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THE DYNAMICAL BEHAVIOR
OF THE DISCONTINUOUS GALERKIN METHOD
AND RELATED DIFFERENCE SCHEMES

DONALD J. ESTEP AND ANDREW M. STUART

ABSTRACT. We study the dynamical behavior of the discontinuous Galerkin
finite element method for initial value problems in ordinary differential equa-
tions. We make two different assumptions which guarantee that the continuous
problem defines a dissipative dynamical system. We show that, under certain
conditions, the discontinuous Galerkin approximation also defines a dissipative
dynamical system and we study the approximation properties of the associated
discrete dynamical system. We also study the behavior of difference schemes
obtained by applying a quadrature formula to the integrals defining the dis-
continuous Galerkin approximation and construct two kinds of discrete finite
element approximations that share the dissipativity properties of the original
method.

1. INTRODUCTION

In this paper, we study the dynamical behavior of the discontinuous Galerkin
(dG) finite element method for the initial value problem

v = f(y,1), 0<t<T,

1.1
(1) y(0) = yo €RY, d>1,

as well as the autonomous counterpart, under various assumptions that guarantee
some control over the long-time dynamical behavior of the system.

The use of finite elements to discretize time has a relatively long tradition in
several areas of engineering such as neutron transport, analysis of multi-body struc-
tures, and optimal control and recently has garnered increased interest in a wide
range of areas including conservation laws, fluid flow, and Hamilton-Jacobi equa-
tions. See the proceedings of the recent conference on dG methods in Cockburn,
Karniadakis, and Shu [2] for various applications. Often the use of finite elements
is motivated by their close relationship to variational analysis, which is the natural
framework for understanding many sorts of physical models. The discontinuous
Galerkin method that we study in this paper has found wide-spread application
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1076 D. J. ESTEP AND A. M. STUART

to differential equations with a “dissipative” or “parabolic” nature in particular
(see Estep [7], Estep, Larson, and Williams [8], and Johnson [I4]), as well as being
central to a new approach to computational error estimation (see Eriksson, Estep,
Hansbo, and Johnson [6], Estep [7], and Estep, Larson, and Williams [§]).

Our aim is to investigate the underlying reasons that the dG method, as well
as finite element methods obtained by applying quadrature to the dG method, is
well-suited for two classes of ”dissipative” problems. More precisely, we consider
problems that are either contractive or dissipative in the senses defined in Stuart and
Humphries [16], Chapter 2. Previous analyses of the dissipative properties of the
dG method have been confined to strongly contractive problems, for which there are
few practical applications other than the heat equation. The dissipative problems
we consider here allow for much more interesting long-time behavior (while avoiding
difficulties such as blow-up) and include several physically interesting models, such
as the Cahn-Hilliard, Navier-Stokes, and Kuramoto-Sivashinsky equations. An-
other important class of ”dissipative” problems, based on the existence of invariant
regions, is considered in Estep, Larson, and Williams [g].

We carry out our analysis by considering the discrete approximation from the
viewpoint of dynamical systems since this is the natural language for the analysis of
the long time behavior of solutions of dissipative problems. We prove both approx-
imation properties for invariant sets of the dynamical system, i.e., a convergence
property as the time-step tends to zero, and the inheritance of global boundedness
properties such as contractivity and dissipativity, i.e., stability properties, for fixed
time-step.

The results we present in this paper are related to the analysis of Runge-Kutta
difference schemes in Humphries and Stuart [I3] and Hill [12] [I1]. Indeed the
modified dG methods we consider in this paper can often be interpreted as Runge-
Kutta schemes, in which case the analysis in Humphries and Stuart [I3] applies.
However applying quadrature to a finite element method typically has a strong
effect on the stability properties of the discretization and in fact can completely
mask the properties of the underlying finite element method. Hence, thinking of
difference schemes as finite element methods plus quadrature, the question of why
the underlying dG method is well-suited for dissipative problems remains to be
addressed. After establishing the reasons for two classes of problems, we then
address the issue of understanding which kinds of quadrature rules yield schemes
that inherit the dissipative characteristics of the dG method. Another feature of
the analysis in this paper is that it is largely based on a variational framework.
As mentioned, in contexts in which finite element methods are the natural choice,
variational analysis is also natural.

In Section 2, we establish notation and describe the assumptions we make to
guarantee that the semigroup generated by the autonomous version of (1) is
contractive or dissipative. In Section 3, we introduce the discontinuous Galerkin
methods and prove existence of solutions for all time under these contractivity or
dissipativity assumptions. We also establish uniqueness in the contractive case.
Section 4 contains finite time error analysis comparing the discrete time semigroup
generated by the dG method with the semigroup for (LI)) in the autonomous case.
We prove C'! error estimates, enabling straightforward application of various results
concerning approximation of invariant sets of dynamical systems such as those de-
scribed in Chapters 6 and 7 of [I6]. Section 5 is concerned with the preservation
of dissipativity by the dG method. In practice, quadrature is used to evaluate
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THE DYNAMICAL BEHAVIOR OF THE DISCONTINUOUS GALERKIN METHOD 1077

integrals defining the dG method and this has a strong effect on the dynamical
properties of the resulting schemes. In Section 6, we extend our results to include
the effect of quadrature on the method.

2. CONTINUOUS DYNAMICAL SYSTEMS AND DISSIPATIVITY

In this section we establish the framework of analysis for the continuous system
(1)); the primary purpose is to give a point of reference for the corresponding
analysis of the discrete system. Further discussion about the terminology and
results we use may be found in [16], Chapter 2.

We begin by discussing the autonomous version of (). In this case, ()
defines a dynamical system on an open set U C R? if for all yo € U there exists
a unique solution of (1)) with y(¢) € U for all t > 0. The evolution map for the
dynamical system is the map S(t) : U — U defined by y(t) = S(t)yo. If V C U,
then S(t)V := {S(t)yo,yo € V}. A dynamical system is continuous with respect to
initial data or continuous if given any yo € U, any T" > 0, and any ¢ > 0, there
is a d(yo, T,e) with ||S(t)yo — S(t)vo|| < €, for all 0 < ¢t < T and 2y € U with
|20 — vol| < 8, where ||-|| denotes the Euclidean norm in R%. We use (-, -) to denote
the corresponding inner product. Assuming that f is locally Lipschitz continuous
ensures that (L)) is continuous with respect to initial data.

Dissipativity is defined by the action of the solution operator on bounded sets.
A dynamical system is dissipative if there is a bounded set B with the property that
for any bounded set V C U there exists a ¢t*(V) such that S(t)V C B for t > t*;
B is called an absorbing set. The long time behavior of a dissipative dynamical
system is determined by its behavior on any absorbing set. Since an absorbing set
is bounded, the action of S(t) on an absorbing set is more easily determined than
its action on the whole domain. In particular, the attractor of an absorbing set is
in fact a global attractor for the dynamical system.

We introduce concepts which enable us to define the attractor. For any yo € U,
the w-limit set of yo, denoted w(yp), is defined

w(yo) = ﬂ U S(t)yo-
T7>0t>T1
For a bounded set V C U, we define
wV) =[S
T>0t>T7

The sets w(yo) and w(V) are positively invariant under S(t) and they are closed
when the dynamical system is continuous.

Next we define the distance between a point and a set. Given ¥V C R? and
xz € RY,

dist(z, V) := ;rgjﬂx =yl

For ¥V and W C R4,

dist(V, W) := sup dist(x, W).
zeV

Note that dist(V, W) # dist(W, V) and dist(V, W) = 0 implies that V C W. We
define the € neighborhood of V as

NV, ) :={z : dist(z,V) < €}.
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1078 D. J. ESTEP AND A. M. STUART

For a continuous dynamical system, A attracts a set V under S(t) if for any € > 0
there is a t*(e, A, V) > 0 such that

S(H)V C N(A,e),

for all ¢ > t*. A is called a local attractor if it is a compact, invariant set that
attracts an open neighborhood of itself. It is called a global attractor if it attracts
all bounded subsets of . For a dissipative dynamical system, the global attractor is
A = w(B), where B is any absorbing set. It follows that A is compact and invariant
under S(t).

