Journal of Computational Physi&§2,766-807 (2001)

®
doi:10.1006/jcph.2001.6858, available online at http://www.idealibrary.col DE &l.

Algorithms for Particle-Field Simulations
with Collisions

Hersir Sigurgeirssoii, Andrew Stuart; and Wing-Lok Wan

*SCCM Program, Stanford University, Stanford, CA 94305-4040;&mathematics Institute, University
of Warwick, Coventry CV4 7AL, United Kingdom; afidepartment of Computer Science, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
E-mail: hersir@hersir.com

Received October 24, 2000; revised June 26, 2001

We develop an efficient algorithm for detecting collisions among a large number
of particles moving in a velocity field, when the field itself is possibly coupled
to the particle motions. We build on ideas from molecular dynamics simulations
and, as a byproduct, give a literature survey of methods for hard sphere molecular
dynamics. We analyze the complexity of the algorithm in detail and present several
experimental results on performance which corroborate the analysis. An optimal
algorithm for collision detection has cost scaling at least like the total number of
collisions detected. We argue, both theoretically and experimentally, that with the
appropriate parameter choice and when the number of collisions grows with the
number of particles at least as fast as for billiards, the algorithm we recommend is
optimal. © 2001 Academic Press

Key Words:collision detection algorithm; hard sphere molecular dynamics; com-
plexity; particle laden flow; fluid suspension; back-coupling.

INTRODUCTION

Consider a system af Newtonian particles colliding with each other, but otherwise
moving along independent trajectories. This can be cast as a solution to the system

mijl(i (t) = F(ts X (t),X| (t))s X (O) :qis Xi (O) = pi9 I = 11 .. N, (1)
+ Collisions

wherex; € RY(d > 1) andm; are the position and mass of particlendF (t, x, v) defines
the external force exerted on a particle locatexaith velocity v at timet. Collisions refer

766

0021-9991/01 $35.00
Copyright(© 2001 by Academic Press
All rights of reproduction in any form reserved.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 767

to discontinuous changes in the states of two parficléth labelsi andj, at a timet. such
that||x; (tc) — X (to)|| = ri +rj, wherer; andr; are the radii of the particles. The system
(1) is supplemented with boundary conditions.

A simple example of a collision is aglastic collision in which the particles involved
change the magnitude of their momenta along the line of contact in such a way that t
momentum and energy are conserved. Typical boundary conditiotmaatevalls where
a particle bounces elastically off the walls of a containerperiodic where a particle
disappears at a boundary and reappears at the opposite side.

Solving (1) has wide application and has been studied by people in diverse fields, incluc
molecular dynamics [1-4], granular flow [5, 6], and more recently in fluid suspensio
[7-9]. It has also been studied by computer scientists, both in its own right in robotics ¢
computational geometry [10, 11], and as a benchmark for parallel discrete event simulat
[12-14]. Typical applications involve a large number of particles, so schemes for reduc
the complexity of the simulation as a functiontdre central. There is therefore considerable
literature on the subject, although workers in different fields often appear not to be aw
of each other’s work.

The primary purpose of this paper is to identify afficient algorithm for collision
detection among a large number of spherical particles immersed in a fluid with which tt
interact through exchange of momentum. This can be modeled as the system (1Jwhe
is determined by the solution of a PDE which itself depend$xpt)}_; and{X (H)}(;.
The kind of applications we have in mind are for example an aerosol of solid partic
or a spray of droplets in a carrier gas. We do not maintain that our approach is suite
for all applications involving particles immersed in a fluid. For instance, the Navier—Stok
equation for solid particles in a liquid gives rise to existence of squeeze and shear lubrica
forces which demands a different numerical solution procedure [15, 16].

In order to build intuition, we consider a sequence of three classes of problems,
increasing complexity, the third of which is of the desired form. The problem classes at
by considering different forms fdf, and each class is of interest in its own right. The thre
problem classes are:

(I) Billiards: The particles move in straight lines with constant velocities between coll
sions, soF = 0; see Section 1.

(1) Particle laden flowThe particle motion between collisions is more complicated, bt
between collisions any two particles move independently of one another.FHisreome
given function, a natural choice being tHatis proportional to the difference betwe&n
and a background velocity field &t see Section 2.

(Il Coupled particle-flowAny motion of a particle affects the surrounding field, and
hence the other particles. In this cabBeis constructed from the solution of a PDE for the
flow, which itself depends on the particle trajectories; see Section 3.

In all cases we consider elastic collisions, although other models are of interest. The ne
of the algorithm will not be changed by other collision models, though particle distributior
and hence the analysis, might be.

! Collisions involving three or more particles can occur, but they are unstable in the sense that a small ch
to the particle configuration will replace them by two or more binary collisions. We deal with collisions of thre
or more particles as a sequence of binary collisions.

2 Efficiency refers in general to both computational cost and memory requirements. We will mainly consi
the computational cost; minimizing cost, in this case, also tends to minimize memory.

768 SIGURGEIRSSON, STUART, AND WAN

The algorithms we consider aegactin real arithmetic for billiards in that all collisions
are detected and acted upon. For problems (11) and (1) the collision detection is exact
to small errors introduced through trajectory approximation.

As a byproduct of our studies we give a thorough literature survey for problem (1) a
describe a small modification of the algorithm of Lubachevsky [14] andiMairal. [4] for
(1), which forms the basis of our studies of problems (II) and (lll). Furthermore, we give
detailed analysis of the complexity of the resulting algorithms for (I) and give a theoretic
derivation of the complexity and optimal choice of parameters, something which has b
lacking in the literature. This analysis rests on Boltzmann-like assumptions on parti
distributions and on an empirical observation about the behavior of the algorithm. Seve
authors, including Erpenbeck and Wood [2], Rapaport [3], and Lubachevsky [14], he
identified the correct parameter choices empirically or on heuristic grounds, so that
analysis simply gives firm theoretical foundation to a well-known algorithm for probler
(). Our analysis of algorithms for (1) uses ideas and results from statistical mechanics, :
was motivated by Kinet al.[10] who suggested, but did not carry through to its conclusion
this approach to the analysis. Our extension of the algorithm to problems (1) and (lll)
new. Numerical solution of (lll) involves solving a PDE which raises the additional issu
of numerical stabilityfor coupled particle-flow equations, and we investigate this importar
issue experimentally.

1. BILLIARDS

We begin by discussing the case when the particle motion in the absence of collision
simple and known in advance, sBy= 0, so the particles move in straight lines with constan
velocities between collisions, & = —ge,, €, aunitvertical vector, for particles movingin
a uniform gravitational field. In Section 1.1 we give a historical review of the developme
of algorithms for such simulations, followed by a description of the details involved i
the most efficient algorithm in Section 1.2. In Section 1.3 we analyze the complexity
the algorithm, and give the optimal parameter choice, supported by experimental res
in Section 1.4. Our analysis of the billiards problem forms the basis for studying the mc
complex problems (1) and (lll) in Sections 2 and 3, and proves to be useful even thot
the assumptions made cannot be justified for those problems.

1.1. Historical Review

To simulate the system (1) with nonzekq the natural approach for many trained in
numerical methods is to discretize time, and integrate the system over a tintet séyen,
atthe end of each time step, check whether any two particle are overlapping, and if so, ass
they have collided and take appropriate measures to deal with the collision. This apprc
was indeed explored by Sundaram and Collins [7]. It has, however, numerous problems.
example, during a time step, a particle pair may collide, overlap, and then separate ac
leaving no evidence of the collision at the end of the time step. To capture most collision
shorttime step is therefore needed, which increases the computational cost. Another prol
is what to do in case of a collision; after dealing with all the overlapping particles, one wot
like to ensure that no two new particles are overlapping. But eliminating the overlap o
particle pairin some way might result in overlap between one of the two particles and anot
particle in the system. This appears therefore not to be the correct approach to the prob

A different approach is suggested by considering first the ¢ase0, in which the
particles move in straight lines between collisions. In that case, we can actually comg

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 769

the exact time of a collision between any two particles. Consider two spherical partic
whose positions at timeare given by

X1(t) =aqr+vit, and xp(t) = gz + vat,

whereq; andg, € R? are their positions at time 0, and andv, € RY are their constant
velocities. Furthermore, denote their radii hyandr,, respectively. They will collide at
timetc if and only if the distance between their centers equals the sum of their radii, i.e.
[IX1(te) — X2(te) || = r1 + ro. Now square both sides and &ty = vy — v, AX =1 — Q2
ando =r; +rpto get

[Av]I%tZ + 2(Av - AX)te + | AX||? = o2, @)

Hence the collision tim& is simply a root of a quadratic. If the particles are not overlapping
at time 0, and this equation has two solutions, then the smaller solution is the time of tt
next collision. Otherwise, if the equation has no solution, the particles will not collide
they move along the same straight line with constant velocity indefinitely. Note that evel
the particles are moving in a uniform gravitational field, the formula for the collision tim
is the same since their relative motion is linear.

Simple Algorithm

This observation suggests the following algorithm to simulate the system (1) in t
billiards caseF = 0, or the uniform gravity casé = —ge,:

Step 1. Compute the time of the next collision in the systgm,
Step 2. Advance all particles in the system up to time
Step 3. Change the state of the two colliding particles.

Then repeat these three steps up to the required time. In simulation terminology, this a
rithm is termedevent driversince it advances the system from event, that is collision, t
event. Alder and Wainwright [1] were the first to describe an event driven computer si
ulation of hard spheres moving along straight lines between collisions, and their star
point was this simple algorithm.

In the applications we have in mind the number of partiatess often large, so a key
question regarding computational cost is how the computing time of an algorithm sce
with n. We will therefore discuss the complexity of all proposed algorithms eies. In
this section we will often give only a heuristic discussion of complexity, but give a detaile
analysis for the optimal algorithm in Section 1.3. We use the standard notation in analysi
algorithms [17, chap. 1], witlf (n) = O(g(n)) meaning that there exists a constant 0
such that for all large, f (n) < cg(n), with f(n) = Q2(g(n)) meaning that there exists a
constant > 0 such thatf (n) > cg(n) for all largen, and with f (n) = ®(g(n)) meaning
that f (n) = O(g(n)) and f () = Q2(g(n)).

From the outset we note that an event driven algorithm appears to need to perforr
least as many operations as the total number of collisign#) the simulated time interval
[0, T], so an optimal algorithm has complexi®/(n.).2

3 Indeed, if the ordered times at which collisions occur is a required output then, by embedding a sorting prok
within collision detection, itis possible to argue that, in many models of computation, the algorithm has comple;
Q(n.logn) [18].

770 SIGURGEIRSSON, STUART, AND WAN

To analyze the complexity of the simple algorithm above, note that tdfjimalthe first
step, one could compute the collision times for every particle pair in the system, us
Eqg. (2) for each pair, and select the minimum. This requires one calculation of a collisi
time for each particle pair, for a total afn — 1) /2 calculations. Each calculation involves
a few additiong3d — 2), subtractiong2d + 3) and multiplicationg3d + 3), one division,
and one square root, but as in customary in the analysis of algorithms, we ignore the ac
number and only analyze how the number scales wjtaccordingly we say that Step 1
takes® (n?) calculations. For Step 2 we change the state of each of fagticles so there
are®(n) calculations. Finally, in the third step we change the state of only two patrticle
requiring a constant number of calculations, independent denoted®(1). Therefore,
simulatingn. collisions with this algorithm takes on the order ®(n.n?) calculations;
clearly very far from the desired optimus(n.), and likely to put severe limitations on the
size of systems tractable for simulation.

This does not mean that this simple algorithm should not be used. For very small syste
sayn < 100, it is likely to perform better than any of our later suggestions, and given i
simplicity it might be the method of choice for even larger systems. For the applications
have in mind however, this algorithm is not an option.

Saving Collision Times—The Event Queue

Alder and Wainwright [1] studied this problem for molecular dynamics simulations. The
noted that most of the collision times computed in Step 1 on two consecutive iterations \
be the same. A single collision is not likely to affect collisions between distant particl
in the near future. Saving the computed collision times would result in drastic savings
computing time. Only collision times for the two particles involved in the collision need t
be recomputed and their old times discarded. This way, amky 3 particle pairsn — 1 for
one particle and — 2 for the other, need to be examined in Step 1, except when computi
the very first collision time, giving total cost é¥(n¢n), or so it seems.

