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Some recent numerical and theoretical studies indicate that it is possible to ac-
curately simulate the macroscopic motion of a particle in a heat bath, comprising
coupled oscillators, without accurately resolving the fast frequencies in the heat bath
itself. Here we study this issue further by performing numerical experiments on a
wide variety of mechanical heat bath models, all generalizations of the Ford—Kac
oscillator model. The results indicate that the nature of the particle-bath damping
in the macroscopic limit crucially affects the ability of underresolved simulations
to correctly predict macroscopic behaviour. In particular, problems for which the
damping is local in time pose more severe problems for approximation. The root
cause is that local damping typically arises from the degeneration of a memory
kernel to a delta singularity in the macroscopic limit. The approximation of such
singularities is a more delicate issue than the approximation of smoother memory
kernels. (© 2001 Academic Press

Key Wordsmechanical heat baths; underresolved simulations; coupled oscillators;
stiff oscillatory systems; symplectic integration.

1. INTRODUCTION

There are many problems in which an initial value problem involving a large number
variables may be partitioned into the form

dx

a = a(X, y)v X(O) = XO,

; (1.1)
d—{ =b(x,y), Yy(0) =y,

where only the variable is of intrinsic interesty is of interest only in as much as its
evolution affectsx. If x € R? andy € RP with D > d, it is desirable to find economical
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194 CANO AND STUART

integration schemes which expend only minimal effort to calculate accurately the influer
of y on x without resolving all the details of. It is not possible to study such economical
schemes in a completely general way, but progress can be made if further structur
assumed on the problem.

The structure which we choose to work with occurs when the variabpresents a
generalized heat bath and the varialgles yo) are distributed according to a measure whose
parameters encapsulate known properties of the bath. For these and other related prob
one approach developed by Chognal. [2, 3] is to find an equation foX(t) = Ex(t)
where expectation is with respect to a measune (Xo, Yo). This reduces the dimension of
the system fronD + d to d, and hence reduces the complexity of an integration schem
The methodology has been used with some success, although theoretical justification
its early stages; study of some simple heat bath models, like those studied here, appe:
provide further theoretical understanding [9] as does the work of Hald [7].

The approach we study here is different. The full system {§ibjegrated but a time-step
is chosen which is large relative to time-scales in the heat bath representedfosmally
y will be computed inaccurately but it may still be possible to compute its effect on
satisfactorily. We reemphasize that the motivation for such integration schemes is to rec
computational cost by choosing a time-step which is as large as possible, given the obje
of computingx accuratelyThe main goal of this work is to study phenomena associated wi
underresolved simulation; we are not advocating specific methéelsce our numerical
simulations are, for the most part, performed within a single parametrized family of fir:
order methods; the family includes the symplectic Euler method. In Section 6 we illustr:
the implications of our study for commonly used methods such as velocity Verlet a
multiple time-scale methods.

To address the accuracy questionsfahe general framework we study is Hamiltonians
of the form

1yl?

1, N
H = Zlp| +V(|q|>+j§=jl{2 m

+F (uj,q)}. (1.2)

Herep, g, uj, v; € R" and| - | denotes the Euclidean norm 8. The variables are paired
canonically ax = (p, ), Y = {(vj, uj)}szl. In [12] the case where

1 1
n=1, m; = Fi(w,2) = é(w—z)2

is studied. In this case, fd large and a certain Gaussian measu@n the initial data
for {(vj, u; )}}\‘21, g is provably close to the solutiof of a stochastic differential equation
(SDE) inRR?. It is natural to ask whether numerical simulations can accurately predict tt
largeN behaviour forg without accurately resolving all thevariables. Since

i+ j%(uj —q) =0,

the fastest natural frequency jnis O(N) and a candidate inaccurate (and economical
simulation is one for whichN At is fixed so thaty is not fully resolved; in any case, fixing
N At is natural from the stability viewpoint for explicit schenfeNlumerical experiments

2 A restriction on& = NAt required for convergence may be viewed as a CFL-like condition, analogous |
those arising in approximation of PDEs; see [10].
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performed in the regime
NAt=&, At—= 0, N— (1.3)

show [12] that certain numerical methods accurately approximate the SDE limitfoile
others do not. Those methods which fail to capture the limit correctly appear to compu
different limit satisfying a modified SDE. Analysis which goes some way toward justifyin
the experiments in [12] may be found in [1].

A natural criticism of the work in [1, 12] is that the model problems are too simple—if th
limit SDE is actually known explicitly then there is no need to solve the large Hamiltonié
system. The purpose of this paper is to show that results similar to those in [12] n
be observed in more complex situations where a limiting stochastic procegagorot
necessarily known to exist, or does not have the simple form of an SDE. To this end,
study numerical methods for (1.1) under (1.3) in the four cases

1 — 24

n=1, mJ_F’ Fj(w,z):(w4 ) : (14)
1 |lw — 2|2

n=3, mJ—F, Fj(w,2) = > ; (1.5)
1 —2)?

n=1, mJ_F, Fj(w, 2) =K; (w 5 ) , (1.6)

wherek; is a random variable chosen so that the natural frequencies of the springs
uniform random variables in the interval [N]; and

1
n=1 m=1 Fjw,2= 5j2w2 —wf(2). (1.7)

We present the results of numerical experiments for (1.4), (1.5), (1.6), and (1.7)
Sections 2, 3, 4, and 5, respectively. The results show that the observations made in
and [1] do carry over to more complex problems.

