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Abstract. Two model problems for stiff oscillatory systems are introduced. Both
comprise a linear superposition ofN À 1 harmonic oscillators used as a forcing
term for a scalar ODE. In the first case the initial conditions are chosen so that the
forcing term approximates a delta function asN → ∞ and in the second case so
that it approximates white noise. In both cases the fastest natural frequency of the
oscillators isO(N).The model problems are integrated numerically in the stiff regime
where the time-step1t satisfiesN1t = O(1). The convergence of the algorithms is
studied in this case in the limitN →∞ and1t → 0. For the white noise problem
both strong and weak convergence are considered. Order reduction phenomena are
observed numerically and proved theoretically.
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1. Introduction

In the field of computational statistical mechanics, stiff oscillatory systems with
broad frequency spectra often arise. It is hence of interest to develop a theory of
the numerical analysis for such problems. In the area of stiff dissipative systems
the understanding of numerical algorithms has been greatly enhanced by the study
of a variety of simple model problems [6]; here we introduce, and then study
numerical methods for, several model problems in stiff oscillatory systems. A
review of existing literature in this area may be found in [14] and in Section 6
of [15].

The context for the models we study is as follows. Many problems arising from
the molecular modeling of materials may be written in the form

dx

dt
= a(x, y), x(0) = x0,

dy

dt
= b(x, y), y(0) = y0,

(1.1)

wherex ∈ Rm andy ∈ Rp with pÀ m. We think ofx as representing variables of
intrinsic interest (observables) and ofy as representing variables of interest only
inasmuch as they effect the evolution ofx. For such problems(x0, y0) is often
incompletely known and it is natural to think of a probability measureµ onRm+p

which governs this initial data. In principle, we may write

y(t) = F(y0, {x(s)}0≤s≤t )

so that
dx

dt
= a(x,F(y0, {x(s)}0≤s≤t )), x(0) = x0.

It is often the case that in some limit (such asp→∞) this equation simplifies
to yield a relatively simple stochastic process for the variablex(s); furthermore,
this process is sometimes Markovian. If the limiting stochastic process is known
explicitly it is therefore natural to approximate it directly to find information about
x, rather than to simulate the large system(1.1). However, in many situations
some form of stochastic process forx is believed to exist but its form is either
unknown or not explicitly computable (see [9] for example). In such a situation it
is natural to approximate(1.1) directly and to ask what is the minimal resolution
of they variable necessary to accurately approximatex. In order to make headway
with this question we will consider two simple models where the limiting process
for x is knownbut study its approximation through under-resolved simulation of
(1.1). Of course if the limit processis known explicitly it should be approximated
directly; we consider approximation of(1.1) simply to shed light on the general
case where the limit process is not known explicitly, or not even known to exist.

A related, but different, approach may be found in the work of Chorin et al. [3],
[4], [5]. They attempt to develop an equation forX(t) = Ex(t), whereE is with
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respect toµ on (x0, y0). By assumingthatµ is stationary for(1.1) they consider
the equation

d X

dt
= A(X),

whereA(X) = E(a(x, y) | x = X) and nowE(· | x = X) is, with respect toµ
on (x, y), conditional onx = X. This approach has had some success and further
analytical justification may be forthcoming through the study of its application to
models such as those studied here and in [15], [11].

We recognize that the models we consider are somewhat artificial since, as the
limits are known explicitly, the numerical methods studied would never be used
in practice. However, the analysis sheds light on what may be expected in the
general case when the limit is not explicitly known and may hence be viewed as
a (hopefully) useful first step in the numerical analysis of stiff oscillatory systems
with random data.

Section 2 introduces two basic models, both motivated by a simple mechanical
description of a heat bath. In the first, a family of harmonic oscillators is used to
construct an approximate delta function, through Fourier analysis, and this is used
as a forcing term for a scalar ODE. In the second, a family of harmonic oscillators is
used to construct an approximation to white noise, again through Fourier analysis,
and this is used as a forcing term for a scalar ODE. For both models the fastest
natural frequency of the oscillators isO(N), whereN is the number of oscillators.
The approximation to a delta function or to white noise becomes exact asN →∞;
theorems making this precise are given. See also [2].

Our aim is to study the convergence of numerical methods for these models in
the regime

N1t fixed; 1t → 0, N →∞. (1.2)

In statistical mechanics, the interaction of an observable with a heat bath can be
modeled by a purely mechanical system with random data [7], [16]. That work mo-
tivates the choice of constructing a delta function and white noise through families
of oscillators since there Fourier-based approximations of delta-function induced
jumps arise in the modeling of the energy-loss mechanism from the observable to
the heat bath, whilst the Fourier-based white noise models the (expected) energy
gain mechanism, given a random distribution on the initial data. Numerical exper-
iments in [15] study the observable–heat bath interaction numerically under the
limit (1.2). The purpose of this paper is to further understand the numerical analysis
of such problems by isolating, and then studying separately, the approximation of
delta functions and white noise through numerically approximated Fourier series.
Section 3 contains a preliminary discussion of the situation where the equation for
the observable is discretized, but exact samples of the rapidly varying heat bath
are used; this helps to place subsequent analysis in context.

Section 4 contains an analysis of the delta jump model and the numerical
approximation is studied in a discreteL2-norm under the limit process(1.2). In
Section 5 the white noise problem is studied in a discreteL∞-norm in time, from
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the point of view of strong convergence of the numerical approximation (with
respect to an appropriate probability measure) under(1.2). In Section 6 the white
noise problem is again studied, but from the viewpoint of weak convergence of the
numerical approximation under(1.2). Here we construct pathwise approximations
to SDEs, through Fourier analysis. This necessarily requires that the dimension of
the model problems grows to infinity in the limit. It would also be of interest to
study numerical aspects of weak approximations of SDEs through deterministic
problems with random data as outlined in [1]; for such constructions the system size
is fixed and a separation of time-scales facilitates the construction of white noise.