When ([LT]) is nonautonomous, we can no longer define a dynamical system in this
fashion. However we can still consider the continuity and dissipativity properties
of the solution operator, using some natural extensions of the definitions above. In
this case, we abuse language by speaking of a dissipative system for example.

We now consider two sets of assumptions on f that guarantee that (LI]) defines
a dissipative system. We use (, ) to denote an inner product on vectors in R and
[I']| to denote the induced vector norm. First,

Assumption 2.1. There is a constant ¢ > 0 such that
(2.1) (f(u,t) = fo,t),u —v) < —cllu—v]]?,
for all u,v € R? and all t > 0.
The following extension of Theorems 2.8.4 and 2.8.5 in [16] is straightforward.

Theorem 2.2. Suppose that f is locally Lipschitz continuous and that Assumption
21 holds. Then, any two solutions u,v of (LI) satisfy

lu(t) = v(®)] < e™[u(0) — v(0)],
for all t > 0. The steady-state solutions define a closed, convex set £ and

tlim dist(u(t), &) = 0.

In particular if f is autonomous and there is a w with f(u) = 0, then u is the unique
equilibrium point and lim;_, o u(t) = @ where u is any solution.

Remark 2.3. An f satisfying Assumption[Z1]is called contractive in the dynamical
systems literature. (Unfortunately it is sometimes called dissipative in the numerical
differential equations literature.)

The long time behavior of problems satisfying Assumption[2]is essentially that
of linear decay (see [I6] and Dekker and Verwer [3]) and has limited applicability.
Therefore we are motivated to consider another class of problems. To define these
we use the standard Sobolev spaces WJ(R™).

Assumption 2.4. There exist a nonnegative function « € W} (R*) n WL (R™")
and a positive function 8 € WL (R") with

¢
(2.2) tlirgo/o B(s)ds = 0o
and

alt) _ pe
(23) a0
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such that
(2.4) (f(v,),0) < aft) = B@)|o]?,
for all v € R% and ¢ > 0.

This assumption means that f points “inwards” on balls in solution space of
sufficiently large radius. Thus, the solution decays when it becomes very large and
yet inside some fixed ball it may exhibit a variety of interesting dynamical behavior.
This class of problems contains many important models; for example, the Cahn-
Hilliard equation, the Navier-Stokes equation in two dimensions and the Kuramoto-
Sivashinsky equation all satisfy infinite-dimensional analogs of Assumption [Z4] (see
Temam [I7]). For a discussion of the preservation of other sorts of invariant regions
under discretization and some consequences for computational error estimation, see
Estep, Larson, and Williams [8].

Theorem 2.5. If f is locally Lipschitz continuous and Assumption[2.4 holds, then
for any € > 0 there is a t*(yo,€) such that for all t > t*, ||ly(t)|| < R+¢€ . If f is
autonomous, then (1) defines a dynamical system on RY.

In other words, the system is dissipative and the open ball B(0, R + €) with
center at 0 and radius R + € is an absorbing set for any € > 0, and moreover in the
autonomous case, (L)) possesses a global attractor A = w(B(0, R+ ¢)).

Proof. The variational formulation of (1) reads: find y € C*((0,7)) such that

{fOT(y,v)dt = [ (f(y,t),0)dt for all v € C1((0,T)),

(25) ¥(0) = 10,

Taking v = y in (2:5) and using (Z:4)), we get

%%Hy(ﬂw = (y, f(y, 1)) < a(t) — BO)|ly®)],

and setting B(t) = fot B(s) ds, we conclude that

t
(0 < POy O + 267270 [ a0t s

By 2.3),
0< 204(5)623(8) < 2R25(s)623(s),
for 0 < s < t. Hence
ly(®)]1?> < R? + 250y (0)]1%,

which shows that the system is dissipative with absorbing set B(0, R + €) for any
€ > 0. In the case that f is autonomous, since it is locally Lipschitz, the global
bound on ||y(¢)|| implies that (1)) defines a dynamical system on R. O

Throughout the remainder of this paper the constant C' denotes a constant in-

dependent of the mesh-spacing parameter k; its actual value may change from
occurrence to occurrence.
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3. EXISTENCE AND UNIQUENESS
OF THE DISCONTINUOUS GALERKIN APPROXIMATION

In this section, we define the discontinuous Galerkin finite element method for
(1) and discuss the existence and uniqueness of the corresponding approximation.
We discretize time as tg = 0 < 1 < t3 < --- — oo with time intervals I,,, :=
(tm—1,tm) and time steps ky, =ty — tm—1. We assume that sup,, k., < co. Note
this assumption is automatically satisfied if the step size is held constant. Most
adaptive algorithms impose a maximum step-size, although they will typically allow
the step-size to grow to this maximum near a stable equilibrium point.

The finite element space containing the piecewise polynomial approximate solu-
tion is defined as V(9 = {V : V‘Im € PW(I,,)} where P9 (1,,) denotes the set of
polynomials of degree ¢ or less on I,,. A function in V(@ has possibly two values
at time nodes, so for V€ V(@ we set Vt = lim,_ .+ V(s) and [V], =V} =V, .

Roughly speaking, the finite element approximation Y € V(@ satisfies the vari-
ational equation (Z3) for all test functions in V(@). This has to be interpreted in
the sense of distributions since Y is generally discontinuous. Recalling that the
derivative at a point of discontinuity is an appropriately scaled delta function, Y
solves the global problem

(3.1) Z/ Y - f(Y,1), X dt+z Jm—1, X5 1) =0

forall X e V@ andn =1,2,---, where Y, = yo. In practice, Y can be computed
interval by interval since for m = 1,2,---, Y € P@(I,,) solves

(3.2) / (V, X)dt + (Vi y, Xih_y) = (Vo X 1>+/I (f(v, 1), X) dt,

m

for all X € P@(I,,). Thus, Y,  , can be considered “initial data” for the compu-
tation on the m’th 1nterval.
For ¢ =0, Y is a piecewise constant function whose value on I, is given by

Y, —Y_1+/f

If f is autonomous, then Y agrees at nodes with the values of the backward Euler
difference scheme. For ¢ =1, Y is the piecewise linear function on I,,

C—tm) oy | C—tmor)
3.3 Y|, =——Y  +—F—7Y_,
( ) |]m _km 1 km m
with coefficients determined by
Yo, =Y, 1+ [, fY(),t)dt,
Y, - Y, 1f2f1 (Y (t),t) L) gt

The dG method using polynomials of degree g converges with order up to ¢ 4+ 1 at
all points ¢ while its nodal values from the left converge with order up to 2¢q + 1.
We refer the reader to Estep [7] and Eriksson, Estep, Hansbo, and Johnson [6] for
more information.

The dG approximations are not equivalent to any standard difference scheme in
general: for example, we can replace the integral defining the dG approximation

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



THE DYNAMICAL BEHAVIOR OF THE DISCONTINUOUS GALERKIN METHOD 1081

with ¢ = 0 by kn, f(Y,,, 7m) using the mean value theorem, where 7, is a gen-
erally unknown point in (¢;,—1,%,). The resulting formula can be interpreted as
a difference scheme for the nodal values {Y,, } with the property that the nodes
involved in the difference scheme depend on the nodal values of the approximation
to y produced by the scheme. For higher order approximations, both the weights
and the nodes depend on the approximation.

