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SIAM J. APPL. MATH. ? 1988 Society of Industrial and Applied Mathematics 
Vol. 48, No. 2, April 1988 008 

TRAVELLING COMBUSTION WAVES IN A POROUS MEDIUM. 
PART II-STABILITY* 

J. NORBURYt AND A. M. STUARTt 

Abstract. The linear stability properties of the travelling combustion waves found in Part I are examined. 
The key parameters which determine the stability properties of the waves are found to be the (scaled) driving 
velocity and the solid specific heat. In particular, the destabilising influence of increasing either of these 
two parameters is demonstrated. The results indicate that travelling combustion waves whose reaction is 
turned off because the solid temperature becomes too low are always unstable, whereas travelling waves 
whose reaction is turned off due to depletion of solid reactant can be stable. Global techniques are employed 
to prove that, for large enough values of the scaled solid specific heat, combustion cannot be sustained in 
any form, and all initial conditions lead to extinction. 

Key words. combustion, travelling waves, stability 

AMS(MOS) subject classifications. 35B32, 35B35, 80A30 

1. Introduction. In Part I of this paper [7] we demonstrated the existence of steady 
travelling wave solutions to the simplified model equations governing porous medium 
combustion derived in [6]. These solutions represent the steady propagation of a 
combustion zone through combustible solid material. Having constructed these solu- 
tions, a natural question of both mathematical interest and physical importance is the 
one of whether or not these waves are stable. A related matter of interest is the 
time-dependent behaviour of the governing equations in the region of parameter space 
where steady solutions do not exist. 

The stability of travelling wave solutions to reaction-diffusion equations modelling 
a form of solid fuel combustion has been examined by Matkowsky and Sivashinsky 
[5]. Their stability analysis shows how the plane combustion wave loses stability by 
means of a supercritical Hopf bifurcation as a parameter, proportional to the non- 
dimensional activation energy, is increased. Thus the existence of a stable periodic 
travelling wave is demonstrated. 

In this paper we analyse the stability of the travelling waves found in [7]. The 
parameters of importance in determining the stability of the travelling waves are the 
inlet gas velocity and the specific heat of the combustible solid. Thus, while the 
magnitude of the activation energy is crucial in enabling us to simplify the nonlinear 
partial differential equations governing porous medium combustion [6], its role in 
determining the stability of the travelling combustion waves is a passive one. We 
demonstrate that travelling combustion waves that possess a reaction rate whose 
switching mechanism is entirely temperature dependent (a (U, U) switch; see [7]) are 
always unstable. Travelling combustion waves with a reaction rate whose switching 
mechanism is determined by exhaustion of solid reactant (a (Q, U) switch; see [7]) 
are, however, shown to be stable in certain parameter regimes. Thus we show that 
increasing either the inlet gas velocity or the solid specific heat has a destabilising 
effect on the plane combustion wave and that the instability is associated with the 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 375 

transition between the two distinct forms of travelling wave solution ((U, U) and 
(Q, U)) defined in [7]. We also prove that for large enough values of the solid specific 
heat, combustion cannot be sustained in any form and that the ultimate state of the 
system is the ambient one of no burning, regardless of the initial conditions. 

We restrict our attention to the purely one-dimensional model of porous medium 
combustion, derived in [6]. In practice two-dimensional effects are often important. 
Nonetheless, the computational results described in [2], [3] suggest that there is a 
genuine one-dimensional instability of the plane wave and it is this which we analyse. 

In ?? 2 and 3 we derive the eigenvalue problems (EVP1 and EVP2) which govern 
the linear stability of the steady travelling waves for the cases of the (U, U) and (Q, U) 
switches (defined in [7]) respectively. In ?? 4 and 5 we solve EVP1 and EVP2 in the 
parameter regime (A - Ak) and u ->0 . We choose a scaling of the length of the burning 
zone such that we capture the change from a (U, U) to a (Q, U) switch (that is 
L = O(u11/2) as A-> 0). Finally, in ? 6, we perform a global analysis of the time- 
dependent equations for A > Ak, where no steady travelling combustion waves exist. 

2. Normal modes analysis-The (U, U) switch case. In this section we derive the 
eigenvalue problem that governs the (linear) stability of the travelling waves for the 
case of the (U, U) switch. The time-dependent equations governing porous medium 
combustion form a moving boundary problem, and it is the difference in the moving 
boundary conditions for the cases of the (U, U) and the (Q, U) switches that 
necessitates their separate treatment. For ease of presentation we display the 
full time-dependent equations derived in [6]. As in [7] we analyse oxygen-rich 
environments and thus set a =0. The equations are 

(2.1) -=-Ar, a t 
aw 

(2.2) ,u-= u-w 

and 
au a2u 

(2.3) -= 2+ w -u + r, 

where 

r = ,u l/2H(u - U)(w). 

The boundary conditions are 

(2.4) u(+?X, t) = w(-o, t) = Ua and g(-oo, t)=-1. 