Our results show that:

• For the delta jump model, only certain special methods exhibit convergence
to the correct limit under(1.2). Other methods accurately approximate an
incorrect limit.
• For the delta jump model convergence under(1.2) is at a reduced rate when

compared with the fixedN, 1t → 0 behavior—an order reduction phe-
nomenon [6].
• For the white noise model, similar reduced rates of convergence (order re-

duction) are again observed, both for strong and weak convergence.
• For the white noise model the rates of convergence are better for weak than

for strong convergence, a situation familiar from standard approximation
theory for SDEs [12].

2. Model Problems

Consider the equations

üj + j 2uj = 0,

uj (0) = aj , u̇j (0) = 0, j = 0, . . . , N,
(2.1)

and
żN = f (zN)+ HN(t),

zN(0) = z0,
(2.2)

where

HN(t) :=
N∑

j=0

uj (t).

We consider two choices for the{aj }Nj=0: the first is

a0 = 1
2, aj = 1, j ≥ 1. [MP1]

The second is

a0 = 1√
π
η0, aj =

√
2

π
ηj , j ≥ 1; [MP2]

here theηj are i.i.d. Gaussian random variables with mean 0 and variance 1.



Stiff Oscillatory Systems, Delta Jumps and White Noise 73

Throughout the following we assume thatf ∈ C∞(R,R) and satisfies the
global Lipschitz condition

| f (x)− f (y)| ≤ L|x − y| ∀ x, y ∈ R.
Formal calculations indicate that for [MP1], 0≤ t ≤ π and N large,zN should
behave likez solving

ż= f (z), z(0) = z0+ π
2
. (2.3)

For [MP2] the analogous formal limit is the SDE:

dz= f (z)dt + dW, z(0) = z0, (2.4)

whereW is a standard Brownian motion on 0≤ t ≤ π. The following three results
make this intuition precise:

Theorem 2.1. Consider zN(t) solving [MP1] and z(t) solving(2.3). Then, for
T ∈ (0, π ]:

‖z(·)− zN(·)‖2L2(0,T) ≤
C(T)

N
.

Theorem 2.2. Consider zN(t) solving [MP2] and z(t) solving(2.4). Then, for
T ∈ (0, π ]:

sup
t∈(0,T)

E|z(t)− zN(t)|2 ≤ C(T)

N
.

It is often the case that weak convergence results can be obtained at faster rates
than strong convergence and we now demonstrate this. We consider expectations
of functionsg: R→ R whose Fourier transform̂g satisfies:

Hypothesis H. There exists a real numberβ > 1 and a positive constant C1
such that

|ĝ(k)| ≤ C1(1+ |k|)−β ∀ k ∈ R.

In the following theorem, in Proposition 2.5, and in Section 6, we consider
the casef ≡ 0. Thus z solving (2.4) is a pure Brownian motion. This allows
relatively straightforward analysis using Fourier techniques; more sophisticated
methods would be required to analyze the case of nonzerof .

Theorem 2.3. Let f(z) ≡ 0 and let g: R→ R satisfy HypothesisH. Consider
zN(t) solving[MP2] and z(t) solving(2.4). Then, for T ∈ [0, π ]:

sup
z0∈R
|Eg(z(T))− Eg(zN(T))| ≤

C N(1−β)/2, 1< β < 3,
C N−1 log(1+ N), β = 3,
C N−1, β > 3,
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where C = C(β,C1), with β and C1 as in HypothesisH, is independent of
T ∈ [0, π ].

These theorems are proved at the end of the section.
Since, whenf ≡ 0, zN(t) is a Gaussian random variable for eachT , theorems

similar to Theorem 2.3 could be proved directly by use of limit theorems for sums
of Gaussian random variables. Our proof, though less direct, explicitly calculates
the time evolution of the probability density function (pdf) forzN(t), which may be
of independent interest, and hence yields convergence rates which are independent
of T ∈ [0, π ].Estimates for the difference betweenp(z, t), the pdf forz(t) solving
(2.4), andp̄N(z, t) the pdf forzN(t) solving [MP2] may be found after the proof of
Theorem 2.3.

In Section 3 we briefly consider the numerical solution of(2.2)by theθ -method,
taking theexactsolution of (2.1) as input data. The results are stated in order
to enable comparison with the fully discrete problems considered in subsequent
sections: in Sections 4, 5, and 6 we consider numerical solutions of(2.1), (2.2) in
the regime(1.2) and address the question of whether the numerical approximations
identify the correct limiting behavior, as given in Theorems 2.1, 2.2, and 2.3. We
solve(2.1) by a family of parametrized energy conserving methods,1 namely, for
α ∈ [0,1],

Un+1
j − 2Un

j +Un−1
j + j 21t2Un

j = 0,

U0
j = aj , U1

j = aj [1− α j 21t2],
(2.5)

and(2.2) by theθ -method,θ ∈ [0,1], for tn = n1t :

Zn+1− Zn = 1t [θ f (Zn+1)+ (1− θ) f (Zn)]

+1t [θH1t
N (tn+1)+ (1− θ)H1t

N (tn)] (2.6)

with Z0 = z0 and whereH1t
N (tn) is the approximation toHN(tn) with theuj (tn)

computed through(2.5).
The following lemma will be useful in the study of(2.5), (2.6). The first state-

ment is taken from [15]; the second is proved by a minor modification of the
techniques in [15].