In the analysis of the approximation, we use the following inverse estimates that
follow from standard results about norms on finite dimensional spaces (see Ciarlet
[]). In this result, we use the notation ||V||ze(z,.) = sup;e; [[V(2)]-

m

Proposition 3.1. For each integer ¢ > 0 there is a constant C = C(q) such that,
for any V € V@ and m > 1,

bl V2 1y < C / VP dt,

and

km/ V]2 at < c/ (t = tm—1)||V|? dt.
m Iy,

We start by discussing existence and uniqueness in the case that f is globally
Lipschitz continuous. In this situation, we can specify an iterative process to pro-
duce the approximant. Given a € R?, we define the map @, : P9 (I,,) — P (I,,)
by V =®,(U) if

(3.4) / (V. X)dt+ (VLX) = (@ X )+ / (F(U. 1), X) dt,

Im

m

for all X € P@(I,,). This is the dG approximation to the linear problem

{u = f(U), tm1<t<tm,

u(tm—l) = a,

and hence is well-defined for all g. It is easy to show that ¥ = <I>Y_71(Y) if and
only if Y satisfies the dG equations on I,,. We define the fixed point iteration

(35) y©O —y- L
3.5 A e
Yy () — q)y_/ (y(z 1)),

m—1

and show the convergence in

Theorem 3.2. Assume that f(-,t) is globally Lipschitz continuous with constant
L independent of t and that f(c,-) € C°(RT) NL>®(RY) for some c. Then there is
a constant C = C(q) such that if k,, < C/L, the sequence given by (3.5) converges
to the unique dG approximation on I,.

Note that the assumption on f(c, ) for some fixed ¢ serves to give control of the
nonhomogeneous part of f, which is not controlled by a Lipshitz assumption on the
homogenous part of f. This condition is automatically satisfied for autonomous
problems.

Remark 3.3. While we use this fixed point iteration to show the existence and
uniqueness of the approximate solution, in practice a hybrid (quasi) Newton itera-
tion would be used in order to try to avoid the time step restriction.
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1082 D. J. ESTEP AND A. M. STUART

Proof. First we show that ®, maps a ball into itself. Given a € R%, we choose R
so that

max{|lal, llell, [ f(c, M L=@+)} < R

For U € PY(I,,), we let V = ®,(U) and choose X =V in (34) to get
1

d
3 [ Va1V = @V + [ .y
I, I,

or
1 1
Vel + 30Vl = @V + [ @ vya
I
We conclude that
(3.6) Vil < Jla])? +2 / (U, 1), V)] dt.

m

Next we choose X = (t — t,,_1)V in (3] to get
| = tw VPt = [ (¢t s 0,V
I, Iy,
Using Proposition Bl we conclude that

(3.7) bnllV[2 e r, < C / (U, 1), V)] dt.

where C' = C(q). Since ||V —¢| (1) < Vi = cll + km|| V] Lo(1,,), @8) and @)
and a straightforward estimate yield
IV = el < Cllall + llell + ChmllF(UC), Lo (1,.)-

By assumption, |[f(U(-); )=,y < 1)z, + LIV ¢
m) S C(l + km)R + CLkm”U — C”Loo(]m).
Now assuming that CLk,, < 1, we define v = C(1+ky,)/(1 — CLky,). If U satisfies
U = cllpo(1,,) < YR, then |V —¢| 1o (1,,) < 7R as well. Hence, ®, : Boo(c,YR) —
Boo(c,YR). .

Next we show that ®, is a contraction. Suppose that V' and V are two solutions

of (34 corresponding to U and U. We subtract the respective equations and use
the Lipschitz assumption on f and arguing using Proposition Bl as above to obtain

IV =Vt < CLEmlU = Ull oo IV = Vizoe (1,

Les(I,,)- Hence,

|V —ellzer

Since CLk,, < 1, the map is contractive and we conclude that the iteration (&X)
converges to a unique fixed point of @, in B (¢, yR). O

Before continuing with existence and uniqueness, we discuss how the dG method
can be used to define a discrete time dynamical system when f is autonomous; the
terminology is the same as in Chapter 1 of [16]. For fixed time steps k,, = k,
suppose that (B2) can be solved for Y € P@(I,,) and that Y (t) € U for each
t € I,,. Fix the time step k > 0; given Y,,_; € U, we define the map Sy : Y — U by
SkY, 1 =Y, . Then for any initial value yo € U, the sequence {y., }o°_, defined by
Ym = SkYm—1 is uniquely determined and Sj defines a discrete dynamical system.
The definitions of continuity, dissipativity, w-limit sets, and attractors from Section
can be extended in a straightforward way using the map Sy.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Thus, if we assume a constant step size and an autonomous problem, then the
following holds.

Corollary 3.4. Assume that f is autonomous and that a constant step size is
used. Then, under the conditions of Theorem[32, the dG method defines a discrete
dynamical system on R? that is continuous with respect to initial data.

Proof. We already have shown that the equation ¥, (Y, _,,Y, ) = 0 defined through
(B4) and (3:5) has a unique solution so it remains to show that the resulting dis-
crete dynamical system is continuous. We let Y and Y denote dG approximations
corresponding to Y, and }77;—1 respectively. We subtract the equations (B:2) for

Y and Y and argue as above using the Lipschitz assumption on f and Proposition

BT to get
1Y = Yllze(z,) < ClYioy = Vor_sll + CLEm|[Y = Y l2=1,,)-
Thus if CLk,, < 1, then
1Y = Y|z, < ClYpot = Yol

m

and continuity follows. O

We next consider the case when f is known only to be locally Lipschitz contin-
uous. For a set U C R%, we define

Us = {xeu: inf |z -y 25},
yeRINU

and for a positive integer m, U € P (I,,), and p € R*, we define

Beo(U, p) = Boo (U, p,m) = {V € PD(Ly) : |V = Ullpee(r,y < P}-

In application, the interval in consideration will be clear. Note that when we write
Boo (U, p) CU we assume U(t) C U for all t € T,,,.

Theorem 3.5. Suppose U C R? is a compact set and f is continuous on U x R*.
There is a constant C = C(q) such that if ky, < C5/M, where

M= sup |f(z?)
z€U,t>0

then for every Y, | € Us, there is a solution Y of the dG equations with Y €
Boo(Y,,_1,0) CU. Moreover, if the iteration BH) converges, then it converges to
Y. Ifin addition f is Lipschitz continuous on U with constant L uniformly in t and
kp < Cmin{d/M,1/L}, then the iteration BX) converges to the unique solution

Y € Bo(Y,,_1,9).

Theorem [3Alis a local result in the sense that M and L may depend on the set U.
As the approximation of (I1]) advances, these values may grow with each step and
thus the time steps would necessarily decrease with each step. One consequence
is that this result alone cannot be used to show that the dG method defines a
dynamical system even on a bounded set in R¢ since the approximation may leave
the set.
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1084 D. J. ESTEP AND A. M. STUART

Proof. We define the constant function W € P@(I,,) by W = Y, so that
W =0, W} , =W, and

(3.8) / (W, X)dt+ (W, X ) = (Vi X ),

m—1 m—1>
L,

for all X € P@(1,,). We claim that if V = &, (U) and U € Bso(W,6), then

m—1

V € Boo(W,6). We subtract (BR) from [B4) to get

| @ xydes v -wi LX) = [ swexa,
Inm L,

for all X € P@(I,,). We now argue as in the proof of Theorem and use the
assumptions to obtain

IV =Willee(r,) < ChmllfUC), )lLe(t,,) <6

Boo(W,6) is a closed, convex subset of the finite-dimensional space P(®(1,,) and
f is continuous. Hence ®,- is a continuous map of B (W,d) into itself and

m—

the Brouwer fixed point theorem implies that there is a fixed point of ®, - in

m—1
Boo (W, 0).
Under the additional assumptions in the theorem, we want to show that <I>Y571

is a contraction. But this is argued as in the proof of Theorem B.2]

The time step restrictions in Theorems and B are rarely implemented in
practice since this would severely curtail the ability to adapt the steps. We now
consider the existence of approximation values when there is no step size restriction
but the problem is dissipative.