This method, however, raises the important issue of how to maintain the list of the sa:
collision times, called thevent queueAfter each collision, we need to determine which
collision will occur next, in other words which particle pair has the smallest collision time
A simple way to carry this out is to store the computed collisions, i.e., which particle pair
involved and the time of collision, without any particular order, and search through the |
every time an event occurs. If alln — 1)/2 collision pairs are kept, this requir€n?)
calculations, which brings the complexity back ugtmcn?). This issue was not addressed
by Alder and Wainwright [1], but we return to it later as addressing it will clearly be a centr
ingredient in efficient algorithms.

The Cell Method

At this point we note that it seems wasteful to compute, in Step 1, future collision tim
for every single particle pair in the system; each particle will only participate in one collisic
before it changes its course and thereby renders all its previously computed collision tir
invalid. Since a particle is more likely to collide with another that is in its close vicinit)
than one that is far away, it is natural to consider only collisions between close particle:

Alder and Wainwright [1] suggested dividing up a cube containing all the particles intc
grid of small cubes, callecellsfrom now on, and assigning each particle to the unique ce

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 771

FIG. 1. The black particle only computes collision times with particles in the-® shaded cells.

containing its center. Then collisions are only considered between particles in neighbo

cells of the grid (see Fig. 1), at the expense of keeping track of which cell a particle is

That s, in addition to collisions, transfers between cells must be detected for each part
This changes Step 1 in the algorithm to

Step 1. Compute the time of the next event, meaning a collision or a transfer, in tl
system{n,
and Step 3to

Step 3. Handle the event; that is change the state of the two particles in the event ¢
collision, or update the cell structure in the event of a transfer.

This detection of transfers ensures that no collisions are overlooked; two colliding partic
must be in neighboring cells at the moment they collide, and once a patrticle changes
the algorithm examines all particles in the neighboring cells for possible collisions.

If the number of cells isn? (whered is the dimension of the space), the number of pair:
examined in Step 1 is reduced to 2n/m? on the average, assuming the particles ar
uniformly distributed. The finer the grid, the fewer pairs need to be examined per collisit
however, refining the grid increases the number of transfers to be detected and handled.
suggests that there is an optimal choice of the cell size, and in Section 1.3 we find, ur
mild statistical assumptions, how that optimal cell size scales wiince only particles
in neighbouring cells are considered for collisions, the side length of a cell,

D
L=—
m

: ®)

whereD is the side length of a cube containing all the particles, can be no smaller than
diameter of the largest particle in the system; see Fig. 2.

Alder and Wainwright [1] did not implement this scheme, as it requires quite a lot
computer memory which was a scarce resource at the time. Furthermore, for the siz
systems they were simulating, less than 500 particles, it is not likely to have had a m:
impact on performance. However, for the size of problems accessible on today’s compt
it is a central to efficient algorithms.

We have now identified the main ingredients of the final algorithm, and what follows
mostly fine tuning. The three primary data structures to be maintained are

772 SIGURGEIRSSON, STUART, AND WAN

FIG. 2. A cell can be no smaller than the diameter of a particle; 2r. LEFT: L = 2r; the two particles do
not belong to adjacent cells, and are not touching. Right: 2r ; the two particles do not belong to adjacent cells,
but are overlapping.

The Particle Information which consists of the positiorx, and velocity,v, of each
particle, along with any other information needed, such as its radiirscase of particles
of different sizes.

The Event Queuewhich is a collection of events, each of which has an eventtime and tl
information necessary to handle (or carry out) the event, such as the two particles invol
in a collision, or the cell a particle will transfer to.

The Cell Structure which is a collection of cells, each of which has a list of the particle:
belonging to it.

The algorithms we discuss differ in how the event queue is implemented and how m:
events are put in it, and to a lesser extent how the cells are stored and utilized. Below
identify a good implementation of the queue that allows the operations needed to be car
out in as few operations as possible.

Delaying the Update

So far we have introduced two schemes to reduce the computations done in Step
the cell size can be chosen so that only a constant number of particles are examine
collisions, and if the event queue can be implemented efficiently, it seems that the cos
Step 1 can be made largely independent,adnd we make this precise later. On the othel
hand, the innocent looking Step 2 still cosign) calculations, and has thus become the
bottleneck. Erpenbeck and Wood [2] noted that this step only needs to be carried out
the particles involved in the event, reducing the cost of Step 2 to constant per event. L
importantly, since transfers do not change the path of a particle, there is no need to ¢
this step out in case of a transfer. This means that the posxtj@amd velocityy, stored for
a particle now stands for its position and velocity at the time of its last collision (as oppos
to the time of the last event in the system). For each particle we therefore need to k
additionally the time of its last collision,. Since the particle motion between collisions is
linear, we can obtain the position of a particle at any ttnas simplyx + (t — tc)v.

Implementing the Event Queue

We now turn to the one remaining issue of maintaining the event queue set up if.Stey
Neither Alder and Wainwright [1] nor Erpenbeck and Wood [2] mentioned how to do thi
At each event, we need to determine which event occurs next, so the data structure

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 773

the events should allow extracting the next event, i.e., the one with the smallest time,
inserting and removing events as the simulation proceeds. That is, we need an effic
implementation of a priority queue. Rapaport [3] suggested using a binary search |
[17, chap. 13] to implement the queue, allowing the aforementioned operations to comp
in ®(logs) steps on average for a queue of sizeassuming that the tree is randomly
built; such randomness has been observed empirically for MD hard sphere simulations
Alternatively, one carensurethat the operations have complexit(log, s) by using a
balanced tree, such as a red black tree [17, chap. 14], as suggested bya&ifh0, 11].
Using an efficient implementation of the event queue along with the cell structu
therefore makes the cost of StepQl(logn) for each event. We saw that, by delaying
the update, Step 2 involves a constant number of operations per event, and Step 3
required a fixed number of operations to begin with. We have thus managed to bring
total cost of the algorithm down t®(ne, logn), wheren, is the total number of events
over the course of the simulation. Naw > n¢, asne includes transfers, so we cannot
yet conclude that this algorithm will have complex@(n; logn), unless the cell size can
be chosen to make, grow no faster tham; asymptotically. In Section 1.3 we will make
the complexity analysis more systematic and rigorous, and see how to achieve this.

One Event per Particle

Our analysis has conformed to the standard practice of ignoring constants. In practice
constants do effect the running time of the algorithm, so we finally describe one modificat
that does not affect the asymptotic complexity, but greatly reduces the constant.

In the algorithm described so far, several collisions and one transfer are schedulec
particle. Lubachevsky [13] noted that all but one or two of these will eventually be remov
from the event queue since once a particle is involved in a collision, all subsequent compi
events for that particle become invalid. It therefore seems appropriate to only keep one e
per particle, and this is what Lubachevsky [13] does.

It is true that a particle will not necessarily engage in the first collision foreseeable
the current time, since its proposed partner might earlier engage in a collision with a tt
party. Some savings in computing time might therefore result from storing more than
event per particle. However, scheduling only one event per particle results in a sme
event queue, and allows simpler data structures to be used efficiently for the event qu
such as a heap [17, chap. 7] or a complete binary tree [17, chap. 5]. Heaps, which
binary trees with the property that every node has a smaller value than its children,
known to be excellent implementations of priority queues, and so it is our choice of d.
structure for the event queue. In addition to being very efficient for priority queues, he:
are also incredibly simple, and can be implemented efficiently in less than 30 lines
code.

Another scheme, suggested by Mueat al.[4], is not to discard all but the next foreseeable
event for a given particle, but store them all at the nodes of an event queue, with the qt
ordered by the next foreseeable event for the particle. This also fixes the size of the e
gueue, buteach node inthe event queue now consists of a list of events. Through experin
Marin et al. [4] find that this yields a significant improvement in efficiency.

We adopt a slightly different scheme, keeping only the next transfer and the next collis
for every particle, which gives improvements in efficiency similar to those in [4]. Since
transfer doesn’t change the path of a particle, a previously computed collision still reme

774 SIGURGEIRSSON, STUART, AND WAN

FIG. 3. The black particle just transferred from cell A to B and only computes collisions with particle
in the new, dark-shaded neighboring cells, since it has previously computed collisions with the particles in
light-shaded cells.

valid after a transfer. Keeping the next foreseeable collision along with the transfer redu
the number of collision checks in the event of a transfer by a factoff€nce the particle
involved does not need to recompute collision times with particles in all the neighbori
cells, but only the new neighboring cells, as illustrated in Fig. 3. Once a particle is involv
in a collision on the other hand, all subsequent events become invalid, so keeping more
one collision is not likely to improve the efficiency.

1.2. The Algorithm

The algorithm developed above is based on the simple algorithm presented at the ou
with several ways of reducing the computations done at each step. We now describe
details of the ideas used to reduce the cost. All but one of these schemes were prese
in [13]; our main contribution is to the analysis of the algorithm and its extensions to t
particle-field problems in subsequent sections.

The algorithm maintains three data structures. Much of the last section was devote
identifying what information should be kept in each and how it should be implemented.
summarize:

The Particle Information is an array with one element for each particle in the systern
with each element consisting of the position, velocity, and the time of the last collision
the corresponding particle.

The Event Queueis a heap containing one node for each particle in the system. Ea
node stores information on both (1) the next foreseeable collision of the correspond
particle, that is the collision time and some identification of the other particle involved, a
(2) the next foreseeable transfer, that is the transfer time and some identification of the
cells. The nodes are ordered {ayed by the smaller of the two event times. There is a
one-to-one correspondence between the events in the queue and the particles in the sy
Each collision is therefore represented twice in the event queue, once for each par
involved in the collision, and which event is handled first is arbitrary.

The Cell Structure is an array with one element for each cell, each element containing
list of particle indices which enumerate the particles belonging to that cell. These lists ¢
be implemented as linked lists or arrays.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 775

(O O

FIG. 4. Initially, the black particle only needs to check for collisions with particles in the shaded cells.

To start the simulation we have to initialize these three data structures. The part
information is initialized with the initial positions and velocities, and the last collision tim
set to zero. To initialize the cell structure, we compute the cell location of each parti
and insert it into the appropriate list in the cell array. To set up the event queue, we n
to check every particle pair in adjacent cells for collisions and compute a transfer time
every particle. Checking particles in all surrounding cells of a given particle for a collisic
would result in double checking every pair, so we only have to check particles in half
the surrounding cells (see Fig. 4), and only a part of the particles in the same cell. Wi
a transfer time and a collision time has been computed for each particle, we create a |
from then events.

Then we perform the following steps until we reach the desired final time:

S1. Find the next event in the event queue.

S2. Handle the event.

S3. Compute the next transfer time for the particle corresponding to the event.
S4. Compute the next collision time with particles in appropriate neighboring cells.
S5. Adjust the position of the event and its new partner’s event in the event queue.
S6. Return to Step S1.

The smallest element of a heap is always at the top, so Step S1 consists simply of loo
at the top element of the heap.

If the event is a transfer, Step S2 consists of moving the particle between cells, the
removing the particle from the list of one cell, and adding it to the list of another. For
collision, it consists of changing the states of the two particles involved in the collisic
for example as described below for an elastic collision. Furthermore, to avoid changing
states of the particles again when the partner gets to handle the event, we change the col
event of the partner to a special event, which we calieck This event, when handled, has
no effect on the particlstatebut, as for collisions, forces the particle to recompute its nex
collision time with particles in all neighboring cells. Thus, handling a check event consi:
of nothing at all, but it will trigger the execution of Steps S3—-S5. We will also find a furthe
use for this event below. We now have three types of events: collisions, transfers, and che

In an elastic collision the particles involved change the magnitude of their momel
along the line of contact in such a way that momentum and energy are conserved. If wi

776 SIGURGEIRSSON, STUART, AND WAN

P = miX(t.—) andpt = m%; (tc+) be the momentum of particieimmediately before
and after a collision at timg, then an elastic collision between particles 1 and 2 is suc
that

pi =p; +ad, and p3 =p;, —ad,

where

= 2mi(py -d) —ma(py - d))
my + my

is the net exchange of momentum between the particles, and

_ Xl(tc) - X2(tc)
X1 (tc) — Xa(te) ||

is a unit vector in the direction of contact.

Computing a transfer event in Step S3 consists of finding the intersection of a line w
d hyper-planes, which amounts to solviddinear equations, and selecting the smallest.