Lemma 2.4. (i) Let N1t < 2.The sequence{Zn}n≥0 generated by(2.6) satisfies

Zn = z0+1t
n∑

m=0

′
f (Zm)+ (n1t)a0+

N∑
j=1

aj γj sin(ϕj n)

+ (1− θ − α)1t
N∑

j=1

2aj sin2(ϕj n/2), (2.7)

1 For j1t ∈ (0,2) the method(2.5) conserves a small perturbation of the energy of the underlying
harmonic oscillator.
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where
n∑

m=0

′ denotes a sum with weight(1− θ) on m = 0, θ on m = n, and 1

otherwise. Furthermore, ϕj andγj are given by

cosϕj = 1− 1
2 j 21t2

and

γj =
√

1− 1
4 j 21t2

j
+ (α −

1
2)(

1
2 − θ) j1t2√

1− 1
4 j 21t2

.

(ii ) Let N1t < 2π . If H1t
N (·) is replaced by HN(·) in (2.6), then

Zn = z0+1t
n∑

m=0

′
f (Zm)+ (n1t)a0+

N∑
j=1

aj γ
′
j sin( jn1t)

+ (1− 2θ)1t
N∑

j=1

aj sin2( jn1t/2), (2.8)

where

γ ′j =
1t

2 tan( j1t/2)
.

The constraintN1t < 2π is required to avoid the resonances which arise if
the denominator ofγ ′j passes through zero.

We now prove Theorems 2.1–2.3.

Proof of Theorem 2.1. In this case

HN(t) = dhN

dt
(t),

where

hN(t) = t

2
+

N∑
j=1

sin( j t )

j
.

Straightforward Fourier analysis shows that∥∥∥∥(hN(·)− ·
2

)
−
(
π − ·

2

)∥∥∥∥2

L2(0,π)

≤ C

N
. (2.9)

Writing (2.2), (2.3) as integral equations gives

zN(t) = z0+
∫ t

0
f (zN(s))ds+ hN(t), (2.10)

z(t) = z0+
∫ t

0
f (z(s))ds+ π

2
. (2.11)
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Subtracting and definingeN(t) = zN(t)− z(t) gives

eN(t) =
∫ t

0
[ f (zN(s))− f (z(s))] ds+

[
hN(t)− π

2

]
.

TakingL2-norms and using(2.9) gives, fort ∈ [0, π ]:

‖eN(·)‖2L2(0,t) ≤
2C

N
+ 2πL2

∫ t

0
‖eN(·)‖2L2(0,s) ds.

A Gronwall argument gives the desired result.

Proof of Theorem 2.2. In the case of [MP2] it follows that

hN(t) = η0t√
π
+

N∑
j=1

√
2

π
ηj

sin( j t )

j
. (2.12)

From [13, Chapter 2, Theorem 2.5] it is known that, with probability one, as
N →∞,

hN(t)→ W(t)

uniformly for t ∈ [0, π ],whereW(t) is standard Brownian motion. Hence, almost
surely,

W(t) = η0t√
π
+
∞∑

j=1

√
2

π
ηj

sin( j t )

j
(2.13)

from which it follows that, for eacht ∈ [0, π ]:

E|hN(t)−W(t)|2 = E
∑

j,k≥N+1

2

π
ηj ηk

sin( j t ) sin(kt)

jk

=
∑

j≥N+1

2

π

sin2( j t )

j 2

≤ 2C

πN
.

Rewriting(2.4) as an integral equation gives

z(t) = z0+
∫ t

0
f (z(s))ds+W(t). (2.14)

Subtracting from(2.10) and definingeN(t) = zN(t)− z(t) gives

eN(t) =
∫ t

0
[ f (zN(s))− f (z(s))] ds+ [hN(t)−W(t)].
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Thus

E|eN(t)|2 ≤ 2E
{∫ t

0
[ f (zN(s))− f (z(s))] ds

}2

+ 4C

πN

≤ 2πL2
∫ t

0
E|eN(s)|2 ds+ 4C

πN
.

A Gronwall argument gives the desired result.

Proof of Theorem 2.3. We wish to study the rate of convergence of the quantity

|Eg(z(t))− Eg(zN(t))| (2.15)

to 0 asN →∞ in the case when

f (·) ≡ 0. (2.16)

The pdfp(z, t) for the problem(2.4) under(2.16) is the solution of the parabolic
initial-value problem 

∂p

∂t
= 1

2

∂2 p

∂z2
,

p(z,0) = δ(z− z0).

Similarly, for each fixedω := {ηj }j≥0, the pdf pN(z, t;ω) for the problem(2.2)
satisfies the hyperbolic initial-value problem

∂pN

∂t
+ ∂

∂z

(
dhN

dt
pN

)
= 0,

pN(z,0;ω) = δ(z− z0),

(2.17)

wherehN(t) = hN(t;ω) is given by(2.12). We set

p̄N(z, t) = EpN(z, t;ω),

and note that

Eg(z(t)) =
∫ ∞
−∞

p(z, t)g(z)dz, (2.18)

Eg(zN(t)) =
∫ ∞
−∞

p̄N(z, t)g(z)dz. (2.19)

Thus we shall first estimate the closeness ofp̄N to p, and thereby derive bounds
on the quantity (2.15).