The simple form of the reaction rate r (compare with (1.5) in [7]) is chosen 
because we are analysing the stability of a (U, U) switch solution, and we consider 
only small time-dependent perturbations of this solution which keep us within this 
regime. To perform the stability analysis, we recast the time-dependent equations in 
a frame fixed with respect to the travelling wave (as in [1]). Thus we make the 
transformation of independent variables x = z - ct and t = t to (2.1)-(2.4). In addition 
we define a new variable q by q = ca. The resultant equations are 

(2.5) ---aq-=-Ar 
(2.5) ~~~~c at ax 

aw 
(2.6) -= u w 
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376 J. NORBURY AND A. M. STUART 

and 

q du du d2U 
(2.7) ---q-= 2 + W-u+r, 

where r and the boundary conditions are unchanged from above, except that we now 
have the additional boundary condition on q, namely 

(2.8) q(+oo, t) = c. 

This condition is derived by assuming that no reaction has taken place at x = +oo since 
the combustion wave is propagating from left to right. 

We define Q, W and U to be the steady solutions of (2.4)-(2.8) and seek 
perturbations from the basic steady state of the form 

q(x, t) = Q(x) + e Pq +(x), 

w(x, t)= W(x) + ecPfc(x) 

and 

u (x, t)= U(x) + ecPfO(x). 

We assume that the perturbations are small, relative to the steady solutions, and hence 
linearise (2.4)-(2.8). This gives 

(2.9) P4 - 4'=-Ar1, 

(2.10) ,t' =0-ck 

and 

(2.11) pQO-4'U'-QO'= O"+ -0+rl, 

where 

(2.12) ri =p,ul/2[H(U-uc)fw(W)O+8(U-uc)f(W)O]. 

Here '-d / dx and henceforth fw = df/ dw. The boundary conditions are 

(2.13) 4f(oo) = 4(-oo) = 0(+?x) = 0. 

We also require that all solutions are bounded at x= oo. 
We have interpreted the derivative of the Heaviside step function as a Dirac delta 

function in the sense of generalised functions [4]. In effect this allows for the perturba- 
tion of the free boundary and yields results identical to those obtained by employing 
the (more generally applicable) linearisation techniques, which we will use for the 
case of the (Q, U) switch in the next section. 

We now derive the jump conditions which the delta functions impose by integrating 
(2.9) and (2.11) across the points x =0 and x = 1. We obtain 

(2.14) [14]x=O 1/2Af( W()) 0(0) 
U'(O) 

(2.15) [q]x=L _ 1/2Af( W(L))0() 
U'(L) 

(2.16) [0 ]X=o -[I']X=o/ A, 

(2.17) [O ]x=L = [1]x=L/,k. 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 377 

Having interpreted the delta functions we now redefine r, by 

(2.12') r, =,ul/2H( U- UX) ( W)1. 

Equations (2.9)-(2.11), (2.12') and (2.13)-(2.17) constitute an eigenvalue problem 
for p which we denote by EVP1. Since c> ,ut _0 we deduce from the form of the 
perturbation to the steady state, that if Re (p)> 0 for any part of the spectrum of 
EVP1 then the travelling wave is unstable. Conversely, if Re (p) < 0 for all the eigen- 
values in the spectrum of EVP1 then we say that the travelling wave is (linearly) stable. 
However, it may be shown that p 0 is an eigenvalue of EVP1 for all values of the 
parameters. This fact is a direct consequence of the group invariance of the time- 
dependent equations under the transformation x -> x + (, for any constant f [8]. As 
such it corresponds to the phase shifts which inevitably occur when a stable travelling 
wave is perturbed. Since phase shifts do not affect the basic physical properties of the 
wave, we analyse stability modulo phase-shifts and ignore the zero eigenvalue. In 
general we cannot say whether or not the spectrum of EVP1 will be discrete since the 
governing differential equations are posed on the infinite domain. 

3. Normal modes analysis-The (Q, U) switch case. We now derive the eigenvalue 
problem governing the stability of travelling waves in the (Q, U) switch regime. In a 
moving frame, the time-dependent problem is given by (2.5)-(2.7) where now we 
require the general form of r, 

r = ,ul/ H(q-cr)H(u-uc)f(w). 

The boundary conditions are 

q(oo, t)= c and u(+?o, t)= W(-oo, t)= ua. 

We introduce perturbations from the steady state of the same form as in ? 2. The 
straightforward linearisation of the Heaviside step function performed in the previous 
section is not applicable for the case of a (Q, U) switch. This is because q's 0 to the 
left of the burning zone. Thus we must introduce small perturbations to the free 
boundaries. From the definition of the steady solution in [7], the free boundaries at 
x = 0 and x = L are defined by 

(3.1) Q(O) = rc and U(L) = uc. 

We introduce perturbations to the positions of the free boundaries to obtain 

q(s1(t),t)= rc and u(L+S2(t),t)=cu 

where, without loss of generality, we assume that 

-c <s1 <0< L< L+ s2 < x. 

We examine the governing equations in the small regions s, < x < 0 and L < x < 
L + S2 and derive appropriate jump conditions which represent these small perturbations 
to the free boundaries. After linearising, there are five zones to consider. We list the 
five regions and the governing equations within them. 

-o < x < s, and L + S2 < x <oCD. In these regions the governing equations are 

Pqi-qi'=O, 

/Hk'= O-d 

and 

pQO - QO'- U' = 0"+ , - 0. 
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378 J. NORBURY AND A. M. STUART 

s1 < x < 0 and L < x < L + S2 . In these regions the governing equations are 

P- = -A A 11/2f( W(x) + eCPf4(x)) eCP, 

wk=0 -f 

and 

pQO - QO'- i/iU'=0 "+ _ - +?1/2f( W(x) + eCP4 (x)) e-cPt. 

