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We develop an efficient algorithm for detecting collisions among a large number
of particles moving in a velocity field, when the field itself is possibly coupled
to the particle motions. We build on ideas from molecular dynamics simulations
and, as a byproduct, give a literature survey of methods for hard sphere molecular
dynamics. We analyze the complexity of the algorithm in detail and present several
experimental results on performance which corroborate the analysis. An optimal
algorithm for collision detection has cost scaling at least like the total number of
collisions detected. We argue, both theoretically and experimentally, that with the
appropriate parameter choice and when the number of collisions grows with the
number of particles at least as fast as for billiards, the algorithm we recommend is
optimal. c© 2001 Academic Press
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INTRODUCTION

Consider a system ofn Newtonian particles colliding with each other, but otherwise
moving along independent trajectories. This can be cast as a solution to the system

mi ẍi (t) = F(t, xi (t), ẋi (t)), xi (0) = qi , ẋi (0) = pi , i = 1, . . . ,n, (1)

+ Collisions,

wherexi ∈ Rd(d > 1) andmi are the position and mass of particlei andF(t, x, v) defines
the external force exerted on a particle located atx with velocityv at timet . Collisions refer
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to discontinuous changes in the states of two particles1 with labelsi and j , at a timetc such
that‖xi (tc)− xj (tc)‖ = ri + r j , whereri andr j are the radii of the particles. The system
(1) is supplemented with boundary conditions.

A simple example of a collision is anelastic collision, in which the particles involved
change the magnitude of their momenta along the line of contact in such a way that total
momentum and energy are conserved. Typical boundary conditions arehard walls, where
a particle bounces elastically off the walls of a container, orperiodic, where a particle
disappears at a boundary and reappears at the opposite side.

Solving (1) has wide application and has been studied by people in diverse fields, including
molecular dynamics [1–4], granular flow [5, 6], and more recently in fluid suspensions
[7–9]. It has also been studied by computer scientists, both in its own right in robotics and
computational geometry [10, 11], and as a benchmark for parallel discrete event simulations
[12–14]. Typical applications involve a large number of particles, so schemes for reducing
the complexity of the simulation as a function ofnare central. There is therefore considerable
literature on the subject, although workers in different fields often appear not to be aware
of each other’s work.

The primary purpose of this paper is to identify anefficient2 algorithm for collision
detection among a large number of spherical particles immersed in a fluid with which they
interact through exchange of momentum. This can be modeled as the system (1) whereF
is determined by the solution of a PDE which itself depends on{xi (t)}ni=1 and{ẋi (t)}ni=1.
The kind of applications we have in mind are for example an aerosol of solid particles
or a spray of droplets in a carrier gas. We do not maintain that our approach is suitable
for all applications involving particles immersed in a fluid. For instance, the Navier–Stokes
equation for solid particles in a liquid gives rise to existence of squeeze and shear lubrication
forces which demands a different numerical solution procedure [15, 16].

In order to build intuition, we consider a sequence of three classes of problems, of
increasing complexity, the third of which is of the desired form. The problem classes arise
by considering different forms forF , and each class is of interest in its own right. The three
problem classes are:

(I) Billiards: The particles move in straight lines with constant velocities between colli-
sions, soF ≡ 0; see Section 1.

(II) Particle laden flow: The particle motion between collisions is more complicated, but
between collisions any two particles move independently of one another. HereF is some
given function, a natural choice being thatF is proportional to the difference betweenẋ
and a background velocity field atx; see Section 2.

(III) Coupled particle-flow: Any motion of a particle affects the surrounding field, and
hence the other particles. In this case,F is constructed from the solution of a PDE for the
flow, which itself depends on the particle trajectories; see Section 3.

In all cases we consider elastic collisions, although other models are of interest. The nature
of the algorithm will not be changed by other collision models, though particle distributions,
and hence the analysis, might be.

1 Collisions involving three or more particles can occur, but they are unstable in the sense that a small change
to the particle configuration will replace them by two or more binary collisions. We deal with collisions of three
or more particles as a sequence of binary collisions.

2 Efficiency refers in general to both computational cost and memory requirements. We will mainly consider
the computational cost; minimizing cost, in this case, also tends to minimize memory.
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The algorithms we consider areexactin real arithmetic for billiards in that all collisions
are detected and acted upon. For problems (II) and (III) the collision detection is exact up
to small errors introduced through trajectory approximation.

As a byproduct of our studies we give a thorough literature survey for problem (I) and
describe a small modification of the algorithm of Lubachevsky [14] and Mar´ın et al.[4] for
(I), which forms the basis of our studies of problems (II) and (III). Furthermore, we give a
detailed analysis of the complexity of the resulting algorithms for (I) and give a theoretical
derivation of the complexity and optimal choice of parameters, something which has been
lacking in the literature. This analysis rests on Boltzmann-like assumptions on particle
distributions and on an empirical observation about the behavior of the algorithm. Several
authors, including Erpenbeck and Wood [2], Rapaport [3], and Lubachevsky [14], have
identified the correct parameter choices empirically or on heuristic grounds, so that our
analysis simply gives firm theoretical foundation to a well-known algorithm for problem
(I). Our analysis of algorithms for (I) uses ideas and results from statistical mechanics, and
was motivated by Kimet al.[10] who suggested, but did not carry through to its conclusion,
this approach to the analysis. Our extension of the algorithm to problems (II) and (III) is
new. Numerical solution of (III) involves solving a PDE which raises the additional issues
of numerical stabilityfor coupled particle-flow equations, and we investigate this important
issue experimentally.

1. BILLIARDS

We begin by discussing the case when the particle motion in the absence of collisions is
simple and known in advance, sayF ≡ 0, so the particles move in straight lines with constant
velocities between collisions, orF ≡ −gez, ez a unit vertical vector, for particles moving in
a uniform gravitational field. In Section 1.1 we give a historical review of the development
of algorithms for such simulations, followed by a description of the details involved in
the most efficient algorithm in Section 1.2. In Section 1.3 we analyze the complexity of
the algorithm, and give the optimal parameter choice, supported by experimental results
in Section 1.4. Our analysis of the billiards problem forms the basis for studying the more
complex problems (II) and (III) in Sections 2 and 3, and proves to be useful even though
the assumptions made cannot be justified for those problems.

1.1. Historical Review

To simulate the system (1) with nonzeroF , the natural approach for many trained in
numerical methods is to discretize time, and integrate the system over a time step1t . Then,
at the end of each time step, check whether any two particle are overlapping, and if so, assume
they have collided and take appropriate measures to deal with the collision. This approach
was indeed explored by Sundaram and Collins [7]. It has, however, numerous problems. For
example, during a time step, a particle pair may collide, overlap, and then separate again,
leaving no evidence of the collision at the end of the time step. To capture most collisions, a
short time step is therefore needed, which increases the computational cost. Another problem
is what to do in case of a collision; after dealing with all the overlapping particles, one would
like to ensure that no two new particles are overlapping. But eliminating the overlap of a
particle pair in some way might result in overlap between one of the two particles and another
particle in the system. This appears therefore not to be the correct approach to the problem.

A different approach is suggested by considering first the caseF ≡ 0, in which the
particles move in straight lines between collisions. In that case, we can actually compute
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the exact time of a collision between any two particles. Consider two spherical particles
whose positions at timet are given by

x1(t) = q1+ v1t, and x2(t) = q2+ v2t,

whereq1 andq2 ∈ Rd are their positions at time 0, andv1 andv2 ∈ Rd are their constant
velocities. Furthermore, denote their radii byr1 andr2, respectively. They will collide at
time tc if and only if the distance between their centers equals the sum of their radii, i.e., if
‖x1(tc)− x2(tc)‖ = r1+ r2. Now square both sides and let1v = v1− v2,1x = q1− q2

andσ = r1+ r2 to get

‖1v‖2t2
c + 2(1v ·1x)tc + ‖1x‖2 = σ 2. (2)

Hence the collision timetc is simply a root of a quadratic. If the particles are not overlapping
at time 0, and this equation has two solutions, then the smaller solution is the time of their
next collision. Otherwise, if the equation has no solution, the particles will not collide if
they move along the same straight line with constant velocity indefinitely. Note that even if
the particles are moving in a uniform gravitational field, the formula for the collision time
is the same since their relative motion is linear.

Simple Algorithm

This observation suggests the following algorithm to simulate the system (1) in the
billiards caseF ≡ 0, or the uniform gravity caseF ≡ −gez :

Step 1. Compute the time of the next collision in the system,tm.
Step 2. Advance all particles in the system up to timetm.
Step 3. Change the state of the two colliding particles.

Then repeat these three steps up to the required time. In simulation terminology, this algo-
rithm is termedevent drivensince it advances the system from event, that is collision, to
event. Alder and Wainwright [1] were the first to describe an event driven computer sim-
ulation of hard spheres moving along straight lines between collisions, and their starting
point was this simple algorithm.

In the applications we have in mind the number of particles,n, is often large, so a key
question regarding computational cost is how the computing time of an algorithm scales
with n. We will therefore discuss the complexity of all proposed algorithms asn varies. In
this section we will often give only a heuristic discussion of complexity, but give a detailed
analysis for the optimal algorithm in Section 1.3. We use the standard notation in analysis of
algorithms [17, chap. 1], withf (n) = O(g(n)) meaning that there exists a constantc > 0
such that for all largen, f (n) < cg(n), with f (n) = Ä(g(n)) meaning that there exists a
constantc > 0 such thatf (n) > cg(n) for all largen, and with f (n) = 2(g(n)) meaning
that f (n) = O(g(n)) and f (n) = Ä(g(n)).

From the outset we note that an event driven algorithm appears to need to perform at
least as many operations as the total number of collisions,nc, in the simulated time interval
[0, T ], so an optimal algorithm has complexityÄ(nc).3

3 Indeed, if the ordered times at which collisions occur is a required output then, by embedding a sorting problem
within collision detection, it is possible to argue that, in many models of computation, the algorithm has complexity
Ä(nc logn) [18].
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To analyze the complexity of the simple algorithm above, note that to findtm in the first
step, one could compute the collision times for every particle pair in the system, using
Eq. (2) for each pair, and select the minimum. This requires one calculation of a collision
time for each particle pair, for a total ofn(n− 1)/2 calculations. Each calculation involves
a few additions(3d − 2), subtractions(2d + 3) and multiplications(3d + 3), one division,
and one square root, but as in customary in the analysis of algorithms, we ignore the actual
number and only analyze how the number scales withn; accordingly we say that Step 1
takes2(n2) calculations. For Step 2 we change the state of each of then particles so there
are2(n) calculations. Finally, in the third step we change the state of only two particles,
requiring a constant number of calculations, independent ofn, denoted2(1). Therefore,
simulatingnc collisions with this algorithm takes on the order of2(ncn2) calculations;
clearly very far from the desired optimumÄ(nc), and likely to put severe limitations on the
size of systems tractable for simulation.

This does not mean that this simple algorithm should not be used. For very small systems,
sayn < 100, it is likely to perform better than any of our later suggestions, and given its
simplicity it might be the method of choice for even larger systems. For the applications we
have in mind however, this algorithm is not an option.