For the next theorem, we use the notation

== [l = 60
and
By(U,p) = Bo(U,p,m) = {V € PO(L,,) : ||V = Ul r2z,) < p}
and the following proposition, proved in French and Jensen [10] and Temam [I7],

Proposition 3.6. Assume that ® : P9 (I,,) — PW(I,,) is continuous and that
there is an R > 0 such that (®(V),V) <0 for all V € 0B2(0,R) = {V € PD(I,,) :
IVIz2(1,.) = R}. Then there is a V* € B2(0, R) such that ®(V*) = 0.

Theorem 3.7. Assume that f is locally Lipschitz continuous and f(c,-) € C°(R™Y)
NL>®(RT) for some c. (a) If Assumption [Z holds, then for any kp,, > 0, the dG
formulas have a unique solution on I,. (b) If Assumption[24) holds, then for any
km > 0 there is an r > 0 such that the dG formulas have at least one solution in
B2(0,7) and all solutions must lie in Ba(0, 7).

Proof. We first prove part (b). We fix a € R% and for U € P (1,,), we consider
the linear functional Ly : P(9(I,,) — R defined by

LyV = /1 U, V)dt + (U1, Vb ) = (a, V) — /I (f(U,1),V)dt.
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Using Proposition BJ]and the assumptions on f, it is straightforward to show that
Ly is bounded in the sense that

Lo V| < C(I1Ul 2t /s 1 (e, ) Lo (10, all 1T = ell, LO)) 1V [ 22(1,0)

for all V € P(1,,), where L(U) denotes the local Lipschitz constant of f. Thus,
the Riesz representation theorem implies that there is a ®(U) € P9 (1,,) such that
LyV = (2(U), V>m for all V- € P@(I,,). The same argument used to show that
Ly is bounded shows that ®(U) depends continuously on U.

We now compute, using Assumption 241

(@W),0),, = 510l + U5 P - @ U = [ (fwa. vy

I,
1, _ 1
SOl = Slall + [ s@vipa - [ aat
I I

m

v

or

. 1
(W)U, = min |0l — gllall* = [ a(t)a.

m

Hence for all U € 9B2(0,r) with r sufficiently large, <<I>(U), U>m > 0. By Propo-
sition B.6, ®(Y) = 0 for some Y € By(0,7). But LyV = 0 for all V € P(I,,)
if and only if Y is a dG approximation. Note that this argument also shows that
®(V)#0 for Ve PD(I,)\ B0,7).

We give the proof of part (a) for ¢ = 1. The proof for higher order ¢ is similar
but the notation is cumbersome. In this case, functions U € P@(I,,) are uniquely
associated to vectors U € R? via

7 _ (Un
7= (')
We again fix a € R, Given U € R2?, we define G(U) € R2? by

) [ v~ [ swnea
GWU) = e fm ;
U¢2dt+U;,1—a—/ f(U,t)go dt

Im m

where {1, @2} is the basis for P(@(I,,,) used in (33). Note that G(Y) = 0 if and
only if Y is a dG approximation. We now show that G is uniformly monotone and
continuous. Let U,V € R??. Then abusing notation with (-,-) and || -],

(G(O) - G(V),T - V)
:/I U-V.U, -V, dt—/I (fU.t) = f(V.t), U, — Vi )1 dt

+/'w_vlq4—u;n@ﬁ+m%4—uam2
I

m

- / (F(U.1) = F(V.O. U Vi Voo,

Im
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or

(G(0) - G(V),T - 7) :/ (0 -V.U-V)dt
I,

m

I = ViLIP = [ (0.0 - 1)U = V) ar

Evaluating the first integral on the right and using Assumption 2] for the second
gives
. oL L 1 - o
(GU)-G(V),U-V) > 5||U — VI

The argument that shows that G is continuous is essentially the same line used to
show that the map Ly above is bounded. By the uniform monotonicity theorem
(see Ortega and Rheinboldt [T5]), G is a homeomorphism of R?¢ into itself and
hence has a unique root Y. O

Note that if & € L*°(I,;,) and inf 8 > 1/2, and r is chosen so that

2 kaOéHLoo(Im)

inf —1/2
then ||Y,, ;|| < r implies that ||Y| z2>(;,,) < r. This follows because

1
(2(U),U),, = inf B7° = 51 —knllal| Lo (1,,) > 0.

2
Recall that (3:4) and (B5) implicitly define an equation ¥, (Y, ;,Y,.) =0. In
the case that Y, is not determined uniquely by Y, _;, we can define a generalized

evolution operator by allowing S} to be a multi-valued map (see [16], Definition
1.1.7.) First for a € R4,

Sk(a): {bERd:\I/k(a,b)z()}, Sk(U)Z U Sk(a),
acU
and now inductively

Si'(a) = Si(Sy"(a), SP) = | Si(a).

ac€U

If Uy (a,b) uniquely determines b for a € RY, then S defines a discrete dynamical
system. In general, S;* returns all the solutions of the dG equations for a given
initial data and thus is a set-valued function on subsets of R?. We do not get a
dynamical system in this case; however it is still makes sense to discuss the behavior
of the trajectories that start from a given initial value. In particular, the definition
of dissipativity can be extended in the obvious way to this case (see [16], Definition
1.8.3).

4. LOCAL APPROXIMATION PROPERTIES
OF THE DISCRETE SEMIGROUP OPERATOR

In this section, we discuss the approximation properties of the discrete semigroup
operator Sy defined implicitly by the dG method in Section Blin the case that f is
autonomous and uniform step sizes k,,, = k are used. In this situation, recall, we
can think of Sy as defining a discrete dynamical system involving the nodal values

(Yo}
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We define dSi(U) to be the Jacobian of SpU with respect to U and, similarly,
dS(u, k) to be the Jacobian of S(k)u with respect to w. The main result of this
section is

Theorem 4.1. Suppose that f(-) and df(-) are q times continuously differentiable
with local Lipschitz constant L = L(B) on a compact set B. For ollU,V € B there
are constants C = C(B) >0 and K = K(B) > 0 such that, for all0 < k < K,

(4.1) |SxU — S(E)U| < CkI+2,
(4.2) ||dSk(U) — dS(U, k)|| < CkIt2,
(4.3) [dSk(U)[| <1+ Ck,

(4.4) |dSk(U) = dSe(V)|| < C|IU = V||.

The bounds (I)-(&3) ensure that a wide variety of results concerning the ap-
proximation of the continuous-time semigroup S(k) by its discrete-time counterpart
Sk may be established. These results are described and proved in Chapters 6 and 7
of [16]. For example, stable and unstable manifolds, local phase portraits, periodic
solutions and many other “hyperbolic” objects associated to S(k) are approximated
to O(k9T!) by nearby objects associated to Sj. Furthermore, results about con-
tinuity of attractors may also be deduced, although E2)—(4) are not needed to
prove these.

Proof. The proof is contained in Lemmas — KB To simplify notation in this
section, we set ||+ [loo = || * [0, |- l2 = |1 - [l 22(0.8), and P@ = P@(0, k).

The first pair of lemmas concern properties of the dG approximations of the
initial value problem (1) over (0, k) as well as the associated linearized variational
problem. We recall that y solves

) = , 0<t<k,
(4.5) y=1) <
y(0) = yo.
The dG approximation Y € P(@) satisfies
k
(16) [0 = 1.V dt+ (v(0) = o, V(0) =0
0
for all V € P(9). The linearized variational problem associated to (EH) reads
b=d t<k
(47) W =df (y)w, 0<t<Fk,
w(0) = wy,

while the corresponding dG approximation W € P9 satisfies
k
(4.8) / (W — df (Y)W, V) dt + (W(0) — wo, V(0)) = 0
0
for all V € P@.
The first result is

Lemma 4.2. Let Y satisfy (@8) with data y(()i), i = 1,2 respectively. Then there
are constants C > 0 and K = K(C) > 0 such that

(4.9) YW —y®| <o|yP k) -vPw), 0<k<K,
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and

(4.10) YW —y®|_<ofu” -4, 0<k<K

Let W satisft (@8)). Then there are constants C' >0 and K = K(C) > 0 such that
(4.11) Wl < CIW(R), 0<k<K,

and

(4.12) (W) < (1+Ck)|lwoll, 0<k<K.