The first-order form of equations derived from (1.2), and which we want to integrate,

N

. , q IF;
=-Vi(a)— — —(uj,Q),
p (o] al 2 aq i q
d=np,
JF; (1.8)

vj = ——(Uj,0q),

] auj ]

0o Y
u; = m’

Here, and in the remainder of the papﬁj, denotes the gradient &f; with respect tau;
and% denotes the gradient & with respect t@. Formallyu; (t) can be written, abusing
notation, as

uj(t) = H;jt) :=H;({d(s)}o<s<t, Uj (0), vj (0))
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and so we obtain the history-dependent equations

q+V<|q|>—+Z 0 oy = (1.9)
o] =t e

Inthe absence of the third term, we have a simple mechanical system describing friction
motion in a potentiaV. The third term represents coupling to the heat bath. By choosir
u;j(0), vj(0) at random,F; is rendered random and so we have a random history-depend
functional equation fog. We refer to the behaviour of this equation fdr— oo as the
macroscopic limit. Our objective is to accurately reproduce solutions of (1.9) in the mac
scopic limit, by solving the system (1.8) numerically, but without necessarily resalying
andv; accurately. As we shall see, the extent to which this is possible depends heavily
the nature of the particle—bath coupling in the lilNit— oo.

For simplicity we detail here the three numerical methods ESM, ENSM1, and ENSVM
which are a principal object of study throughout the paper. The symplectic Euler meth
which is an explicit symplectic method and is denoted by ESM, is defined by

pt=p" - ,
qn+1 — qn + Atpn+1
. 9E. (1.10)
Vit =V — At— (U, q"),
J 8UJ( J aq )
n+1
UMt =Uup + At
m;
We will also consider the explicit nonsymplectic methods
q" N oF;
pTt = p" — AtV/(Q" ')W_ Za— "
=1
anrl q + Atp ,
8 oF, (1.11)
1
VIt =V - At m (U, a").
n+l
Un+1 U + At
mi
denoted here by ENSM1, and
q" N
pTt = p" — AtV/(q" |) Z L, gn),
=1
qn+1 — qn + Ater—l
(1.12)

9F;
1 |

VT = Vi - At (U o),
j

At
U_n+l — Un + 7v_n+l’
i P

denoted here by ENSM2.
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All three of these methods are particular cases of the general scheme

oF;
pn+1 = p" J an+97qn+¢),

qn+l — qn + Atpn+”1,

LFJ n+l—a n+l—a
o, U aT),

(1.13)
erH—l — V]n — At

t 8 F;
uptt =uy +H<vn au; (UJ-”,q”)).
We emphasize that we are not advocating use of this general scheme; it is only of prac
interest in the ESM case. However, our results may be of interest since they indicate
issues that arise, and the caution that must be exercised, when integrating stiff oscilla
systems in the underresolved limit. In Section 6 we discuss related issues for mett
commonly used in the molecular dynamics literature, such as velocity Verlet and multi
time-scale methods.

The parameters, 6, ¢, anda; have the following values for the three methods detaile
above:

e ESM:0=1,0=0,¢0=0,01 =1,
e ENSMl:a=1,0=0,¢ =0,01 =0
e ENSM2:0 =1,0=1,¢=0,00 =1

We note that none of the methods in (1.13) are symmetric (i.e., time-reversible). Moreo
among them, only ESM and the one correspondingte 0,6 =1, ¢ = 1,09 =0, are
symplectic. All the others are not. (This can be proved in a straightforward way from t
definitions of symmetry and symplecticity). Our numerical studies in this paper, and so
analysis in [12], indicate that the conditions

a+0=1 0=4¢, (1.14)

are both necessary and sufficient for accurate resolutioipof|) in underresolved
simulations of certain heat bath models, on finite time intervals. Both ESM and ENSI
satisfy (1.14) and thus neither symmetry nor symplecticity appears necessary for acct
resolution of the macroscopic variablgs q).3

Although our purpose in this paper is to analyse and understand certain phenor
associated with underresolved integration of heat baths, and not to propose the best me
to do so, in Section 6 we extend our study of the integrators (1.13) to others widely u
in molecular dynamics problems, such as velocity Verlet or multiple time-scale integrat
[13, 14]. These methods are symplectic and symmetric and all perform well in terms
reproducing the macroscopic limit. However, we show that in terms of error per unit cc
with error measured in the macroscopic variables only, the multiple time-scale methods
not competitive.