We define

p̂N(k, t;ω) =
∫ ∞
−∞

eikz pN(z, t;ω)dz.
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Applying the Fourier transform to (2.17), it is a straightforward matter to check
that

∂

∂t
p̂N − ik

dhN

dt
p̂N = 0, p̂N(k,0;ω) = eikz0,

and therefore

p̂N(k, t;ω) = eikz0eikhN(t;ω),

where we have made use of the fact thathN(0;ω) = 0. Hence,

pN(z, t;ω) = 1

2π

∫ ∞
−∞

eik(z0−z)eikhN(t;ω) dk,

so that

p̄N(z, t) = 1

2π

∫ ∞
−∞

eik(z0−z)ψN(k, t)dk,

whereψN(k, t) is the characteristic function forhN(t;ω); i.e.,

ψN(k, t) = E exp{ikhN(t;ω)}

= exp

{
−k2t2

2π
− k2

π

N∑
j=1

sin2 j t

j 2

}

= exp

{
−k2

2

[
t2

π
+ 2

π

N∑
j=1

sin2 j t

j 2

]}

= exp

{
−k2

2

[
t2

π
+ 2

π

N∑
j=1

1− cos(2 j t )

2 j 2

]}

= exp

{
−k2

2

[
t2

π
+ 1

π

N∑
j=1

1

j 2
− 1

π

N∑
j=1

cos(2 j t )

j 2

]}
. (2.20)

As
∞∑

j=1

1

j 2
= π2

6

and, by straightforward Fourier series expansion,

t2

π
− t = −π

6
+ 1

π

∞∑
j=1

cos(2 j t )

j 2
, (2.21)

we deduce (formally, at least) that, asN →∞:

ψN(k, t) → exp

{
−1

2
k2t

}
,

p̄N(z, t) → 1

2π

∫ ∞
−∞

eik(z−z0)e−
1
2 k2t dk= p(z, t).

We now aim to make these statements precise.
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Since the Fourier series on the right-hand side of (2.21) converges uniformly
for t ∈ [0, π ] to the function on the left-hand side of (2.21):

e−
1
2 k2t = exp

{
− 1

2k2

[
t2

π
+ π

6
− 1

π

∞∑
j=1

cos(2 j t )

j 2

]}
∀ t ∈ [0, π ].

Also, from (2.20) we have that

ψN(k, t) = exp

{
− 1

2k2

[
t2

π
+ 1

π

N∑
j=1

1

j 2
− 1

π

N∑
j=1

cos(2 j t )

j 2

]}
.

Alternatively, the last two lines can be rewritten as, respectively,

e−
1
2 k2t = exp

{
− 1

2k2

[
t2

π
+ S∞1

]}
, (2.22)

ψN(k, t) = exp

{
− 1

2k2

[
t2

π
+ SN

1

]}
, (2.23)

where

S∞1 =
2

π

∞∑
j=1

sin2 j t

j 2
, SN

1 =
2

π

N∑
j=1

sin2 j t

j 2
.

On subtracting (2.23) from (2.22) and noting that

|e−a − e−b| ≤ [1− e−|a−b|], a,b ≥ 0, (2.24)

we deduce that

|e− 1
2 k2t − ψN(k, t)| ≤ e−k2t2/2π

[
1− exp

(
−k2

π

∑
j≥N+1

sin2 j t

j 2

)]
. (2.25)

Further, since ∑
j≥N+1

sin2 j t

j 2
≤

∑
j≥N+1

1

j 2
≤ 1

N
,

it follows from (2.25) that

|e− 1
2 k2t − ψN(k, t)| ≤ e−k2t2/2π [1− e−k2/πN ]. (2.26)

Now we consider (2.18) and (2.19). By virtue of Parseval’s identity

Eg(z(t))− Eg(zN(t)) =
∫ ∞
−∞

[ p(z, t)− p̄N(z, t)] g(z)dz

= 1

2π

∫ ∞
−∞

eik(z0−z)[e−
1
2 k2t − ψN(k, t)]ĝ(k)dk.
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Thus,

|Eg(z(t))− Eg(zN(t))| ≤ 1

2π

∫ ∞
−∞
|e− 1

2 k2t − ψN(k, t)| |ĝ(k)|dk. (2.27)

Applying Hypothesis H in (2.27) and recalling (2.26), it follows that

|Eg(z(t))− Eg(zN(t))| ≤ C1

π

∫ ∞
0

e−k2t2/2π [1− e−k2/πN ](1+ k)−β dk. (2.28)

In order to complete the analysis, it remains to bound the right-hand side in (2.28).
First, we note that

1− e−a ≤ min(1,a), a ≥ 0.

Applying this in (2.28) witha = k2/(πN), it follows that

|Eg(z(t))− Eg(zN(t))| ≤ C1

π

∫ ∞
0

e−k2t2/2π (1+ k)−β min

(
1,

k2

πN

)
dk. (2.29)

In Appendix A we show that

∫ ∞
0

e−k2t2/2π (1+k)−β min

(
1,

k2

πN

)
dk≤

C N(1−β)/2, 1< β < 3,
C N−1 log(1+ N), β = 3,
C N−1, β > 3,

(2.30)
whereC = C(β) is a positive constant. Finally, inserting (2.30) into (2.29), we
arrive at the required bound.

By using the estimates from the proof of Theorem 2.3, some simple calculations
given in Appendix B enable the proof of the following:

Proposition 2.5. Let f(z) ≡ 0. Consider p̄N(z, t), the pdf for zN(t) solving
[MP2], and p(z, t), the pdf for z(t) solving(2.4). Then, for T ∈ [0, π ]:

∫ T

0
tα‖ p̄N(·, t)− p(·, t)‖L∞(R) dt ≤ C

N−α/2 for 0< α < 2,
N−1 log(1+ N) for α = 2,
N−1 for α > 2,

(2.31)
where C= C(α) is a positive constant. Furthermore,

∫ T

0
tα‖ p̄N(·, t)− p(·, t)‖L2(R) dt ≤ C


N−(α/2+1/4) for − 1

2 < α < 3
2,

N−1 log(1+ N) for α = 3
2,

N−1 for α > 3
2,

(2.32)
where, again, C = C(α) is a positive constant.
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3. Sampling versus Under-Resolved Approximation

In this section we address the issue of what features arise simply through the
samplingof HN(t), which is rapidly varying, rather than through theapproximation
of HN(t) through under-resolved simulation of(2.1). We approximate(2.2) by the
θ -method, taking the exact solution for theuj as input data. By use of the second
part of Lemma 2.4 we deduce that the approximationZn to z(n1t) is given by
(2.8). No proofs will be given in this section as they are very similar to, but simpler
than, those appearing in subsequent sections; they rely on the use of(2.8) rather
than(2.7).