In Step S4, computing collision times involves solving the quadratic equation (2). T
word appropriaterefers to the fact that which cells to consider depends on the type of t
event; see Fig. 1 for a collision and a check, and Fig. 3 for a transfer. For each compt
collision time, the algorithm compares it to (1) the smallest time computed for the partic
involved so far, and (2) the collision time of the partner particle, and keeps it only if
is smaller than both. When all collision times have been computed, the particle invol
notifies its newly found partner, if any, to adjust its event time. A subtle point is that a thi
party, the partner’s old partner, now has a collision time that is invalid. The easiest w
to deal with this complication is to change the third party’s collision event to the spec
check event described above, thereby cancelling the collision but still forcing the parti
to recheck for collisions at the time of the event. This operation does not affect the th
party’s location in the priority queue since its event time remains the same.

After Steps S3 and S4 the particle involved in the event has updated its event time
its position at the top of the event queue is incorrect, and has to be corrected in Step
Furthermore, if the particle involved in the event scheduled a new collision, it has notifi
its new partner who has in response changed its collision time, and so its position in
event queue is also invalid and needs to be repositioned. Both of these operations on h
are described in [17, chap. 7].

So far we have ignored the boundary conditions, and proper modifications have to
made to handle them. For elastic walls we add one more evem|lacollision, which
we check for in Step S4. Since a wall collision changes the path of a particle, we o
keep either a particle collision or a wall collision for each particle. For periodic bounda
conditions we modify the collision check routine to check for a collision with the neare
periodic image of each particle, and let the cells at opposite edges be adjaeerftig. 5.

In addition, each time we update the position of a particle we check whether the parti
has left the domain, and if so add the domain length to, or subtract it from, the appropri
coordinates.

4 For this to work, the number of cells)®, must be at least’3

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 777

O

O

O

FIG. 5. For periodic boundary conditions, the black particle needs to check for collisions with the near
periodic images of the particles in the shaded cells.

1.3. Complexity

Suppose we want to simulate a system pfarticles over a time period [T]. How does
the computing time of the algorithm increasanascreases? Ifiis large, this is clearly a key
guestion regarding computational cost. As we noted earlier, an optimal algorithm will h
cost scaling like the number of collisions. In this section we analyze in detail the complex
of the algorithm developed above, and derive the optimal choice of cell size. Our analy
is motivated by Kimet al. [10], who suggested using results from statistical mechanics
estimate the complexity, although they did not carry this program to its conclusion.

Obviously the behavior, and thereby the cost, of a collision detection algorithm will d
pend on the configuration of the particles in space and time. For the billiards case, statis
mechanics provides a set of assumptions aboustiisticsof the particle positions and
velocities over space and time which, while remaining unproven, are strongly supportec
empirical and theoretical grounds. We therefore start with a brief discussion of the relev
results from statistical mechanics which underpin our analysis.

The Maxwell-Boltzmann Distribution

Take Ax > 0 and Av > 0 small and define the number density of particles per un
volume f such thainf(x, v, t)(Ax)4(Av)? is the total number of particles in the cidbe
[x, x + Ax], and whose velocities lie in the cube p + Av] attimet. Asn gets largerf
becomes smoother, and we can think of approximating it with a continuous density. Alc
these lines, Boltzmann [19] treated a large collection of particles as a contfhanch,
showed that for any initial distributioffi (x, v, 0), f approaches in the course of time the
Maxwell-Boltzmann distribution

2
f(x,v)=C exp(—”v”),

SForx € rY andAx > 0, [x, X + AX] denotes the cube with lower left cornenatand side lengthax.
5 Boltzmann’s analysis applies to a wide class of interaction potentials for the particles, including the h
sphere potential.

778 SIGURGEIRSSON, STUART, AND WAN

fo
1.75 ~
1.50 -
1.25 -
1.00 -
0.75 A
0.50 -
0.25 1

<

-0.5 0.0 0.5

FIG.6. Equilibrium velocity distribution of a single particle in a hard sphere simulation (dots) and the Maxwe
distribution (solid).

whereC is a normalization constant, apds determined by the total energy of the particles
[20]. This means that no matter what the initial configuration of the particles is, if we loc
at the spatial and velocity distributions of the particles at a single instance in time, af
some transition period, we will find that

Al. The particle positions are independent and uniformly distributed over accessi
positions;

A2. The particle velocity components are independent and Gaussian with mean zero
variances?;

A3. The spatial and velocity distributions are independent of one another.

For the second conclusion, we used that

« (||v||2> H p(>
2/32 o 2/32
These results are obtained by treating the collection of particles as a continuum, anc
not true for any finiten. Nonetheless, for all practical purposes, the Maxwell-Boltzman
distribution is an excellent approximation for the particle distribution after a short timis if
large. Figure 6 shows the velocity distribution of a single particle in time over several millic
collisions, generated by running the algorithm described in Section 1.2with 000. Even
for this small number of particles, the agreement with the Gaussian prediction is extelle
For our analysis, we will therefore assume thais large and the particles have the
Maxwell-Boltzmann distribution at all times; that is, we take A1-A3 abowesasmptions
This includes the assumption that the initial configuration satisfies A1-A3, but since alm
any initial configuration will rapidly evolve to the Maxwell-Boltzmann distribution, this
assumptionis nottoo restrictive. Our analysisis accordingly average case analysis, avere
over initial conditions taken from the Maxwell-Boltzmann distribution. We expect howeve
and observe experimentally, that because of ergodicity, single realizations will give rise
similar complexity. Unfortunately these three simple assumptions do not suffice for bour

“To make the connection between the velocity distribution of a single particle over time and the veloc
distribution of the collection of particles at a particular instance in time, we are assuming ergodicity and indef
dence of different particles.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 779

on the expected complexity of the algorithm, and we will add a fourth assumption, A
below; we postpone its statement as it involves, contrary to assumptions A1-A3, sc
details of the algorithm.

Operation Count

We start by counting the number of operations in of each the Steps S1-S5, ignol
constants as before. We have informally been through most of this in Section 1.1, but |
we make the treatment more precise.

S1. A single operation.

S2. Constant number of operations in the event of a collision or a transfer, no opera
in the event of a check.

S3. Constant number of operations.

S4. Constant number of operations for each particle in the neighboring cells, for a tota
ns(i) — 1 operations, wherng(i) is the total number of particles, at the occurrence of thi
event (labelled), in the & cells surrounding and including the cell containing this event.

S5. At most logn operations.

The total number of operations over the course of the simulation is therefore

o(doa+ ns(i)+logn)). (4)

i eevents

The first term comes from Steps S1-S3 (getting the event, handling it, and compu
a transfer), the second from Step S4 (computing collisions), and the third from Step
(adjusting the positions in the event queue).

Average Number of Operations

The expression (4) depends on the number of events, and how the particles are distrik
throughout the domain as the events occur. We now compute its average under the stati
assumptions A1-A3. For a functiofiof the particle positions and velocities we denote by
EX the average, or expected value Yobver an ensemble of simulations obeying A1-A3.

Under assumption Al the expected number of particles in a cell at any fixed instan
time isngL9, whereny = n/DY is the particle number density, ahd= D/m is the side
length of a cell. Nowns(i) is the number of particles in thé 8ells surrounding the event
at the occurrence of eventwhich isnot a fixed instant in time. For instance, if the event
is a collision, we know thats(i) is at least two, namely the two colliding particles. In the
event of a transfer, we know thai(i) is at least one, namely the particle being transferrec
We are tempted to conclude that the expected valug @j is increased by no more than
two particles,

Eng(i) < 3%noL9 + 2.

However, in a region of high particle number density, collisions are more frequent thar
a region of low particle number density. Reversing the argument, we could argue that
occurrence of a collision in a region is, on average, an indicator of higher particle num
density; i.e., the expected number of particles in a cell at a colliflogi), is higher than

780 SIGURGEIRSSON, STUART, AND WAN

the expected number of particles in a cell at a fixed instant in tigle?, not only by the 2
particles involved in the collision but possibly by a factor.

Below we will see that we take the limit — +o0 in such a way that the total volume
fraction occupied by the particles is fixed? /DY = C, sor /D = Cn~Y4 (with a different
constant). In a cell of side length. we can fit at mos€ (L /r)¢ = CnyLY particles (with
a yet different constarit), which is therefore a firm upper bound on the number of particle
in a cell. In particular,

Ens(i) < CnoL®

for some constar€ > 3¢ independent ofi.
Using the law of iterated expectation, we get

E [Z Ng(i)}) []E [Z ns(i) | neH =K [Z E[ns(i) | ne]} :

since givem, the number of terms in the summation is fixed, and equaki®Now ng(i)
is independent of how many events there are in total,

E[ns(i) | ne] = Eng(i) < CnolL?,
SO
E {Z ns(i)} <E {Z CnoLd} — E[NeCnoL?] = CnyLYEne.

The other two terms in the sum in (4) are independemnt s the expected total number of
operations is

O((1+ noL? + logn)Ene). (5)

To continue we need to determine h&éin, depends om andL. Now ne = n¢ + N¢ + Ne
wheren, is the number of collisions); is the number of transfers, amgy is the number
of checks, so we proceed to determine the average value of each term.

Number of Collisions

Under assumptions A1-A3, arguments from statistical mechanics [21, pp. 461-471]
that for a dilute system of particles the average number of collisigfsn a time period
[0, T]is

Enc = E|lvi — vjllocnonT, (6)

whereng = n/DY is the particle number densitlyy|| is the Euclidean norm af, ||v||? =
Zid:l [v|? SOE| v — vj|l is the mean relative speed of two particles, apds a collision
cross section of two particles; we hawe= agr9-1, in particularo; = 2r for d = 2 and
oc = 4nr?ford = 3.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 781

I v dt

FIG. 7. Expected number of crosses over a plane.

Number of Transfers

To expressy; in terms ofn andL, first consider how many particles on average cross
plane perpendicular to one of the coordinate axes in a time interval of ldhgiparticle
with velocity v; perpendicular to the plafevill pass it if it is closer to it tharv; dt, and is
traveling in the right direction; see Fig. 7. Under assumptions A1-A3, the expected num
of particles passing the plane in tindeis thus|uvi| dtf(v;) dvingD9—1, where f (v;) dv;
is the density of particles with velocity; along the axis perpendicular to the plane, anc
noDY1|v; | dt is the number of particles in a slab of thicknégs dt.

Integrating ovew; andt then gives the total number of passe€ag | T n/D. The cells
can be thought of as composedmf= D/L planes in each dimension so multiplying by
m and summing oveir gives the expected total number of transfers as

Ene = Efv[anT/L, @)

where||v||; denotes the 1-norm af, ||v]|; = Zid:l [vil.

Number of Checks

To count the number of checksg, recall that we use them for two purposes. For the
first purpose, a check is always introduced at a collision. For the second, a check will
introduced in the event of a transfer or a collision if and only if the new partner had
scheduled collision. One might therefore be tempted to conclude that there is at most
check introduced in the event of a transfer and at most two at a collisiogy 30 2nc + n;.
However, the handling of a check might itself introduce another check, so no immedi
bound interms of the other two events is obvious. In fact, thisissue is raised in [22] and [

In practicengy is usually far less thanr + ng, typically ngh, =~ 1.1n., so we make in
addition to assumptions A1-A3 the following reasonable assumption:

A4. The expected number of checks is bounded by a conStantilependent afi, times
the expected number of transfers and collisidg,, < C(En; + Eny).

Since we are ignoring constants we can therefore conbing with En. + Eny, that is
drop it altogether.
Complexity

Combining the expressions (7) farand (6) fom; with (5) we get the average complexity
of the algorithm as

O((1 + logn 4+ ngLY)(Ene + Eny)) = O ((1 +logn + noL%) <acno + i)ﬂT n>, (8)

81n this paragraph the subscriptefers to a component of the velocity vector; everywhere elsiabels the
velocity of particlei .