The overview of this paper is as follows: we have conducted numerical experime
which investigate the numerical simulation of mechanical heat baths in the form (1.
these heatbaths generalize the Ford—Kac model described in[4, 15]. The methods are af

31t is likely that this conclusion might change radically for long-time simulations, but these are not the obj
of study in this paper.
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under a CFL-like condition (1.3) which precludes accurate resolution of fast scales. 1
guestion of interest is whether slowly varying quantities, governed by (1.9), are accurai
represented. Our aim is to further the analysis and experiments conducted in [1] and
by studying a wider variety of problems.

Heuristically the effect of the heat bath coupling in (1.9) for lakjenay be broken into
two components—a damping term representing loss of energy from the patrticle of intel
g to the heat bath, and a stochastic force, representing gain of enegdyam the bath,
with stochasticity introduced through the initial data. The numerical results we give se!
to indicate that, if the heat bath coupling gives risddeal (in time) damping, then the
observations of [1, 12] extend to more complex situations (see Sections 2, 3, and 4).
is, certain methods, such as ESM and ENSM1, compute the correct macroscopic limit
g, while others, such as ENSMZ2, fail to do so. If, however, the dampimgpidocal in
time, as in the Habib—Kandrup model of Section 5, then this distinction between meth
disappears and all of the methods studied appear to compute the correct macroscopic |

2. NONLINEAR SPRING COUPLING

Here we consider (1.2) under (1.4) which yields the equations

N
G+ Vi@ => u —ad
j=1

. 2.1)
a; + JZ(UJ‘ —q)°=0.
We considelV (2) = 1(1— z%)2 and initial data
g0 =15, q0)=0, uj0)=aj, u;0)=0, (2.2)

wherew; are chosen i.i.d. from a random variable with density proportionaﬂé“/“).
Note that this is the macrocanonical invariant densitydpiif q = 0, that is if the heat
bath is uncoupled; it is hence a natural choice for initial data. No explicit stochastic proc
characterizingy for large N is known here. However the solutions appear to approach
limit as N — oo and accurate solutions forand p = g with N = 32,000 andN At =
102 (well-resolved) are shown in Fig. 1. (Takirg = 64,000 andN At = 0.5x 1073
gives essentially the same result, substantiating our claim that there is a macroscopic |

15 3
1 0
5 o
0.5 -3
% 0.5 1 0 0.5 1

t t

FIG.1. Exactposition and velocity of the distinguished particle in the problem with nonlinear spring couplin
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FIG. 2. L2-error curves for the position and velocity of the distinguished particle when integrating with ESN

N — o00.) Hereafter we refer to this as the “exact” solution and denote iQbyacitly
assuming that it represents the solution of some limiting stochastic problem found fr
(1.9) in the macroscopic limit. We now approximate (2.1) by the three methods (1.1
(1.112), and (1.12) under (1.3) with= 0.1. Figures 2 and 3 show that the methods ESN\
and ENSM1 approximate the “exact” solution pwith increasing accuracy asincreases,
whereN = 1000x 2™; similar convergence is observed for the positipralthough the
errors are smaller. (Notice that we are measuring the error ihgherm, so that this error
increases with time by definition.) Similar results are observed fdr therror in physically
interesting quantities such as position and/or velocity auto-correlations: the methods E
and ENSM1 converge. See Section 6.

For all our numerical experiments we perform best fits to the data to estimate rate:
convergence; here, and in all other cases, these are done for single realizations with re
to the probability measure on the data. A least squares fit of the log—log plot-ethe
errors for the considered initial data—shows that the rate of convergence for these el
is (At)€, wheree = 1.1147 for ESM andj; e = 1.0997 for ENSM1 andj; e = 0.3659
for ESM andq; ande = 0.3752 for ENSM1 andj. However, for the ENSM2 no such
convergence is observed-Fig. 4 compares the posi@s calculated exactly and under
(1.3) withN = 8000, £=0.14

The observations about the relative merits of these schemes correspond exactly to t
made in [12] for which the spring coupling is linear: in that case the limiting exact solutic
is known to be the solution of an explicit SDE, found from (1.9\as> oo, and only ESM
and ENSM1 compute this limit correctly under (1.3). Our experiments show that insic
obtained for the linear spring coupling sheds light on the efficacy of humerical methc
with a stronger nonlinear coupling for which an explicit macroscopic limit is not known.

3. LINEAR SPRINGS
Here we consider (1.2) under (1.5) giving

N
|%| => U -, q0)=0. d0)=po
j=1

Uj + j2(uj — ) =0, uj(0)=aj, uj0)=0.

g+ V'dabh
(3.1)

4t is worth mentioning at this point that the total energy of the system is not a useful diagnostic in this ca
the relative energy errors for ESM and ENSM2 are indistinguishable—see Section 6.
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FIG. 3. L2-error curves for the position and velocity of the distinguished particle when integrating wit
ENSM1.