To state our basic result it will be useful to introduce some notation. Given a
vector(v0, . . . , vm−1)

T we define

v = (v0, . . . , vm−1)
T ;

this notation will be extended to vectors other thanv, specifically tow, z, andZ
and to vectors indexed by superscripts. We makeRm a Hilbert space, defining

〈v,w〉m = 1t
m−1∑
n=0

vnwn,

‖w‖2L2(0,m1t) = 〈w,w〉m.
For purposes of comparison with the numerical method, it will be useful to project
the solutions of(2.3) or (2.4) onto the grid by definingzn = z(n1t).

For the first result we definew by

ẇ = f (w), w(0) = z0+ π
2
+ r

2
(1− 2θ),

noting that ifθ = 1
2 this reduces to (2.3).

Theorem 3.1. Consider{Zn}n≥0 solving (2.2), [MP1] by theθ -method, with
HN(t) given exactly and N1t = r < 2π, and {wn}n≥0 the projection ofw(t)
solving(2.3) onto the grid. Then, for n1t ∈ [0, π ], and all1t sufficiently small

‖w − Z‖2L2(0,n1t) ≤ C(n1t)1t.

This result should be compared with Theorem 2.1. It shows that ifθ = 1
2

we loose no accuracy by approximating (2.2) numerically, whilst forθ 6= 1
2 we

approximate the wrong problem—the jump in the initial condition is incorrectly
represented. Recall that the conditionr < 2π arises in Lemma 2.4 to avoid reso-
nances due to sampling. When we also approximate theHN(t) by solving for the
uj (t) numerically in the under-resolved regime (see (1.2)) the basic picture will
remain, although theoretical bounds on the rate of convergence are diminished
and the nature of the shifted initial condition will depend uponα as well asθ.
Furthermore, it will be necessary to restrictr < 2 to avoid numerical instability;
see Section 4.
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Theorem 3.2. Consider{Zn}n≥0 solving (2.2), [MP2] by theθ -method, with
HN(t) given exactly and N1t = r < 2π. Then, for n1t ∈ [0, π ], and all1t
sufficiently small

sup
0≤m≤n−1

E|zm − Zm|2 ≤ C(n1t)1t.

This should be compared with Theorem 2.2. The convergence rate is unaffected
by the numerical approximation of (2.2). Note, however, that in contrast to the
approximation of jumps, the value ofθ does not affect the basic convergence
result here. This basic picture will remain when we approximate theuj (t), and
henceHN(t), numerically, but the rates of convergence obtained will be reduced;
see Section 5. It is interesting to note at this point that the issue of regaining
optimal rates of convergence to solutions of ODEs forced by rough functions of
time is addressed in paper [10]; that work does not apply directly to the problems
considered here, though modifications might well do.

4. Numerical Approximation of Jumps

In this section it is useful to define the vectorss( j ), s̄( j ) by

s( j )
n = sin( jn1t)

and
s̄( j ) = sin(nϕj ).

Using the notational conventions established in the last section we see that, if
M1t = π and using discrete orthogonality,

〈s(k), s( j )〉M = δjk
π

2
. (4.1)

The following theorem should be compared with Theorems 2.1 and 3.1. By
“solving numerically” we mean use of the fully discrete method(2.5), (2.6). Note
that the theoretical bound on the rate of convergence is reduced when compared
with Theorems 2.1 and 3.1, although numerical evidence indicates that this situa-
tion might be improved by more careful analysis.

Theorem 4.1. Consider{Zn}n≥0 solving[MP1] numerically withθ+α = 1 and
N1t = r < 2 and{zn}n≥0 the projection of z(t) solving(2.3) onto the grid. Then,
for n1t ∈ [0, π ], and all1t sufficiently small

‖z− Z‖2L2(0,n1t) ≤ C(n1t) log|1t−1|1t2/3.

Proof. For simplicity we assume that there is an integerM such thatM1t = π.
Other choices of1t can be handled by approximation. By(2.9) we may write
(2.11) as

z(t) = z0+
∫ t

0
f (z(s))ds+ t

2
+
∞∑

j=1

sin( j t )

j
.
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By Lemma 2.4 we obtain

zn − Zn =
∫ t

0
f (z(s))ds−1t

n∑
m=0

′
f (Zm)

+
∑

j≥N+1

aj
sin( jn1t)

j
+

N∑
j=1

aj ( j−1− γj ) sin( jn1t)

+
N∑

j=1

aj γj [sin( jn1t)− sin(ϕj n)]

+ (θ + α − 1)1t
N∑

j=1

2aj sin2(ϕj n/2), (4.2)

where for [MP1],aj = 1, j ≥ 1. Henceforth in this proof we setθ + α = 1. Now
the regularity of solutions to ODEs implies that

sup
t∈[0,π ]

∣∣∣∣∣
∫ t

0
f (z(s))ds−1t

n∑
m=0

′ f (zm)

∣∣∣∣∣ ≤ C1t.

Definingen = zn − Zn, we have from (4.2), with|qn| ≤ C1t :

en = 1t
n∑

m=0

′
[ f (zm)− f (Zm)] + qn

+
∑

j≥N+1

s( j )
n

j
+

N∑
j=1

( j−1− γj )s
( j )
n

+
N∑

j=1

γj [s
( j )
n − s̄( j )

n ].