0 < x < L. In this region the governing equations are 

pq, - = -At112f'( W(x))4, 

and 

pQO - QO' - fiU' = 0"+ ,4 _ 0 + ? 12f'( W(x))O. 

Now, since s, and s2 are assumed to be small (of O(ecPt)), we obtain, by integrating 
the equation for fi over s, < x < 0, 

0o o 

- f q' dx = - AAt/ 2f( W(x) + eCP 4(x)) e-CPt dx 
SI SI 

so that 

(3.2) q'(s1)-q(0) -A J/ 2f( W(O)) e P Sl(t). 

Similarly we obtain 

(3.3) 0(0) - 0'(s1) p A112f( W(O)) e-cPtsl(t), 

(3.4) qi(L + S2) - qi(L) - A g / 2f( W(L)) e -ItS2 ( t) 

and 

(3.5) 0'(L) - 0'(L+ S2) - 1/2f( W(L)) e-CPts2 (t) 

The free boundary conditions (3.1) are now linearised. In the neighbourhood of 
x =L we have 

U(L)=uc and u(L+s2(t),t)=uc. 

Thus, from the form of the perturbation to U(x, t), we obtain 

U(L+s2(t))+ ecPt0(L+s2(t)) = uc. 

Linearising this gives us 

U'(L)s2(t) + ecPt0(L) 0 O 

so that 

(3.6) s2(t) = -ecPtO(L)/ U'(L). 

In the neighbourhood of x = 0 we have 

Q(O)= rc and q(sl(t), t) =-rc. 

Thus, from the definition of q(x, t), we obtain 

Q(sl(t)) + ecPti(si(t)) = Tc. 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 379 

However, Q(s1(t)) = Tc, since s1 < 0 and since Q is constant outside the burning zone. 
Thus we have 

(3.7) (s51) = ?. 

Since s1 and s2 are assumed small we redefine x = s1 to be x = 0 and x = L+ s2 
to be x = L+. Combining (3.2) and (3.3) we eliminate s1 to obtain the condition 

(3.8) [01=o=-[q]X=o/A. 

Eliminating s2 from (3.4) and (3.5) by use of (3.6) we obtain 

A,a 1/2f( W(L)) 0(L) 

and 

,.O'2f( W(L))O0(L) 
(3.10) [O']XL- U'(L) 

Notice that (3.9) and (3.10) are identical to those derived in the previous section, 
namely (2.15) and (2.17). This is to be expected since the moving boundary condition 
is the same at x = L for both the cases of the (U, U) switch and the (Q, U) switch. 
However, at x = 0 the moving boundary condition is different, and thus, for the (Q, U) 
switch (2.14) is replaced by (3.7). 

We now have a second eigenvalue problem for p which we denote by EVP2. We 
have, for -oo<x<O and L<x<oo, 

(3.11) p - 4' = O 

(3.12) u - 

and 

(3.13) pQO - QO'- -U' - 0"+ 4 - 0. 

For O<x<L, we have 

(3.14) ,4,- 4_ =-Ai1"2f'( W(x))O, 

(3.15) 0 - 

and 

(3.16) pQO - QO'- 4'U' = 0,+ O - 0 + 112f'( W(x))4. 

Equations (3.11)-(3.16) must be solved subject to the jump conditions (3.7)-(3.10) 
and the boundary conditions 

(3.17) 4(oo) = O(-0o) = 0(+00) = 0. 

We also require that all components of the solution are bounded at infinity. 
As for EVP1, the sign of Re (p) determines the stability of the steady travelling 

combustion wave. A similar argument also shows that p 0 is an eigenvalue of EVP2 
and again this is a reflection of the fact that it is necessary to examine stability modulo 
phase-shifts. 
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380 J. NORBURY AND A. M. STUART 

4. Solution of EVP1. We solve EVPI in the parameter regime (A - Ak) and ,u 0,I 
with the length scaling L = 0(t12). We seek eigenvalues which satisfy Re (p)>0. 
Outside the burning zone we have a linear problem given by 

(4.1) - '=05 

(4.2) 0 - 

and 

(4.3) pQO-QO'-fIoU'= o"+k- o, 

where Q = qLfor -oo<x<0 and Q= c for L<x<coo. 
Since (4.1) does not involve 0 and 0 we may solve it explicitly for i. Thus we 

regard the term giU' as a forcing function for (4.2) and (4.3) and solve them by means 
of complementary functions and particular integrals. Equations (4.2) and (4.3) imply 
that the complementary functions for 0 and 4 are of the form 

egx 
0= eex and + = 

Substituting these expressions into (4.3) gives 

pQ _ Qt = e2 /4 

Rearranging this gives the following cubic for e: 

(4.4) 3 + (1 + Qlt) 2+ (Q _ pQZ 
_ 

g) 
_ pQ 0. 

We now give further details of the solution in the separate regions -oo< x <0 and 
L<x<oo. 

-c < x < 0. The solution of (4.1) is 

= A ePX 

which, since we are seeking eigenvalues with Re (p)> 0, automatically satisfies the 
condition that qf be bounded at x =-. 

From (3.1) in [7] we know that the steady solution U(x) satisfies 

U'(x) = a (uc - Ua) eax, 

where a is found as part of the solution. Thus the particular integral for (4.3) must 
be the solution of 

pqLO- qLO -a(uc - ua)A e(P+a)x = Ot?+ 
0 

- . 