Saving Collision Times–The Event Queue

Alder and Wainwright [1] studied this problem for molecular dynamics simulations. They
noted that most of the collision times computed in Step 1 on two consecutive iterations will
be the same. A single collision is not likely to affect collisions between distant particles
in the near future. Saving the computed collision times would result in drastic savings in
computing time. Only collision times for the two particles involved in the collision need to
be recomputed and their old times discarded. This way, only 2n− 3 particle pairs,n− 1 for
one particle andn− 2 for the other, need to be examined in Step 1, except when computing
the very first collision time, giving total cost of2(ncn), or so it seems.

This method, however, raises the important issue of how to maintain the list of the saved
collision times, called theevent queue. After each collision, we need to determine which
collision will occur next, in other words which particle pair has the smallest collision time.
A simple way to carry this out is to store the computed collisions, i.e., which particle pair is
involved and the time of collision, without any particular order, and search through the list
every time an event occurs. If alln(n− 1)/2 collision pairs are kept, this requires2(n2)

calculations, which brings the complexity back up to2(ncn2). This issue was not addressed
by Alder and Wainwright [1], but we return to it later as addressing it will clearly be a central
ingredient in efficient algorithms.

The Cell Method

At this point we note that it seems wasteful to compute, in Step 1, future collision times
for every single particle pair in the system; each particle will only participate in one collision
before it changes its course and thereby renders all its previously computed collision times
invalid. Since a particle is more likely to collide with another that is in its close vicinity
than one that is far away, it is natural to consider only collisions between close particles.

Alder and Wainwright [1] suggested dividing up a cube containing all the particles into a
grid of small cubes, calledcellsfrom now on, and assigning each particle to the unique cell
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FIG. 1. The black particle only computes collision times with particles in the 32 = 9 shaded cells.

containing its center. Then collisions are only considered between particles in neighboring
cells of the grid (see Fig. 1), at the expense of keeping track of which cell a particle is in.
That is, in addition to collisions, transfers between cells must be detected for each particle.

This changes Step 1 in the algorithm to

Step 1′. Compute the time of the next event, meaning a collision or a transfer, in the
system,tm,
and Step 3 to

Step 3′. Handle the event; that is change the state of the two particles in the event of a
collision, or update the cell structure in the event of a transfer.

This detection of transfers ensures that no collisions are overlooked; two colliding particles
must be in neighboring cells at the moment they collide, and once a particle changes cells
the algorithm examines all particles in the neighboring cells for possible collisions.

If the number of cells ismd (whered is the dimension of the space), the number of pairs
examined in Step 1 is reduced to 2· 3dn/md on the average, assuming the particles are
uniformly distributed. The finer the grid, the fewer pairs need to be examined per collision;
however, refining the grid increases the number of transfers to be detected and handled. This
suggests that there is an optimal choice of the cell size, and in Section 1.3 we find, under
mild statistical assumptions, how that optimal cell size scales withn. Since only particles
in neighbouring cells are considered for collisions, the side length of a cell,

L = D

m
, (3)

whereD is the side length of a cube containing all the particles, can be no smaller than the
diameter of the largest particle in the system; see Fig. 2.

Alder and Wainwright [1] did not implement this scheme, as it requires quite a lot of
computer memory which was a scarce resource at the time. Furthermore, for the size of
systems they were simulating, less than 500 particles, it is not likely to have had a major
impact on performance. However, for the size of problems accessible on today’s computers
it is a central to efficient algorithms.

We have now identified the main ingredients of the final algorithm, and what follows is
mostly fine tuning. The three primary data structures to be maintained are
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FIG. 2. A cell can be no smaller than the diameter of a particle,L > 2r . LEFT: L = 2r ; the two particles do
not belong to adjacent cells, and are not touching. Right:L < 2r ; the two particles do not belong to adjacent cells,
but are overlapping.

The Particle Information which consists of the position,x, and velocity,v, of each
particle, along with any other information needed, such as its radius,r , in case of particles
of different sizes.

The Event Queuewhich is a collection of events, each of which has an event time and the
information necessary to handle (or carry out) the event, such as the two particles involved
in a collision, or the cell a particle will transfer to.

The Cell Structure which is a collection of cells, each of which has a list of the particles
belonging to it.

The algorithms we discuss differ in how the event queue is implemented and how many
events are put in it, and to a lesser extent how the cells are stored and utilized. Below we
identify a good implementation of the queue that allows the operations needed to be carried
out in as few operations as possible.

Delaying the Update

So far we have introduced two schemes to reduce the computations done in Step 1. If
the cell size can be chosen so that only a constant number of particles are examined for
collisions, and if the event queue can be implemented efficiently, it seems that the cost of
Step 1 can be made largely independent ofn, and we make this precise later. On the other
hand, the innocent looking Step 2 still costs2(n) calculations, and has thus become the
bottleneck. Erpenbeck and Wood [2] noted that this step only needs to be carried out for
the particles involved in the event, reducing the cost of Step 2 to constant per event. Less
importantly, since transfers do not change the path of a particle, there is no need to carry
this step out in case of a transfer. This means that the position,x, and velocity,v, stored for
a particle now stands for its position and velocity at the time of its last collision (as opposed
to the time of the last event in the system). For each particle we therefore need to keep
additionally the time of its last collision,tc. Since the particle motion between collisions is
linear, we can obtain the position of a particle at any timet as simplyx + (t − tc)v.

Implementing the Event Queue

We now turn to the one remaining issue of maintaining the event queue set up in Step 1′.
Neither Alder and Wainwright [1] nor Erpenbeck and Wood [2] mentioned how to do this.
At each event, we need to determine which event occurs next, so the data structure for
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the events should allow extracting the next event, i.e., the one with the smallest time, and
inserting and removing events as the simulation proceeds. That is, we need an efficient
implementation of a priority queue. Rapaport [3] suggested using a binary search tree
[17, chap. 13] to implement the queue, allowing the aforementioned operations to complete
in 2(logs) steps on average for a queue of sizes, assuming that the tree is randomly
built; such randomness has been observed empirically for MD hard sphere simulations [3].
Alternatively, one canensurethat the operations have complexityO(log2 s) by using a
balanced tree, such as a red black tree [17, chap. 14], as suggested by Kimet al. [10, 11].

Using an efficient implementation of the event queue along with the cell structure
therefore makes the cost of Step 1O(logn) for each event. We saw that, by delaying
the update, Step 2 involves a constant number of operations per event, and Step 3 only
required a fixed number of operations to begin with. We have thus managed to bring the
total cost of the algorithm down toO(ne, logn), wherene is the total number of events
over the course of the simulation. Nowne ≥ nc, asne includes transfers, so we cannot
yet conclude that this algorithm will have complexityO(nc logn), unless the cell size can
be chosen to makene grow no faster thannc asymptotically. In Section 1.3 we will make
the complexity analysis more systematic and rigorous, and see how to achieve this.

One Event per Particle

Our analysis has conformed to the standard practice of ignoring constants. In practice, the
constants do effect the running time of the algorithm, so we finally describe one modification
that does not affect the asymptotic complexity, but greatly reduces the constant.

In the algorithm described so far, several collisions and one transfer are scheduled per
particle. Lubachevsky [13] noted that all but one or two of these will eventually be removed
from the event queue since once a particle is involved in a collision, all subsequent computed
events for that particle become invalid. It therefore seems appropriate to only keep one event
per particle, and this is what Lubachevsky [13] does.

It is true that a particle will not necessarily engage in the first collision foreseeable at
the current time, since its proposed partner might earlier engage in a collision with a third
party. Some savings in computing time might therefore result from storing more than one
event per particle. However, scheduling only one event per particle results in a smaller
event queue, and allows simpler data structures to be used efficiently for the event queue,
such as a heap [17, chap. 7] or a complete binary tree [17, chap. 5]. Heaps, which are
binary trees with the property that every node has a smaller value than its children, are
known to be excellent implementations of priority queues, and so it is our choice of data
structure for the event queue. In addition to being very efficient for priority queues, heaps
are also incredibly simple, and can be implemented efficiently in less than 30 lines of
code.

Another scheme, suggested by Mar´ınet al.[4], is not to discard all but the next foreseeable
event for a given particle, but store them all at the nodes of an event queue, with the queue
ordered by the next foreseeable event for the particle. This also fixes the size of the event
queue, but each node in the event queue now consists of a list of events. Through experiments,
Marı́n et al. [4] find that this yields a significant improvement in efficiency.

We adopt a slightly different scheme, keeping only the next transfer and the next collision
for every particle, which gives improvements in efficiency similar to those in [4]. Since a
transfer doesn’t change the path of a particle, a previously computed collision still remains
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FIG. 3. The black particle just transferred from cell A to B and only computes collisions with particles
in the new, dark-shaded neighboring cells, since it has previously computed collisions with the particles in the
light-shaded cells.

valid after a transfer. Keeping the next foreseeable collision along with the transfer reduces
the number of collision checks in the event of a transfer by a factor of 2/3, since the particle
involved does not need to recompute collision times with particles in all the neighboring
cells, but only the new neighboring cells, as illustrated in Fig. 3. Once a particle is involved
in a collision on the other hand, all subsequent events become invalid, so keeping more than
one collision is not likely to improve the efficiency.

1.2. The Algorithm

The algorithm developed above is based on the simple algorithm presented at the outset,
with several ways of reducing the computations done at each step. We now describe the
details of the ideas used to reduce the cost. All but one of these schemes were presented
in [13]; our main contribution is to the analysis of the algorithm and its extensions to the
particle-field problems in subsequent sections.

The algorithm maintains three data structures. Much of the last section was devoted to
identifying what information should be kept in each and how it should be implemented. To
summarize:

The Particle Information is an array with one element for each particle in the system,
with each element consisting of the position, velocity, and the time of the last collision of
the corresponding particle.

The Event Queueis a heap containing one node for each particle in the system. Each
node stores information on both (1) the next foreseeable collision of the corresponding
particle, that is the collision time and some identification of the other particle involved, and
(2) the next foreseeable transfer, that is the transfer time and some identification of the two
cells. The nodes are ordered (orkeyed) by the smaller of the two event times. There is a
one-to-one correspondence between the events in the queue and the particles in the system.
Each collision is therefore represented twice in the event queue, once for each particle
involved in the collision, and which event is handled first is arbitrary.

The Cell Structure is an array with one element for each cell, each element containing a
list of particle indices which enumerate the particles belonging to that cell. These lists can
be implemented as linked lists or arrays.
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FIG. 4. Initially, the black particle only needs to check for collisions with particles in the shaded cells.

To start the simulation we have to initialize these three data structures. The particle
information is initialized with the initial positions and velocities, and the last collision time
set to zero. To initialize the cell structure, we compute the cell location of each particle
and insert it into the appropriate list in the cell array. To set up the event queue, we need
to check every particle pair in adjacent cells for collisions and compute a transfer time for
every particle. Checking particles in all surrounding cells of a given particle for a collision
would result in double checking every pair, so we only have to check particles in half of
the surrounding cells (see Fig. 4), and only a part of the particles in the same cell. When
a transfer time and a collision time has been computed for each particle, we create a heap
from then events.