Thus

|en|2 ≤ 51t2

[
n∑

m=0

′| f (zm)− f (Zm)|
]2

+ 5C21t2

+ 5
∑

j,k≥N+1

s( j )
n s(k)n

jk
+ 5

N∑
j,k=1

( j−1− γj )(k
−1− γk)s

( j )
n s(k)n

+ 5

∣∣∣∣∣ N∑
j=1

γj [s
( j )
n − s̄( j )

n ]

∣∣∣∣∣
2

.

Now, usingn1t ≤ M1t = π , n+ 1≤ 2n, andθ ∈ [0,1], we deduce that

1t2

[
n∑

m=0

′| f (zm)− f (Zm)|
]2

≤ 1t2L2

[
n∑

m=0

|em|
]2
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≤ 1t2L2(n+ 1)
n∑

m=0

|em|2

≤ 2π1t L2
n∑

m=0

|em|2

= 2πL2‖e‖2L2(0,n1t) + 2π1t L2|en|2.
Thus, choosing1t sufficiently small so that(1− 10π1t L2)−1 ≤ 2, we obtain

|en|2 ≤ 20πL2‖e‖2L2(0,n1t) + 10C21t2

+ 10
∑

j,k≥N+1

s( j )
n s(k)n

jk
+ 10

N∑
j,k=1

( j−1− γj )(k
−1− γk)s

( j )
n s(k)n

+ 10

∣∣∣∣∣ N∑
j=1

γj [s
( j )
n − s̄( j )

n ]

∣∣∣∣∣
2

.

Summing overn ≤ M and using (4.1) we obtain

‖e‖2L2(0,n1t) ≤ 20π1t L2

[
n−1∑
m=0

‖e‖2L2(0,m1t)

]
+ 10πC21t2

+ 5π
∑

j≥N+1

1

j 2
+ 5π

N∑
j=1

( j−1− γj )
2

+ 101t
M−1∑
m=0

∣∣∣∣∣ N∑
j=1

γj [s
( j )
m − s̄( j )

m ]

∣∣∣∣∣
2

.

By using

1− (1− x)1/2 ≤ x ∀ x ∈ [0,1]

we obtain ∣∣∣∣γj − 1

j

∣∣∣∣ = O(1t2 j ), |γj | = O( j−1), (4.3)

so that, sinceN1t = r :∑
j≥N+1

1

j 2
= O(1t),

N∑
j=1

( j−1− γj )
2 = O(1t). (4.4)

Hence

‖e‖2L2(0,n1t) ≤ 20π1t L2

[
n−1∑
m=0

‖e‖2L2(0,m1t)

]

+O(1t)+ 101t
M−1∑
m=0

∣∣∣∣∣ N∑
j=1

γj [s
( j )
m − s̄( j )

m ]

∣∣∣∣∣
2

.
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Fig. 4.1. (a) L2(0, t) error curves from [MP1] withf ≡ 0 using method(2.5), (2.6) with N1t =
π/10 andθ = 0, α = 1. (b) Log–log plot for the convergence rate ofL2(0,1) error as a function of
1t ; the approximate slope is 0.4831.

The near-orthogonality of thes( j ) and thes̄(k) enables a bound on the final term
(use Appendix C withβj = γj ) and the required result follows from a Gronwall
argument.2

To verify this result numerically we performed a simulation for [MP1] with
f ≡ 0 using method(2.5), (2.6). The parameters for the experiment wereα = 1,
θ = 0, andN1t = π/10 for N = 2000, 4000, 8000, and 16,000. We observed
that theL2(0, t) error converged at a rate ofO(1t0.4831), an improvement over
the proven boundO(

√
log1t−11t1/3); see Figure 4.1. To close the gap between

theory and experiment will require a more careful analysis of the term estimated
in Appendix C.

Note that the convergence rate was determined as the slope of the least-squares
fit line through the log–log data points in Figure 4.1. This methodology is employed
for determining all numerical convergence rates in this paper.

We now comment on what happens to the numerical method ifθ + α 6= 1. In
this case,Zn has an extra contribution

(1− θ − α)1t
N∑

j=1

[1− cos(ϕj n)].

By use of Appendix C withβj = 1t = ζ/N ≤ ζ/j it follows that

1t
N∑

j=1

cos(ϕj n) = 1t
N∑

j=1

cos( jn1t)+ δ1,

where

‖δ1‖2L2(0,M1t) = O(log|1t−1|1t2/3).

2 In the proof of Theorem 3.1 the final term does not appear, thus improving the rate of convergence.
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Summing the resulting geometric series found by writing the cosine as the real
part of a complex exponential (by use of [8, 1.342(2)]) shows thatZn has an extra
contribution

(1− θ − α){r + δ2},
where

‖δ2‖2L2(0,M1t) = O(log|1t−1|1t2/3).

From this it follows that forθ + α 6= 1 and under(1.2), the numerical method
approximates the ODE

ẏ = f (y), y(0) = z0+ π
2
+ (1− θ − α)r (4.5)

instead of the true limiting equation(2.3). Thus the numerical method accurately
computes the wrong limit. More precisely we have:

Theorem 4.2. Consider{Zn}n≥0 solving[MP1] numerically withθ+α 6= 1 and
N1t = r < 2 and{yn}n≥0 the projection of y(t) solving(4.5) onto the grid. Then,
for n1t ∈ [0, π ]:

‖y− Z‖2L2(0,n1t) ≤ C(n1t) log|1t−1|1t2/3.

This result has been verified via simulation analogous to the experiment il-
lustrated in Figure 4.1. Again we observed that theL2(0, t) error converged at
rate approximatelyO(1t1/2), suggesting the theoretical upper bounds from The-
orems 4.1 and 4.2 may be improved.