Hence we seek solutions of the form 

0=Me (P+a)x and M e( P+)x 
l+g(p+a) 

where M is a constant to be determined. Substitution of 0 and k into the governing 
differential equation gives the equation 

(4.5 ) - MqLat - ( uc - u,,a )A = M( p + at )2_ 
Mu 

+((p+a) 
(4.5)oM~ (p + a) 

to determine M. 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 381 

L < X < oo. Since we are seeking eigenvalues which satisfy Re (p) > 0, and since 
we require that 4,(o0) =0, (4.1) gives us 

+(X) = 0. 

Consequently there is no need to find a particular integral in this domain. 
0 < x < L. As for the steady solution we rescale the length by setting y = xl g' 

Furthermore, we anticipate from the form of the expansion of the steady solution in 
? 5 of [7] that the eigenfunctions 4', 0 and p will be related by 

4 = 0(0) and 4,= o(iz-l/2o)) 

This is because they satisfy a generalised eigenvalue problem of the form LO = pB(f 
where L is the Frechet derivative of the nonlinear eigenvalue problem satisfied by the 
steady solution. 

Thus we rescale 4' by introducing a function 4, defined by 

F 
= 2 

1. 

In addition, the correct scaling for the eigenvalue p turns out to be p = 0(,). Thus 
we expand p in the form 

P==PL+- -. 

With these scalings of ah and p, the governing equations (2.9)-(2.11) for 4', 4 and 0 
in O<y<Ll are 

(4.6) 312pi 4y =y w(W) ' 

(4.7) ,y1/2 = 0 - 

and 

(4.8) ,u PQO - qUy - ,u Q0y = oy + y+ - 0) + ,2fw( W)4. 

We solve these equations in series, as (A - Ak) and 1, ->0 subject to the conditions 
that 0 and 4 are continuous at x =0 and L (that is y =0 and L,) and that 0' and 4' 
satisfy the prescribed jump conditions (2.14)-(2.17). Using these continuity and jump 
conditions we can match the solution from outside the burning zone to the solution 
inside the burning zone to obtain boundary conditions for (4.6)-(4.8). Note that there 
is evidence of singular behaviour in (4.7). We circumvent this by solving (4.7) for 4 
as a function of 0 and using this exact relationship in the other equations. 

Using the known forms of the expansions from [7] and the solution for 4' in 
-ooX<x<0, we have, from (2.14) 

1/ 4'0) 1 (AC -AciAp3'2 )f(Uc + Ub p3'2 ) 0(0) 
IL1/24(+( 

A 
A1/2 Uly(o) + 3/2 U2y (0) 

Similarly, from (2.15), we obtain 

1 ;(L) 1 (AC-AcIl,3/2)f(uc+ WI(L,)1322)0(LI) 
1/2 A 1/2 Ul(L +I312U (LI) 

It turns out that A= O(,i), and so we define 

Then, for ease of notation, we write these conditions on 4' as 

(4.9) q(O+) - (Ac - Aqc.1/2)(KI + K2, 3/2)0(0) + I3/2A 
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382 J. NORBURY AND A. M. STUART 

and 

(4.10) q(L-) - (Ac -Acl,p?2)(J1 + J2u312)0(LI), 

where K1, K2, J1 and J2 are determined in an obvious way from the previous equations. 
We now find the approximate form of the solutions for 0 and 0 outside the 

burning zone so that we can derive the matching conditions on these functions at x = 0 
and L. To first order in ,u, expression (4.5) gives 

M = g(pl)A, 

where 

(4.11) (( -) 2 Ua) 
[ PI-Pl-2plal]' 

Here we have used the fact that qL- Q1(0)M = (1- al)t (see (5.15) in [7].) 
Notice that, for PI =0 and pi = 1 - 2aI, g( Pi) is undefined. This is because, for 

these values of Pi, the exponent in the forcing term tfU' in (4.3) is equal to one of 
the roots of the characteristic cubic (4.4). Hence we require particular integrals of the 
form xe(P+a)x to examine the cases Pi=0 and p1= 1-2a1. 

Analysis of the cubic (4.4) shows that in -co < x < 0 the only positive root is given, 
to first order in , -> 0, by -el i,u where 

a1 + [la + 4pl(1 -a, 
(4.12)2 

Thus the solution for 0 and + in -w < x < 0 is given, to first order, by 

0(x) = A1 exp (t,Ax) + g( p1)A exp {( Pi + al)jx} 

and 

A1 exp ({,uLx) + g( p1)A exp {( Pi + al)tx} 
OW 

J + +(pl+a )2 

Analysis of the cubic (4.4) shows that in L < x < oo the two negative roots /42 and 

jx3 are determined by 

(4.13) (2 _1/t2_ 1 

and 

(4.14) 3 1_C _[(C _1)2+4pl C]112 

where c- c1pu. Here c1 = Q1(Ll), since the wave speed c is determined by c = Q(L). 
Thus the solution in -oo < x < 0 is given, to first order, by 

3 

0(x) = E Ai exp {4iu(x-L)} 
i=2 

and 

3 Aiexp{l4i(x-L)} 
44(x) =Z 1+ (i 

i=2 1+124 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 383 

Using these expressions for 0 and 0 outside the burning zone we show, by 
continuity and application of the jump conditions (2.16) and (2.17), that in the rescaled 
variable y 

(4.15) 0(O+)= Al + g(p1)A, 

(4.16) A( +) _A g(p1)'A 

(4.17) 0(L) =A2+ A3, 

(4.18) O(L4= A2 + A3 
I+, IL 1?+ 43 

(4.19) 0 (O+) = -(KI + K2,p312)0(0) + L ,3/2Ale + IL312A( pi + a)g( pi) 

and 

(4.20) OY(L4 =-(J1 + J2)2'2) 0(L) + ,32'A2(2 + 322A3 

where K1, K2, J1 and J2 are defined as for the jump conditions on qi. 
In summary we must now solve (4.6)-(4.8) subject to (4.9), (4.10) and (4.15)-(4.20). 