Then we perform the following steps until we reach the desired final time:

S1. Find the next event in the event queue.
S2. Handle the event.
S3. Compute the next transfer time for the particle corresponding to the event.
S4. Compute the next collision time with particles in appropriate neighboring cells.
S5. Adjust the position of the event and its new partner’s event in the event queue.
S6. Return to Step S1.

The smallest element of a heap is always at the top, so Step S1 consists simply of looking
at the top element of the heap.

If the event is a transfer, Step S2 consists of moving the particle between cells, that is
removing the particle from the list of one cell, and adding it to the list of another. For a
collision, it consists of changing the states of the two particles involved in the collision,
for example as described below for an elastic collision. Furthermore, to avoid changing the
states of the particles again when the partner gets to handle the event, we change the collision
event of the partner to a special event, which we call acheck. This event, when handled, has
no effect on the particlestatebut, as for collisions, forces the particle to recompute its next
collision time with particles in all neighboring cells. Thus, handling a check event consists
of nothing at all, but it will trigger the execution of Steps S3–S5. We will also find a further
use for this event below. We now have three types of events: collisions, transfers, and checks.

In an elastic collision the particles involved change the magnitude of their momenta
along the line of contact in such a way that momentum and energy are conserved. If we let
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p−i = mi ẋi (tc−) and p+i = mi ẋi (tc+) be the momentum of particlei immediately before
and after a collision at timetc, then an elastic collision between particles 1 and 2 is such
that

p+1 = p−1 + ad, and p+2 = p−2 − ad,

where

a = 2(m1(p
−
2 · d)−m2(p

−
1 · d))

m1+m2

is the net exchange of momentum between the particles, and

d = x1(tc)− x2(tc)

‖x1(tc)− x2(tc)‖

is a unit vector in the direction of contact.
Computing a transfer event in Step S3 consists of finding the intersection of a line with

d hyper-planes, which amounts to solvingd linear equations, and selecting the smallest.
In Step S4, computing collision times involves solving the quadratic equation (2). The

word appropriaterefers to the fact that which cells to consider depends on the type of the
event; see Fig. 1 for a collision and a check, and Fig. 3 for a transfer. For each computed
collision time, the algorithm compares it to (1) the smallest time computed for the particle
involved so far, and (2) the collision time of the partner particle, and keeps it only if it
is smaller than both. When all collision times have been computed, the particle involved
notifies its newly found partner, if any, to adjust its event time. A subtle point is that a third
party, the partner’s old partner, now has a collision time that is invalid. The easiest way
to deal with this complication is to change the third party’s collision event to the special
check event described above, thereby cancelling the collision but still forcing the particle
to recheck for collisions at the time of the event. This operation does not affect the third
party’s location in the priority queue since its event time remains the same.

After Steps S3 and S4 the particle involved in the event has updated its event time, so
its position at the top of the event queue is incorrect, and has to be corrected in Step S5.
Furthermore, if the particle involved in the event scheduled a new collision, it has notified
its new partner who has in response changed its collision time, and so its position in the
event queue is also invalid and needs to be repositioned. Both of these operations on heaps
are described in [17, chap. 7].

So far we have ignored the boundary conditions, and proper modifications have to be
made to handle them. For elastic walls we add one more event, awall collision, which
we check for in Step S4. Since a wall collision changes the path of a particle, we only
keep either a particle collision or a wall collision for each particle. For periodic boundary
conditions we modify the collision check routine to check for a collision with the nearest
periodic image of each particle, and let the cells at opposite edges be adjacent;4 see Fig. 5.
In addition, each time we update the position of a particle we check whether the particle
has left the domain, and if so add the domain length to, or subtract it from, the appropriate
coordinates.

4 For this to work, the number of cells,md, must be at least 3d.
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FIG. 5. For periodic boundary conditions, the black particle needs to check for collisions with the nearest
periodic images of the particles in the shaded cells.

1.3. Complexity

Suppose we want to simulate a system ofn particles over a time period [0, T ]. How does
the computing time of the algorithm increase asn increases? Ifn is large, this is clearly a key
question regarding computational cost. As we noted earlier, an optimal algorithm will have
cost scaling like the number of collisions. In this section we analyze in detail the complexity
of the algorithm developed above, and derive the optimal choice of cell size. Our analysis
is motivated by Kimet al. [10], who suggested using results from statistical mechanics to
estimate the complexity, although they did not carry this program to its conclusion.

Obviously the behavior, and thereby the cost, of a collision detection algorithm will de-
pend on the configuration of the particles in space and time. For the billiards case, statistical
mechanics provides a set of assumptions about thestatisticsof the particle positions and
velocities over space and time which, while remaining unproven, are strongly supported on
empirical and theoretical grounds. We therefore start with a brief discussion of the relevant
results from statistical mechanics which underpin our analysis.

The Maxwell–Boltzmann Distribution

Take1x > 0 and1v > 0 small and define the number density of particles per unit
volume f such thatn f (x, v, t)(1x)d(1v)d is the total number of particles in the cube5

[x, x +1x], and whose velocities lie in the cube [v, v +1v] at timet . As n gets larger,f
becomes smoother, and we can think of approximating it with a continuous density. Along
these lines, Boltzmann [19] treated a large collection of particles as a continuum,6 and
showed that for any initial distributionf (x, v,0), f approaches in the course of time the
Maxwell–Boltzmann distribution

f (x, v) = C exp

(
−‖v‖

2

2β2

)
,

5 For x ∈ Rd and1x > 0, [x, x +1x] denotes the cube with lower left corner atx, and side lengths1x.
6 Boltzmann’s analysis applies to a wide class of interaction potentials for the particles, including the hard

sphere potential.
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FIG. 6. Equilibrium velocity distribution of a single particle in a hard sphere simulation (dots) and the Maxwell
distribution (solid).

whereC is a normalization constant, andβ is determined by the total energy of the particles
[20]. This means that no matter what the initial configuration of the particles is, if we look
at the spatial and velocity distributions of the particles at a single instance in time, after
some transition period, we will find that

A1. The particle positions are independent and uniformly distributed over accessible
positions;

A2. The particle velocity components are independent and Gaussian with mean zero and
varianceβ2;

A3. The spatial and velocity distributions are independent of one another.

For the second conclusion, we used that

exp

(
−‖v‖

2

2β2

)
=

d∏
i=1

exp

(
− v2

i

2β2

)
.

These results are obtained by treating the collection of particles as a continuum, and are
not true for any finiten. Nonetheless, for all practical purposes, the Maxwell–Boltzmann
distribution is an excellent approximation for the particle distribution after a short time ifn is
large. Figure 6 shows the velocity distribution of a single particle in time over several million
collisions, generated by running the algorithm described in Section 1.2 withn = 1000. Even
for this small number of particles, the agreement with the Gaussian prediction is excellent.7

For our analysis, we will therefore assume thatn is large and the particles have the
Maxwell–Boltzmann distribution at all times; that is, we take A1–A3 above asassumptions.
This includes the assumption that the initial configuration satisfies A1–A3, but since almost
any initial configuration will rapidly evolve to the Maxwell–Boltzmann distribution, this
assumption is not too restrictive. Our analysis is accordingly average case analysis, averaging
over initial conditions taken from the Maxwell–Boltzmann distribution. We expect however,
and observe experimentally, that because of ergodicity, single realizations will give rise to
similar complexity. Unfortunately these three simple assumptions do not suffice for bounds

7 To make the connection between the velocity distribution of a single particle over time and the velocity
distribution of the collection of particles at a particular instance in time, we are assuming ergodicity and indepen-
dence of different particles.
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on the expected complexity of the algorithm, and we will add a fourth assumption, A4,
below; we postpone its statement as it involves, contrary to assumptions A1–A3, some
details of the algorithm.

Operation Count

We start by counting the number of operations in of each the Steps S1–S5, ignoring
constants as before. We have informally been through most of this in Section 1.1, but here
we make the treatment more precise.

S1. A single operation.
S2. Constant number of operations in the event of a collision or a transfer, no operation

in the event of a check.
S3. Constant number of operations.
S4. Constant number of operations for each particle in the neighboring cells, for a total of

ns(i )− 1 operations, wherens(i ) is the total number of particles, at the occurrence of this
event (labelledi ), in the 3d cells surrounding and including the cell containing this event.

S5. At most logn operations.

The total number of operations over the course of the simulation is therefore

O
( ∑

i∈events

(1+ ns(i )+ logn)

)
. (4)

The first term comes from Steps S1–S3 (getting the event, handling it, and computing
a transfer), the second from Step S4 (computing collisions), and the third from Step S5
(adjusting the positions in the event queue).

Average Number of Operations

The expression (4) depends on the number of events, and how the particles are distributed
throughout the domain as the events occur. We now compute its average under the statistical
assumptions A1–A3. For a functionX of the particle positions and velocities we denote by
EX the average, or expected value, ofX over an ensemble of simulations obeying A1–A3.

Under assumption A1 the expected number of particles in a cell at any fixed instant in
time isn0Ld, wheren0 = n/Dd is the particle number density, andL = D/m is the side
length of a cell. Nowns(i ) is the number of particles in the 3d cells surrounding the eventi
at the occurrence of event i, which isnot a fixed instant in time. For instance, if the event
is a collision, we know thatns(i ) is at least two, namely the two colliding particles. In the
event of a transfer, we know thatns(i ) is at least one, namely the particle being transferred.
We are tempted to conclude that the expected value ofns(i ) is increased by no more than
two particles,

Ens(i ) ≤ 3dn0Ld + 2.

However, in a region of high particle number density, collisions are more frequent than in
a region of low particle number density. Reversing the argument, we could argue that the
occurrence of a collision in a region is, on average, an indicator of higher particle number
density; i.e., the expected number of particles in a cell at a collision,Ens(i ), is higher than
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the expected number of particles in a cell at a fixed instant in time,n0Ld, not only by the 2
particles involved in the collision but possibly by a factor.

Below we will see that we take the limitn→+∞ in such a way that the total volume
fraction occupied by the particles is fixed,nrd/Dd = C, sor/D = Cn−1/d (with a different
constantC). In a cell of side lengthL we can fit at mostC(L/r )d = Cn0Ld particles (with
a yet different constantC), which is therefore a firm upper bound on the number of particles
in a cell. In particular,

Ens(i ) ≤ Cn0Ld

for some constantC ≥ 3d independent ofn.
Using the law of iterated expectation, we get

E
[∑

ns(i )
]
= E

[
E
[∑

ns(i ) | ne

]]
= E

[∑
E[ns(i ) | ne]

]
,

since givenne the number of terms in the summation is fixed, and equal tone. Now ns(i )
is independent of how many events there are in total,

E[ns(i ) | ne] = Ens(i ) ≤ Cn0Ld,

so

E
[∑

ns(i )
]
≤ E

[∑
Cn0Ld

]
= E[neCn0Ld] = Cn0LdEne.

The other two terms in the sum in (4) are independent ofi, so the expected total number of
operations is

O((1+ n0Ld + logn)Ene). (5)

To continue we need to determine howEne depends onn andL. Now ne = nc + nt + nch

wherenc is the number of collisions,nt is the number of transfers, andnch is the number
of checks, so we proceed to determine the average value of each term.