5. Strong Numerical Approximation of White Noise

We employ the notation introduced in Section 3. The following theorem should be
compared with Theorems 2.2 and 3.2. By “solving numerically” we mean use of
the fully discrete method(2.5), (2.6). Note that the theoretical bound on the rate
of convergence is reduced when compared with Theorems 2.2 and 3.2; numerical
evidence is inconclusive as to whether this situation might be improved by more
careful analysis.

Theorem 5.1. Consider{Zn}n≥0 solving[MP2] numerically with N1t = r < 2.
Then, for n1t ∈ [0, π ], and all1t sufficiently small

sup
0≤m≤n−1

E|zm − Zm|2 ≤ C(n1t)1t2/3.

Proof. By (2.13) we can almost surely rewrite(2.14) as

z(t) = z0+
∫ t

0
f (z(s))ds+ η0t√

π
+
√

2

π

∞∑
j=1

ηj
sin( j t )

j
.
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Using the limited regularity of solutionsz(t) to the SDE(2.4) it follows that

E

∣∣∣∣∣
∫ t

0
f (z(s))ds−1t

n∑
m=0

′ f (zm)

∣∣∣∣∣
2

≤ C1t.

By techniques similar to those employed in the previous section, but withaj =
ηj , we obtain from(4.2):

E|en|2 ≤ 6(n+ 1)1t2L2
n∑

m=0

E|em|2+ 6C1t

+ 6
∑

j≥N+1

1

j 2
+ 6

N∑
j=1

( j−1− γj )
2

+ 6
N∑

j=1

γ 2
j [sin( jn1t)− sin(ϕj n)]

2

+ 24N1t2(θ + α − 1)2.

In this proof we use the fact thataj = ηj are i.i.d. random variables distributed as
N (0,1) so that they are orthogonal underE : Eηi ηj = δi j .

Now

N∑
j=1

γ 2
j [sin( jn1t)− sin(ϕj n)]

2 ≤ O
[

Nα∑
j=1

j 41t4+
∑
j≥Nα

1

j 2

]
= O(1t4N5α + N−α).

Choosingα = 2
3 we obtain, also using(4.4) and(n+ 1)1t ≤ 2n1t ≤ 2π :

E|en|2 ≤ 12π1t L2
n∑

m=0

E|em|2+O(1t2/3)

and the required result follows by a Gronwall argument.3

Once again we verified our result numerically, solving [MP2] withθ = α = 0,
f (z) = −z, andN1t = 1 for N = 2000, 4000, 8000, and 16,000. Due to the
highly oscillatory behavior of a single realization path, we depict theL2(0, t)
error, observing an approximate convergence rate ofO(1t0.3997) for this single
realization; see Figure 5.1. Note that Theorem 5.1 estimates the average error over
all paths, whilst our experiment is for a single path.

3 In Theorem 3.2 the final term does not appear in the analysis and hence the improved rate of
convergence.



88 B. Cano, A. M. Stuart, E. S¨uli, and J. O. Warren

(a) (b)

Fig. 5.1. (a) L2(0, t) error curves from [MP2] withf (z) = −z using method(2.5), (2.6) with
N1t = 1 andθ = α = 0. (b) Log–log plot for the convergence rate ofL2(0,1) as a function of1t ;
the approximate slope is 0.3997.

6. Weak Numerical Approximation of White Noise

Our analysis is confined to the simple case wheref ≡ 0 so that the desired weak
convergence properties of [MP2] solved numerically should approximate those of
pure diffusion. This enables us to use Fourier techniques. After the analysis some
experiments will be presented to show that the result is more general than that
presented in the following theorem and can be extended to nonzerof. To analyze
the case of nonzerof would require more sophisticated techniques, such as those
described in [2].

The following theorem should be compared with Theorem 2.3. By “solving
numerically” we mean use of the fully discrete method(2.5), (2.6). Numerical
evidence indicates that the rate of convergence in this theorem might be improved
by more careful analysis.

Theorem 6.1. Consider{Zn}n≥1 solving[MP2] numerically with N1t = r < 2.
Then, for n1t ∈ [0, π ], and all1t sufficiently small,

sup
z0∈R
|Eg(z(n1t))− Eg(Zn)| ≤ C

N(1−β)/3, 1< β < 3,
N−2/3 log(1+ N), β = 3,
N−2/3, β > 3,

where C= C(β,C1) with β and C1 as in HypothesisH.

Proof. We let pn
N,1t(z;ω) denote the pdf forZn solving (2.6), for each fixedω,

and

p̄n
N,1t(z) = Epn

N,1t(z;ω).
Since f (·) ≡ 0 we have, by Lemma 2.4,

Zn = z0+ sn,
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where

sn = 1

π
η0(n1t)+

N∑
j=1

√
2

π
ηj {γj sin(ϕj n)+ 21t (1− θ − α) sin2(ϕj n/2)}.

If p0
N,1t(z;ω) = p0(z) then pn

N,1t(z;ω) = p0(z − sn); assuming thatp0(z) =
δ(z− z0) we obtain

p̄n
N,1t(z) =

1

2π

∫ ∞
−∞

eik(z0−z)ψn
N,1t(k)dk,

whereψn
N,1t(k) is the characteristic function forsn = sn(ω); i.e.,

ψn
N,1t(k) = E exp{iksn(t;ω)}

= exp

{
− 1

2k2

[
(n1t)2

π
+ SN

2

]}
,

where

SN
2 =

2

π

N∑
j=1

[γj sin(nϕj )+ 21t (1− θ − α) sin2(ϕj n/2)]
2.