Again we takeV (2) = (1 — z%)? and the initial data (2.2) where naw, po, «; € R® and

each component; is distributed according to a density proportionaété<*/4). Calculation
as in [12] shows that; may be eliminated to give

't

q-+ V'(ICII)%| +/ Kn(t —s)d(s)ds= —Kn(1)q(0) + Zn(1),
0

q(0) =do, ¢(0) = po.

Here

N
Kn(@) = Zcos(jt)

j=1
and

N
Zn@t) = ZO[J’ cos(jt).

=1

Because the; are not Gaussian the limiting behavioura (t) for largeN is no longer a
Gaussian white noise process as it is in [12]. However, using results in [8] it may be proy

1.5
exact
........ ENSM2
So.75r N T 1
OO 0.5 1
t

FIG. 4. Position of the distinguished particle when integrated accurately (“exact”) and when integrated w
ENSM2 (N = 8000,NAt =0: 1).
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that, almost surely,

t
/ Zn(s)ds — W(t)
0

whereW(t) is continuous. Note also th#dy(t) has a delta-like singularity for largd,
(Kn(t) ~ 78(t) — 3) rendering the damping term

t
/ Kn(t —9)d(s)ds
0

local in time.
We believe that analysis similar to that in [12] would enable proof that, for IBrgeis
close toQ, solving the (formal) SDE
Q

. T . , 1 Y
Q+§Q+V(|Q|)|—Q|—§Q—W,

' . (3.2)
Q) =qo, Q(0)= po— 7 %-

Arigorous interpretation of this equation would require formulation as an integral equati
Figure 5 shows the Euclidean norm of the “exact” solution of (3.1)Naxt = 103 and
N = 32,000, takinggo = (1.5,1.5,1.5)" and pg = (0,0,0)". Thus we believe that this
will be a good approximation to a solutid@ of (3.2) with a particular choice of noise
related to the specific choice of.

Based on the analogy with the work in [12] we conjecture that the numerical meth
(1.13), if integrated in the regime (1.3), will approximate not necessarily (3.2), but ratt
the possibly shifted limit

.. T . , Q 1 .
= -0 \Y; = _ZQ=W,
Q+{2+§(¢> )}Q+ (IQI)IQI 2Q

. (3.3)

Q(0) =do, Q(0)= po-— qO{E +é&d—a— 9)}.
Note tha®, o, and¢g are parameters of the method (1.13). Thus we are conjecturing that
computed macroscopic behaviour will depend upon the method used, a highly unsatisfac
situation. This conjecture is borne out in experiments. Figure 6 shows the errgrs i

M

= =
§1.5 ES
0 Q

0 0.15 0.3 0 0.15 0.3
t t

FIG. 5. Euclidean norm of the “exact” position and velocity of the distinguished particle in Ehdirgear
problem.
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m=2 m=2
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[9] 0.15 0.3 0 0.25 0.3
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FIG. 6. L2-error curves for the velocity of the distinghished particle when integrating with ESM and ENSM:
respectively.

(compared with the “exact” solution) under (1.3) wgh=1 andN = 1000x 2™, m =
0,1, 2,3 for both ESM and ENSM1. Since= ¢ and6 + « = 1 for both these methods,
Egs. (3.2) and (3.3) are identical and we see convergence to the correct macroscopic |
namely the solution of (3.2). Here the exponents in the rates of convergence can be calcu
to be 0.3733 for ESM and 0.3786 for ENSM1 measuredl.imhe rates of convergence in
the positiorg for both methods are 1.0346 and 1.0663, respectively. Figure 7 compares
euclidean norm off for the “exact” solution and as computed by the ENSM2, for whict
0 —¢ =10+ a = 2. As conjectured the correct limit is not calculated. However, if the
error is calculated based on a comparison with solution of Eq. (3.3), then convergenc
observed—see Fig. 8, agdih= 1000x 2", m=0,1,2,3, and¢ = 1in (1.3).

Thus, once again, we have a correspondence with our observations in [1, 12]; note
here our analysis is not as complete as in [12] because the noise is not Gaussian white
hence interesting that insight gained from [12] applies in this more general situation.

4. 1D RANDOM FREQUENCIES PROBLEM

Inthis section, we consider problem (1.2) under (1.6). The precise choice of the parame
is made as follows. Definlg > 0 by «f = j?k; and choose; to be thejth order statistic

I,

% o.;15 0.3

FIG. 7. Euclidean norm of the velocity of the distinghished particle when integrating accurately (“exact
and when integrating with ENSM2N = 8000,N At = 1).
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0.08

0.041

0 0.1 0.2
t

FIG.8. L2-error curves for the velocity of the distinguished particle when integrating with ENSM2 and takir
as exact solution (3.3).

in a random sample d¥1 numbers froni/[0, M].°> The intege is chosen larger than or
equal to anyN used in subsequent numerical experiments. This defindaih@nd hence
the{kj}. This set of{w;, kj} is chosen at random once and then the same set is used in
subsequent numerical experiments.