Number of Collisions

Under assumptions A1–A3, arguments from statistical mechanics [21, pp. 461–471] give
that for a dilute system of particles the average number of collisions,nc, in a time period
[0, T ] is

Enc = E‖vi − v j ‖σcn0nT, (6)

wheren0 = n/Dd is the particle number density,‖v‖ is the Euclidean norm ofv, ‖v‖2 =∑d
i=1 |v|2 soE‖vi − v j ‖ is the mean relative speed of two particles, andσc is a collision

cross section of two particles; we haveσc = adr d−1, in particularσc = 2r for d = 2 and
σc = 4πr 2 for d = 3.
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FIG. 7. Expected number of crosses over a plane.

Number of Transfers

To expressnt in terms ofn andL, first consider how many particles on average cross a
plane perpendicular to one of the coordinate axes in a time interval of lengthdt. A particle
with velocity vi perpendicular to the plane8 will pass it if it is closer to it thanvi dt, and is
traveling in the right direction; see Fig. 7. Under assumptions A1–A3, the expected number
of particles passing the plane in timedt is thus|vi | dt f (vi ) dvi n0Dd−1, where f (vi ) dvi

is the density of particles with velocityvi along the axis perpendicular to the plane, and
n0Dd−1|vi | dt is the number of particles in a slab of thickness|vi | dt.

Integrating overvi andt then gives the total number of passes asE|vi |T n/D. The cells
can be thought of as composed ofm= D/L planes in each dimension so multiplying by
m and summing overi gives the expected total number of transfers as

Ent = E‖v‖1nT/L , (7)

where‖v‖1 denotes the 1-norm ofv, ‖v‖1 =
∑d

i=1 |vi |.

Number of Checks

To count the number of checks,nch, recall that we use them for two purposes. For the
first purpose, a check is always introduced at a collision. For the second, a check will be
introduced in the event of a transfer or a collision if and only if the new partner had a
scheduled collision. One might therefore be tempted to conclude that there is at most one
check introduced in the event of a transfer and at most two at a collision, sonch ≤ 2nc + nt .
However, the handling of a check might itself introduce another check, so no immediate
bound in terms of the other two events is obvious. In fact, this issue is raised in [22] and [23].

In practicench is usually far less than 2nc + nt , typically nch ≈ 1.1nc, so we make in
addition to assumptions A1–A3 the following reasonable assumption:

A4. The expected number of checks is bounded by a constantC, independent ofn, times
the expected number of transfers and collisions,Ench ≤ C(Enc + Ent ).

Since we are ignoring constants we can therefore combineEnch with Enc + Ent , that is
drop it altogether.

Complexity

Combining the expressions (7) fornt and (6) fornc with (5) we get the average complexity
of the algorithm as

O((1+ logn+ n0Ld)(Enc + Ent )) = O
(
(1+ logn+ n0Ld)

(
σcn0+ 1

L

)
βT n

)
, (8)

8 In this paragraph the subscripti refers to a component of the velocity vector; everywhere else,vi labels the
velocity of particlei .
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where we have replacedE‖vi − v j ‖ andE‖v‖1 byβ for simplicity, for if the particles have
the Maxwell–Boltzmann velocity distribution, then

E‖vi − v j ‖ =
∫ ∫

‖v1− v2‖ f (v1) f (v2) dv1 dv2 =
√

2E‖v‖ =
√

2dβ, and

E‖v‖1 =
∫
‖v‖1 f (v) dv = 1√

2π
E‖v‖ =

√
d

2π
β.

Choice of Units

For hard sphere molecular dynamics it is customary to choose the units of mass, length,
and time such that the unit mass is the mass of a single particle, the unit length is the diameter
of a particle,σ = 2r , and the unit energy ismβ2. Then the unit time isσ/β. There are only
two free parameters in this system, and with the units chosen in this way, it is convenient
to choose the particle number densityn0, and the number of particles,n. In these units, we
can therefore write (8) as

O
(
(1+ logn+ n0Ld)

(
n0+ 1

L

)
T n

)
.

These units are natural for hard sphere molecular dynamics, but we will study the more
general case of particles moving in a velocity field. For that problem, the more natural
length unit is the length scale of the velocity field, typically the size of the domain,D.
The natural time scale is such that the unit velocity is a typical field velocity. Usually the
velocity of a single particle will be close to the field velocity, and soβ is a natural unit
velocity. With this choice of length scalen0 = n, son andn0 are not different parameters.
For our parameters we taken and the volume fraction of the particles,ρ = nσv, whereσv =
bdr d is the volume of a single particle; thusσv = πr 2 in 2D, σv = 4π

3 r 3 in 3D. Thenr =
(ρ/nbd)

1/d and thereforeσc = ad(ρ/nbd)
1−1/d = Cρ1−1/dn1/d−1 so we can rewrite (8) as

O
(
(1+ logn+ nLd)

(
ρ1−1/dn1/d + 1

L

)
T n

)
. (9)

We take the limitn→∞ in such a way thatβ, D, andρ are fixed.
In what follows we shall work in these units, and so we note from (6) that the total number

of collisions is

nc = ρ1−1/dn1+1/dT. (10)

Each collision involves two particles, so each particle has 2nc/n collisions on average
during the time interval [0, T ]. The average time between successive collisions of a single
particle, themean collision time, is therefore

τc = T n

2nc
= 1

2
ρ1/d−1n−1/d. (11)

Optimal Cell Size

The complexity (9) is, as expected, dependent on the choice of the cell sizeL. As the cell
size is decreased the second factor increases, which reflects the fact that more transfers have
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to be detected, but the first factor decreases, which reflects the fact that fewer particle pairs
need to be examined for collisions at each event. A natural question is therefore whether
the cell size can be chosen to make the complexity close tonc.

Balancing the two terms 1 andnLd in the first factor gives 1/Ld ∼ n, and balancing
the two terms in the second factor gives the same scaling. With this choice ofL, the first
factor in (9) is2(logn), the second factor is2(n1/d), and the product of the three factors
is2(n1+1/d logn) = 2(nc logn). To summarize, we have the following:

Conclusion

Under the assumptions A1–A4, and for a fixed volume density and kinetic energy, the
average case complexity of the algorithm isO(nc logn) if the total number of cells is
proportional to the number of particles, that ismd = 2(n).

Thus, with this choice of cell size scaling withn the algorithm is optimal, since the cost
would appear to beÄ(nc logn) in reasonable models of computation.

1.4. Experiments

The analysis in the preceding section is based on statistical assumptions which are not
proven for any finiten although, as mentioned, they are widely accepted in the statistical
physics literature. In this section we validate the analysis through a variety of experiments
with the algorithm. All the experiments are performed at fixed volume density and kinetic
energy asn increases.

2D Billiards

We run the algorithm in two dimensions withn varying from 5,000 to 100,000 in incre-
ments of 5,000, while keeping the volume density,ρ, fixed at 15%.

We try different values ofm= 1/L for eachn in order to explore how the running time
varies withm. In Fig. 8 (left) we plot the running time versusm for n = 5000. There is
clearly a minimum aroundm= 90. We do this for each value ofn and find the value of
m that gives the least running time,mopt, and plot in Fig. 8 (right) the result. Regression
on logm= loga+ b logn givesa = 0.7476 andb = 0.5620, quite close to the theoretical
predictionm∼ √n.

FIG. 8. 2D billiards,ρ = 15%. Left: Computing time in seconds vs.m for n = 5000. Right:mopt vs. n in
thousands (dots) and the fitted curveanb, with a = 0.7476 andb = 0.5620 (solid); this compares well with the
predicted valueb = 1

2
.
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FIG. 9. 2D billiards,ρ = 15%. Left: Computing time in hours vs.nc in millions. Right: Computing time in
hours vs.nc logn with nc in millions andn in thousands. The computing time appears linear innc logn, and the
best fit of the forma(nc logn)b hasa = 0.02 andb = 1.0017.

In Fig. 9 we show how the computing time varies withnc (left) when the optimal cell size
is used. It appears slightly super linear, and Fig. 9 (right) shows the computing time versus
nc logn and it appears to be perfectly linear. Indeed, fitting a curve of the forma(nc logn)b

givesb = 1.0017.

3D Billiards

We repeat the preceding experiment in three dimensions, withρ = 15% as before. Fig. 10
left shows how the running time varies withm= 1/L for n = 50000. It appears monotone
in m. The minimum is atm= 55, in which case the cell sizeL equals the particle diameter.
The algorithm wants to use smaller cells, but the restriction 2r < L (see Fig. 2) forbids that.
This is a result of the high particle density. The modification suggested by Kimet al. [10,
11], that is to check only particles in the same cell for collisions and allowing a particle to
belong to multiple cells, could slightly improve the efficiency of the algorithm in this case.
The power law fit ofm to anb givesb = 0.3382, which is very close to the prediction1

3, but
in this case it is simply due to the fact thatm∼ 1

r ∼ 3
√

n. From Fig. 11 we see that the cost
is still near linear innc logn, as is confirmed by regression; fitting the cost toa (nc logn)b

givesa = 0.6488 andb = 1.0488.

FIG. 10. 3D billiards,ρ = 15%. Left: Computing time in seconds vs.m for n = 50, 000. Right:mopt vs.n in
thousands (dots) and the fitted curveanb, with a = 0.3406 andb = 0.3382 (solid); this compares favorably with
the predictionb = 1

3
.
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FIG. 11. 3D billiards,ρ = 15%. Left: Computing time in minutes vs.nc in millions. Right: Computing time
in minutes vs.nc logn. The best fit of the forma(nc logn)b hasa = 0.6488 andb = 1.0488.

To further test our conclusions from Section 1.3, we redo the experiment in 3D with
lower density,ρ = 1%. Figure 12 (left) shows how the running time varies with the cell
size for this lower density. There is a clear minimum aroundmopt ≈ 50, and repeating this
for different number of particles and recording for eachn the optimalm results in the plot
in Fig. 12 (right).

Using the optimal cell size we plot in Fig. 13 the cost of the algorithm versusnc (left) and
nc logn (right). Again it appears to be linear innc logn, and regression gives an exponent
very close to 1:a = 2.5322 andb = 1.0372.

It is interesting to compare our algorithm to the state of the art at the time of the earliest
algorithm. Alder and Wainwright in 1959 [1] report that for a 500-particle system, their
algorithm running on an IBM 704 calculator could handle 500 collisions per hour. For a
5000 particle system, the current algorithm running on a Pentium III PC handles about
60 million collisions per hour, which is around 16,000 collisions per second.