Proof. If weset U=Y® —Y® and ¢ = y(()l) - y(()Q), then (£6]) implies

s (V) di+ (0(0) - 0,V(0) = / RO ), v e,

Choosing V = t¥ and using the inverse inequalities in Proposition Bl and the
Lipschitz assumption on f, we obtain

k
ol < cll/zaly <k [ oy a

which leads to the conclusion that H\I'||2 < L||¥||2. Since
(4.14) I1PII3. < 1Pk + 211 Pl2]| Pl
for every P € PO [|T|3, < [®(k)[* + LT3, or

C
| <
)2, < o
which is (@J). The analogous result [@II)) for W follows after choosing V = tW in

E3).
To prove [I0), we choose V = ¥(k) in (I3) and estimate to get

1w (k)2

k
1o (k)|* < ||¢||||‘11(k)||JrLII‘I’(k)H/0 | dt

or (k)| < [[¢ll + LE|| ¥l oo By @3), it follows that [|¥(k)|| < (1 — CLk) (¢
and

C 1
< ———— .
”\Il”oof 1_0Lk||?/1||, 0<k< L
Finally, we take V' = W (k) in ([E8) and estimate to get

k
W (k)1 < llwoll W (k)| + L||W(k)||/0 Wl dt
or |[W (k)| < |lwol|l + Lk||[W||so- The bound ([I2) now follows from (£.I1T)). O

The next result is

Lemma 4.3. Let W satisfy (&S) where Y satisfies [@EB) with data y(()i) for
1 = 1,2 respectively. Then there are constants C > 0 and K = K(C) > 0 such that

W k) = W w)|| < Chlys” =y llwoll
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Proof. With ® = WM — W®) @3] implies
(4.15) /k(cb, V) dt + ((0),V(0)) = /k(df(Y(l))W(l) —df(YO)W® V) dt.
Choosing(;/ = ®(k) gives 0
o0l < [ () o O W+ arr ) we —we

leading to
[@(k)|| < LE[[y® =y @ | _[[WO|_+ Lk| @] .
Lemma [£2] therefore implies there is a constant C' > 0 such that
(4.16) 1@(k)|| < Ck||ys” = y& |Ilwol + LE|®| oo
Now we choose V = t® in (#I5) and use Proposition 3.1 and Lipschitz assump-
tions to find that

k
K|o]; < cl#dlf; < o / (W —dp (v @)W, o) ar

k k
< ORLy® —y @)W [ de+cuz [ o]

Redefining the value of C' as necessary, we find that

& 1/2
k@1l < Crluh” = o6 ol (fo ld’f) [@l], + crLyel. |,

or

&, < CLI®[l2 + Ck72||y = y@ | [lwol.
Hence since [|®]|2, < ||®(k)[|% + 2{[|®|3 + [|©]3}, and @[3 < CK[®|2, we have

1212, < (k)| + Ck||ys"” — 52| lwol? + Ckl| @12,

or

@)%, < Cl|®(k)|2 + Ck||ys" — v || lwoll.
Combining this with (ZI6) gives

®]12, < Ck|[ys" = 52| lwoll?

and the result follows from (£.16). O

To get at the approximation properties of Sk, we introduce the dG approxima-
tions corresponding to the linear equation @ = f(y) where y denotes the exact
solution of (1)) that we wish to approximate. We define Z € P(@) to satisfy

k
(417) | @)y 20 - . vo) =0
for all V e P@ while X € P@ satisfies

k
(4.18) /O (X — df (y)w, V) dt + (X(0) — wo, V(0)) = 0
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for all V € P9 where w solves ([@7). Standard analysis, using the assumed regu-

larity on f, shows that there is a constant C' > 0 such that
(419)  ly-Zle S CE and [ — X[l < Cllugl| K7

see Estep [7] and Eriksson, Estep, Hansbo, Johnson [6]. Moreover, choosing V' = ¢;
for j =1,...,d, where ¢; is the standard j’th basis vector for R?, shows that

20 =w+ [ Feora X®=w+ [ G
Since y satisfies the same equation, we conclude that
(4.20) Z(k)=y(k), X(k)=wk).
The next result is
Lemma 4.4. There are constants C > 0 and K = K(C) > 0 such that
ly(k) =Y (B)[| + klly = Yoo < Cklly = Z||oos 0<k < K.
Proof. We set Y(¢t) =Y (¢t) — Z(t). Then (Z6) and ([EI7) give

k k
azy [ @) 1.vo) = [ 6w - .
0 0
Taking V' = T(k) and estimating using the Lipschitz condition on f, we obtain
(4.22) IT(R)] < LElelloo < LE[[plloc + LE[ Y| oo,

where we write e(t) = y(t) — Y'(¢) = u(t) — Y(t) with p(t) = y(t) — Z(t).
Choosing V' = T in (£2]]) and using Proposition Bl and the Lipschitz condition
as above gives
o L2, 5
912 < Z el
for some C > 0. But this implies that
Lk

ITllse < TR+ AllTlloo < ITHE+ - llelloe,
or
2L%k?
(4.23) 1715 < 2T E)1* + =55~ lellz

But (422)) and (4.23]) imply there is a C' > 0 such that
T < CR* (Il + 1711%)
and
115 < 20T )I1Z + Ok (Ilull3 + 17T113)-

Eliminating ||T]|2, gives the result on ||y(k) — Y (k)||, by use of (@20). For the
second, note that |7l < Clv(k)|| = Cklly — Z]|| and that |le]|oc < ||ptlloo +
oo - O

The final result we need is

Lemma 4.5. There ezist constants C > 0 and K = K(C) > 0 such that
lw(k) = WE)I* < CK*(ly = Z|Zllwol* + lw — X[3,).
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Proof. We write E(t) = w(t) — W (t) = 0(t) — Z(t) where 0(t) = w(t) — X (¢) and
E(t) = W(t) — X(t). Then (E3J) and [EIR) imply that

k k
(4.24) [ EvyasEovo) = [ @ow - dawuwv.

0 0
Choosing V' = E(k) in (4:24)) and estimating as above using Proposition B.I] and
Lipschitz assumptions gives

IE®)I* <

k
/0 ((df (V) = df (y)W, E(k)) + (df (y)(W — w),=Z(k)) dt

and so

k k
IER)l < L / el de + L / | B dt.
This means that

(4.25) [E®)|| < LE[|Elloo + LE[lefl oo W[ -
Next choosing V = tZ in (24) gives

k
/O HEIP dt < CLE(|Elloo + llelloo|W10) 1]l

and therefore that, by Proposition 3],
2] .0 < CLUIEllso + llelloo W lo0)-

This means that

- - 2
(4.26) IE13 < 2IEE)? + CE* (|l + lelloolWllee) ™
Together ([@28) and (£.26) imply there are constants C, K > 0 such that

IEE)Z < CF (10113 + llell3 W12 + 1E112) |
and

IE12% < C(IE®R)? + 210112 + K[l 2IWII3) ,

for 0 < k < K. Combining these we reach, by ([£20),
(427) lw(k) = W) = [IEF)]* < CF (1015 + llell3IW%) . 0 <k <K,

for some C, K > 0.
Lemma [£2] implies that there are constants C, K > 0 such that

(4.28) W% < Cllwol?, 0<k<K,
while Lemma 4] gives the necessary estimate on ||e||oo- O

We now finish the proof of the theorem.