782 SIGURGEIRSSON, STUART, AND WAN

where we have replacétl|v; — v; || andE||v||1 by g for simplicity, for if the particles have
the Maxwell-Boltzmann velocity distribution, then

Ellv —v,-u=//||v1—vzuf(vl)fwz)dvldvzzﬁEuvn=¢2dﬁ, and

1 d
Efvlls = / lolls f(v) dv = \/T_ﬂ]Ellvll =1\ 5P

Choice of Units

For hard sphere molecular dynamics it is customary to choose the units of mass, len
and time such that the unit mass is the mass of a single particle, the unitlength is the diar
of a particleg = 2r, and the unit energy i582. Then the unit time is-/8. There are only
two free parameters in this system, and with the units chosen in this way, it is conveni
to choose the particle number density and the number of particles, In these units, we
can therefore write (8) as

O((1+ logn + noLY) (no + I%)Tn).

These units are natural for hard sphere molecular dynamics, but we will study the m
general case of particles moving in a velocity field. For that problem, the more natu
length unit is the length scale of the velocity field, typically the size of the doniain,
The natural time scale is such that the unit velocity is a typical field velocity. Usually tt
velocity of a single particle will be close to the field velocity, and@sts a natural unit
velocity. With this choice of length scalg = n, son andng are not different parameters.
For our parameters we takeand the volume fraction of the particles= no,, wheres, =
bgr @ is the volume of a single particle; thas = 7r?in 2D, o, = %’r3 in 3D. Thenr =
(p/nby)Y? and thereforer, = ag(p/nby)* 4 = Cpt-1/4n¥d-1 5o we can rewrite (8) as

1
O <(1+ logn + nL%) (pll/dnl/d + L) Tn>. (9)

We take the limiln — oo in such a way thag, D, andp are fixed.
In what follows we shall work in these units, and so we note from (6) that the total numk
of collisions is

Ne = plfl/dnlJrl/dT. (10)

Each collision involves two particles, so each particle hag/ 2 collisions on average
during the time interval [OT]. The average time between successive collisions of a sing
particle, themean collision timgis therefore

Tn 1,
— _ _ = /d—ln—l/d. 11
Tc 2ne 2/0 (11)
Optimal Cell Size

The complexity (9) is, as expected, dependent on the choice of the cdll.sdzethe cell
size is decreased the second factor increases, which reflects the fact that more transfers

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 783

to be detected, but the first factor decreases, which reflects the fact that fewer particle |
need to be examined for collisions at each event. A natural question is therefore whe
the cell size can be chosen to make the complexity closg.to

Balancing the two terms 1 amulL® in the first factor gives ALY ~ n, and balancing
the two terms in the second factor gives the same scaling. With this cholcetloé first
factor in (9) is®(logn), the second factor i®(n%/?), and the product of the three factors
is ®(n**tYdlogn) = ©(nclogn). To summarize, we have the following:

Conclusion

Under the assumptions A1-A4, and for a fixed volume density and kinetic energy,
average case complexity of the algorithmgn.logn) if the total number of cells is
proportional to the number of particles, thatié = @ (n).

Thus, with this choice of cell size scaling withthe algorithm is optimal, since the cost
would appear to b& (nclogn) in reasonable models of computation.

1.4. Experiments

The analysis in the preceding section is based on statistical assumptions which are
proven for any finiten although, as mentioned, they are widely accepted in the statistic
physics literature. In this section we validate the analysis through a variety of experime
with the algorithm. All the experiments are performed at fixed volume density and kine
energy a1 increases.

2D Billiards

We run the algorithm in two dimensions withvarying from 5,000 to 100,000 in incre-
ments of 5,000, while keeping the volume densityfixed at 15%.

We try different values o = 1/L for eachn in order to explore how the running time
varies withm. In Fig. 8 (left) we plot the running time versus for n = 5000. There is
clearly a minimum aroundh = 90. We do this for each value ofand find the value of
m that gives the least running time,, and plot in Fig. 8 (right) the result. Regression
on logm = loga + blogn givesa = 0.7476 and = 0.5620, quite close to the theoretical
predictionm ~ /n.

Computing time (sec) opt
8 1 450
7 350
6 1 250 -
5 1 . 150 -
| Mo m n
4 L} L) II) 1 L) 50 L) 1 T 1 3
30 50 70 90 110 130 15 0 20 40 60 80 10

FIG. 8. 2D billiards, p = 15%. Left: Computing time in seconds vs.for n = 5000. Right:mg, vs. n in
thousands (dots) and the fitted cuane®, with a = 0.7476 ando = 0.5620 (solid); this compares well with the
predicted valud = 3.

784 SIGURGEIRSSON, STUART, AND WAN

Computing time (hours) Computing time (hours)
L] [
5 1 . 5 hd
L] [
4 4] 4 1 .
L] ®
3 - o’ 3 o’
L L]
2 o’ 2 - o
L] L
[) L)

14 .o. 11 .o. 3
0 ... T T T e 0 "‘ T = log(n 10)

x1098

T T Ll] 3 Ll
0 25 50 75 100 125 0 50 100 150 200 250

FIG. 9. 2D billiards, p = 15%. Left: Computing time in hours vg, in millions. Right: Computing time in
hours vsn. logn with n. in millions andn in thousands. The computing time appears linear.ilogn, and the
best fit of the forma(n, logn)® hasa = 0.02 andb = 1.0017.

In Fig. 9 we show how the computing time varies with(left) when the optimal cell size
is used. It appears slightly super linear, and Fig. 9 (right) shows the computing time ver
nclogn and it appears to be perfectly linear. Indeed, fitting a curve of the &gnplog n)®
givesb = 1.0017.

3D Billiards

We repeat the preceding experiment in three dimensions ot 5% as before. Fig. 10
left shows how the running time varies with= 1/L for n = 50000. It appears monotone
in m. The minimum is atn = 55, in which case the cell sizeequals the particle diameter.
The algorithm wants to use smaller cells, but the restrictior A (see Fig. 2) forbids that.
This is a result of the high particle density. The modification suggested byeKah [10,
11], that is to check only particles in the same cell for collisions and allowing a particle
belong to multiple cells, could slightly improve the efficiency of the algorithm in this cas
The power law fit oin to an® givesb = 0.3382, which is very close to the predictiénbut
in this case it is simply due to the fact thrat~ Fl ~ . In. From Fig. 11 we see that the cost
is still near linear im. logn, as is confirmed by regression; fitting the cosat@. logn)®
givesa = 0.6488 andb = 1.0488.

Computing time (sec) Mopt .
50 4 60 - °
(4
50 4
40 -
40 A
30 A 30 -
m n
20 L) L) Ll L) 20 T T T T 3
30 35 40 45 50 0 20 40 60 80 x10

FIG. 10. 3D billiards,p = 15%. Left: Computing time in seconds vs.for n = 50, 000. Right:mqy vs.n in
thousands (dots) and the fitted cueue®, with a = 0.3406 andb = 0.3382 (solid); this compares favorably with
the predictiorb = 1.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS

Computing time (min)

785

Computing time (min)

12 A . 12 A .
[] []
10 o* 10 o *
[]
8 4 8 A .
[] L
6 -) ¢ 6 - '3 ®
[] L J
4- . 4- .
[[J
2 1 o? 9 4 o®
o o0’ e o o° neclog(n - 1073)
0 05 10 15 20 25 3.0 35 x108 0 2 4 6 8 10 12 14 16 x109

FIG. 11. 3D billiards,p = 15%. Left: Computing time in minutes vs, in millions. Right: Computing time
in minutes vsn, logn. The best fit of the forna(n. logn)® hasa = 0.6488 ando = 1.0488.

To further test our conclusions from Section 1.3, we redo the experiment in 3D w
lower density,0 = 1%. Figure 12 (left) shows how the running time varies with the cel
size for this lower density. There is a clear minimum aromg ~ 50, and repeating this
for different number of particles and recording for eacthe optimalm results in the plot
in Fig. 12 (right).

Using the optimal cell size we plot in Fig. 13 the cost of the algorithm vers(ieft) and
n¢ logn (right). Again it appears to be linear im logn, and regression gives an exponent
very close to 1a = 2.5322 ancb = 1.0372.

It is interesting to compare our algorithm to the state of the art at the time of the earli
algorithm. Alder and Wainwright in 1959 [1] report that for a 500-particle system, the
algorithm running on an IBM 704 calculator could handle 500 collisions per hour. Fot
5000 particle system, the current algorithm running on a Pentium Il PC handles ab
60 million collisions per hour, which is around 16,000 collisions per second.

2. PARTICLE LADEN FLOW

In principle, the algorithm described in Section 1.2 can be used to simulate any sys
of particles whose trajectories, in the absence of interaction with other particles, are kn

Computing time (sec)

70 1 60
60 50
50 1 40 -
40 A | 30 A
I Mop m n
30 I| 1 T Ll 1 20 T 1 T T 3
30 50 70 90 110 130 0 20 40 60 80 10

FIG. 12. 3D billiards, p = 1%. Left: Computing time in seconds v&.for n = 50,000. Right:mgy vs.nin
thousands (dots) and the fitted cueue®, with a = 0.7626 andb = 0.3904 (solid); the predicted valuelis= %

786 SIGURGEIRSSON, STUART, AND WAN

Computing time (min) Computing time (min)

18 - ® 18 A *
[] ®
15 A R ° 15 A N *
12 o 12 - .
9 1 o’ 9 1 o’
L) []
6 - o' 6 1 o’
. [] . L]
3 1 o® . 3 1 o® | 1073
o e c 0 o® ne log(n)
0 025 050 0.75 1.00 1.25 *°° 0 1 2 3 4 5 ¢ *°

FIG. 13. 3D billiards, p = 1%. Left: Computing time in minutes vg, in millions. Right: Computing time
in minutes vsn. logn. The best fit of the forna(n. logn)® hasa = 2.5322 andb = 1.0372.

in advance. All that is required is a way of computing the next collision time between a
pair of particles, assuming they do not collide with other particles. Our aim however is
handle the more complicated particle trajectories of fluid suspensions, where the parti
are immersed in a fluid, allowing for interchange of momentum and energy between
particles and the fluid. In such systems, the particle motion affects the surrounding flt
so the trajectories cannot be integrated independently indefinitely, even in the absenc
collisions. A simpler situation arises when only the fluid affects the immersed particles, &
not vice versa, often termed particle laden flow, which is the object of study in this sectic

A commonly used model for the effect of the fluid on the immersed particles is Stoke:
law [24], and nonlinear corrections of it [25, pp. 16]. This law states that the force exert
by a fluid on an immersed particle is proportional to the relative velocity of the field and tl
particle, the radius of the particle, and the fluid viscosity. In dimensionless form, Stoke
law can be written

TX(t) = u(x(t), t) — X(1), (12)

wherer o« r” isthe so-called particle time-constapt= 2in 3D [24, p. 229] angt = 2 with
log-correctionin 2D [24, p. 246]. When, in Section 2.3, we do experiments we chroesk

in 2D. (We are primarily concerned with the complexity of the algorithm when applied 1
nontrivial particle trajectories, so the experiments will still give useful information, despi
nonphysical choice of exponenpt) Furthermore, we will take the limit — oo in such a
way that the particle volume densiy, is fixed, sar %

In particle laden flow, even though the particle trajectories in the absence of collisions
in principle known, finding the next collision time of two particles whose trajectories al
given by a differential equation is in general expensive computationally. In this section,
employ the algorithm from Section 1 on short incremental time intervals in which we ¢
accurately approximate the particle motion (piecewise) linearly. Such an algorithmis, in e
case, forced upon us for the problems in Section 3 where the velocity field depends on
particles. The modified algorithmis detailed in Section 2.1. We analyze the complexity of
modified algorithm in Section 2.2, but we emphasize that our statistical assumptions are
from being justifiable in this more general setting. However, we perform numerical expe
ments in Section 2.3 to test our conclusions and find that the statistical assumptions non
less lead to useful predictions. We find that, for driven flow problems, the sealingn/¢
is optimal whenever the number of collisions grows witht least as fast as in billiards.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 787

2.1. The Algorithm

Given the developments in Section 1, a natural way to simulate (1)fiven by (12),
is to apply the billiards algorithm, S1-S6, on short time intervals. That is, introduce a til
stepAt, assume that the particle motion is linear, i.e., the particles move in straight lir
with constant velocities, over each time step up to a collision, and apply the algorithm
the linear paths. If a particle pair collides during a time step, then in Stept&frate(as
opposed to simply advance as in billiards) the paths of the two particles involved in
collisions up to that time, and then handle the collision. At the end of the time step, integr
all the particle paths from the time of their last collision, if any, or from the beginning c
the time step if none. This work if care is taken in two respects.