We have considerelll = 32,000 and have used the fitétof the{wj, k; } thus generated
as the frequencies of the linear springs in the following problem, which is (1.8) unc
(1.6):

N
§=-V'@+>_ kjuj—q,
j=1
U = —0?u; —q), j=1.....N, 4.1)
g0)=1.5, g0)=0, uj0) =«aj, u;0)=0.

The {aj}}\'zl are chosen as i.i.d. samples from a Gaussian distribution with mean 0 &
variance 1. Eliminating; in (1.8) we obtain

t
g+ V') +/0 Kn(t —9)g(s)ds= —Kn1)aq(0) + Zn (), (4.2)

where
N
Kn@®) = Z kj cos(gt)
j=1
and
N
Zn(t) = Z ki [ cos(eyt)].
j=1

5 The notatiori/[a, b] denotes the uniform distribution oa,[b]. The order statistics are ordered with smallest
first, largest last.
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© --- m=0
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FIG. 9. L2-error curves for the position and velocity of the distinguished particle when integrating the line
springs problem with random frequencies with ESM.

This is a specific instance of (1.9). Although we have not proved it, we believe that tl
equation gives rise to a limiting SDE governing the motiog &dr N — oo and we proceed
on the assumption that this is so.

We have approximated this macroscopic limit of the problem by solving (4.1) wit
N = 32,000 andN x At = 10-3—the “exact” solution. We have then compared this with
the numerical solutions obtained from (1.10), (1.11), and (1.12) under (1.3)swtH,
takingN = 1,000x 2" withm = 0,1, 2, 3.

Theresults are very similar to those obtained in the previous sections.There is convergs
to the “exact” solution with methods ESM and ENSM1, but there is no convergence to tl
solution for ENSM2. Figures 9, 10 and 11 demonstrate this. Figure 12 shows the differe
between the numerical solution and the “exact” solution for the last method. Graphica
it is clear that there is a jump in the initial condition for the velocity and that this is badl
estimated by the method; this situation is identical to what happens in the problems
Sections 2 and 3. Furthermore, the rate of convergence of the (fatp§ for ESM and
ENSML1 inq is similar to that observed in the previous sections. Precisely, a log—log
of the errors gave slopefor the errors ing as 1.0282 and 1.0397 for ESM and ENSM1,
respectively. The slopes for the errorgjimre 0.2706 and 0.2717 for the same methods—
slightly lower than the values obtained in previous sections.

Because of the properties of order statistics from large samplds;, #ne asymptotically
1 for largej and hence&Ky again has embedded within it a delta-like singularity for large
N. Thus we see that, as in the previous section, local damping appears in the limit probl

4 «x107 0.1
-- m=0
- m=1
........ m=2
— m=3
- o
o go.os
L
- - N
% 0.5 1 % 0.5 1

t t

FIG. 10. L2-error curves for the position and velocity of the distinguished particle when integrating the line
springs problem with random frequencies with ENSM1.
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FIG. 11.

L2-error curves for the position and velocity of the distinguished particle when integrating the line
springs problem with random frequencies with ENSM2.

giving rise to memory kernels whose approximation is delicate. In the next section
consider a problem for which the damping is not local in time.

5. HABIB AND KANDRUP PROBLEM

In this section we consider (1.2) under (1.7), a form of heat bath introduced by Hal

and Kandrup [6] with applications in, for example, cosmology. In this case, Hamiltor
equations give, with initial conditions (2.2),

N
G+ V'@ =f'@) uj, a0 =do, GO = po,
j=1

) ) . (5.1)
Gj + j2uj = f(@, uj0)=ej, ;) =0.
Solving foru; in terms ofq gives

i
uj(t) = ; cos(jt)+/ Mf(q(s))ds
0

Integrating by parts, defining

N .
Knw =Y CO?E”)
=1

— exact
-« ENSM2

0.5 1 -
t

FIG. 12. Position and velocity of the distinguished particle in the linear springs problem with random fr
quencies when integrated accurately and when integrated with ENSM2.



206 CANO AND STUART

and

Zn(t) =

IIMZ

{ f(q(O))}Cosqt)

we obtain
t
a+ Vi) = f/(q){ZN(t) +KnO)f@®) - / Kn(t —s) f'@(s)acs) dS}.
0
Now, by Fourier techniques, the following series converges pointwise an#{((0, 7)):

=T T oKy
j? 4 2 * 6 ®.

Z cos(t) 1 w2

=1

Ifwe chooserj = f@—go” + nj wheren; isN(0,1)andi.i.d., then almostsureﬂ Zn(s)ds
converges uniformly in (Or) to a Brownian bridg&V(t). Thus we anticipate that a candi-
date limit problem forQ is the stochastic integro-differential equation, written formally as

. t - 2 .
Q+ f'(Q)/O Koot —3) f'(Q(s))Q(s) ds+ V'(Q) — % f(Qf(Q = f'(QW,
Q(0) =qo, Q) = po.