For (1), we note that e(k) = SpU — S(k)U; thus (@II9) and Lemma B4 give
the result.

For ([£2), we note that E(k) = (dS;(U) —dS(U, k))wp, so (19) and Lemma A5
show the result holds for the induced matrix norm.

For ([£3), we note that W (k) = dS,(U)wy since W (t) = 9Y (t;U)/0U. Thus the
result follows from Lemma [£2]

Finally for (@4, since W@ (k) = dS(U)wo, i = 1,2, the result follows from
Lemma 3]

([l
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5. PRESERVATION OF DISSIPATIVITY UNDER (GALERKIN DISCRETIZATION

In this section, we show that the dG approximation inherits the dissipativity
properties of the true solution operator under either Assumption 21 or 241 We
deal with the contractive case first and show that the dG method automatically
inherits the qualitative long-time behavior of the underlying ODE which is detailed
in Section 1.

Theorem 5.1. Assume that f is locally Lipschitz continuous and Assumption[Z1]
holds and moreover there is a constant ko > 0 such that k, > ko for n > 0. Then
there is a constant C = C(c,q) > 0 such that any two solutions U,V of B.1) satisfy

(5.1) (U= V)l <e (U -V,
forn >0 and
(5.2) lim dist(U,, ,€) =0,

where £ is the closed convex set of steady states. If f is autonomous and there is a
a such that f(w) =0, then @ is unique and lim, ., dist(U,; , @) = 0.

Proof. We subtract the equation for V from the equation for U and
choose X =U — V to get

1 PR |
ST =V)nllP + ST = V)5l

~(U=V) W=V + [ (0.0 = (V.U V)
Now we estimate using Assumption 21 to get

1 _ 1 _
SN =Vl < S0 = V)pall® —C/ U= V|| dt.

Using Proposition Bl we obtain
(1+ Cha)[|(U = V)5l < (U = V) a?
for some C' = C(c, q). We conclude that

n

—2 1 —2
(5.3) U =V), |l Sﬂl;[l (1+Ckm)||(U Vol
and (B.I) follows immediately.

Given R > 0, we know that if U; € {u € R? : dist(u,&) < R}, then there is a
u € & with ||Uy —ul| < R. By (£3), we know that ||U, —u|| < R for alln > 0. Now
choose 7 : 0 < r < R. By (&3)), there is an n*(r,C) > 0 such that ||U . — a|| < r.
Moreover repeating the argument with R = r, we see that ||U, —al| < r for n > n*.
Since r is arbitrary, (52) follows. O

We need to amend Assumption B4 slightly for the discrete case. On each interval
I, we set B, =sup; [ and B, = infy, (.

Assumption 5.2. For the positive function 3 € WL (R™) given in Assumption
2.4 there are constants p > 0 and K > 0 such that, if k,, € (0, K) for all m,

(5.4) sup @—m <1+p.

0<m<oo PIm
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Note that Assumption [5.2] is trivially true in the important case when (3 is a con-
stant.

The following result shows that the ball B (O, R) is absorbing for the nodal values
of the dG approximation so in that sense the dG method inherits the consequences
of this form of dissipativity. However, we do not show that Y () enters B(O, ]%) for
t > t,, with m > n*. All we deduce in this direction is that there is a constant C
such that

c
Y3y < —=—|Y,_|I* + CR%.
Y121,y < kmﬂmH m1ll
Theorem 5.3. Assume that f is locally Lipschitz continuous and that Assumptions
and A hold. Assume also thal the sequence of time steps {k.,} have the
property that y  kn = co. Then there are constants C = C(q) > 0 and R > 0
such that for all ¢ > 0 and yo € RY there erists an n* = n*(yo,€) so that the

nodal values of any solution Y (t) from @BJ) satisfy Y,, € B(0, R), for allm > n*,
provided k,, € (0,K) for all m.

Proof. We choose V =Y in (B2) to get

1, 1 _
SV P4 IV = (Vi ¥) + [ (v, ) a

m

which implies that

(5.5) 1Y 12 < 1Y 1+ 2/ (alt) = BWIIY ()]1?) dt.
Therefore either

(5.6) 1Y 1P < 1Yoy P = 2kin€m

or

/T[XﬂHY@ﬂPdtS‘/‘cdﬂdt+km¢5m
I I,

which implies that

(5.7) mJuwwm§ﬁwm+mﬁy

In the second case, Proposition B-I] and the assumptions above thus imply that
there is a constant C' = C(q) such that

(5.8) ¥, |I? < C(R* (1 +p) + €).

Notice that this dichotomy implies that B (O,R) is positively invariant; i.e., if
Y,,_1 € B(0, R), then either (]i_ﬁ[) or (5.8) yield Y;, € B(0,R). It remains to show
that all nodal values enter B(O, R) after a finite number of steps.

Assume the contrary, so that (A.8) does not hold for any m. Then (Bf) implies
that

1Y 12 < 1Y i l1? = 2kim€Bm, 0 <m.
If we show that

M
lim E K Bm = 00,
M—o0

m=1

then we have a contradiction and the proof is complete.
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By (Z2), for any § > 0 there is an L > 0 such that
L 1
(5.9) / Bty de > 5.

Given L, we choose the smallest M such that Z 1 km > L, which is pos&ble by

the assumptions of the theorem. We increase L if necessary so that L = Zm:l km,
noting that (59) still holds. Then

M
/5 dt—Zﬂmk <Y
m=1 m=

or

By (G.4)

and so, by (5.9),
M 1
Z m*51—|—p)

m=1

The desired conclusion follows since § is arbitrary. [l

Recall from Section 3 that we do not prove that there is global uniqueness of the
solution — only existence; hence this theorem does not mean that the dG method
defines a dissipative dynamical system under these assumptions. However using
the local existence Theorem under the assumption of constant step sizes, we
can show:

Corollary 5.4. Let the assumptions of Theorem hold. Suppose that the step
sizes are constant ky, = k and the iteration (33) is used to solve the dG equations.
Let N be an open neighborhood of B(O,R). Then there is a K > 0 such that
if k < K, the nodal values of the dG method define a discrete dynamical system
on B(O,R) in the sense that if yo € B(O,R), then Y, € B(O,R), for all m and
Y (t) € N for all t > 0; this dynamical system is continuous with respect to initial
data.

Since B(O, R) is bounded, the dynamical system defined by the dG method is
automatically dissipative and has the global attractor Ay = w(B (O, R)) Outside
B (O, R), there can be multiple solutions. However for n* large enough, the nodal

values of all solutions enter B(O, R) for m > n*. Thereafter under the time step
restriction, there is a unique solution associated to each entry point.

Proof. We know that B (O,R) is absorbing and invariant for the nodal values of
the dG method. If we choose Us = B(O,R) and U = N and if Y,,_, € B(0, R)

then Theorem B.5limplies that there is a K (B (O, R),./\/) > 0 such that if k,,, < K,
then the iteration ([B5]) converges to a unique solution Y (t) € N for ¢ € I,,,. Since
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Y € B(O,R) the dG method defines a discrete dynamical system on B(O,R).
Continuity follows by arguing as in the proof of Theorem B2l O

Finally, we show that the dG method can be used to get some information on
the long time behavior of the continuous solution by showing that the numerical
attractor is upper semicontinuous with respect to the continuous attractor at k = 0.