We seek a series solution of this problem in powers of , 1/2 and expand 4/, 0 and 4 as 

0- 01+ 3/2 02 

and 

p_0 +g1+/2 02- 

To first order we obtain the general solution 

ql=B and 01=b1=Ey+F 

where B, E and F are constants of integration. 
The precise form of the expression for k now becomes clear: substituting 03 into 

the linear equation (4.7), applying (4.12) and integrating, we obtain 

(y) - exp {_-1 1/2y} [A1 + g( pi)A] + Ey + F 

-exp {-Y'1/2y}F -, 1/2E[1 - exp {-1-2y}] 

Thus, as for the steady solution (5.12) in [7], we see the effect of the boundary layer 
caused by the singularly perturbed nature of the equation for 0. Using this expression 
for 4 to avoid the necessity of a full boundary layer analysis in the neighbourhood 
of y = 0, we calculate fi and 0 to second order. We obtain 

4f2= D + p By+ACfW(C)(j +Fy) +kO( / ) 

and 

02= Gy+H+pl(y)E+p2(y)B-p3(y)F. 

Here D, G and H are constants of integration. The polynomials pi(y) are defined by 

J23 

(4.21) Pi(Y)= 2 -[Akf(uc)+fw(uc)] 6' 
26 

3 2 
(4.22) P2(Y) 6y")^ (cu)f 2 
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384 J. NORBURY AND A. M. STUART 

and 
2 

(4.23) P (Y) =f. (U,) J- 2 

Having solved (4.6)-(4.8) to second order we now match the solutions at x =0 
and L. Conditions (4.9), (4.10), (4.15) and (4.17)-(4.20) give, respectively, 

B+ 3/2D _.A3/2A + (Ac - Aclp3/2)(Kj + K2312) (F + HA 2), 

B + wU/C[D + p1L1B + ADfp(uB) (kc? + FLL)] 

(AC - AC1?3/2)(J1 + J2A 3/2) 

{EL1 + F+ ,3/2[GL1 + H+p1(L1)E +P2(L1)B-p3(L1)F]}, 

F-A1+g(p1)A+ o(,3/2), 

(4.24) EL1 + F A2 + A3 + O( p3/2), 

(4.25) EL,+F-p 1/2 E-- A2 + A3 _+ ?( 
3 

) 

E + A 3/2G p13/2[A1~j + A( Pi + a1)g( Pi)] - [K1 + K2,3/2][F + Hp312] 

and 

E + A3/2G + {ply(LI)E +p2y(LI)B -p3y(LI)F} 

A ?3/2[A2f2 + A363] - [J1 + J2'3/2] 

* (EL1 + F+ p?3/2[GL1 + H +p1(LI)E +P2(L1)B-p3(L1)]). 

Notice that since 1+ +,22 _ _,2 (from (4.13)), (4.24) and (4.25) imply that 

A2 512E 

Matching 0 to 0(1) and Oy and q1 to o(p?/2) we obtain 

(4.26) B = AcK1F, 

(4.27) D =A+AcK1H+AcK2F-Ac1K1F, 

(4.28) B = Ac J,(EL, + F), 

D+p L B+Akcfw ( 2 + FL,) 

(4.29) = (ACJ2-AkcJ1)(EL, + F) +AkCJ1 

-{ GL1 + H +p1(LI)E +p2(LI)B-p3(LI)F}, 

(4.30) F = A1 + g(p1)A, 

(4.31) EL1+F=A3, 

(4.32) E =-K1F, 

(4.33) G = A1j1 + A(p1 + al)g(p1) - K1H - K2F, 

(4.34) E = -J1(EL, + F) 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 385 

and 

G +ply(LI)E +p2y(Lj)B -p3y(LI)F 

(4.35) = A3- J2[EL1 + F] 

- JI[ GLI + H +p1(LI)E +p2(LI)B -P3(L)F]. 

Thus we have ten equations in the nine unknowns A, Al, A3, B, D, E, F, G and 
H. However, by use of (4.26) and (4.28), respectively, it can be shown that (4.32) and 
(4.34) are not linearly independent and both imply that 

(4.36) E = -B/AC. 

The eigenvalues Pi will be determined by making the system of nine equations 
(4.26)-(4.31), (4.33), (4.35) and (4.36) singular. We now investigate for which values 
of Pi this occurs. 

Consider the three equations (4.26), (4.28) and (4.36) which only involve B, E 
and F. They may be written as 

1 ? -AcKI B 

(4.37) (1 -AcJLI -AcJI |E = 0. 

The determinant A of this matrix system is 

=A = J 1-AcKI[Ac +AcJ1LI] 
(4.38) 2j 

4= A KI[J-K1(1 + J1L1)]. 