Consistency of the Numerical Integrator and the Interpolation

First, the numerical integrator and the interpolation for the collision detection have
be consistent,meaning that applying the integrator on a shorter time step #ttawill
give thesameparticle position as the interpolation employed for the collision detectiol
Otherwise, the particle positions at the time of collision, as computed by the numeri
integrator, might be such that the particles are overlapping, which will cause difficulties
the collision detection algorithm. For example, for the quadratic formula (2) to correct
predict when two particles ateuching the integrator used has to be consistent with the
assumption that the motion is linear within a time step. In other words, it has to be linea
At for the position.

False Predictions

Secondly, even though two particles aweiching they will not necessargollide in the
next instant; only if their velocities are such that they are approaching each other will tt
collide; see Fig. 14. Thus, before handling the collision, we must check that the partic
are indeed colliding. If they are, we handle it in the usual manner, but otherwise ignore

This issue is not to be confused with the fact that a numerical integrator will not ¢
the particle paths correct, and thereby give “false collisions.” The only way to get no st
false collisions is by computing the true trajectories of the particles exactly. However, if \
assume that the motiaglinear over each time step up to a collision, the quadratic formul
for (2) will give false predictions for collisions, as indicated in Fig. 14, which should b
dealt with as described above.

We reiterate that numerical errors introduced by the integrator will inevitably cau
collisions to be added or missed. But apart from such errors, our algorithm does not r
(or add) a collision, no matter how large a time step or small cells are used, providec
course that the cell size is larger than a particle diameter. The algorithm is therefore “ex:
in this sense; the detection of transfers ensures that particles that come close to each
at any time are checked for a possible collision.

Numerical Integrator

We use linear interpolation in a form useful when the particle time constansmall,
and Eq. (12) becomes stiff. The consistency requirement makes it difficult to use a ft

9We are not using the term consistency in the standard sense applied to finite difference schemes.

788 SIGURGEIRSSON, STUART, AND WAN

k141 k2+1
U1 Uy
k1 ko
1 Vs

FIG. 14. False prediction for a collision between two particles moving in a velocity field. At the start o
the time step the two particles have velociﬁé% andv'z‘z. Based on constant velocities, the algorithm predicts a
collision within the next time step. Integrating the particles toward the collision time reveals that they are inde
touchingbut, because of the effect of the velocity field, their velocities should be changed in such a way that t
are notcolliding.

implicit integrator; to handle this stiffness we use limearly implicit integrator,

XKL = xK 4 Atok, (13)

At
Uk+1 — Uk + 7(U(Xk+1, tk+1) _ Uk+1). (14)
T

Sinceu is considered given in this section, this meaxtst, vkt1) is uniquely determined
from (xX, v¥) for any time stepAt > 0. This scheme predicts position linearAn and is
hence consistent with the collision detection formula (2).

Quadratic Interpolation

Alternatively, we could use an integrator that is quadratiairfor the particle positions.
This approach has been used for molecular dynamics simulations with mixed hard-core
soft potentials [26]. An argument similar to the one that lead to Eqg. (2) then gives that
next time any two particles are touching is the smallest positive root of a quartic. In gene
we still get false predictions, unless a specific numerical integrator is used. In particu
the integrator

1
XK1 — XK 4 Atk + éAtzak,

WKL = K 4 Atak,

1
whereak = ;(u(xk,) — k),

will eliminate the false predictions altogether. The reason is that this scheme amot
to assuming constant acceleration within a time step, for which the quartic formula w
correctly predict not only when two particles are touching, but also when they are «
lliding.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 789

Time Step Initialization

Applying the billiards algorithm on small time steps means that we potentially have to
up the data structures at the beginning of every time step instead of just at the beginnir
the simulation as in the billiards case; thatésyoften if the time step is small. The particle
information is “initialized” by integrating the path of each particle from the time of its las
collision or the beginning of the time step as we suggested initially. The cell structure
updated every time there is a transfer so at the end of a time step it has correct informe
on which cells the particles belong to and hence does not require initializing. The ev
queue, on the other hand, contains no useful information at all at the end of a time step,
will therefore need to be set up again at the beginning of each time step. The set-up
of the event queue, which we deliberately ignored in the billiards case, will therefore er
our complexity analysis.

Piecewise Linear Paths

To avoid incurring this set-up cost at every time step we could, instead of applying 1
collision detection algorithm over a single time step, integrate the particle paths over a f
sayk, time steps, store the computed trajectories, and apply the algorithm to the piece\
linear paths. We can then use Eq. (2) on each piece. It is then natural to ask how far sh
we integrate in time, that is how large sholiidbe chosen? Largdr means less frequent
set-up of the event queue. However, once a particle is involved in a collision its previou
computed path becomes invalid, so integrating too far ahead in time is clearly bounc
waste computational time. This suggests that there is an opkifimalwhich the running
time of the algorithm is the least, and we will indeed see, theoretically in Section 2.2 ¢
experimentally in Section 2.3 that, if the time step is considerably smaller than the m
collision time, there is an optimé&l > 1.

This algorithm is a bit more complicated to implement than applying the collision dete
tion at every time step, since each particle has to keep an array of states instead of a s
state. Furthermore, this idea is not easily applicable to the more general case of cou
particle-fluid problems discussed in Section 3, so we focus primarily on the original schel
that is withk = 1.

Previous Work

Sundaram and Collins [7] describe a similar approach they used to collect collis
statistics in particle-laden turbulent flow. As described above, they discretize the trajec
of the particles and assume linear motion within a time step. They also employ a «
structure as described above, but instead of detecting transfers between celisstimag
a bound on the velocity of the particlaeg,axAt < L /2, which ensures that only particles in
adjacent cells can possibly collide within a time step. This assumption cannot be justi
a priori.

They also report on their experience with using Verlet lists [27], and “overlap dete
tion” instead of collision detection. Verlet lists are prominent in soft sphere simulatior
in which the particles interact through a smooth potential, for example the Lennard—Jo
potential [27]. Each particle keeps a list of its nearest neighbors, which is updated e\
few time steps. When used for hard sphere simulations, a bound on the velocity of e
particle is needed. Sundaram and Collins [7] conclude that Verlet lists are less effici

790 SIGURGEIRSSON, STUART, AND WAN

than the cell method they used, and that overlap detection is in most cases not sufficie
accurate.

It should be noted that to guarantee the algorithm of Sundaram and Collins [7] accounts
all collisions, even in the billiards case, an extremely short time step may be needed. Fol
billiard problem, as an example, the only known a priori upper bound on the particle veloc
is when all the kinetic energy is contained in a single particle. That s, if the average parti
speed i3, thenv? , = nB2 and hence the method of Sundaram and Collins [7] require
At < L/(28./n). For billiards, the mean free collision time is proportionahtd’?, so if
d > 2, the maximum time step to guarantee not missing collisions in an algorithm withc
transfer detection is an order of magnitude smaller than the mean free collision time.

Detecting transfers as well as collisions, which is not done in the Sundaram and Collins
approach, fixes this problem without a major increase in computational cost. Furtherms
since the restrictiomnxAt < L/2 then no longer applies, it allows the use of smaller cell:
which also potentially reduces the cost.

2.2. Complexity

We now analyze the complexity of this modified algorithm. We assume that the statisti
hypotheses A1-A4 we used in the billiards case remain true. This assumption often f
but we shall see that the theory does have useful predictive capabilities.

First consider applying the collision detection over a single time step. The operati
count (4) from Section 1.3 then applies to each time step, where the sum is now over ev
in the time interval{, t + At], and with the additional task of setting up the event queue &
the beginning of every time step. The number of operations required for this setup task

n
@ (Z(l +ng(@i)) +nlog n) . (15)
i=1

Here, similar tang(i) in Section 1.3n%(i) is the number of particles in theq3- 1)/2 cells
surrounding and including the cell partidlas in, which are shaded in Fig. 4. The term
nlogn is the cost of setting up a heapmglements.

Under assumption Al in Section 1.3, namely that the particles are uniformly distribut
throughout the domain at each instant in time, the average of (15) is

O((1+ noLYn + nlogn), (16)

whereL is the side length of a celhy = n/DY is the particle number density, arl is
the side length of a cube containing all the particlesnglo® is the average number of
particles per cell. We do not expect the particles to be uniformly distributed in this ma
general setting, but anticipate though that the average number of particles per cell wil
proportional tongL%. The average of (4) is still (5), whein, is the expected number of
events in a time interval of lengtht.

In addition, atthe beginning of each time step we need to integrate the path of each part
costing® (n) operations. Since this term is already included in the above expression,
can safely ignore it.

Adding (16) and (5) we get the cost of each time step as

O((1 + logn + noLY[Ene + n]), (17)

where nowEn, is the expected number of events in a time interval of lergjth

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 791

In Section 1.3 we used assumptions A1-A3 to witga andEn; in terms ofn and
m and assumption A4 to bouridn:,. These assumptions are clearly not justified in thic
more general setting. We anticipate however that the total number of transfers will still
proportional toBmnT, that is given by Eq. (7); this is born out in experiments. The tota
number of collisions will on the other hand not necessarily be given by E¢ (8% assume
that it is proportional to some power of

Ene ~ BAtn+e. (18)

For billiards we saw thatr = 1/d. For the number of checks€in.,, we again use
assumption A4.
Plugging (7) withT = At and (18) into (17) we get

@) <(1 + logn + noL%) ((n“ + i) BNAt + n>)

and summing over alll /At time steps, that is multiplying by /At, we get the total
complexity as

oy (et 1
O<(1+Iogn+nL)(n + L+5At>ﬁTn>'

Sinceng ~ nandm = 1/L, in our chosen units we can write this as

1
O(<1+Iogn+r:d) (n“+m+ At) Tn>,

Choosingm® = ©®(n) keeps the first facta® (logn), so the cost is

(’)((n‘u—nl/d—i—%) nlogn). (19)

The mean free collision time, that is the mean time between successive collisions
single particle, is

_h_F

Tc = N =
Also, L/ is the time it takes a particle to travel one cell length. We therefore notice fro
(19) that in order for the overhead added by the time stepping not to be dominant we r
At = Q(tc) andAt = Q(L/B), thatisthe time step should not be much smaller than eithe
the mean time between collisions or the time it takes to travel a single cell |éraytparticle
laden flow, the size of the time step is determined by the time scale of the particle motion
hence we are not free to choose it to optimize the complexity. The above analysis there
indicates that if the characteristic time scale of the particle motion is much smaller than
mean collision time, the dominant cost is checking for collisions and transfer and sett
up the priority queue at the beginning of each time step.

Y Indeed, one use of a collision detection algorithm like this is collection of collision statistics, such as the tc
number of collisions, in particle-laden flow.

792 SIGURGEIRSSON, STUART, AND WAN

Therefore, ife > 1/d and we choosét = Q(n~9) (for example, keept fixed), the
complexity isO(n logn). If on the other hand < 1/d, the complexity is?(n*+%9 log n)
which is not optimal.

Piecewise Linear Paths

Now consider applying the collision detection less frequently than at every time st
say evenyk time steps. Then the event queue need only be sét/dpAt) times, instead
of T/At times. Of course, this comes at the expense of more costly collision and trans
checks; finding the next transfer time of a particle or next collision time of two particle
whose trajectories are piecewise linear withieces costs up tlotimes more than before.
We proceed as before, using the analysis from Section 1.3 withkAt, and add the
previously mentioned set-up cost evértime steps, for a total cost of

d . 1 1

O((k+|ogn+knL)(n +E+@>ﬁTn). (20)
With the choice of cell size = @(n~%/9), the optimak is then such that botAt = Q(zc),
that is,kAt is asymptotically larger than the mean free collision time, lard O(logn), if
both are possible. Whether or not this is possible depends on how the number of collisi
scales witth and howAt is chosen. If for examplat is chosen on the order af, then thisis
always possible since then the first conditiok is Q(1). If At is fixed andn, = ®(n**®)
thent = ®(n~%) so the first condition ik = Q(n~*) and hence&k = O(logn) as long
asa > 0 (¢ < 0 means that the number of collisions decays as +o0). Of course the
proper choice ok depends on the constants, which we have ignored, but a rule of thumt
to choosek such thakAt is on the order of the mean collision time.