Corollary 5.5. Let the assumptions of Theorem [3 hold and assume that ()
is autonomous so that (L) has a global attractor A. Then there is a K > 0 such
that the dynamical system constructed in Corollary [54 has an attractor Ay for all
k < K. Furthermore,

lim dist (A, A) = 0.
k—0

Proof. We know that B(O7 R) is an absorbing set for the nodal values of the dG
method and furthermore the dG method defines a continuous dynamical system
on the invariant set B(O, R) Therefore, Ay = w(B(O, ]:2)) The proof now follows
from Theorem 7.6.3 in [16]. O

6. PRESERVATION OF DISSIPATIVITY UNDER THE USE OF QUADRATURE

We now discuss the dynamical behavior of approximate solutions derived by ap-
plying a quadrature formula to the second integral appearing in ([B2). It is already
known that the use of quadrature can affect the accuracy of approximation (see
Delfour, Hager, and Trochu [5] and Delfour and Dubeau [4] for an extensive dis-
cussion of the possible choices of quadrature, the connection between the resulting
approximations and standard difference schemes, the A-stability of the schemes,
and a priori convergence results). See also Eriksson, Estep, Hansbo, and Johnson
[6]. In this section, we show that the choice of quadrature can also have a strong
effect on the dissipativity properties of the resulting numerical solution and show
how certain choices of quadrature preserve dissipativity properties.

In this section, we abuse notation to let Y denote any approximate solution ob-
tained from the Galerkin equations either by exact integration or by the application
of a quadrature formula.

To illustrate the effect of quadrature on the long time behavior of the approxi-
mate solutions, we recall two simple examples considered in Stuart and Humphries
[16], Chapter 5. For ¢ = 0, the dG approximation Y is given by

Yo=Y+ [ foreae
I,
In the next two examples, we replace

/I FOV(),8) = £V st 1)

m

to produce the approximation Y. This method, equivalent to the forward Euler
scheme, converges with the same order as the dG method. Of course using extrap-
olation, as in deriving this scheme, when a problem is dissipative is perhaps not
wise, but we make this choice to illustrate the fact that the choice of quadrature is
critical in determining whether or not a scheme is dissipative.
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Example 6.1. Consider y = —fy, § a positive real constant. This is a dissipative
problem and every solution converges to 0 as ¢ — oco. In the case of constant time
step k, the scheme above gives

Y, =(1-k3"Y,,
so that it is dissipative if
2
/8 )
but it is unbounded otherwise. Thus preserving dissipativity requires an upper
bound on the step size.

k<

Example 6.2. Next consider § = —y3, y(0) = yo. Since —s%-s < 1 — 52 for all
real s, this problem is dissipative. This scheme has the property that

. 2 .
[Yo| < \/;:> W%llnoolym| =0,

while

- 2 -
[Yo| > \/j:> lim |Y,| = cc.
If m—0o0
Hence there is no step size condition that makes the discrete scheme dissipative.
As we have seen, this contrasts with the behavior of the dG approximation.

As mentioned, there are many possibilities for the choice of quadrature. We
concentrate on quadrature formulas that satisfy two criteria:

e The formulas give one-step difference schemes using points contained in the
interval (t,—1,tm], m = 1,2,.... It is possible to define multi-step schemes
using the dG formulation (see Estep and Larsson [9] for examples). However,
the consequences on the stability of the approximation are rather severe.

e The resulting schemes reproduce the dG approximant when applied to linear,
autonomous problems. This ensures that the formulas inherit at least the
linear stability and superconvergence properties of the dG method.

The goal is to derive schemes that preserve the dynamical properties of the dG
method on dissipative problems. The fundamental reason that the dG method
is dissipative under Assumptions 2] or Assumptions 2.4, is that the Galerkin
formulation is based on the inner product (-, -) and the associated norm || - ||2 which
allows “energy” arguments to be used to carry over the dissipative properties of the
solution naturally to the dG approximation. If u(¢) and v(t) are two continuous
functions taking I,, to R? then we can apply a quadrature rule to /, 7 (u,v)dt
to get a “discrete” inner product. We will see that if the quadrature formula has
the property that this discrete inner product determines a semi-norm, then the
resulting difference scheme preserves dissipativity.

We consider two possible quadratures.

Quadrature Assumption 6.3. In this quadrature, we replace f by a suitable
interpolant P, f € P@(I,,) so that (3.2) becomes

(6.1)

/ (V, X) dt+ (Y, X)) = (Y, X)) + / (P f (Y (£),1), X (1)) dt,
I I

m
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for all X € P@(I,,), where the integral on the right is computed exactly. We call
this an internal quadrature formula. We assume that the interpolation basis is a

set of orthogonal polynomials. Choose ¢, > q € Z and let {gzﬁm}i}g::"’o be a basis
for Pm (I,,) that is orthogonal with respect to <', > and is associated to the nodes

’
{Tm,i}?!m i.e.,

0, ©#7,
Gm,i(Tm,j) = {1 e
, i=7.
We consider the interpolant
D
Prg = 9(Tm.i)bmi(t),
i=0

for g continuous.

Quadrature Assumption 6.4. In the second quadrature formula, we replace the
entire integral term involving f in (32) with a quadrature formula to get

(6.2)

/I (Yv X) dt + (Yn-tflv X»;rtfl) = (Yr;fla Xr-l_y,fl) + Qgr;z" ((f(Y(t)a t)v X(t))a km)a

for all X € P9 (I,,). We call this an external quadrature. We assume that

-
er];ln (g(t)v km) - Z wm,ig(Tm,i)a
=0

’ ’
where the nodes {7, ; }im, are in I, the weights {w., ;}im, are positive and ¢/, €

Z7 is chosen large enough so that the formula has order of precision at least 2q.

Note that we abuse notation by using ¢/, in different ways for internal and
external quadratures; the meaning will always be clear from the context.

Example 6.5. When ¢ = 0, internal and external quadratures yield the same set
of formulas for ¢/, = 0, namely,

/ P00, V)t — (Vs 7o), Vi

Im

for some tp,—1 < Tym,0 < tp,. For autonomous problems this yields the backward
Euler method.

Example 6.6. For an internal quadrature with ¢ = 1, we choose
km
Tm,0 = ti—1+ ? and Tm,1 = tm

and use the basis

{ ui,fiﬁ?o) ’ (Ti:—%;:go) }

These are known as Radau points and the resulting scheme has order of precision
three. This formula is equivalent to a standard Runge-Kutta scheme that can be
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1098 D. J. ESTEP AND A. M. STUART

written

Vim0 = Yoo 1+12k?mf(mo,m1+km/3) Lk f (Vo1 tm),
le =Ymn- 1+ 3kmf( 0> tm—1 4 km /3) + 1kmf( m,1s tm),
Y =Ym-1+ kmf( m,0stm—1+ km/3) + ikmf( a1 tm)-
Example 6.7. For an external quadrature with ¢ = 1, we choose the two point
Gauss rule with order of precision three,
Tmoztmf1+k—m—k—m ‘««JmO:1
’ 2 23 T2
and
km km 1
> + ﬁ’ Wm,1 = >

The associated Runge-Kutta scheme can be written

Tm,1 = ty—1 +

Vim0 = Yoot + 2k f (Ym0, tin— 1 2\[)
mf(ml,m L+ ),
?m,lzym—l‘f'(l-i_‘ﬂkmf( Y0, tm—1+ "—Qk\—’"[)
gk f (Vs tier + B2 4 2,
Yo = Y1 + ki f V0, b 1+——2k})

+5 kmf( ml;m 1+ m+ \7_)

It is straightforward to show that these last three examples produce nonconfluent,
B-N stable Runge-Kutta schemes (see Dekker and Verwer [3| for the definition of
such schemes) and hence, the approximations are algebraically stable.

There is a close relationship between certain internal and external quadratures.

Proposition 6.8. Internal and external quadrature formulas satisfying Quadrature
Assumptions [6.3 and[6.4) respectively that are based on interpolation using orthog-
onal polynomials with the same nodes yield the same difference scheme.