Of course, any rigorous interpretation will require a stochastic integral of some for
presumably of Stratonovich type in view of the fact that our approximation to Browniz
motion isC*.

For our numerical experiments, we have considered the particular faase= z°/2.
Note that, in contrast with the problems in [12] and in Sections 3 and 4, for this proble
there is no jump induced in the initial velocity for the limit problem and the damping i
nonlocal in time.

Once again the “exact” solution of (5.1) is found by integrating witharge (16,000)
andN At small(NAt = 10-%). Numerical approximations are calculated under (1.3) witt
&=1andN =1,000x 2", m= 0, 1, 2, 3. In this casall three methods (1.10), (1.11),
and (1.12) appear to converge, although for (1.12) the errors in pogitoa significantly
larger than for (1.10) and (1.11); see Figs. 13, 14, and 15. Convergence is also obse

e 107 0.08 -
--- m=0 e’
-- m=0 e m=1 -
o mf; 4 1 m=2 -
m=3 - m=s

25

0 0.5 1 0 0.5 1
t t

FIG. 13. L2-error curves for the position and velocity of the distinguished particle when integrating wit
ESM.
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FIG. 14. L2-error curves for the position and velocity of the distinguished particle when integrating wit
ENSM1.

in theq variable but in this case (1.12) is as accurate as (1.10) and (1.11). The expon
for the rates of convergence are now 1.0419 for ESM @n@.9900 for ENSM1 andj,
0.3266 for ENSM2 andj, 0.3532 for ESM and, 0.3532 for ENSM1 andj, and 0.3823
for ENSM2 andj.

It is interesting that for this kind of problem, where the limit does not have a jump in tt
initial condition and where the damping is nonlocal in time, there is no distinction betwe
the three methods (1.10), (1.11), and (1.12) in qualitative terms—all appear to accura
reproduce the macroscopic limit solution when operating in the stiff regime (1.3). The sa
phenomenon (convergence to the “exact” solution for all three methods) is observed
a variety of other problems in the same class and, in particular, for problems which le
to additive noise and not multiplicative noise. Thus the observations concerning the ef
of the smooth memory kernel appear quite robust in relation to changes in the prob
specification.

6. RELATION TO MOLECULAR DYNAMICS LITERATURE

In this paper we have studied a class of heat bath models and, in particular, the que:
of how underresolved simulations of the heat bath affect accuracy of predictions concert
the distinguished patrticle. The first point to emphasize is that this is a very special cl
of models and that our investigations can therefore only be regarded as a first step;
we believe that the issue of underresolution, and its relation to prediction of macroscc
guantities, is an important one and that this first step is worth taking. The second poin

0.012 0.1

- m=0 PPty
----- m=1 L
©om=2 ‘
— m=3

t

FIG. 15. L2-error curves for the position and velocity of the distinguished particle when integrating wi
ENSM2.
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FIG. 16. L2-error curves for the position and velocity of the distinguished particle when integrating proble
(1.4) with velocity Verlet.

emphasize is that we have confined ourselves to a simple parametrized family of meth
not those used in the molecular dynamics (MD) literature. The third point is that o
measures of accuracy do not encompass frequently used diagnostics such as total e
error and the study of physical quantities such as autocorrelation. The final point is t
resonances, an issue of some importance in the MD literature, have not been discusse
this section we address the second, third, and final points in some detalil.

6.1. Other Methods

The velocity Verlet method (VV) is a symmetric and symplectic second-order meth:
widely used in MD simulations. It may be viewed as a pre- and postprocessed versior
the symplectic Euler method ESM studied in previous sections, and it is thus natural to
whether it inherits the good approximation properties of ESM for the distinguished partic
Figure 16 shows errors for the distinguished particle, when integrating (1.4)s witB.1,
using the VV method

At N aF;
P=p"+— —V’<|q“|)+za‘(uj“,q“)1,
= o
At 3F;
Qj = ]n_787qj(ujn’ "),

qn+l — qn + AtP,
1
an+ = an + AtQ;j,

N
At dF;
n+1 _ P bl DRV n+1 J Un+1 n+1
p + = (Iq |)+§_:l 8q( M )],
At OF;
1_ 0. J +1 N+l
VIt = Q- g (U AT,

Figure 16 should be compared with Fig. 2 which shows nearly identical behaviour for
ESM. Indeed fits to the slopes of the error for VV and ESM differ by only (approximately
0.5% for the position and 2% for the velocity.

This experiment is interesting because it shows that, although VV is formally secor
order accurate and ESM only first-order accurate, when predicting the motion of 1
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FIG.17. L2-error for the position and velocity of the distinguished particle after time 1 against computatior
cost when integrating problem (1.4) with velocity Verlet [§,= 1000,2000, 4000, 8000), MTS1 (& = 1000,
2000, 4000), and MTS2 (» = 1000,2000).

distinguished particle in an underresolved heat bath, the methods are equally accu
There are two reasons for this: (i) the distinguished particle has highly irregular accele
tion (the limit problem is likely to be an SDE for which the acceleration does not exist .
a bounded function) and this limits accuracy; (ii) the truncation for the limit problem to
finite N is a dominant error.