2.3. Experiments

As before, we compare the analytical results from the preceding section with timin
obtained from running the algorithm. All the experiments are performed with fixed partic
volume density and zero initial kinetic energyracreases. We restrict our attention to
2D particle laden flow with elastic collisions. We place the particles in a 2D incompressit

velocity fieldu = vy = (52, —£%), wherey is the stream function.

Taylor—Green Flow

We first use the Taylor—Green flow [28, 29], which is a solution to the forced 2D Navie
Stokes equations in the unit square with periodic boundary conditions and the initial c
ditions shown in Fig. 15, namely

1 . .
Y (X, 0) = — sin 27 X3 Sin 27 X>.
2

To get a time-independent flow from this initial condition it is necessary to set the force
f(x) = vV (x, 0). In Appendix A.1 we show that thep(x, t) = ¥ (x, 0), SO

U1 (X, t) = sin 27X, COS 2r Xy,
Ua(X, t) = — €OS 2rX; SiN 27 X>.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 793

1 - e s s e h h e —e—————e———— — — -

e T T T B sl ammt ol A N |

] /o=~ | SN

[77-=~N\N V[/7= ~NANA]
0~817//~\\\Hl//f\\\\
Tt by 1]
AN~/ P AVNN~ 7]

ANSN~—cZ /L ANNSN—= /7]

08 \ N~ s IV N N 7

v L el R N

o LTSN N T S NN

NN
VRPN 177-~N\1}
AR I P
od VA vy -1 AN~]

VNN~=c 7 T TAANS = /]

ANNSN—=— S P ANNSS—— [}

N ™S s S NN SN s

0.2 0.4 0.6 0.8 1

X

FIG. 15. The initial conditions for the Taylor—Green flow.

The point of this velocity field is to test the algorithm when there is an equilibrium partic
distribution whichis nonuniformin space. Figure 16 (left) shows a typical initial particle col
figuration used for the experiments. The particles quickly start spiraling outwards and a
a few time units they are distributed as on the right; as expected, the particles are
uniformly distributed in space. Also, the spatial and velocity distributions are now high
correlated; the particle velocity is small near the four saddles at the center and at the cor
and larger between them. That is, our assumptions for the complexity analysis are cert:
not satisfied.

Adaptive Cell Size Selection

The time-dependence of the particle distribution suggests that using a fixed cell
throughout the simulation is perhaps not the most efficient strategy. Initially, when t
particles are distributed as on the left in Fig. 16, relatively large cells are probably m
efficient, whereas in equilibrium, when the particle distribution is as on the right, mu
smaller cells should be used. We therefore also include experiments with the follow
simple adaptive scheme. We monitor the running time of the algorithm, and every few ti
steps we decrease the cell size. We do this until the running time ceases to decrease.
we start increasing the cell size again until the running time ceases to decrease. We con
this throughout the simulation, always heading in the same direction as long as the runi
time is decreasing. Below we compare the performance of this method to the performe
of keepingm fixed throughout the simulation. Our main focus is, however, on keaping
fixed throughout the simulation, so unless otherwise stated, that is the method we use

Results

We run the algorithm witim ranging from 10,000 to 200,000 in increments of 10,000. W
start with the particles at rest and distributed as in Fig. 16 (left), use a timestepl1 02,

794 SIGURGEIRSSON, STUART, AND WAN

1 - . - — e
[- [A . ?ﬂ S& A'é
- TR o R R]
oo o & =0 !
L. i .
- o S04
L -1
' g [} -
& . {
I
- i
: 1 . ' . "El,‘
- - . - - T o S i
M e = -
b - i r ¥ ﬁ]
- - I 5 \
: y O s el ¥
LY ' . Ay |
3 d
45 ol & o L :
Ky) ¥ ‘
. . . . e
T - T
b 'l- . ¥
'l e Y L.
iy = i A \
’ | - il il

FIG. 16. Initial (left) and equilibrium (right) particle distribution for particle laden Taylor-Green flow with
50,000 particles.

and run for 10 time units at which time the particles are distributed as shown in Fig.
(right).

Figure 17 (left) shows how the total number of collisiomg increases with the number of
particles. A fit of the forman® givesb = 1.61, which is slightly larger than + 1/d = 1.5,
and thus we predict that by choosing~ ,/n the cost will scale likenclogn. We take
m = 3(4/n), either fixed throughout the simulation or as the starting value for the adapti
scheme. Figure 17 shows how the total number of transfers increases with the produ
m andn. A fit of the formn, = a(mn)® gives thatb = 1.02 so the number of transfers is
very nearly linear iimnas we predicted.

Figure 18 (left) shows how the computing time increases with the number of collisior
It appears slightly super-linear, and a fit of the fa@m= an? indeed gived = 1.18. After
dividing the cost by log, Fig. 18 (right), the best fit i€ ~ n}*3logn.

From Fig. 18 we see that the simple adaptive scheme performs better than the fi
scheme, though it does not change the asymptotic running time. The simulation of 200 tt
sand particles took a bit less than 48 hours of computing time and resulted in almost 1 bil
collisions, giving an average of 20 million collisions an hour, or 5500 collisions per secor

x108 3 e P x108 , Tt
* 16 - .
.
8 A .o] . . *
6 N . L] ¢ o [} ¢
4 . . 8 - . °
° ¢ .' ¢
2 4 o’ 4 1 o®
o . n .". nm

0 .o T T T 0 T L] T T L

0 50 100 150 x10% 0 05 10 15 20 25

FIG. 17. Number of events for particle laden Taylor—Green flow. Left: Number of collisions in 200 million:
vs. number of particles in thousands. The best fit.is- 2.85n*¢*. Right: Number of transfers in 100 millions vs.
nmin 100 millions. The best fit ig; = 4.32(nm)*%2,

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 795

Computing time (hours) . Computing time (hours) .
L o -
40 A */s 40 A 7
[) : // P9 ; -
I'd '
30 A . :/ 30 A ./:/
.// 'R
20 A ./',’ 20 A ./'/’
[2 ’ -
7/
w{ 0]
» .
’ Ne \d nelogn
0 T T L) T 9 0 T T T T T ¥ o
0 02 04 06 08 **° 0 2 4 6 8 10 127

FIG. 18. Computing time for particle laden Taylor—Green flow for fixeddots) and the adaptive scheme
(dashed). Left: Computing time in hours vs. number of collisions in billions. The best@itsnl*°. Right:
Computing time in hours v& logn in billions. The best fiti<C ~ nt*3logn.

Synthetic Turbulence

In order to gain insight into the behavior of colliding particles in a 2D turbulent velocit
field, we create an incompressible flow field with prescribed mean spectral propert
these can be chosen to match theoretical predictions or empirical observations about er
scaling laws in turbulence. This is done by setting up a linear stochastic PDE for the stre
functiony, as described in Appendix 2. The point is that particles in this velocity field onl
reach astatisticalequilibrium, and their configuration is nonuniformin both space and time

For the experiments we choose the spectrum of the velocity field to beahaat~
Obukhov spectrum [30, pp. 112],

ek ~ [IKIZ@L+ (k[P =773,
shown in Fig. 19, which was introduced to study Kolmogorov turbulence. Eeiethe
mean energy in wavenumbg&r(see Appendix 2). We have also experimented with the
Kraichnan spectrum [30, pp. 113],
ek ~ [IKII? exp(— kI,

shown in Fig. 19, obtaining identical results regarding the complexity of the algorithm.

A &
0.20 - 03
0.15 -
0.2 1
0.10 -
0.05 0.1
1% 1%
0 T T T ¥ 0 T 1 1]
o 2 4 6 8 o 1 2 3 4

FIG. 19. Spectra used for experiments with synthetic turbulence. Leftni&€n-Obukhov spectrum. Right:
Kraichman spectrum.

796 SIGURGEIRSSON, STUART, AND WAN

k -

FIG. 20. Initial (left) and typical (right) particle distribution for particle laden synthetic turbulence.

Results

We run the algorithm witn ranging from 10,000 to 200,000 in increments of 10,000
We start with the particles at rest and uniformly distributed in space. We use a time s
At = 102 and run for 10 time units, at which time the particles are distributed as in Fig.
(right). Note that the distribution is not uniform in space.

Figure 21 (left) shows how the total number of collisiong,increases with the number
of particles. This is different from both billiards and the Taylor-Green case, and appear
be linear inn. A fit of the forman® to the second half of the data givies= 0.82, which is
far less than # 1/d = 1.5. We therefore do not expect the algorithm to be optimal on thi
problem. By choosing ~ /n, our analysis predicts that the cost will scale lik& logn,
which is far greater tham;logn. We again takem = 3(,/n) , either fixed throughout
the simulation or as the starting value for the adaptive scheme. Figure 21 (right) shc
how the total number of transfers increases with the produeh @ind n. A fit of the
form n; = a(mn)® gives that = 1.04 so the number of transfers is still very nearly linear
in mn

x108 , Tle . x108 , Ty
. [J ¢ []
- ® L]
0.8 K 6 .
0 6 i ° L J M []
. . .
. L] 4 - . L]
L]
044 ¢ e .
[] 2 . ®
024, ...°
0 n 0 .. nm
0 50 100 150 ° 0 05 1.0 15 20 25 x°°

FIG. 21. Number of events for particle laden synthetic turbulence. Left: Number of collisions in million:
vs. number of particles in thousands. A fit of the foamP to the second half of the data givies= 0.82. Right:
Number of transfers in 100 millions vesmin 100 millions. The best fit ig, = 1.39n*%4,

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 797

Computing time (hours) . Computing time (hours) .
6 1 [6 - °
* L]
L4 L]
.) . /
4 1 . / 4 - . /
[] ’ [/
(X -7 (X) ;= s
o N, . , N7
2 . * ./ \/ 2 T Py ./ -7
[./ 7 L .//
',)-.' - e 222 nlogn
0 e = T) 0 -‘y. & T T

0 02 04 06 08 *°° 0 05 1.0 1.5 20 **°

FIG. 22. Computing time for particle laden synthetic turbulence for fire(tots) and the adaptive scheme
(dashed). Left: Computing time in hours vs. number of collisions in millions. Right: Computing time in hours \
n log n in millions. The best fit from the second half of the dat&is- n*>* log n.

Figure 22 (left) shows how the computing time increases with the number of collisions
as expected it is far from linear. Figure 22 (right) shows the cost divided by Vegsus.
The best fit, using only the second half of the dat&C is- n*>*logn, quite close to the
prediction ofC ~ n®Z2logn. Recall that Fig. 21 shows that the number of collisions i
sublinear im; thus, as predicted, the algorithm is far from optimal in this case.

From Fig. 22 we again see that the simple adaptive scheme performs better thar
fixed scheme, though it does not change the asymptotic running time. The simulatior
200 thousand particles using the adaptive scheme took a bit less than five hours of comp
time and resulted in more than 1 million collisions, giving an average of a mere 200 thous:
collisions an hour, or 55 collisions per second.

Optimal Time Step

In Section 2.2 we concluded from Eq. (19) that in order for the overhead added by the t
stepping not be dominant, the time step should be chosen not much smaller than the r
free time. We test this conclusion experimentally by running the algorithm with differe
time step sizes. We use Taylor—Green flow with 10,000 particles and the same setup as be
For this set-up, there are about 7.5 million collisions, giving a mean collision time of

o= T o 7x 102,
2nc
Figure 23 (left) shows the cost versus size of time step.

We see that the cost is not sensitive to the size of the time step, as long as it is I
enough; however, once the time step becomes small compared to the mean free coll
time, the cost is inversely proportional to the size of the time step. This is precisely wha
predicted by (19).

Piecewise Linear Paths

In the experiments above we chase = 102, which is on the order of.. Our analysis
in Section 2.2 indicates that we would not benefit from applying the collision detecti
less frequently with this time step, that is use- 1. Recall that fok > 1 our complexity
analysis gives (20) rather than (19) for the cost.

798 SIGURGEIRSSON, STUART, AND WAN

Computing time (min) Computing time (min)
15 - 23
21 A
10 A *
} 19 ' [] ®
I . .
5 : Te 17 4
: At k
O T T 1 15 1 ¥ T 1
0 0.05 0.10 0.15 0 1 2 3 4

FIG.23. Computing time in seconds VAt for particle laden Taylor-Green flow,= 10000 z, = nT/2n, =
7 x 1072 is the mean free collision time. Left: Computing time vst. Right: Computing time vsk with
At = 1073,

To test the conclusions of (20), we use a smaller time gt¢ps 10~3. Figure 23 shows
how the running time varies witk.