From the implicit definitions of K1 and J1 ((4.9) and (4.10)) we have 

f(uc) f(uc) 
l ()and J=Uly(L) 

Equations (5.16) and (5.17) in [7] show us that 

f(uc) Y) 
Ul(y) =( (Lly-y2). 2 

Hence 

K1=- and J=-- . 

This implies that 

J, = KI(1 +JILI) 

and hence, by (4.38), the determinant A of the 3 x 3 matrix system (4.37), which 
determines B, E and F, is zero. 

Thus we may solve (4.37) for the family of eigenvectors (B, E, F)= 
(1, -AZ1, (AZl/2)LI)B*, where B* is any complex number. By (4.31) we obtain A3= 
(1/2)A-lL1B*. If we substitute these known values of B, E, F and A3 into (4.30), 
(4.33), (4.27), (4.29) and (4.35), respectively, we obtain a matrix system of the form 

1 g(p1) 0 0 0 \ Al 
(l (pi + al)g(p1) -1 0 - K A 

0 1 0 -1 AcK, G I=rB* 
0 0 AcJLI -1 ACIJ\ D 
0 0 + JIL, 0 Jl/ HI 
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386 J. NORBURY AND A. M. STUART 

where r is a known vector whose components are linear combinations of B, E, F and 
A3 . 

By use of elementary row operations we can reduce this matrix system to the 
equivalent system 

1 g(p1) 0 0 ? Al 

(l (pi + al)g(p1) + A 0 0 
(4.39) 1 0 -1 ACK G =r' B*. 

O 0 AcJLI -1 ACJ, D 
O 0 1 A O H 

Analysis of the determinant of this system shows that it is 

[(Pi + al)g( Pl) + A c7 - (Ig( pj)]A 

where , is the determinant of the 3 x 3 sub-system of equations for G, D and H. However 

A = AjKI(1 + JLI)-J] =-A 

Since A = 0 we have A = 0 and hence the system of (4.39) is singular. 
Thus the discrete spectrum of the eigenvalue Pl, with Re (pl) > 0, will be deter- 

mined by those values of Pi for which the vector r' is in the range of the singular 5 x 5 
matrix defined by (4.39). 

However, for B* = 0, the two equations for Al and A may be solved uniquely to 
give Al = A =0, provided that Pi $ 0 and Pi $ 1 - 2aj. Thus, in this case, (4.39) reduce 
to 

0 -1 ACK, G 
(4.40) Ac J, LI -1 Ac J, D = 0. 

1 AC O H 

Because A = 0, (4.40) possess a nontrivial eigenvector (G, D, H) = 

(-AC-1, 1, (1/2)AC-'L1). Since this eigenvector exists for all values of Pl, we have the 
following theorem. 

THEOREM 4.1. In the parameter regime (A -A) and ,u -0, with the length scaling 
of L = O(,,1/2), the travelling wave corresponding to a (U, U) switch is unstable. 

Proof We have demonstrated above that the spectrum of the generalised eigen- 
value problem (2.18), governing the stability of the (U, U) switch travelling wave, 
includes a continuous part comprising eigenvalues of the form p - p,/A where Pi can 
be any complex number satisfying Re (pl) > 0, provided that Pi $ 1- 2al. Consequently 
the steady travelling wave solution is unstable. 

5. Solution of EVP2. We solve EVP2 in the parameter regime (A - Aj) and ,u -0 
and L= O(A 1/2). The analysis is very similar to that in the previous section where we 
solved EVP1. The differences arise only from the form of the steady-state solution and 
from the (different) moving boundary condition at x =0. The form of the series 
expansions of the eigenfunctions and the eigenvalue remain unaltered. Thus we describe 
only the differences between the two problems and then proceed directly to the matching 
conditions at x = 0 and L. 

-oo < x <0. In the case of EVP2 we have a moving boundary condition of the 
form (3.7). That is 

O(O-) - Cs(S) = 0. 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 387 

Hence q 0 for -c < x < 0. This means that there is no particular integral required 
for the solution of the equations for 0 and 0. The cubic (4.4), which determines the 
complementary functions, has only one positive root 6 -( 1,,, where 

(5.1) 26 1 = (1-_oC) + [(1-tCI)2+4p,TCJ]112. 

Here cl is the first term in the series expansion of the wave-speed c and is given by 
cl= Q1(LD). Thus the solutions for 0 and q in -co<x<0 are given by 

0(x)= Al exp {{l tx} 

and 

Al exp{jltx} 
OW) 1+(1tL2 

0< x < L. In 0< x < L the only change from the solution of EVP1 is that the 
number a,, upon which they depend, is determined by the series expansion of the 
(Q, U) switch solution given in [7]. 

L < x < oo. The solution in this regime is completely unchanged. Again the number 
cl, upon which the roots of the cubic (6.4.4) depend, is determined from the series 
expansion of the (Q, U) switch solution given in [7]. 