We have also studied multiple time-scale methods [5, 13, 14]. These are widely use
the MD literature, in particular in the reversible versions described in [13, 14]. The fir
MTSL1, is based on ideas in [13]. It is constructed as follows: we consider as fast and s
forces the respective terms

N N/2

Fr= ), qu(u;,q), Fs=237qj(uj,q)—v(lqnl>&~

j=N/2+1 j=1 |Gl

The method is based on velocity Verlet in the following way. A step= &/N of the
integration consists of

e advancing the velocitieAt /2 units of time with the explicit symplectic Euler method
(ESM) taking into account only the slow forces;

e advancing the velocities and positiofis units of time from the previous values, using
N steps of stepsizé& = At/N of the velocity Verlet method and taking into account only
the fast forces;

e advancing the velocitieat /2 units of time from the previous values, using explicit
Euler and taking into account only the slow forces.

0.02

Relative Energy Error
o
o

FIG. 18. Relative energy error in the whole system when integrating with ESM\ard 8000, NAt = 0.1.
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FIG. 19. Relative energy error in the whole system when integrating with velocity verletNard8000,
NAt =0.1.

Note that with this method the high-oscillatory springs are integrated much more accura
than they are in the methods applied in previous sections and than they are in VV.
important question is whether the cost of this greater accuracy is justified.

The second multiple time-scale method, MTS2, isbased onideasin[14] and is constru
as follows. It consists of an embedded factorization of the propagator of the method, sim
to the one given previously, but more complicated, integrating several groups of differ
frequencies with different time-steps. More precisely, we have considered the following

stepsize dtt= 10°At/N for the frequencies 1 tdl /500;
stepsize dt2Z= dt1/10 for the frequencieN /5004 1 to N/50;
stepsize dt3= dt2/10 for the frequencied /50+ 1 to N/5;
stepsize dt4= dt3/10 for the frequencied /5 + 1 to N.

For MTS1, the number of times the functléfvL must be evaluated to integrate to time 1
is approximately B(1+ N)N?/&, compared Wlth\lz/s required for single velocity Verlet
with NAt = £. For MTS2, the number of evaluations is approximately

N34 9 9 1 4N3

£ 57 500 50,000 5x 10F T

However, both the MTS methods are, of course, considerably more accurate when ¢
sidered as approximations to the whole system. It is hence of interest to compare accu
per unit cost for the MTS methods and VV. We do this, focusing interest only on the ¢
ror in computing the distinguished particle. What we find is that the cost per unit error

Relative Egergy Error

FIG. 20. Relative energy error for the whole system when integrating with ENSM2\ard8000, NAt =
0.1.
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FIG. 21. Relative energy error for the whole system when integrating Problem (1.4) with MTS1 (left) ar
MTS2 (right), N = 1000 andN At = 0.1.

the VV method is considerably smaller than for both our implementations of the M1
method. Figure 17, which is based on experiments with problem (1.4), illustrates this p
nomenon. Of course it igossiblethat, by optimizing the splittings in the MTS algorithms,
a competitive MTS method could be found. But the experiments suggest quite strongly t
if only errors in macroscopic quantities are of interest, then some care needs to be tz
in determining how to evaluate the relative merits of various schemes; for our particu
model problems the straightforward VV implementation appears to be superior to MTS

6.2. Other Error Indicators

(i) Total energy. The total energy is a commonly used diagnostic in the MD literature
Figures 18, 19, 20, and 21 show the relative energy error for simulations of (1.4);
are performed in the regimi = 8000 andN At = 0.1 with the exception of the MTS
methods which are integratedidt= 1000. Except for MTS2, increasing does not cause
the relative energy error to go to zero; it remains approximately the same size. The rele
accuracy of the methods, considered as approximations for the whole systems and no
the distinguished particle, is manifest in these figures and shows that the total energy err
a useful diagnostic in that sense. Note, however, that the ENSM2 method does not corr
predict the distinguished particle motion, but this facté¢ manifest in the energy error—
Figs. 18 and 20 are quantitatively very similar. Note also that while the VV has a mu
smaller energy error than the ESM, at the particle level this accuracy advantage disapp
In summary, energy error is quite misleading when evaluating the accuracy and efficie
of underresolved methods for macroscopic quantities.

ox107° 0.06
“ m=0 m=0
m=1 0.05 m
o m=2 = — m=3
£1.5 — m=3 £ =
5 50.04
5 @
c c
g 1 S0.03
T &
] e
5 §0.02
g g
So05 |
< 0.01
% 025 0.5 % 05

FIG.22. Autocorrelation error in position and velocity when integrating problem (1.4) with ESM\atti =
0.1.
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FIG. 23. Autocorrelation error in position and velocity when integrating problem (1.4) with ENSM2 an
NAt =0.1.