2. PARTICLE LADEN FLOW

In principle, the algorithm described in Section 1.2 can be used to simulate any system
of particles whose trajectories, in the absence of interaction with other particles, are known

FIG. 12. 3D billiards,ρ = 1%. Left: Computing time in seconds vs.m for n = 50,000. Right:mopt vs.n in
thousands (dots) and the fitted curveanb, with a = 0.7626 andb = 0.3904 (solid); the predicted value isb = 1

3
.
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FIG. 13. 3D billiards,ρ = 1%. Left: Computing time in minutes vs.nc in millions. Right: Computing time
in minutes vs.nc logn. The best fit of the forma(nc logn)b hasa = 2.5322 andb = 1.0372.

in advance. All that is required is a way of computing the next collision time between any
pair of particles, assuming they do not collide with other particles. Our aim however is to
handle the more complicated particle trajectories of fluid suspensions, where the particles
are immersed in a fluid, allowing for interchange of momentum and energy between the
particles and the fluid. In such systems, the particle motion affects the surrounding fluid,
so the trajectories cannot be integrated independently indefinitely, even in the absence of
collisions. A simpler situation arises when only the fluid affects the immersed particles, and
not vice versa, often termed particle laden flow, which is the object of study in this section.

A commonly used model for the effect of the fluid on the immersed particles is Stokes’s
law [24], and nonlinear corrections of it [25, pp. 16]. This law states that the force exerted
by a fluid on an immersed particle is proportional to the relative velocity of the field and the
particle, the radius of the particle, and the fluid viscosity. In dimensionless form, Stokes’s
law can be written

τ ẍ(t) = u(x(t), t)− ẋ(t), (12)

whereτ ∝ r γ is the so-called particle time-constant,γ = 2 in 3D [24, p. 229] andγ = 2 with
log-correction in 2D [24, p. 246]. When, in Section 2.3, we do experiments we chooseγ = 1
in 2D. (We are primarily concerned with the complexity of the algorithm when applied to
nontrivial particle trajectories, so the experiments will still give useful information, despite
nonphysical choice of exponentγ .) Furthermore, we will take the limitn→∞ in such a
way that the particle volume density,ρ, is fixed, sor ∝ 1√

n
.

In particle laden flow, even though the particle trajectories in the absence of collisions are
in principle known, finding the next collision time of two particles whose trajectories are
given by a differential equation is in general expensive computationally. In this section, we
employ the algorithm from Section 1 on short incremental time intervals in which we can
accurately approximate the particle motion (piecewise) linearly. Such an algorithm is, in any
case, forced upon us for the problems in Section 3 where the velocity field depends on the
particles. The modified algorithm is detailed in Section 2.1. We analyze the complexity of the
modified algorithm in Section 2.2, but we emphasize that our statistical assumptions are far
from being justifiable in this more general setting. However, we perform numerical experi-
ments in Section 2.3 to test our conclusions and find that the statistical assumptions nonethe-
less lead to useful predictions. We find that, for driven flow problems, the scalingm∼ n1/d

is optimal whenever the number of collisions grows withn at least as fast as in billiards.
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2.1. The Algorithm

Given the developments in Section 1, a natural way to simulate (1) withF given by (12),
is to apply the billiards algorithm, S1–S6, on short time intervals. That is, introduce a time
step1t , assume that the particle motion is linear, i.e., the particles move in straight lines
with constant velocities, over each time step up to a collision, and apply the algorithm to
the linear paths. If a particle pair collides during a time step, then in Step S2integrate(as
opposed to simply advance as in billiards) the paths of the two particles involved in the
collisions up to that time, and then handle the collision. At the end of the time step, integrate
all the particle paths from the time of their last collision, if any, or from the beginning of
the time step if none. This work if care is taken in two respects.

Consistency of the Numerical Integrator and the Interpolation

First, the numerical integrator and the interpolation for the collision detection have to
be consistent,9 meaning that applying the integrator on a shorter time step than1t will
give thesameparticle position as the interpolation employed for the collision detection.
Otherwise, the particle positions at the time of collision, as computed by the numerical
integrator, might be such that the particles are overlapping, which will cause difficulties for
the collision detection algorithm. For example, for the quadratic formula (2) to correctly
predict when two particles aretouching, the integrator used has to be consistent with the
assumption that the motion is linear within a time step. In other words, it has to be linear in
1t for the position.

False Predictions

Secondly, even though two particles aretouching, they will not necessarycollide in the
next instant; only if their velocities are such that they are approaching each other will they
collide; see Fig. 14. Thus, before handling the collision, we must check that the particles
are indeed colliding. If they are, we handle it in the usual manner, but otherwise ignore it.

This issue is not to be confused with the fact that a numerical integrator will not get
the particle paths correct, and thereby give “false collisions.” The only way to get no such
false collisions is by computing the true trajectories of the particles exactly. However, if we
assume that the motionis linear over each time step up to a collision, the quadratic formula
for (2) will give false predictions for collisions, as indicated in Fig. 14, which should be
dealt with as described above.

We reiterate that numerical errors introduced by the integrator will inevitably cause
collisions to be added or missed. But apart from such errors, our algorithm does not miss
(or add) a collision, no matter how large a time step or small cells are used, provided of
course that the cell size is larger than a particle diameter. The algorithm is therefore “exact”
in this sense; the detection of transfers ensures that particles that come close to each other
at any time are checked for a possible collision.

Numerical Integrator

We use linear interpolation in a form useful when the particle time constantτ is small,
and Eq. (12) becomes stiff. The consistency requirement makes it difficult to use a fully

9 We are not using the term consistency in the standard sense applied to finite difference schemes.
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FIG. 14. False prediction for a collision between two particles moving in a velocity field. At the start of
the time step the two particles have velocitiesv

k1
1 andv

k2
2 . Based on constant velocities, the algorithm predicts a

collision within the next time step. Integrating the particles toward the collision time reveals that they are indeed
touchingbut, because of the effect of the velocity field, their velocities should be changed in such a way that they
are notcolliding.

implicit integrator; to handle this stiffness we use thelinearly implicit integrator,

xk+1 = xk +1tvk, (13)

vk+1 = vk + 1t

τ
(u(xk+1, tk+1)− vk+1). (14)

Sinceu is considered given in this section, this means (xk+1, vk+1) is uniquely determined
from (xk, vk) for any time step1t > 0. This scheme predicts position linear in1t and is
hence consistent with the collision detection formula (2).

Quadratic Interpolation

Alternatively, we could use an integrator that is quadratic in1t for the particle positions.
This approach has been used for molecular dynamics simulations with mixed hard-core and
soft potentials [26]. An argument similar to the one that lead to Eq. (2) then gives that the
next time any two particles are touching is the smallest positive root of a quartic. In general
we still get false predictions, unless a specific numerical integrator is used. In particular,
the integrator

xk+1 = xk +1tvk + 1

2
1t2ak,

vk+1 = vk +1tak,

whereak = 1

τ
(u(xk, tk)− vk),

will eliminate the false predictions altogether. The reason is that this scheme amounts
to assuming constant acceleration within a time step, for which the quartic formula will
correctly predict not only when two particles are touching, but also when they are co-
lliding.
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Time Step Initialization

Applying the billiards algorithm on small time steps means that we potentially have to set
up the data structures at the beginning of every time step instead of just at the beginning of
the simulation as in the billiards case; that isveryoften if the time step is small. The particle
information is “initialized” by integrating the path of each particle from the time of its last
collision or the beginning of the time step as we suggested initially. The cell structure is
updated every time there is a transfer so at the end of a time step it has correct information
on which cells the particles belong to and hence does not require initializing. The event
queue, on the other hand, contains no useful information at all at the end of a time step, and
will therefore need to be set up again at the beginning of each time step. The set-up cost
of the event queue, which we deliberately ignored in the billiards case, will therefore enter
our complexity analysis.

Piecewise Linear Paths

To avoid incurring this set-up cost at every time step we could, instead of applying the
collision detection algorithm over a single time step, integrate the particle paths over a few,
sayk, time steps, store the computed trajectories, and apply the algorithm to the piecewise
linear paths. We can then use Eq. (2) on each piece. It is then natural to ask how far should
we integrate in time, that is how large shouldk be chosen? Largerk means less frequent
set-up of the event queue. However, once a particle is involved in a collision its previously
computed path becomes invalid, so integrating too far ahead in time is clearly bound to
waste computational time. This suggests that there is an optimalk for which the running
time of the algorithm is the least, and we will indeed see, theoretically in Section 2.2 and
experimentally in Section 2.3 that, if the time step is considerably smaller than the mean
collision time, there is an optimalk > 1.

This algorithm is a bit more complicated to implement than applying the collision detec-
tion at every time step, since each particle has to keep an array of states instead of a single
state. Furthermore, this idea is not easily applicable to the more general case of coupled
particle-fluid problems discussed in Section 3, so we focus primarily on the original scheme,
that is withk = 1.

Previous Work

Sundaram and Collins [7] describe a similar approach they used to collect collision
statistics in particle-laden turbulent flow. As described above, they discretize the trajectory
of the particles and assume linear motion within a time step. They also employ a cell
structure as described above, but instead of detecting transfers between cells, theyassume
a bound on the velocity of the particles,vmax1t ≤ L/2, which ensures that only particles in
adjacent cells can possibly collide within a time step. This assumption cannot be justified
a priori.

They also report on their experience with using Verlet lists [27], and “overlap detec-
tion” instead of collision detection. Verlet lists are prominent in soft sphere simulations,
in which the particles interact through a smooth potential, for example the Lennard–Jones
potential [27]. Each particle keeps a list of its nearest neighbors, which is updated every
few time steps. When used for hard sphere simulations, a bound on the velocity of each
particle is needed. Sundaram and Collins [7] conclude that Verlet lists are less efficient
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than the cell method they used, and that overlap detection is in most cases not sufficiently
accurate.

It should be noted that to guarantee the algorithm of Sundaram and Collins [7] accounts for
all collisions, even in the billiards case, an extremely short time step may be needed. For the
billiard problem, as an example, the only known a priori upper bound on the particle velocity
is when all the kinetic energy is contained in a single particle. That is, if the average particle
speed isβ, thenv2

max= nβ2 and hence the method of Sundaram and Collins [7] requires
1t ≤ L/(2β

√
n). For billiards, the mean free collision time is proportional ton−1/d, so if

d > 2, the maximum time step to guarantee not missing collisions in an algorithm without
transfer detection is an order of magnitude smaller than the mean free collision time.

Detecting transfers as well as collisions, which is not done in the Sundaram and Collins [7]
approach, fixes this problem without a major increase in computational cost. Furthermore,
since the restrictionvmax1t ≤ L/2 then no longer applies, it allows the use of smaller cells
which also potentially reduces the cost.

2.2. Complexity

We now analyze the complexity of this modified algorithm. We assume that the statistical
hypotheses A1–A4 we used in the billiards case remain true. This assumption often fails,
but we shall see that the theory does have useful predictive capabilities.

First consider applying the collision detection over a single time step. The operation
count (4) from Section 1.3 then applies to each time step, where the sum is now over events
in the time interval [t, t +1t ], and with the additional task of setting up the event queue at
the beginning of every time step. The number of operations required for this setup task is

O
(

n∑
i=1

(1+ n∗s(i ))+ n logn

)
. (15)

Here, similar tons(i ) in Section 1.3,n∗s(i ) is the number of particles in the (3d + 1)/2 cells
surrounding and including the cell particlei is in, which are shaded in Fig. 4. The term
n logn is the cost of setting up a heap ofn elements.