The matching is similar to that for the ( U, U) switch except that rather than having 
individual jump conditions for 4(0) and 0,(O) we have only the one condition (2.16). 
This is compensated for by the fact that, for x < 0, iO0. Matching qy (L), 0(0), 0(L), 
+(L), Oy(O) and Oy(L) respectively, we obtain 

B?+ / [D+pLB+?Acf(uc)( E I FL,\ 

(AC - AC1-3/2)(Jl + J21 ,3/2) 

{EL1 + F + 1-3/2[GL1 + H +p1(LI)E +P2(L1)B -p3(L1)F]}, 

AlF+3/HI 

A2 + A3 - EL, + F, 

(5.2) 1 A2 A3 1/2 + 

3/2 3/2 - [B+ D)U32] E+ G332G All- 3/2 

and 

F + 1t3/2G+ ,u'32{ ply(L1)E + p2y(LI)B -p3y(Ll)F} 

- (A262 + A3 3)tL312 - [J1 + J2/132] 

-{EL1 + F + 23/2[ GL1 + H + pl(L1)E +P2(L1)B-p3(LD)F]}. 

Similarly, as in the previous section (5.2) demonstrate that 

A2_- 
I (c - 1) E. 

Thus, to the orders of magnitude in which we are interested, A2 decouples from the 
equations. 
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388 J. NORBURY AND A. M. STUART 

Taking these equations in turn and equating the conditions on +i(L), Q,(O), 0,(L) 
and 0(0) to _(t3/2) and the condition on 0(L) to 0(1) (since to Q(/3/2) the matching 
condition on 0(L) involves the second term in the series expansion of p), we obtain 

(5.3) B =ACJl(EL1 + F), 

D + p, L, B +AJ, )(u 2 + FL1) 

(5.4) = (ACJ2 - AclJl)(ELl + F) 

+ ACJ,[pl(L1)E +p2(L1)B -p3(L1)F+ GL1 + H], 

(5.5) Al = F, 

(5.6) H=0, 

(5.7) A3 =EL,+F, 

(5.8) E =-BIAC 

D BAC1 

(5.9) 
=1-A-A 

(5.10) E =-J1(EL, + F) 

and 

G +ply(Ll)E +p2y(Ll)B -p3y(Ll)F 

(5.11) =A363-J2(EL1 + F) 

-Jl[pl(LD)E +p2(L1)B -p3(L1)F + GL1 + H]. 

Thus we have nine equations in the eight unknowns A1, A3, B, D, E, F, G and 
H. However, as in the last section, we find that two equations are linearly dependent-in 
this case (5.3) and (5.10) combine to give (5.8). Thus we have a set of eight equations 
in eight unknowns. The eigenvalues Pi are determined by those values of Pi for which 
the system of eight equations is singular. We now examine this further. 

We eliminate A1, A3, E, G and H to obtain three equations for B, D and F. 
Eliminating E between (5.3) and (5.8) gives 

(5.12) B=( Af )F. 

Eliminating E, EL1+F, G and H using (5.8), (5.3), (5.9), (5.5) and (5.6) in (5.4) gives 
us 

D + plLl B -fw(uc)L 2B/2 + Acfw(uc)L,F 

(5.13) =(AcJl-AclJ1) AJ1+AcJlpl(L)- 

+ ACJl P2(L ) B-AC Jl P3(Ll )F +Ac J, Fel-D -BAc, 

Combining (5.3), (5.4) and (5.11) we obtain 

G +ply(Ll)E +p2y(Ll)B -p3y(Ll)F 

=A -1D+p,L,B+Acfw(uc) 2 +FL, 
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STABILITY OF POROUS MEDIUM COMBUSTION WAVES 389 

Eliminating G, E and A3 from this expression, by use of (5.9), (5.8) and (5.7), gives us 

ply(LI)(- ) + P2y(LI)B-P3y(LI)F 

(5.14) ( j L2) ___- PLiBfw 
u)LI _f,(uj)LIF-eIF. 

kAl J1J A 2Ac 

Equations (5.12)-(5.14) may be written more succinctly as 

1 0 -a B 

kl(p1) 1 k2(P1) D = 0 

k3(P1) 0 k4(P1) F 

where 

AC J1 
1+J1L' 

kA(PO)=$ - L f+ + A P2yL(LI) 
AC J1 AC 2Ac A 

k4( P1) = el -f(uc)LI + p3y(LI) 

and k1(pl) and k2( P2) are determined by (5.13). The determinant of the 3 x 3 matrix 
described above is singular if and only if 

k4(pl)+ak3(PI) =0- 

Consequently the eigenvalues P1 are determined by the eigenrelation 

(1 + J1LI)[el +f,(uc)L, -p3y(LI)] 

= ACJ1[1A APC 2 ]P2A 

From (4.23) we have 

P3y(LI ) =fw (ujLI 

Also, using (4.21) and (4.22) we deduce that 

2w(uc)L +pl(L1) - A,P2y(LI) = 2a1L1 - Acf(uc)LI. 

Thus the eigenrelation becomes 

(1 + J1Ll)el = 3- L1J1 P, + L1J1(2al - Acf(uc)LI). 

From the implicit definition of J1 in (4.10) and from the derivation of Uy(L1), for 
the (Q, U) switch solution in ? 5 of [7], we deduce that 

J, f(uc) _ Acf(uc) 
1 Uly(Ll) a1-Acf(uj)LI 

Thus 

1 +J L1 a, 
a1I - Acf(uc) LI 
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390 J. NORBURY AND A. M. STUART 

Since cl = Q,(L,) we have, from the solution of the steady problem given in ? 5 of [7], 

cl = 1- a, + kcf(uc) Ll - 

Using (5.10) in [7] and the free boundary condition (5.6) in [7], respectively, we obtain 

rAcf(uc)LI al=l- 1- and a, =1-rcl. 

