 1C(x′)]h̃(x′; !̃): (A.5)

The random variable !′
1 is distributed as !′ = (!̃; 5; G) where !̃; 5, and G are inde-

pendent and !̃ is distributed as for (A.3), P(5 = 1) = 1 − �, P(5 = 0) = �, and G
is distributed as �. Straightforward calculations show that P(x′n+1 ∈A | xn) = P(x; A) so
that (A.1) and (A.4) are equivalent in law.
The advantage of working with (A.4) is that it contains an atom-like structure: if

any two independent realizations of the chain lie in C at a time n, and if 5n = 0 for
both realizations, then both chains pick their next value at random according to the
law of G1 and hence the laws of the random variables given by sampling either chain
at any time after n are the same.
To prove ergodicity we will use a coupling argument and hence, simultaneously, we

consider a second copy of this chain whose noise is constructed to be advantageously
correlated with that of the x′ chain, namely

y′
n+1 = h′(y′

n; �
′
n); �′n = (W̃ n; 5n; Gn):

Here the 5n and Gn are the same random variables used to construct !′
n. The W̃ n are

a new i.i.d sequence distributed in the same way as, but independently from, the !̃n.
Notice that the x′n and y′

n dynamics are independent until x′n; y
′
n ∈C and 5n = 0. Then

they both move to Gn. This is the key feature of this construction. When 5n = 0, the
entire set C acts as an atom. Movement out of C is uniform irrespective of the point in
C. Notice also that, if P(x; C)=1, then the marginals of x and y will converge towards
each other exponentially fast because the chance of not coupling is (1−�)n; such issues
are discussed for Monte-Carlo Markov-chain techniques in Rosenthal (1995).
Step 2: It is hopefully intuitively reasonable that, if the assumption P(x; C) = 1 is

removed and instead it is simply assumed that the chain spends a lot of time in the
set C, then the distributions of the two chains will still converge exponentially. We
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will make this precise shortly. First we develop the estimates that show that the chain
visits C regularly.
We use the Lyapunov function from Assumption 2.2 to control the return times to C.

Straightforward calculation shows that this assumption implies the following, at times
more computationally useful, condition.

Lemma A.2. Let Assumption 2.2 hold and let $∈ (�; 1); s∈ [1;∞). If

c(s) =
s�

$− �
; C(s) = {x:V (x)6 c(s)}

then

E[V (xn+1)|Fn]6 $V (xn) + s�1C(s)(xn): (A.6)

In the following we let c = c(2) and C = C(2). Furthermore we use & to denote
a constant independent of initial data for the Markov chain under consideration and
independent of any time index n; k; : : : ; etc. However the actual value of & may change
from occurrence to occurrence. The following amounts to the Optional Stopping lemma
adapted to our setting. Since it is short we include the proof for completeness. It is
the key estimate needed to complete the ergodic result.

Lemma A.3. Let N be any stopping time and :x an n¿ 0. Under Assumption 2.2;

E{V (xn)1N¿n}6 E{V (xn)1N¿n}6 &$n


V (x0) + E




n∧N∑
j=1

$−j1C(xj−1)






6
&[$nV (x0) + 1]

1− $
:

At (rst glance this lemma may seem rather technical. However it gives immediately
that the return time to the set C has exponential tails and, with some appeals to the
standard theory, the existence of an invariant measure. We defer the proof of the lemma
until after these two useful corollaries.

Corollary A.4. Assume the conditions of Lemma A.3 hold. If 8C=inf {n¿ 0: xn ∈C}
then for n¿ 0 and $∈ (�; 1) it follows that:

P{8C ¿n}6 &$n[V (x0) + 1]

and

E
(
1
$

)8C
6 &[V (x0) + 1]:
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Proof (Corollary A.4): The de(nition of 8C implies that

n∧8C∑
j=1

$n−j1C(xj−1) = $n−11C(x0);

also

E{V (xn)18C¿n}¿ cE{18C¿n}= cP{8C ¿n}:

Using these estimates in Lemma A.3 gives the (rst result. For the second result notice
that

E
(
1
$

)8C
=

∞∑
n=1

(
1
$

)n
P(8c = n)

6
∞∑
n=1

(
1
$

)n
P(8c ¿n− 1):

Since $∈ (�; 1) we can employ the (rst result with $ → $′ ∈ (�; $) to give the desired
estimate.

Corollary A.5. Under Assumption 2.2; the system possesses an invariant probability
measure.

Proof (Corollary A.5): If we take the deterministic stopping time N = n then Lemma
A.3 implies that supn¿0 E{V (xn)}¡∞. Fixing an x0, Chebychev’s inequality tells us
that the measures de(ned by

Nn(A)
def=

1
n

n∑
k=0

P{xk ∈A}

are a tight sequence of measures since the level sets of V bound compact subsets of
phase space. Hence once can extract a subsequence which converges to an invariant
measure. See Kifer (1988) and Meyn and Tweedie (1992) for more details. Since the
total mass of each Nn is bounded by one, any limiting measure will be (nite and hence
can be normalized into a probability measure.