Under assumption A1 in Section 1.3, namely that the particles are uniformly distributed
throughout the domain at each instant in time, the average of (15) is

O((1+ n0Ld)n+ n logn), (16)

whereL is the side length of a cell,n0 = n/Dd is the particle number density, andD is
the side length of a cube containing all the particles, son0Ld is the average number of
particles per cell. We do not expect the particles to be uniformly distributed in this more
general setting, but anticipate though that the average number of particles per cell will be
proportional ton0Ld. The average of (4) is still (5), whereEne is the expected number of
events in a time interval of length1t .

In addition, at the beginning of each time step we need to integrate the path of each particle,
costing2(n) operations. Since this term is already included in the above expression, we
can safely ignore it.

Adding (16) and (5) we get the cost of each time step as

O((1+ logn+ n0Ld)[Ene+ n]), (17)

where nowEne is the expected number of events in a time interval of length1t .
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In Section 1.3 we used assumptions A1–A3 to writeEnt andEnc in terms ofn and
m and assumption A4 to boundEnch. These assumptions are clearly not justified in this
more general setting. We anticipate however that the total number of transfers will still be
proportional toβmnT, that is given by Eq. (7); this is born out in experiments. The total
number of collisions will on the other hand not necessarily be given by Eq. (6).10 We assume
that it is proportional to some power ofn,

Enc ∼ β1tn1+α. (18)

For billiards we saw thatα = 1/d. For the number of checks,Ench, we again use
assumption A4.

Plugging (7) withT = 1t and (18) into (17) we get

O
(
(1+ logn+ n0Ld)

((
nα + 1

L

)
βn1t + n

))
,

and summing over allT/1t time steps, that is multiplying byT/1t , we get the total
complexity as

O
(
(1+ logn+ nLd)

(
nα + 1

L
+ 1

β1t

)
βT n

)
.

Sincen0 ∼ n andm= 1/L, in our chosen units we can write this as

O
((

1+ logn+ n

md

)(
nα +m+ 1

1t

)
T n

)
,

Choosingmd = 2(n) keeps the first factorO(logn), so the cost is

O
((

nα + n1/d + 1

1t

)
n logn

)
. (19)

The mean free collision time, that is the mean time between successive collisions of a
single particle, is

τc = Tn

nc
= β

nα
.

Also, L/β is the time it takes a particle to travel one cell length. We therefore notice from
(19) that in order for the overhead added by the time stepping not to be dominant we need
1t = Ä(τc) and1t = Ä(L/β), that isthe time step should not be much smaller than either
the mean time between collisions or the time it takes to travel a single cell length. For particle
laden flow, the size of the time step is determined by the time scale of the particle motion and
hence we are not free to choose it to optimize the complexity. The above analysis therefore
indicates that if the characteristic time scale of the particle motion is much smaller than the
mean collision time, the dominant cost is checking for collisions and transfer and setting
up the priority queue at the beginning of each time step.

10 Indeed, one use of a collision detection algorithm like this is collection of collision statistics, such as the total
number of collisions, in particle-laden flow.
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Therefore, ifα ≥ 1/d and we choose1t = Ä(n−1/d) (for example, keep1t fixed), the
complexity isO(nc logn). If on the other handα < 1/d, the complexity isO(n1+1/d logn)
which is not optimal.

Piecewise Linear Paths

Now consider applying the collision detection less frequently than at every time step,
say everyk time steps. Then the event queue need only be set upT/(k1t) times, instead
of T/1t times. Of course, this comes at the expense of more costly collision and transfer
checks; finding the next transfer time of a particle or next collision time of two particles
whose trajectories are piecewise linear withk pieces costs up tok times more than before.
We proceed as before, using the analysis from Section 1.3 withT = k1t , and add the
previously mentioned set-up cost everyk time steps, for a total cost of

O
(
(k+ logn+ knLd)

(
nα + 1

L
+ 1

kβ1t

)
βT n

)
. (20)

With the choice of cell sizeL = 2(n−1/d), the optimalk is then such that bothk1t = Ä(τc),
that is,k1t is asymptotically larger than the mean free collision time, andk = O(logn), if
both are possible. Whether or not this is possible depends on how the number of collisions
scales withn and how1t is chosen. If for example1t is chosen on the order ofτc, then this is
always possible since then the first condition isk = Ä(1). If 1t is fixed andnc = 2(n1+α)
then τ = 2(n−α) so the first condition isk = Ä(n−α) and hencek = O(logn) as long
asα ≥ 0 (α < 0 means that the number of collisions decays asn→+∞). Of course the
proper choice ofk depends on the constants, which we have ignored, but a rule of thumb is
to choosek such thatk1t is on the order of the mean collision time.

2.3. Experiments

As before, we compare the analytical results from the preceding section with timings
obtained from running the algorithm. All the experiments are performed with fixed particle
volume density and zero initial kinetic energy asn increases. We restrict our attention to
2D particle laden flow with elastic collisions. We place the particles in a 2D incompressible
velocity fieldu = ∇⊥ψ = ( ∂ψ

∂x2
,− ∂ψ

∂x1
), whereψ is the stream function.

Taylor–Green Flow

We first use the Taylor–Green flow [28, 29], which is a solution to the forced 2D Navier–
Stokes equations in the unit square with periodic boundary conditions and the initial con-
ditions shown in Fig. 15, namely

ψ(x, 0) = 1

2π
sin 2πx1 sin 2πx2.

To get a time-independent flow from this initial condition it is necessary to set the force to
f (x) = ν∇⊥ψ(x, 0). In Appendix A.1 we show that thenψ(x, t) = ψ(x, 0), so

u1(x, t) = sin 2πx1 cos 2πx2,

u2(x, t) = − cos 2πx1 sin 2πx2.
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FIG. 15. The initial conditions for the Taylor–Green flow.

The point of this velocity field is to test the algorithm when there is an equilibrium particle
distribution which is nonuniform in space. Figure 16 (left) shows a typical initial particle con-
figuration used for the experiments. The particles quickly start spiraling outwards and after
a few time units they are distributed as on the right; as expected, the particles are not
uniformly distributed in space. Also, the spatial and velocity distributions are now highly
correlated; the particle velocity is small near the four saddles at the center and at the corners,
and larger between them. That is, our assumptions for the complexity analysis are certainly
not satisfied.

Adaptive Cell Size Selection

The time-dependence of the particle distribution suggests that using a fixed cell size
throughout the simulation is perhaps not the most efficient strategy. Initially, when the
particles are distributed as on the left in Fig. 16, relatively large cells are probably most
efficient, whereas in equilibrium, when the particle distribution is as on the right, much
smaller cells should be used. We therefore also include experiments with the following
simple adaptive scheme. We monitor the running time of the algorithm, and every few time
steps we decrease the cell size. We do this until the running time ceases to decrease. Then
we start increasing the cell size again until the running time ceases to decrease. We continue
this throughout the simulation, always heading in the same direction as long as the running
time is decreasing. Below we compare the performance of this method to the performance
of keepingm fixed throughout the simulation. Our main focus is, however, on keepingm
fixed throughout the simulation, so unless otherwise stated, that is the method we use.

Results

We run the algorithm withn ranging from 10,000 to 200,000 in increments of 10,000. We
start with the particles at rest and distributed as in Fig. 16 (left), use a time step1t = 10−2,
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FIG. 16. Initial (left) and equilibrium (right) particle distribution for particle laden Taylor–Green flow with
50,000 particles.

and run for 10 time units at which time the particles are distributed as shown in Fig. 16
(right).

Figure 17 (left) shows how the total number of collisions,nc, increases with the number of
particles. A fit of the formanb givesb = 1.61, which is slightly larger than 1+ 1/d = 1.5,
and thus we predict that by choosingm∼ √n the cost will scale likenc logn. We take
m= 3(

√
n), either fixed throughout the simulation or as the starting value for the adaptive

scheme. Figure 17 shows how the total number of transfers increases with the product of
m andn. A fit of the form nt = a(mn)b gives thatb = 1.02 so the number of transfers is
very nearly linear inmnas we predicted.

Figure 18 (left) shows how the computing time increases with the number of collisions.
It appears slightly super-linear, and a fit of the formC = anb

c indeed givesb = 1.18. After
dividing the cost by logn, Fig. 18 (right), the best fit isC ∼ n1.13

c logn.
From Fig. 18 we see that the simple adaptive scheme performs better than the fixed

scheme, though it does not change the asymptotic running time. The simulation of 200 thou-
sand particles took a bit less than 48 hours of computing time and resulted in almost 1 billion
collisions, giving an average of 20 million collisions an hour, or 5500 collisions per second.

FIG. 17. Number of events for particle laden Taylor–Green flow. Left: Number of collisions in 100 millions
vs. number of particles in thousands. The best fit isnc = 2.85n1.61. Right: Number of transfers in 100 millions vs.
nm in 100 millions. The best fit isnt = 4.32(nm)1.02.
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FIG. 18. Computing time for particle laden Taylor–Green flow for fixedm (dots) and the adaptive scheme
(dashed). Left: Computing time in hours vs. number of collisions in billions. The best fit isC ∼ n1.19

c . Right:
Computing time in hours vs.nc logn in billions. The best fit isC ∼ n1.13

c logn.

Synthetic Turbulence

In order to gain insight into the behavior of colliding particles in a 2D turbulent velocity
field, we create an incompressible flow field with prescribed mean spectral properties;
these can be chosen to match theoretical predictions or empirical observations about energy
scaling laws in turbulence. This is done by setting up a linear stochastic PDE for the stream
functionψ , as described in Appendix 2. The point is that particles in this velocity field only
reach astatisticalequilibrium, and their configuration is nonuniform in both space and time.

For the experiments we choose the spectrum of the velocity field to be the K´arman–
Obukhov spectrum [30, pp. 112],

εk ∼ ‖k‖2(1+ ‖k‖2)−7/3,

shown in Fig. 19, which was introduced to study Kolmogorov turbulence. Hereεk is the
mean energy in wavenumberk (see Appendix 2). We have also experimented with the
Kraichnan spectrum [30, pp. 113],

εk ∼ ‖k‖2 exp(−‖k‖2),

shown in Fig. 19, obtaining identical results regarding the complexity of the algorithm.

FIG. 19. Spectra used for experiments with synthetic turbulence. Left: K´arman-Obukhov spectrum. Right:
Kraichman spectrum.
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FIG. 20. Initial (left) and typical (right) particle distribution for particle laden synthetic turbulence.

Results

We run the algorithm withn ranging from 10,000 to 200,000 in increments of 10,000.
We start with the particles at rest and uniformly distributed in space. We use a time step
1t = 10−2 and run for 10 time units, at which time the particles are distributed as in Fig. 20
(right). Note that the distribution is not uniform in space.

Figure 21 (left) shows how the total number of collisions,nc, increases with the number
of particles. This is different from both billiards and the Taylor–Green case, and appears to
be linear inn. A fit of the formanb to the second half of the data givesb = 0.82, which is
far less than 1+ 1/d = 1.5. We therefore do not expect the algorithm to be optimal on this
problem. By choosingm∼ √n, our analysis predicts that the cost will scale liken3/2 logn,
which is far greater thannc logn. We again takem= 3(

√
n) , either fixed throughout

the simulation or as the starting value for the adaptive scheme. Figure 21 (right) shows
how the total number of transfers increases with the product ofm and n. A fit of the
form nt = a(mn)b gives thatb = 1.04 so the number of transfers is still very nearly linear
in mn.