Thus 

A,f(uc)LI 
(5.15) c1= 17 

Hence the eigenrelation for Pi may be written as 

(1 - rcl)el = (1 -cl)3-cl( -r)pl + cl(I -r)[2-(1? +r)cl]. 

Here el and 3 are functions of Pi defined by (5.1) and (4.14). The solution of this 
eigenrelation may be reduced to the problem of determining the roots of a quartic. 
The details may be found in [9]. The roots are found to be Pi = 0 (twice) and, for 

1+r 
2C 

a further positive root 

[2rc, -(1 + r)][(1 + 7)cl-2] 
^ 1- ~C1 r )2 

By (5.15) we deduce the existence of a positive eigenvalue Pl, whenever 

_W / ?\( 1-7 u ) 2,r jAcf(uc)j 

We know that EVP2 admits an eigenvalue p-=0. If we now assume that this 
eigenvalue has algebraic multiplicity two, as indicated by the series expansion, then 
we obtain the following result. 

THEOREM 5.1. Assume that the eigenvalue p =0 of EVP2 has algebraic multiplicity 
two. Then, in the parameter regime (A -A) and ,u ->0, with the length scaling L = L1 ,u 1/2, 

there exists a critical value of the length L1, denoted by L, such that for L1 < Lc the 
travelling wave corresponding to a (Q, U) switch is (linearly) stable, while for L1 > L4 it 
is unstable. 

The critical value is 

_t / ?'( A,-i u ) L - k,2r 1 
cf uc 

Proof We have demonstrated above that the spectrum of the eigenvalue problem 
governing the stability of the (Q, U) switch travelling wave has eigenvalues of the 
form p - piFt. Furthermore, we have shown that for L1 < Lc there are no eigenvalues 
Pi with positive real part, while for L, > Lc there is one eigefhvalue Pi with positive 
real part. 

By Theorem 5.2 in [7] it may be shown that Lc, the critical value Ll, lies in the 
range of existence of (Q, U) switch solutions. Hence the result follows. 0 

6. Global analysis for specific heat above critical. In this section we analyse the 
time-dependent equations (2.1)-(2.3) when the specific heat, A, is greater than the 
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critical value, A,. In this case steady travelling wave solutions do not exist (see Theorem 
5.1 in [7]) and we prove that the ultimate state of the system is the ambient state of 
no burning. This information is valuable because it demonstrates that there are no 
stable periodic travelling wave solutions for A _ 2A_. 

In order that the various integrals we require are defined, we normalise u and v, 
with respect to the ambient temperature, by setting u^ = u - ua and wi = w - ua. We also 
generalise the reaction rate slightly to the case where f is a general positive function 
of u, #v and a and define 

rA 11 2H(A+ ua-uc)H(ArAc)f(a, w, ). 

For convenience of notation we now define the weighted L2-norm of a function 
F to be 

+00 1/2 
IF II = ( (z)F(Z)2 dz 

where wc(z) is the (positive) weight function. 
THEOREM 6.1. ForA '-2AC thesystem of equations (2.1)-(2.3) subject to theboundary 

conditions (2.4) and arbitrary initial conditions satisfies a(z, t) -0 as t -> oo. 
Proof. Multiply (2.3) by u and integrate with respect to z from -00 to +oo. If we 

use (2.2) to eliminate w - u then we obtain 

+00 2A +00 +VA2+A0 

(6.1) - -(u2) dz= a 2 zdz- u dz+. 
_00 2 at az a00 dz _00 

Integrating by parts, applying the boundary conditions and noting that 

u-( A2) =-(aA2) --a2, ( = t (9 )t a t 

(6.1) gives us 
A 2 f+x VAt+ / A2\ i a 11Al2 au A( +I0IA A u 

(6.2) - (gua )=- - - J /u dz+ r(u-A A- dz. 
2 at az -00 az -0 \ 2/ 

If we differentiate (2.2) with respect to z, multiply through by w and integrate with 
respect to z, then we obtain 

2 A +o A T 1 
Ti0 Aa Aau aA2 

(6.3) ,l w 2 dz = w- dz - -2-(w)2 dz. 
-0 az0 az -02 az 

Taking the boundary condition u(o, t)=0 in conjunction with (2.3) gives 
w(oo, t) = 0. Thus, integrating (6.3) by parts, we have 

[ +cxd /A\2 
C+ 

Adw 
+ Aw2 Aa 

I-aI dz=- u dz. 
. \00 az az 

Substituting this into (6.2) yields 

ia ~~~~au 2a rA/ Aa 
2-(II2)=_ - -Ft u|-| 

r + rIu- dz. 2 at az az j0 \ 2I 

Since u ? u_ - ua for r ?0 we obtain the differential inequality 

Ia ( A 112, -- a| 2a w + AA2IA- 
~--(IaIu - 1 -F - +Jru k -'kjdz. 
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392 J. NORBURY AND A. M. STEWART 

Thus, for A _ 2A, we have 

a a A 2 dz} c. 
at_ 

Since a is necessarily a positive function, we deduce that 1 . 0 must tend to a limiting 
value as t - oo. Furthermore, unless u and w are both constant, strict inequality holds. 
Thus, since the only admissible constant value for u is zero, the result follows. 
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