Proof. Assume that f(¢) is continuous on I,,. Since

D=3 X (1) bmailt),
1=0

orthogonality implies that

/I (P @)X ()t =Y 0 () X 1) / .

i=0
But using orthogonality once more, we get

’ ’
(0% dm

SO (i) X () / 02, / (> ni)s X (i) b )

1=0 Im =0
@, U
= /I (Z(f(Tm,i)a X(Tm,i))¢m,i) (Z ¢m7j) dt.
m =0 Jj=0
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Since Z?!o ¢m,; = 1 by interpolation, we conclude that

’
dm

/I<me<t>,X<t)>dt:Z<f<Tm () /masm

i=0
= Qi ((f(t), X (1)), km)
for all X € PO(1,). O

Not all external quadrature formulae satisfying Quadrature Assumption [6.4] are
equivalent to an internal orthogonal quadrature formula satisfying Quadrature As-
sumption[G.3 as a somewhat lengthy calculation on the following example illustrates.

Example 6.9. Consider Simpson’s rule with nodes and weights
k 2k
Tm,0 = tmflv Wm,0 = ?mv Tm,1 = ty—1 + km/2; Wm,1 = va
K,
Tm,2 = tm, Wm,2 = — -

6
This is equivalent to the three-stage Runge-Kutta scheme

1,0 = Yoot + 2k f Vo0, tm—1) — 2k f (Y2, tm),
1 =Yn_ 1+1kmf( mo,tmq) 1kmf( Vi1, m—1+ km/2),
2=Yn 1+ kmf( m,0,1t ) %kmf( m,1, tm— 1+km/2)
+5 k?mf( .25 tm)s
Yo = Yot + sk f (Vim0 tim—1) + 2 /‘Jmf(m1,m1+km/2)
+5kmf (Yo, tm).
This is also a nonconfluent, B-N stable, hence algebraically stable, method. Note

that the Jacobian of this method is more expensive to evaluate than for the previous
two examples.

3 z§<x ~h

The assumptions and definitions of the previous sections carry over to these
schemes in the obvious way.

Theorem 6.10. Suppose that f is locally Lipschitz continuous, f(c,-) € C°(R™T)
NL>(R™) for some ¢, and furthermore satisfies the assumptions of the theorems in
Sections [3 and[d while either an internal or external quadrature formula satisfying
Quadrature Assumption or [6.4] respectively is used to compute the approzima-
tion. Then the conclusions of the theorems in these sections hold for the resulting
scheme.

The results in Section 4 also extend to fully discrete discontinuous Galerkin
schemes when an a priori accuracy result is known. Proving such error bounds is
beyond the scope of this paper (see Delfour, Hager, and Trochu [5] and Delfour
and Dubeau [4] for some results). Indeed, the results in Stuart and Humphries [16]
apply to such fully discrete methods when they coincide with standard Runge-Kutta
methods, as do the examples in this section.

We conjecture that the Quadrature Assumptions or 641 imply that the
resulting scheme is an algebraically stable Runge-Kutta scheme. A lengthy di-
rect computation shows that, in general for ¢ = 1, interpolants using the nodes
{tm-1+ Ykm,tm — Ykm}, 0 < v < 1/2, give nonalgebraically stable Runge-Kutta
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schemes unless v = % + ﬁgv i.e., unless the nodes agree with the Gauss rule. Sim-
ilarly, interpolants using the nodes {t,;,—1 + vkm,tm }, 0 < v < 1, give algebraically
stable Runge-Kutta schemes if and only if v = 1/3, i.e., the nodes agree with the
corresponding Radau rule.

Proof. The proofs of the results for fully discrete dG schemes follow the original
proofs closely and we only discuss some of the technical differences due to the use
of quadrature.

Proof of the analog of Theorem[3.2. For an internal quadrature, we define ®, by
V=90,0) if
[ vxdee X ) = X+ [ P,
I, L,
for all X € P@(I,,). This is a well-defined map and any fixed point of @;n_ is

1
a discrete dG approximation. To show that ®, maps a ball into itself, we estimate

as in the proof of Theorem [3.2] with obvious modifications; for example we obtain,
instead of (3.6)),

T
V2o (1) < Cllall + Chm Y (U (Tm,i)s T,
i=0
In the case of external quadratures, we define &, by V = ®,(U) if
[ X0t X ) = (0, X + Q (00,0, k).
I"n
for all X € P9 (I,,,). Now estimating, we find that
-
IV Lo (1) < Cllall + C > wmill £ (U (Tm,)s T,
i=0

’

Since Z?;"O Wm,i = km by construction, the proof now proceeds as in the original

case.

The proofs that ®, is contractive and continuous are modified in a similar fash-
ion. ([l
Proof of the analog of Theorem [T, The proofs are modified just as above. O

Proof of the analog of Theorem [3.7. For part (a), we define G using an internal
quadrature in the obvious fashion and then to estimate (G(U’) -G(WV),U - ‘7) we
compute

/ (P (U,1) — Puf(V,0),U — V) dt

Im

= S (PO )y ) = FV i) 7o)y UT) = V(7)) / 62, dt
1=0 m

D
<= U na) = VP [ SEpde=—c [ U=V
i=0 I Im
The proof now proceeds as in the original proof. In the case of an external quadra-

ture, we make a similar estimate and use the fact the weights are positive to reach
the conclusion.
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To show (b) for an internal quadrature, we define Ly using the quadrature in
the obvious way. In showing that Ly is bounded, the only difference encountered
is estimating

[ ipaswaipac= | (2f(U(rm,n,rm,i)«ﬁmmZf(Um,i),rm,i)qsm,i) d
I Im \j=o i=0

m

In
=Y Ul [ o2
i=0 Im

q., qrn,

<3 O, 7P / 82, dt + L) S (U (7)1 / 02 di
1=0 m 1=0 m

< 1F0, ) B 1 i + LU

We continue as in the original proof. When we compute <<I>(U ), U >m, we find that

m

1 1 i
(vaU __U»;L2__ 2 ( U m,i)s Tm,t mi7U>d
(3W).V),, = 51U = 3l - [ > 1(U i) 7)o U )

’
dm

1. 1
= 0 = ol = Y- (7O ). Un)) [ s
i=0 m
D

1. 1
S0l = Slall + 3 B M I [ st
i=0 m

’
dm

> alns) [ e
i=0 Im

1. 1 y -
> §||Um||2—5||all2+6m/ U Pdt — ||al| Lo (1,0)km,

m

v

and the proof proceeds. Note that orthogonality is a key ingredient in these es-
timates. In the case of external quadratures, we make similar estimates but use
instead the assumption that the quadrature is exact of degree at least 2q. O

Proof of the analog of Theorem A1l The proofs are modified just as for (a) above.
O

Proof of the analog of Theorem [5.3. For an internal quadrature, we find, instead of
(E3),
1Y 12 < Y2

’ ’
dm dm

+2Za(rm,z-)/l ¢?n,idt—2ZB(Tm,z-)IIY(Tm,z-)|I2/I B dt.
i=0 i=0

Now either (5.6) holds or

’ ’
A Im

Zﬂ(Tm,i)llY(Tm,i)IIQ/ P dt < Za(Tm,i)/ B At + ki€
i=0 Im i=0 Im

which yields (B7). The proof now follows as in the original case.
The proof for an external quadrature is very similar. O
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This completes the proof of Theorem G101 O

Note that we did not extend the corollaries to include the case of quadrature be-

cause this would require proving C'' approximation properties. However we believe
that this can be achieved without any difficulty.

Note that not all likely-looking quadratures satisfy the assumptions of Theorem

610

Example 6.11. Consider the (nonorthogonal) internal interpolant

(t—1tm) gt (t—tm-1)

— + —

This is can be written as

Ym,O = Ym—l + %kmf(?m,Oa tm—l) - %kmf(?m,la tm)a

Ym,l =Yn 1+ %kmfgym,Oa tm—l) + %kmfgym,la tm)a
Ym = Ym-1+ %kmf(ymﬂvtmfl) + %kmf(ym,lvtm)

This Runge-Kutta scheme is not algebraically stable and so cannot be B-N stable
either (see Dekker and Verwer [3]).

10.

11.

12.

13.

14.

15.
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