FIG. 21. Number of events for particle laden synthetic turbulence. Left: Number of collisions in millions
vs. number of particles in thousands. A fit of the formanb to the second half of the data givesb = 0.82. Right:
Number of transfers in 100 millions vs.nm in 100 millions. The best fit isnt = 1.39n1.04.
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FIG. 22. Computing time for particle laden synthetic turbulence for fixedm (dots) and the adaptive scheme
(dashed). Left: Computing time in hours vs. number of collisions in millions. Right: Computing time in hours vs.
n log n in millions. The best fit from the second half of the data isC ∼ n1.54 log n.

Figure 22 (left) shows how the computing time increases with the number of collisions and
as expected it is far from linear. Figure 22 (right) shows the cost divided by logn versusn.
The best fit, using only the second half of the data, isC ∼ n1.54 logn, quite close to the
prediction ofC ∼ n3/2 logn. Recall that Fig. 21 shows that the number of collisions is
sublinear inn; thus, as predicted, the algorithm is far from optimal in this case.

From Fig. 22 we again see that the simple adaptive scheme performs better than the
fixed scheme, though it does not change the asymptotic running time. The simulation of
200 thousand particles using the adaptive scheme took a bit less than five hours of computing
time and resulted in more than 1 million collisions, giving an average of a mere 200 thousand
collisions an hour, or 55 collisions per second.

Optimal Time Step

In Section 2.2 we concluded from Eq. (19) that in order for the overhead added by the time
stepping not be dominant, the time step should be chosen not much smaller than the mean
free time. We test this conclusion experimentally by running the algorithm with different
time step sizes. We use Taylor–Green flow with 10,000 particles and the same setup as before.
For this set-up, there are about 7.5 million collisions, giving a mean collision time of

τc = nT

2nc
≈ 7× 10−3.

Figure 23 (left) shows the cost versus size of time step.
We see that the cost is not sensitive to the size of the time step, as long as it is large

enough; however, once the time step becomes small compared to the mean free collision
time, the cost is inversely proportional to the size of the time step. This is precisely what is
predicted by (19).

Piecewise Linear Paths

In the experiments above we chose1t = 10−2, which is on the order ofτc. Our analysis
in Section 2.2 indicates that we would not benefit from applying the collision detection
less frequently with this time step, that is usek > 1. Recall that fork > 1 our complexity
analysis gives (20) rather than (19) for the cost.
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FIG. 23. Computing time in seconds vs.1t for particle laden Taylor–Green flow,n = 10000. τc = nT/2nc =
7× 10−3 is the mean free collision time. Left: Computing time vs.1t. Right: Computing time vs.k with
1t = 10−3.

To test the conclusions of (20), we use a smaller time step,1t = 10−3. Figure 23 shows
how the running time varies withk.

There is a minimum atk = 3, which means that it is optimal to apply the collision
detection over an interval of three time steps, which is about half the mean free time.
For n = 10000, logn is quite small, so the restrictionk = O(logn) kicks in early and
preventsk1t from being closer toτc. We see that if the mean collision time is much
larger than the time step used for integration, this idea can reduce the cost quite signifi-
cantly.

3. COUPLED PARTICLE-FLOW

In particle laden flow, the fluid exerts a force on the immersed particles. By Newton’s
third law, the particles then exert an equal and opposite force on the fluid. In some applica-
tions, this back-coupling is thought to be important. The exact solution of such fluid-particle
flows requires the solution of the Navier–Stokes equations with a free moving boundary
corresponding to the surface of the particles. The numerical solution of the resulting equa-
tions is tractable for small and moderate values ofn [31] but for largen this approach is
computationally intractable. A simplified model of this back-coupling effect consists of
adding to the continuum balance laws point sources of mass, momentum, and energy [25,
pp. 7–23]. In this setting, any motion of a particle affects the surrounding fluid, and hence
affects other particles instantaneously. Therefore, the particle paths cannot be integrated
independently of each other indefinitely in the absence of collisions; small time steps must
be used and approximate independence invoked.

In Section 3.1 below we describe how we apply the algorithm described in Sections 1 and 2
to such coupled particle-fluid flows. Now there is the additional task of solving a PDE with
a force term consisting ofn delta functions. A key question regarding computational cost is
the relative cost of solving the PDE and performing the collision detection. In Section 3.2,
we assess the complexity of the two parts of the algorithm, the collision detection and the
numerical solution of the PDE, and compare the two. In Section 3.3 we verify the analysis
through experiments. We find that, under a natural limiting process, the choicem∼ n1/d is
optimal for these coupled problems, no matter how the number of collisions scales withn;
this contrasts with the driven flow case.
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For the experiments, we take for simplicityu as the solution to the diffusion equation11

∂u

∂t
(x, t) = ν1u(x, t)+ f (x, t)− α

n∑
i=1

(u(xi (t), t)− ẋi (t))δ(x − xi (t)), (21)

with periodic boundary conditions in the unit square,Ä = [0, 1]× [0, 1], for some chosen
f : R2× R→ R2. Hereν andα are dimensionless constants. This is coupled to the particles
obeying (12) together with elastic collisions. For fluid suspensions, the relevant PDE is the
Navier–Stokes equation, but our main purpose is to understand the complexity of coupled
particle-fluid algorithms, for which (21) is adequate. As before, we will take the limit
n→∞ in such a way thatρ is fixed, and thenα = r ∝ 1√

n
and for Stokes’s’ lawτ ∝ 1√

n
.

This scaling is chosen so that formal arguments indicate that the sum of delta functions in
(21) tends to a smooth correction to the PDE foru in the limit n→+∞.

3.1. The Algorithm

To detect collisions we proceed as for particle laden flow, with the sole addition of solving
the PDE (21). At any timet , we solve the PDE over the time interval [t, t +1t ], given the
particle positions at timet . Then we invoke the collision detection algorithm over the time
interval [t, t +1t ] as described in Section 2.1, integrating the particle paths numerically as
necessary with the scheme (13) and (14), withu frozen at the previously computed solution
of the PDE at timet +1t .

To solve the PDE (21), we use a method implicit in the diffusion term and linearly implicit
in the delta sources as described in Appendix 3. Our choice of method (A.6) for solving
the PDE rather than (A.5) is dictated by an interesting numerical instability in (A.5), shown
in Fig. 1 in Appendix 3, which results when many particles cluster together. The implicit
method appears to cure this instability.

3.2. Complexity

In addition to the cost of collision detection, we now have the cost of solving a PDE. We
consider a situation where the number of particles scales like the number of mesh points
and, since we will use a method implicit in the diffusion term, we will take the time step to
scale like the space step. Thus, ifN = (1x)−d is the total number of mesh points, we take
n = 2(N) and1t = 2(N−1/d).

In some circumstances, such as for the simple diffusion equation (21), a Fourier based
solver can be used to solve the PDE, and the resulting complexity is2(N log N + n) =
2(N log N), per time step. We study such Fourier-based methods as they minimize the
cost of solving the PDE for an implicit method, and allow us to assess the additional relative
cost of collision detection in a worst case setting; for PDEs where Fourier methods cannot
be employed we anticipate a lower relative cost for collision detection.

To solve the linear equations arising in the PDE, we use the conjugate gradient (CG)
method, preconditioned by the solution with explicit treatment of the delta source terms.
This preconditioning can be performed using the FFT in2(N log N) operations. Hence,

11 In dimensions 2 or more, it will be difficult to make sense of this model without regularizing the delta function;
otherwise the velocity field will be unbounded at the particle locations. However, the issue of the computational
cost of fully coupled particle-flow models can be addressed through (21), relying on spatial discretization to
regularize the delta-singularities.
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FIG. 24. Average number of CG iterations per time step vs.n. Left: Taylor–Green forcing. Right: Stochastic
forcing.

if the number of CG iterations is bounded independently ofN, then the total cost of the
linear solver is2(N log N). In practice, only a few CG iterations are used each time step
and the number of iterations is roughly independent ofN as demonstrated in Fig. 24 for
the experiments of Section 3.3. The graphs show the total number of CG iterations over the
entire simulation divided by the total number of time steps, asn = 2(N) increases.

In summary, the cost of solving the PDE over the time interval [0, T ] is

2
(
N1+1/d log N

)
. (22)

To estimate the cost of the collision detection, we make the same statistical assumptions
as in Sections 1.3 and 2.2; note that, as in Section 2.2, these statistical assumptions are of
limited validity. The cost is then, from (18) and (19) with1t = 2(n−1/d),

O
((

nc + n1+1/d
)

logn
)
. (23)

Adding (22) and (23) the total complexity is

O
((

nc + n1+1/d
)

logn
)
, (24)

sincen = 2(N), that is the number of mesh points and the number of particles are kept
proportional as they are increased. In particular, if the number of collisions growsslower
with n than in billiards, that isnc = O(n1+1/d), the cost of collision detection does not
add asymptotically to the cost of solving the coupled problem. If the number of collisions
growsfasterthan in billiards, the collision detection is more expensive but optimal. So the
combined algorithm is optimal, even in situations where the collision detection algorithm is
not optimal for particle-laden flow. Under our statistical assumptions, the choicem∼ n1/d

therefore appears optimal for coupled problems.

3.3. Experiments

As before, we perform a few numerical experiments to validate the analysis in the previous
section. All the experiments are performed with fixed particle volume density and zero initial
kinetic energy asn increases and the scalings detailed after Eq. (21). We use two different
forces f . On the one hand, we letf be the Taylor–Green flow from Section 2.3,f = ∇⊥ψ
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FIG. 25. Particle distribution for the coupled problem at timet = 10 with 10,815 particles. Left: Taylor–Green
forcing. Right: Stochastic forcing.

with ψ(x) = 1
2π sin 2πx1 sin 2πx2, and the stochastic force used in Appendix 2 to generate

synthetic Kárman–Obukhov turbulence,f = dW
dt , on the other hand.

Without the back-coupling (no delta functions in (21)), the steady state ofu with Taylor–
Green forcing is the Taylor–Green velocity field we used in Section 2.3, so we might
expect a similar particle distribution as before. To ease direct comparisons between the two
experiments, we use the same parameter values as in Section 2.3. Starting from an initially
uniform particle distribution, after two time units the distribution is the same as in the laden
case, but around five time units it breaks up, and after 10 time units the particle distribution
is as shown in Fig. 25 (left). This shows that the particles are having a significant effect on
the flow and back-coupling is important. Figure 25 right shows the particle distribution at
time t = 10 for stochastic forcing.

Results

To assess the relative cost of the collision detection and the numerical solution of the PDE,
we run the algorithm withn, N, and1t varying jointly so thatn = N and1t = 1/

√
N, as

described above.