There is a minimum ak = 3, which means that it is optimal to apply the collision
detection over an interval of three time steps, which is about half the mean free tir
For n = 1000Q logn is quite small, so the restrictiok = O(logn) kicks in early and
preventskAt from being closer tor.. We see that if the mean collision time is much
larger than the time step used for integration, this idea can reduce the cost quite sig
cantly.

3. COUPLED PARTICLE-FLOW

In particle laden flow, the fluid exerts a force on the immersed particles. By Newtor
third law, the particles then exert an equal and opposite force on the fluid. In some appl
tions, this back-coupling is thought to be important. The exact solution of such fluid-parti
flows requires the solution of the Navier—Stokes equations with a free moving bound
corresponding to the surface of the particles. The numerical solution of the resulting eg
tions is tractable for small and moderate values ¢81] but for largen this approach is
computationally intractable. A simplified model of this back-coupling effect consists ¢
adding to the continuum balance laws point sources of mass, momentum, and energy
pp. 7-23]. In this setting, any motion of a particle affects the surrounding fluid, and her
affects other particles instantaneously. Therefore, the particle paths cannot be integr
independently of each other indefinitely in the absence of collisions; small time steps m
be used and approximate independence invoked.

In Section 3.1 below we describe how we apply the algorithm described in Sections 1 ar
to such coupled particle-fluid flows. Now there is the additional task of solving a PDE wi
a force term consisting of delta functions. A key question regarding computational cost i
the relative cost of solving the PDE and performing the collision detection. In Section 3
we assess the complexity of the two parts of the algorithm, the collision detection and
numerical solution of the PDE, and compare the two. In Section 3.3 we verify the analy
through experiments. We find that, under a natural limiting process, the ahoica/? is
optimal for these coupled problems, no matter how the number of collisions scalas witt
this contrasts with the driven flow case.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 799

For the experiments, we take for simplicityas the solution to the diffusion equatidn

n
E;—l:(X, t) =vAux,t) + f(x,t) —«a Z(U(Xi (), — X (1)s(x — xi (1)), (21)
i=1

with periodic boundary conditions in the unit squafe—= [0, 1] x [0, 1], for some chosen
f : R? x R — R? Herev andx are dimensionless constants. This is coupled to the particls
obeying (12) together with elastic collisions. For fluid suspensions, the relevant PDE is
Navier—Stokes equation, but our main purpose is to understand the complexity of couj
particle-fluid algorithms, for which (21) is adequate. As before, we will take the lim
n — oo in such a way thap is fixed, and them = r o« -= and for Stokes’s’ lawt o .
This scaling is chosen so that formal arguments indicate that the sum of delta function
(21) tends to a smooth correction to the PDEUdon the limitn — +oc.

3.1. The Algorithm

To detect collisions we proceed as for particle laden flow, with the sole addition of solvi
the PDE (21). At any timg, we solve the PDE over the time interval{ + At], given the
particle positions at time Then we invoke the collision detection algorithm over the time
interval [t, t + At] as described in Section 2.1, integrating the particle paths numerically
necessary with the scheme (13) and (14), wiftozen at the previously computed solution
of the PDE at time + At.

To solve the PDE (21), we use a method implicit in the diffusion term and linearly implic
in the delta sources as described in Appendix 3. Our choice of method (A.6) for solvi
the PDE rather than (A.5) is dictated by an interesting numerical instability in (A.5), shov
in Fig. 1 in Appendix 3, which results when many particles cluster together. The impli
method appears to cure this instability.

3.2. Complexity

In addition to the cost of collision detection, we now have the cost of solving a PDE. \
consider a situation where the number of particles scales like the number of mesh pc
and, since we will use a method implicit in the diffusion term, we will take the time step
scale like the space step. Thushif= (Ax)~% is the total number of mesh points, we take
n= O(N) andAt = @(N~Yd),

In some circumstances, such as for the simple diffusion equation (21), a Fourier be
solver can be used to solve the PDE, and the resulting complex@tyislog N + n) =
O(N log N), per time step. We study such Fourier-based methods as they minimize
cost of solving the PDE for an implicit method, and allow us to assess the additional rela
cost of collision detection in a worst case setting; for PDEs where Fourier methods car
be employed we anticipate a lower relative cost for collision detection.

To solve the linear equations arising in the PDE, we use the conjugate gradient ((
method, preconditioned by the solution with explicit treatment of the delta source terr
This preconditioning can be performed using the FF®ifN log N) operations. Hence,

1 In dimensions 2 or more, it will be difficult to make sense of this model without regularizing the delta functio
otherwise the velocity field will be unbounded at the particle locations. However, the issue of the computatic
cost of fully coupled particle-flow models can be addressed through (21), relying on spatial discretizatior
regularize the delta-singularities.

800 SIGURGEIRSSON, STUART, AND WAN

CQG Iterations CG Iterations
15 1 o
............... 5-
13 A o N..,O.o'c.o.oo... *es oo
Coad b °
11 - 3 i
./ 4 »
9 p
b n n
7] ¥ 1 3 3 L} T 1 3
0 20 40 60 x10 0 40 80 120 x10

FIG. 24. Average number of CG iterations per time steprud.eft: Taylor—-Green forcing. Right: Stochastic
forcing.

if the number of CG iterations is bounded independentlyNothen the total cost of the
linear solver iS®(N log N). In practice, only a few CG iterations are used each time ste
and the number of iterations is roughly independeniadéis demonstrated in Fig. 24 for
the experiments of Section 3.3. The graphs show the total number of CG iterations ovet
entire simulation divided by the total number of time steps) as®(N) increases.

In summary, the cost of solving the PDE over the time interval s

O (N*jogN). (22)

To estimate the cost of the collision detection, we make the same statistical assumpt
as in Sections 1.3 and 2.2; note that, as in Section 2.2, these statistical assumptions ¢
limited validity. The cost is then, from (18) and (19) wittt = ®(n~%9),

O((nc +n*™*%) logn). (23)
Adding (22) and (23) the total complexity is
O((nc +n**) logn), (24)

sincen = ®(N), that is the number of mesh points and the number of particles are ke
proportional as they are increased. In particular, if the number of collisions glowsr
with n than in billiards, that i:i. = O(n**%9), the cost of collision detection does not
add asymptotically to the cost of solving the coupled problem. If the number of collisio
growsfasterthan in billiards, the collision detection is more expensive but optimal. So tf
combined algorithm is optimal, even in situations where the collision detection algorithim
not optimal for particle-laden flow. Under our statistical assumptions, the choieen/¢
therefore appears optimal for coupled problems.

3.3. Experiments

As before, we perform a few numerical experiments to validate the analysis in the previ
section. All the experiments are performed with fixed particle volume density and zero init
kinetic energy as increases and the scalings detailed after Eq. (21). We use two differe
forcesf. On the one hand, we Idtbe the Taylor-Green flow from Section 28= Vv

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 801

FIG. 25. Particle distribution for the coupled problem at tilme 10 with 10,815 particles. Left: Taylor-Green
forcing. Right: Stochastic forcing.

with ¢ (X) = % sin 2t X3 Sin 2t X2, and the stochastic force used in Appendix 2 to general
synthetic Kirman—Obukhov turbulencé, = ddit\’ on the other hand.

Without the back-coupling (no delta functions in (21)), the steady statevith Taylor—
Green forcing is the Taylor—Green velocity field we used in Section 2.3, so we mic
expect a similar particle distribution as before. To ease direct comparisons between the
experiments, we use the same parameter values as in Section 2.3. Starting from an ini
uniform particle distribution, after two time units the distribution is the same as in the lad
case, but around five time units it breaks up, and after 10 time units the particle distribu
is as shown in Fig. 25 (left). This shows that the particles are having a significant effect
the flow and back-coupling is important. Figure 25 right shows the particle distribution
timet = 10 for stochastic forcing.

Results

To assess the relative cost of the collision detection and the numerical solution of the P
we run the algorithm witm, N, andAt varying jointly so thah = N andAt = 1/+/N, as
described above.

x106 , N¢ Ne

300 . .
[]
250 - . 6 - oo
L]
200 T ..] o . . . °
150 o® 4
° hd ® o °

100 - o ° .
50 o'. 2 I WA o o

E . (X3

. ...oo n , 9.... 0 n
0 20 40 60 x10? 0 40 80 120

FIG. 26. Number of collisions in millions vs. number of particles. Left: Taylor—-Green forcing. The best fi
is n. = 0.24n'®". Right: Stochastic forcing. The best fitiis = 0.78n'%. Different realizations of the stochastic
force are used for different particle numbers which explains the large variation in the number of collisions.

802 SIGURGEIRSSON, STUART, AND WAN

Computing time (hours) Computing time (hours)
15 A
10 A
5
0 0 T T T
0 20 40 60 40 8o 120 x°°

FIG. 27. Computing time spent in collision detectio@; (solid), and in solving the PDEZ, (dashed), in
hours vsn for the coupled problem. Left: Taylor—Green forcing. Best fi€is~ n**?logn andC, ~ n*¢logn.
Right: Stochastic forcing. The best fit@& ~ n*¢”logn andC, ~ n*®logn.

The relative cost of the two contributions depends on the number of collisions. Figure
shows the number of collisions for Taylor—-Green forcing (left) and stochastic forcing (righ
Afit of the formn, = an® givesb = 1.87 > 1.5 for Taylor—Green antd = 1.33 < 1.5 for
the stochastic forcing. We therefore expect the collision detection to be asymptotically m
expensive in the former case, but the cost of the two contributions to be comparable in
second case. This is indeed confirmed in Fig. 27 which shows the cost versus the nur
of particles.

Both experiments indicate that the cost of the two contributions is well predicted by t
heuristic analysis in Section 3.2. Furthermore, if the number of collisions grows slow
with n than in the billiards case, the two contributions are comparable. It is important
note however, that we have kept the cost of solving the PDE to a bare minimum; for m
complex PDEs we anticipate that the cost of the PDE solver will be greater, making 1
relative cost of collision detection less.

4. CONCLUSIONS

In this paper we have presented and analyzed a collision detection algorithm for a le
number of particles moving in a velocity field. We have

e Given an average case analysis of the complexity of the algorithm in the billiar
case, under reasonable empirical assumptions, arriving at the observed fact that the op
choice of cell size is to have a constant number of particles per cell and that the algorit
is optimal to within a logarithmic factor.

e Extended the event driven cell-based algorithm, developed by computational chernr
and computer scientists for the billiards problem, to particle-laden flow and coupled partic
flow problems.

e Given numerical evidence to show that the analysis of the billiards algorithm giv
useful predictions for optimal cell-scaling and complexity for problems where Boltzman
like statistics do not prevail, such as particle laden flow and coupled particle-flow probler
and that the collision detection algorithm is optimal if and only if the number of collision
grows at least as fast withas it does in billiards.

e Shown that for coupled particle-field simulation where the number of mesh points &
particles are commensurate, our algorithm for collision detection is either optimal (wh
the number of collisions grows at least as fast withs in billiards) or can be included in
such simulations without increasing the asymptotic growth of the cost.

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 803

e ldentified, and cured, an interesting numerical instability arising in coupled particl
field problems.

APPENDIX 1. THE TAYLOR-GREEN FLOW

Letu = V+ty = (%, —%) be the velocity field, wherg is the stream function. Let

be the vorticityw = V x U= V x V11, sows = —Ayr. Now take the curl of the Navier—
Stokes equation,

ou
EjLu-Vu:—Vp—i—vAu+vf,

where f (x) = 472u(x, 0), and use
V|ull?=2u-Vu+2ux (Vxu) =2u-Vu—2wx U
to get

0
3_Lt0 +V x (v X U) = vAw + 47%vw(X, 0).

With the initial conditions
w1(X,0) = wa(X,00 =0 and ws(X,0) = —Ay (X, 0) = 4r Sin 27X SN 27 X7

the nonlinearityv x (@ x u) vanishes for all time, and taking the Fourier transform give:
the Taylor—Green [28, 29] solution

w3(X, 1) = 4 Sin 27 X1 Sin 27 X

1 . .
sothat ¥ (x,t) = 2—sm 27 X1 SiN 27 Xs.
T

APPENDIX 2. SYNTHETIC TURBULENCE

Inthis appendix we describe how to generate a two-dimensional incompressible turbu
velocity field u, periodic in the unit square, with the properties of being homogeneot
stationary, isotropic, and Gaussian [30, pp. 108-113; 32].