(i) Autocorrelation. In earlier sections we have chosen to monitor the particle positic
and velocity errors in th&, norm in time because that norm is appropriate for the analys
which has been performed in some cases [1, 12]. Note, however, that the definition of
norm means that all errors are monotone increasing; this does not imply that pointw
velocity errors are increasing. To emphasize this fact we lodk.aerrors in the particle
position and velocity autocorrelation functions

1/ 1/
Cq() = ?/0 as)as+tyds, Cpt) = ?/0 p(s)p(s+1t)ds,

for the ESM method and the ENSM2 method applied to problem (1.4). Figure 22 sho
convergence of these quantities for the ESM method, while Fig. 23 illustrates noncony
gence for the ENSM2 method. These graphs simply represent what we have seen alr
in Section 3, here visualized in terms of physically meaningful quantities.

6.3. Resonances

Resonances impose significant limitations on explicit integrators in MD simulations [1
and it is therefore of interest to understand their role in our context. We have seen
evidence of resonance effects in our simulations. There are two likely explanations for tl
our time-step restriction (1.3) is sufficient to avoid them for the most part; even if they
occur they are limited to infrequent effects which, in any case, occur in the high frequer
modes whose accuracy does not concern us directly.

In fact, we have calculated the frequency power spectrum for the position and velocity
the distinguished particle corresponding to problem (1.4). We have considered the “ex:

At=1.E-03/32000 At=1.E-01/8000 At= (2r(60x 8000)
100 10t 100,
80| 80) 80
80) 80 60
40 40 40
20 20| 20|
0 o 0
0 0.25 0.5 0 0.25 05 0 0.25 0.5
[} 0 w

FIG. 24. Frequency power spectrum for the position of the distinguished particle when integrating proble
(1.4) “exactly” and with VV,N = 8000 and various values dfAt.
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FIG. 25. Frequency power spectrum for the velocity of the distinguished particle when integrating probile
(1.4) “exactly” and with VV,N = 8000 and various values dfAt.

solution determined in Section 2, as well as the numerical approximation given by veloc
Verlet for several values dfl At (just small enough to give stability). We have not seer
any evidence of resonant behaviour. In Figs. 24 and 25, we condideB,000 and then
NAt = 0.1 andNAt = 27/60. The power spectrum is calculated through fast Fourie
transform. For the “exact” solution and the first numerical approximation we apply it
80,000 uniform values in time [0, 1]. For the second numerical approximation, we consi
the 76,394 values given in the same interval. Notice that we have normalized the freque
to vary from 0 to 1 although we have just drawn half the spectrum because of the symm
due to the real input for the FFT. For the position, we have limited the power spectrurr
[0, 1(7], in order to provide a clear comparison with the “exact” case. We have fit the spect
data to a function of the forr@/w*, getting in all case€ = 0.08075..., « = 1.8045.. ..
(The results for each integration differ only in the decimal places which are not shown.)
for the velocity, we have limited the spectrum to [1]L0On Fig. 25, we can see that the
“exact” solution has a heavier weight in some of the frequencies than the approximati
calculated withN = 8,000. This is natural if we take into account that the “exact” solutiol
was calculated wititN = 32,000 and therefore more frequencies arise there. (In fact, we ¢
interested in the limit whelN grows to infinity.) In any case, the numerical approximations
do not show any significant frequency which is not present in the “exact” solution.
summary, we see no evidence of resonance.

7. CONCLUSIONS

The results in Sections 2, 3, and 4 are qualitatively different from those in Section 5.
Section 5 all methods appear to reproduce the macroscopic limit; in the other sections
certain methods reproduce the correct limit. It is our belief that the key difference whi
gives rise to this observation is the nature of the memory kéfpelln Sections 3 and 4
this kernel has embedded within it delta-like behaviourNas> 1, leading to local-in-time
damping; in Section 5 the kernel is smooti\as> oo and the damping is hence nonlocal in
time. (In Section 2 we cannot compute an explicit damping kernel, because of the nonlir
nature of the coupling, but in the linear spring analogue of the problem, which is conside
in [12], the kernel again contains a delta-like singularity.)

Thus the approximation of Fourier representations of delta functions, by numerice
generated oscillators, appears key regarding the underresolved simulations of (1.8). Ana
of this issue is pursued in detail in [1].
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Looking at the subject more broadly, the experiments in this paper indicate that it
possible to accurately compute macroscopic quantities in mechanical heat baths witl
detailed resolution of fast scales in the heat bath, and therefore without having to resol
multiple time-scale methods. By considering a wide variety of problems we have consic
ably extended the range of heat bath models which allow this conclusion to be drawn. T
in turn suggests that pursuing this question for other problems in the general form (2
is a worthwhile endeavour. In particular, the study of Hamiltonian problems with a mo
applied flavour, such as those arising in molecular dynamics, would be natural. Our stu
in Section 6 touch on some of the issues that arise in this context.
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