FIG. 26. Number of collisions in millions vs. number of particles. Left: Taylor–Green forcing. The best fit
is nc = 0.24n1.87. Right: Stochastic forcing. The best fit isnc = 0.78n1.33. Different realizations of the stochastic
force are used for different particle numbers which explains the large variation in the number of collisions.
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FIG. 27. Computing time spent in collision detection,C1 (solid), and in solving the PDE,C2 (dashed), in
hours vs.n for the coupled problem. Left: Taylor–Green forcing. Best fit isC1 ∼ n1.92 logn andC2 ∼ n1.68 logn.
Right: Stochastic forcing. The best fit isC1 ∼ n1.67 logn andC2 ∼ n1.63 logn.

The relative cost of the two contributions depends on the number of collisions. Figure 26
shows the number of collisions for Taylor–Green forcing (left) and stochastic forcing (right).
A fit of the formnc = anb givesb = 1.87> 1.5 for Taylor–Green andb = 1.33< 1.5 for
the stochastic forcing. We therefore expect the collision detection to be asymptotically more
expensive in the former case, but the cost of the two contributions to be comparable in the
second case. This is indeed confirmed in Fig. 27 which shows the cost versus the number
of particles.

Both experiments indicate that the cost of the two contributions is well predicted by the
heuristic analysis in Section 3.2. Furthermore, if the number of collisions grows slower
with n than in the billiards case, the two contributions are comparable. It is important to
note however, that we have kept the cost of solving the PDE to a bare minimum; for more
complex PDEs we anticipate that the cost of the PDE solver will be greater, making the
relative cost of collision detection less.

4. CONCLUSIONS

In this paper we have presented and analyzed a collision detection algorithm for a large
number of particles moving in a velocity field. We have

• Given an average case analysis of the complexity of the algorithm in the billiards
case, under reasonable empirical assumptions, arriving at the observed fact that the optimal
choice of cell size is to have a constant number of particles per cell and that the algorithm
is optimal to within a logarithmic factor.
• Extended the event driven cell-based algorithm, developed by computational chemists

and computer scientists for the billiards problem, to particle-laden flow and coupled particle-
flow problems.
• Given numerical evidence to show that the analysis of the billiards algorithm gives

useful predictions for optimal cell-scaling and complexity for problems where Boltzmann-
like statistics do not prevail, such as particle laden flow and coupled particle-flow problems,
and that the collision detection algorithm is optimal if and only if the number of collisions
grows at least as fast withn as it does in billiards.
• Shown that for coupled particle-field simulation where the number of mesh points and

particles are commensurate, our algorithm for collision detection is either optimal (when
the number of collisions grows at least as fast withn as in billiards) or can be included in
such simulations without increasing the asymptotic growth of the cost.
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• Identified, and cured, an interesting numerical instability arising in coupled particle-
field problems.

APPENDIX 1. THE TAYLOR–GREEN FLOW

Let u = ∇⊥ψ = ( ∂ψ
∂x2
,− ∂ψ

∂x1
) be the velocity field, whereψ is the stream function. Letω

be the vorticity,ω = ∇ × u = ∇ × ∇⊥ψ , soω3 = −1ψ . Now take the curl of the Navier–
Stokes equation,

∂u

∂t
+ u · ∇u = −∇p + ν1u+ ν f,

where f (x) = 4π2u(x, 0), and use

∇‖u‖2 = 2u · ∇u+ 2u× (∇ × u) = 2u · ∇u− 2ω × u

to get

∂ω

∂t
+∇ × (ω × u) = ν1ω + 4π2νω(x, 0).

With the initial conditions

ω1(x, 0) = ω2(x, 0) = 0 and ω3(x, 0) = −1ψ(x, 0) = 4π sin 2πx1 sin 2πx2

the nonlinearity∇ × (ω × u) vanishes for all time, and taking the Fourier transform gives
the Taylor–Green [28, 29] solution

ω3(x, t) = 4π sin 2πx1 sin 2πx2

so that ψ(x, t) = 1

2π
sin 2πx1 sin 2πx2.

APPENDIX 2. SYNTHETIC TURBULENCE

In this appendix we describe how to generate a two-dimensional incompressible turbulent
velocity field u, periodic in the unit square, with the properties of being homogeneous,
stationary, isotropic, and Gaussian [30, pp. 108–113; 32].

To ensure incompressibility ofu, we work with the stream functionψ and setu = ∇⊥ψ .
We takeψ as the solution to the following stochastic PDE:

dψ + νAψ dt = dW. (A.1)

HereA is a linear operator with eigenfunctions{ek}k∈K , and eigenvalues{αk}k∈K . We take
A = −1 in the unit square with periodic boundary conditions so

K = 2πZ2 \ {(0, 0)}, ek(x) = e1k·x, and αk = ‖k‖2.

W is a Q-Wiener process,

W(x, t) =
∑
k∈K

√
λkβk(t)ek(x),
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for some operatorQ with Qek = λkek, where{βk}k∈K is an i.i.d. sequence of standard
complex valued Brownian motions.Q is the covariance operator ofW, and its spectrum,
{λk}k∈K , is chosen so that the velocity fieldu has the desired energy spectrum; see [32]. For
a rigorous interpretation of this equation, see [33].

Expandingψ in eigenfunctions ofA,

ψ(x, t) =
∑
k∈K

ψ̂k(t)ek(x),

we get the following Ornstein–Uhlenbeck stochastic differential equations for the Fourier
coefficients:

dψ̂k + ναkψ̂k dt =
√
λk dβk, k∈ K . (A.2)

The solutions can be expressed as

ψ̂k(t) = e−ναkt ψ̂k(0)+
√
λk Xk(t), (A.3)

where

Xk(t) =
∫ t

0
e−ναk(t−τ) dβk(τ )

is a complex valued Gaussian process with independent increments and variance∫ t

0
e−2ναk(t−τ) dτ = 1

2ναk
(1− e−2ναkt ). (A.4)

Also, if k 6= k′, Xk and Xk′ are independent. Lettingt →∞ in (A.3) we get that the sta-
tionary distribution ofψ̂k is Gaussian with varianceλk/2ναk. Now the Fourier transform
of the velocity fieldû is ûk = (−ik2ψ̂k, ik1ψ̂k), so the energy spectrum ofu is

εk = E‖ûk‖2 = ‖k‖2E|ψ̂k|2 = ‖k‖2 λk

2ναk
= λk

2ν
;

hence we chooseλk = 2νεk to achieve the spectrumεk.

A.2.1. Implementation

To generate the velocity field on anN1× N2 grid and at discrete times{ j1t}Jj=0, for
some1t > 0, we proceed as follows. We use Eq. (A.3) for theNi − 1 lowest modes in
each dimension, that is with

k ∈ {(2π j1, 2π j2)| ji = −Ni /2+ 1, . . . , Ni /2− 1},
where we assume for simplicity thatN1 andN2 are even. This giveŝψk(( j + 1)1t) given
ψ̂k( j1t):

ψ̂k(( j + 1)1t) = e−ναk1t ψ̂k( j1t)+
√
λk(Xk(( j + 1)1t)− Xk( j1t)).

The expressionsXk(( j + 1)1t)− Xk( j1t)are independent (for differentk and j ) complex
valued Gaussian random variables with variance given by (A.4) witht = 1t . We takeψ̂k(0)
from the stationary distribution, that is Gaussian with varianceεk/‖k‖2. Finally, we use the
discrete Fourier transform [34] to obtain the values ofψ on anN1× N2 grid from its Fourier
coefficients; see [32].
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APPENDIX 3. PDE SOLVERS

In this section we describe the numerical method used to solve the PDE (21).

A.3.1. Discretization of the PDE

The discretization of the PDE (21) foru is based on the finite element method since the
δ function term can easily be dealt with in the variational formulation. Denote the bilinear
finite element subspace byVh, and the set of nodal basis functions supported on the square
elements by{φh

j }Nj=1. Letuh(x, t) =∑N
j=1µ j (t)φ

h
j (x) andµ = (µ1, . . . , µN)

T , f (x, t) =∑∞
j=1 β j (t)φ

h
j (x) andβ = (β1, . . . , βN)

T , anddl = (φ1(xl (t)), . . . , φN(xl (t)))T .
We apply the finite element method and, for simplicity, lump the mass matrix and replace

it by the identity; we also approximate the stiffness matrix by the five-point finite difference
stencil for the periodic Laplacian,Ah. We define the matrixDh(x(t)) by

Dh
i j =

1

1x2

n∑
l=1

αφi (xl )φ j (xl ),

wherex = (x1, . . . , xN). Thus, we have

µ̇+ νAhµ+Dh(x)µ = β + 1

1x2

n∑
l=1

αẋl dl .

The particle paths(x, ẋ) are integrated using the algorithm in Section 2.1.3.. Given this, a
natural linearly implicit approximation forµ is

µk+1− µk

1t
+ νAhµk+1+Dh(xk)µk = βk + 1

1x2

n∑
l=1

αẋk
l dl . (A.5)

Further implicitness can be introduced as follows:

µk+1− µk

1t
+ νAhµk+1+Dh(xk)µk+1 = βk + 1

1x2

n∑
l=1

αẋk
l dl . (A.6)

In (A.5) an instability occurs when many particles are close together and the effective
force on the fluid is large at some points in the spatial domain. Treating the delta sources
in a linearly implicit fashion, as in (A.6), cures the instability. Figure 28 demonstrates this
instability for the coupled Taylor–Green problem.

A.3.2. Implementation

The solution of the coupled PDE-ODE system, (12) and (21), consists of three steps. At
each time step:

1. Compute the right-hand side of (A.5) or (A.6).
2. Solve the linear system (A.5) or (A.6).
3. Solve the ODE (12).

Step 3 is described in Section 2.1. Step 1 is straightforward using the property of bilinear
basis functions on square elements. All that is required is to distribute information located
at xk

l to the four nearest nodes.
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FIG. 28. Fluid enegry,E(t) = 1
2

∫
u(x, t)2 dx, for coupled Taylor–Green flow with 10,814 particles. Solved

using (A.6) (solid) and (A.5) (dashed). Left: Energy on a small scale for both methods (A.6)(solid) and
(A.5)(dashed). The methods are initially comparable, but (A.5) blows up around timet = 1. Right: Energy on a
larger scale for (A.5). The energy repeatedly blows up and decreases again.

In the explicit approach (A.5) of Step 2, the matrices on the left-hand side can be di-
agonalized by the discrete Fourier matrix and hence can be inverted efficiently using fast
Fourier transform (FFT) [34], and the complexity is2(N log(N)). Moreover, we do not
need to form the matrices explicitly.

In the semi-implicit approach (A.6), however, the matrixDh(xk) cannot be diagonalized
by the Fourier matrix. Furthermore, the bandwidth ofAh is2(N) since periodic boundary
conditions are used, and hence (banded) Gaussian elimination can be very expensive. How-
ever, note that the rank ofDh(xk) is equal ton, the number of particles. If we use conjugate
gradient (CG) with

Lh ≡ Ih + ν1tAh

as preconditioner, then CG will take at mostn+ 1 iterations to converge. In practice, only
a few iterations are required to converge (see Fig. 24). The inversion of the preconditioner
Lh can be done by use of the FFT, as in the explicit case.
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