Proof (Lemma A.3): Begin by noticing that the third inequality follows from the sec-
ond because

n∧N∑
j=1

$n−j1C(xj)6
n∑

j=1

$n−j6
1

1− $
:
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The (rst inequality holds because V (xn)1N¿n6V (xn)1N¿n for every realization.
To see the second claim, de(ne F(x; n) = $−nV (x) and observe that

F(xN∧n; N ∧ n) = F(x0; 0) +
N∧n∑
j=1

[F(xj; j)− F(xj−1; j − 1)]

= F(x0; 0) +
n∑

j=1

1N¿j−1[F(xj; j)− F(xj−1; j − 1)]:

Since the event {N ¿j − 1}∈Fj−1, F(x0; 0) = V (x0), and

E{F(xj; j)|Fj−1}6 $−j[$V (xj−1) + 2�1C(xj−1)]

=F(xj−1; j − 1) + 2$−j�1C(xj−1)

we have

EF(xN∧n; N ∧ n) = V (x0) + E
n∑

j=1

1N¿j−1E{F(xj; j)− F(xj−1; j − 1)|Fj−1}

6 V (x0) + 2�E
n∑

j=1

$−j1N¿j−11C(xj−1):

Now observe that EF(xN∧n; N ∧ n)=E{$−nV (xn)1n6N}+E{$−NV (xN )1n¿N}. Since V
is positive we can neglect the second of the terms to obtain

E{V (xn)1n6N}6 $nEF(xN∧n; N ∧ n)6 $nV (x0) + 2�E
n∧N∑
j=1

$n−j1C(xj−1)

as required.

With the estimates of Steps I and II, we are now ready to attack the principle result
of this section.

Proof (Theorem 2.5): We abuse notation and take Fn to be the 	-algebra generated
by both the {x′n}n¿0 and {y′

n}n¿0 chains simultaneously. In the following E with no
superscript denotes expectation for the product chain {(x′n; y′

n)} with possibly random
data (x′0; y

′
0). Any test function f can be decomposed into two non-negative functions

f+ and f− with disjoint support so that f = f+ − f−. Thus

|Ef(x′n)− Ef(y′
n)|6 |Ef+(x′n)− Ef+(y′

n)|+ |Ef−(x′n)− Ef−(y′
n)|:

We will deal with the two terms on the right-hand side simultaneously.
De(ne the coupling time by

== inf
n¿0

{(x′n; y′
n)∈C × C; 5n = 0}:

Observe that

Ef±(x′n) = Ef±(x′n)1n¿= + Ef±(x′n)1n¡=′
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and since Ef±(x′n)1n¿= = Ef±(y′
n)1n¿=6 Ef±(y′

n) and f±6V we obtain

Ef±(x′n)6 Ef±(y′
n) + EV (x′n)1n¡=:

Reversing the roles of x′n and y′
n produces a second inequality which when combined

with the (rst yields

|Ef±(x′n)− Ef±(y′
n)|6max{EV (x′n)1n¡=; EV (y′

n)1n¡=}
and hence

|Ef(x′n)− Ef(y′
n)|6 2max{EV (x′n)1n¡=; EV (y′

n)1n¡=}: (A.7)

The next lemma, proved at the end of the section, gives the desired control of the
right-hand side of the above inequality.

Lemma A.6. In the setting of Theorem 2.5; for any $∈ (�1=2; 1) there exists r ∈ (0; 1)
so that

max{EV (x′n)1n¡=; EV (y′
n)1n¡=}6 &[E(V (x0) + V (y0)) + 1]rn:

Note that $ enters the result through the de(nition of C, and hence =. Using this
estimate, we conclude the proof of Theorem 2.5. To obtain convergence to the invari-
ant measure, we start the y′ chain with an invariant distribution �. Then Ef(y′

n) =∫
f(y) d�(y) def= �(f) for all n. We have from (A.7) and Lemma A.6, starting with

product measure 
x0 × � on the (x′; y′) chain

|Ex0f(xn)− �(f)|= |Ef(x′n)− Ef(y′
n)|6 2&[V (x0) + �(V ) + 1]rn:

Since �(V )¡∞, the result follows.
We conclude this section with the proof of the Lemma A.6 which is the heart of

the proof of Theorem 2.5.

Proof (Lemma A.6): Instead of determining when both x′n and y′
n are in C directly,

we de(ne a new Lyapunov function to control V (x′n) and V (y′
n) simultaneously. Set

V ′(x; y) = V (x) + V (y). If the original chain satis(es Assumption 2.2 then

E[V ′(xn+1; yn+1)|Fn]6 �V ′(xn; yn) + 2�; (A.8)

where, recall, Fn now refers to the 	-algebra of events up to the nth for the product
chain. Hence Lemma A.2 with s= 1 and V → V ′ implies, for any $∈ (�; 1),

E[V ′(xn+1; yn+1)|Fn]6 $V ′(xn; yn) + 2�1C′((xn; yn));

where

C′ =
{
(x; y):V ′(x; y)6

2�
$− �

}
:

Clearly if (x′n; y
′
n)∈C′ then (x′n; y

′
n)∈C × C. Let

=′ = inf
n¿0

{(x′n; y′
n)∈C′; 5n = 0}
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noting that =6 =′. Also observe that

max{EV (x′n)1n¡=; EV (y′
n)1n¡=}6 EV (x′n)1n¡= + EV (y′

n)1n¡=

= EV ′(x′n; y
′
n)1n¡=

6 EV ′(x′n; y
′
n)1n¡=′ :

Intuitively there are two types of trajectories contributing to EV ′(x′n; y
′
n)1n¡=′ : those

which spend a typical amount of time in C′ and those that manage not to visit C′

often. The (rst type contribute little when n is large because it is unlikely that 5j �=0
for all of the visits to C′. This is the same reasoning used when one has the simple
Doeblin condition. The other paths contribute little to the expectation when n is large
because, by Corollary A.4, it is unlikely that a trajectory stays out of C′ for very long.
We now make these ideas more precise.
Let 8k be the time of the kth visit to C′. For notational convenience we de(ne 8s for

any real s by 8s = 8
s� and de(ne 80 = 0. Fixing an a∈ (0; 1), we split EV ′(x′n; y
′
n)1n¡=

into two terms as follows:

EV ′(x′n; y
′
n)1n¡=′ = EV ′(x′n; y

′
n)1n¡=18an¡n + EV ′(x′n; y

′
n)1n¡=′18an¿n

= EV ′(x′n; y
′
n)1n¡=18an¡n +


an�−1∑
k=0

EV ′(x′n; y
′
n)1n¡=18k¡n18k+1¿n

= (I) + (II) (A.9)

Here n¿ 1. The (rst term represents typical behavior, in terms of the number of returns
to C′, when a is small enough; here we rely on the chance of coupling to dominate.
The second term corresponds to unusual behavior of the trajectories and hence will be
small. In the following it is convenient to de(ne:

TV def= sup
(x′ ;y′)∈C′

V ′(x′; y′); V ′
0
def= V ′(x′0; y

′
0):

For (I) note that, by Lemma A.3,

EV ′(x′n; y
′
n)18an¡n1n¡=′ 6 EV ′(x′n; y

′
n)18an¡n18an¡=′

= E{V ′(x′n; y
′
n)18an¡=′ |8an ¡n}P{8an ¡n}

= E{18an¡=′E{V ′(x′n; y
′
n)|8an¡n;F8an}|8an¡n}P{8an¡n}

6 E{18an¡=′&[ TV + 1]|8an ¡n}P{8an ¡n}

= &[ TV + 1]E{18an¡=′18an¡n}6 &[ TV + 1]E{18an¡=′}

6 &[ TV + 1](1− �)an:

For (II) let $∈ (�1=2; 1) so that $2 ∈ (�; 1). For k = 0 we have, by Lemma A.3,

EV ′(x′n; y
′
n)1n¡=′180¡n181¿n6 EV ′(x′n; y

′
n)181¿n6 &$nV ′

0 : (A.10)
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For k¿ 1, again using Lemma A.3,

EV ′(x′n; y
′
n)18k+1¿n18k¡n1n¡=′

6 EV ′(x′n; y
′
n)18k+1¿n18k¡n18k¡=′

=E{18k¡=′E{V ′(x′n; y
′
n)18k+1¿n|F8k ; 8k ¡n}|8k ¡n}P{8k ¡n}

6 E{18k¡n18k¡=′&$n−8k [ TV + 1]}

6 $n&[ TV + 1]{E18k¡=′E$−28k}1=2

6 $n&[ TV + 1](1− �)k=2{E$−28k}1=2:

Now

E$−28k = E$−
∑k

l=1 2(8l−8l−1)

= E
k∏

l=1

{(
1
$2

)(8l−8l−1)
}

def= Pk:

Corollary A.4 gives, by conditioning on F8k−1 and since $2 ∈ (�; 1),

Pk6 &[ TV + 1]Pk−1:

As P16 &[V ′
0 + 1] it follows that:

E$−28k = Pk6 &k [ TV + 1]k−1[V ′
0 + 1]:

Combining terms produces, for k¿ 1 and some R¿ 1,

EV ′(x′n; y
′
n)18k+1¿n18k¡n1n¡=′ 6 (1− �)k=2Rk [V ′

0 + 1]1=2$n

6 (1− �)k=2Rk
√
2V ′

0$
n; (A.11)

since 1 + x6 2x2 for all x¿ 1.
With the estimates (A.10), (A.11) in hand we turn to term (II), obtaining

(II) =

an�−1∑
k=0

EV ′(x′n; y
′
n)1n¡=′18k¡n18k+1¿n
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6
√
2V ′

0


an�−1∑
k=0

(1− �)k=2 $nRk

6
√
2V ′

0$
nRan

∞∑
k=0

(1− �)k=26
√
2V ′

0$
nRan 1

�′

where 1− �′ =
√
(1− �).

Combining our estimates of (I) and (II), we obtain the desired result since $∈ (0; 1),
and we may choose a suHciently small so that $Ra ¡ 1.
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