To ensure incompressibility of, we work with the stream functiofi and seti = V4.

We takeyr as the solution to the following stochastic PDE:

dy + vAy dt = dW. (A1)

Here Ais a linear operator with eigenfunctiofe }kek , and eigenvaluegyy}kek . We take
A = —A in the unit square with periodic boundary conditions so

K =272\ {(0,0)}, &) =¢e%*, and o = K|
W is a Q-Wiener process,

Wt = Vi),

keK

804 SIGURGEIRSSON, STUART, AND WAN

for some operatoQ with Qe = Ak, where{Bk}kek is an i.i.d. sequence of standard
complex valued Brownian motion§ is the covariance operator ¥, and its spectrum,
{XAk}kek , IS chosen so that the velocity fialichas the desired energy spectrum; see [32]. Fo
a rigorous interpretation of this equation, see [33].

Expandingy in eigenfunctions ofA,

YOO = e,

keK

we get the following Ornstein—Uhlenbeck stochastic differential equations for the Four
coefficients:

Ak + vadrdt = VA dBe, keK. (A.2)
The solutions can be expressed as
V() = € Pi(0) + VaXk (D), (A3)
where

t
Xi(t) = / e dpy(r)
0

is a complex valued Gaussian process with independent increments and variance

t
1
/ e 2va(t=7) 4 — (1 — g 2oty (A.4)
0 2vay

Also, if k # k', Xk and Xy are independent. Letting— oo in (A.3) we get that the sta-

tionary distribution ofy is Gaussian with variance./2vay. Now the Fourier transform
of the velocity fieldd is Ox = (—ikayx, ik11k), S0 the energy spectrum ofis

N ~ Ak Ak

ex = E[|0k]|* = [KIPE[Y]® = [KI*5— = ==

2vax 2v

hence we choose = 2ve to achieve the spectrum.

A.2.1. Implementation

To generate the velocity field on d¥ x N, grid and at discrete timegy At}fzo, for
someAt > 0, we proceed as follows. We use Eq. (A.3) for the— 1 lowest modes in
each dimension, that is with

k e {(27'[]1, 27'[]2)|J| = —Ni/2+ 1,..., N|/2 — 1},
where we assume for simplicity thak and N, are even. This giveg((j + 1)At) given
Vk(jAb):
Pr((J + DAY = e (j A + VA (] + DAY — X(j AL)).
The expressionXy ((j + 1) At) — Xk(j At) are independent (for differektandj) complex
valued Gaussian random variables with variance given by (A.4)twittat. We takeyr (0)
from the stationary distribution, that is Gaussian with variangék 2. Finally, we use the

discrete Fourier transform [34] to obtain the valuegrafn anN; x N, grid from its Fourier
coefficients; see [32].

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 805

APPENDIX 3. PDE SOLVERS

In this section we describe the numerical method used to solve the PDE (21).

A.3.1. Discretization of the PDE

The discretization of the PDE (21) faris based on the finite element method since the
8 function term can easily be dealt with in the variational formulation. Denote the biline
finite element subspace B, and the set of nodal basis functions supported on the sque
elements by} Letu(x, t) = 301 p (000 andu = (ua. ... un) T, F(x. 1) =
> 21 Bi)¢ (x) andB = (B1..... An)T, andd = (1 (D). ... pn XD

We apply the finite element method and, for simplicity, lump the mass matrix and reple
it by the identity; we also approximate the stiffness matrix by the five-point finite differenc
stencil for the periodic Laplaciatd". We define the matriD"(x(t)) by

1 n
h
Dij = A |§:1 adi (X)ej(x),
wherex = (X1, ..., Xn). Thus, we have

1 n
. h h _ .
o+ vA"u+D (x)u—ﬁ—km;amd.
The particle pathsx, X) are integrated using the algorithm in Section 2.1.3.. Given this,
natural linearly implicit approximation fau is

it — h k+i hooky K k 1< k
— A D(x =B+ — X d. A.5
. vA 1 XHu" =B fx2|§—1a| | (A.5)

Further implicitness can be introduced as follows:

k+1 k n
"

Tt_'““ 4o AP R DNk R gk N Xk d. (A.6)

I=1
In (A.5) an instability occurs when many particles are close together and the effect
force on the fluid is large at some points in the spatial domain. Treating the delta sout
in a linearly implicit fashion, as in (A.6), cures the instability. Figure 28 demonstrates tt
instability for the coupled Taylor—-Green problem.

A.3.2. Implementation

The solution of the coupled PDE-ODE system, (12) and (21), consists of three steps
each time step:

1. Compute the right-hand side of (A.5) or (A.6).
2. Solve the linear system (A.5) or (A.6).
3. Solve the ODE (12).

Step 3 is described in Section 2.1. Step 1 is straightforward using the property of bilin
basis functions on square elements. All that is required is to distribute information loca
atx to the four nearest nodes.

806 SIGURGEIRSSON, STUART, AND WAN

x103 ,

1.5

—_———————

1.0

0.5

-

-
'
i
]
i
\
'
4

I~

0

0. 1 2 3.

FIG. 28. Fluid enegryE(t) = % f u(x, t)2dx, for coupled Taylor—Green flow with 10,814 particles. Solved
using (A.6) (solid) and (A.5) (dashed). Left: Energy on a small scale for both methods (A.6)(solid) a
(A.5)(dashed). The methods are initially comparable, but (A.5) blows up around tinke Right: Energy on a
larger scale for (A.5). The energy repeatedly blows up and decreases again.

In the explicit approach (A.5) of Step 2, the matrices on the left-hand side can be
agonalized by the discrete Fourier matrix and hence can be inverted efficiently using
Fourier transform (FFT) [34], and the complexity@ N log(N)). Moreover, we do not
need to form the matrices explicitly.

In the semi-implicit approach (A.6), however, the mafi%(x*) cannot be diagonalized
by the Fourier matrix. Furthermore, the bandwidth4fis © (N) since periodic boundary
conditions are used, and hence (banded) Gaussian elimination can be very expensive. |
ever, note that the rank @" (x*) is equal ton, the number of particles. If we use conjugate
gradient (CG) with

LV =7 1 pAtAaD

as preconditioner, then CG will take at most 1 iterations to converge. In practice, only
a few iterations are required to converge (see Fig. 24). The inversion of the preconditic
L" can be done by use of the FFT, as in the explicit case.

ACKNOWLEDGMENT

We thank Paul Tupper for reading early versions of the manuscript and providing numerous useful suggest
We also thank an anonymous referee for helpful suggestions concerning our complexity analysis.

REFERENCES

1. B. J. Alder and T. E. Wainwrighfl. Chem. Phys31, 459 (1959).

2. J. J. Erpenbeck and W. W. Wood, Molecular dynamics techniques for hard-core syst&tadistical Me-
chanics Bedited by B. J. Berne, volume 6 bfodern Thoretical ChemistryPlenum Press, New York, 1977),
Ch. 1, pp. 1-40.

. D. C. Rapaport]). Comput. Phys34, 184 (1980).

. M. Marin, D. Risso, and P. Corderd, Comput. Physl09, 306 (1993).

. S. Luding, E. Clefment, A. Blumen, J. Rajchenbach, and J. DuRdtys. Rev. B9, 1634 (1994).
. S. Luding, H. J. Herrmann, and A. Blumé®ys. Rev. (50, 3100 (1994).

. S. Sundaram and L. R. Colling, Comput. Physl24, 337 (1996).

~N o g b~ W

ALGORITHMS FOR PARTICLE-FIELD SIMULATIONS 807

8. S. Sundaram and L. R. Collink, Fluid Mech.335, 75 (1997).

10.

11.
12.

13.
14.

15.
16.
17.

18.
19.
20.

21.

22.
23.
24.
25.

26.
27.
28.

29.
30.
31.

32.
33.

34

. W. C. Reade and L. R. Colling, Fluid Mech 415, 45 (2000).

D.-J. Kim, L. J. Guibas, and S.-V. Shin, Fast collision detection among multiple moving sphétes;éed-
ings of the Thirteenth Annual Symposium on Computational Geometry, Nice, France AC397\ol. 13,
pp. 373-375.

D.-J. Kim, L. J. Guibas, and S.-Y. ShiEEE Trans. Visualization Comput. Graph.230 (1998).

P. Hontalas, B. Beckman, M. DiLoreto, L. Blume, P. Reiher, K. Sturdevant, L. V. Warren, J. Wedel, F. Wielal
and D. Jefferson, Performance of the Colliding Pucks simulation on the Time Warp operating syste
(Part 1: Asynchronous behavior & sectoring), Distributed Simulation edited by B. Unger and
R. Fujimoto, Simulation Series (SCS, 1989), Vol. 21, pp. 3-7.

B. D. Lubachevsky]. Comput. Phy®94, 255 (1991).

B. D. Lubachevsky, Simulating colliding rigid disks in parallel using bounded lag without Time Warp, |
Distributed Simulationedited by D. Nicol, Simulation Series (SCS, 1990), Vol. 22, pp. 194-202.

H. M. Schaink, P. A. Nommensen, R. J. J. Jongschaap, and J. MelleBt&em. Physl13 2484 (2000).
L. E. Silbert and J. R. Melrosé, Rheol 43, 673 (1999).

T. H. Cormen, C. E. Leiserson, and R. L. Rivéstioduction to AlgorithmgThe MIT Press, Cambridge,
MA, 1990).

M. Dyer, Personal communication, 2000.
L. Boltzmann)orlesungerilber Gastheori¢Ambrosius Barth, Leipzig, 1912).

G. E. Uhlenbeck and G. W. Foridectures in Statistical Mechanickectures in Applied Mathematics (Am.
Math. Soc. Providence, 1963), Vol. I.

F. Reif, Fundamentals of Statistical and Thermal PhysMgsGraw-Hill Series in Fundamentals of Physics,
(McGraw-Hill, New York, 1965).

D. C. Rapaport]. Comput. Physl05 367 (1993).
B. D. Lubachevsky]. Comput. Physl05 369 (1993).
G. K. BatchelorAn Introduction to Fluid Dynamicg€Cambridge Univ. Press, Cambridge, UK, 1967).

A. A. Amsden, P. J. O'Rourke, and T. D. Butl&lVA-II: A Computer Program for Chemically Reactive
Flows with SpraygLos Alamos National Laboratory, Los Alamos, NM, 1989).

Y. A. Houndonougbo, B. B. Laird, and B. J. Leimkuhleigl. Phys.98, 309 (1999).
L. Verlet,Phys. Revl59 98 (1967).

G. I. Taylor, The decay of eddies in a fluid, $tientific Papers of G. |. TayloCambridge Univ. Press,
Cambridge, UK. 1960), Vol. 2, pp. 190-192.

G. |. Taylor and M. S. GreeRroceedings of the Royal Socidt§y8 499 (1937).
J. Gar@-Ojalvo and J. M. Sanchbloise in Spatially Extended Systef8pringer-Verlag, New York, 1999).

B. Maury and R. Glowinski, Fluid-particle flow: a symmetric formulationCifR. Acad. Sci. Paris, Number
324, 1079 (1997).

H. Sigurgeirsson and A. Stuapgrticles in synthetic turbulence: A random dynamical systemreparation.

G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensidgsyelopedia of Mathematics and
its Applicationg(Cambridge Univ. Press, Cambridge, UK, 1992), \ol. 44.

. M. Frigo and S. G. Johnson, The fastest Fourier transform in the west, available at http://www.fftw.org/.

	INTRODUCTION
	1. BILLIARDS
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	2. PARTICLE LADEN FLOW
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.
	FIG. 23.

	3. COUPLED PARTICLE-FLOW
	FIG. 24.
	FIG. 25.
	FIG. 26.
	FIG. 27.

	4. CONCLUSIONS
	APPENDIX 1. THE TAYLOR–GREEN FLOW
	APPENDIX 2. SYNTHETIC TURBULENCE
	APPENDIX 3. PDE SOLVERS
	FIG. 28.

	ACKNOWLEDGMENT
	REFERENCES