By (2.23) and(2.24) we deduce that

|ψN(k,n1t)− ψn
N,1t(k)| ≤ e−k2(n1t)2/2π [1− e−k2|SN

1 −SN
2 |].

But

π

2
|SN

1 − SN
2 | =

∣∣∣∣∣ N∑
j=1

[
γ 2

j −
1

j 2

]
sin2( jn1t)

+
N∑

j=1

γ 2
j [sin2(nϕj )− sin2( jn1t)]

+
N∑

j=1

41t (1− θ − α)γj sin(nϕj ) sin2(nϕj /2)

+
N∑

j=1

41t2(1− θ − α)2 sin4(nϕj /2)

∣∣∣∣∣.
Thus, by(4.3),

π

2
|SN

1 − SN
2 | ≤

N∑
j=1

C

j

∣∣∣∣γj − 1

j

∣∣∣∣+ N∑
j=1

C

j 2
| sin(nϕj )− sin( jn1t)|

+
N∑

j=1

C1t

j
+

N∑
j=1

C1t2

≤ O(log |1t−1|1t)+
N∑

j=1

C

j 2
| sin(nϕj )− sin( jn1t)|.
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Butϕj = j1t+O( j 31t3)and so, by choosingβ = 2
3 and noting thatn1t = O(1),

N∑
j=1

C

j 2
| sin(nϕj )− sin( jn1t)| ≤ O

(
Nβ∑
j=1

j1t2+
∑
j≥Nβ

1

j 2

)
= O(1t2/3).

Thus

|ψN(k,n1t)− ψn
N,1t(k)| ≤ e−k2(n1t)2/2π [1− e−Ck2/N2/3

].

Now, by Parseval’s identity,

Eg(zN(n1t))− Eg(Zn) =
∫ ∞
−∞

[
p̄N(z,n1t)− p̄n

N,1t(z)
]

g(z)dz

= 1

2π

∫ ∞
−∞

eik(z0−z)[ψN(k,n1t)− ψn
N,1t(k)]ĝ(k)dk.

Thus, by Hypothesis H,

|Eg(zN(n1t))− Eg(Zn)| ≤ C1

π

∫ ∞
0

e−k2(n1t)2/2π [1− e−Ck2/N2/3
](1+ k)−βdk.

Analysis analogous to that at the end of the proof of Theorem 2.3 (using Appendix
A) but with N−1 replaced byN−2/3 gives the required result.

For our first numerical experiment we solved [MP2] withf ≡ 0 and chose
g(z) = z2. Thus z is simply Brownian motion andEg(z(t)) = t . However,
calculatingEg(Zn) accurately is a computationally intense task since, by Theorem
5.1, for sufficiently smoothg:

|Eg(z(n1t))− Eg(Zn)| ≤ O(N−2/3).

Hence to determine the rate of convergence, the statistical error in estimating the
expectationEg(Zn) must be insignificant compared to this bound. Furthermore,
the variance ofg(Zn) increases asn increases, thus requiring more realizations to
accurately estimate this expectation.4

Figure 6.1 shows the difference in numerical estimates of the expectations up to
timet = 0.1, using eight million and ten million realizations withN = 1600. Note
that the curves differ fort > 0.05 in the two cases, even forO(107) realizations
(though the relative error|t − Eg(Zn)|/t is better behaved). Moreover, for large
t (t ≈ 1), this statistical error overwhelms the quantity of interest|Eg(z(n1t))−
Eg(Zn)|. This suggests that to examine the rate of weak convergence numerically
we are restricted to small time intervals and a large number of realizations. Note
that for t ≤ 0.05 both estimates ofEg(Zn) are fairly well converged and, in fact,

4 Variance reduction techniques could, perhaps, be used to relieve this problem; we have not chosen
to pursue this here as the data required to illustrate our point can be easily found by intensive simulation.
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Fig. 6.1. |t−Eg(Zn)| up to timet = 0.1 for N = 1600 andEg(Zn) approximated with eight million
and ten million realizations.
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Fig. 6.2. (a) |Eg(z(n1t))−Eg(Zn)| error curves from [MP2] withf ≡ 0 using method(2.5), (2.6)
with N1t = 1 andθ = α = 0. (b) Log–log plot for the convergence rate of error att = 0.05 as a
function of1t ; the approximate slope is 0.9196.

deviations are negligible in comparison with the quantity|t − Eg(Zn)| which we
wish to estimate.

For our experiment we examined weak convergence up to timet = 0.05 with
θ = 0,α = 0, andN = 200, 400, 800, and 1600. We observed that|Eg(z(n1t)−
Eg(Zn)|att = 0.05 converged at approximate rate ofO(1t0.9196), an improvement
over the theoretical rate ofO(1t2/3). These results are depicted in Figure 6.2.

Finally we repeated this experiment using a nonzero forcing function:f (z) =
z− z3. We observed a convergence rate ofO(1t0.9313), suggesting that the theory
can be extended to incorporate nonzerof .
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Appendix A

Our aim in this Appendix is to prove the estimate (2.30). The starting point is the
following decomposition:∫ ∞

0
e−k2t2/2π (1+ k)−β min

(
1,

k2

πN

)
dk

=
∫ √πN

0

e−k2t2/2π

(1+ k)β
k2

πN
dk+

∫ ∞
√
πN

e−k2t2/2π

(1+ k)β
dk≡ I + I I . (A.1)

We begin by estimating termI for t > 0:

I = t−3

πN

∫ √πN

0

e−k2t2/2π

(1+ kt/t)β
(kt)2 d(kt)
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= tβ−3

πN

∫ t
√
πN

0

e−u2/2π

(t + u)β
u2 du. (A.2)

(1a) First, suppose that 0< t
√
πN ≤ 1. Then, assumingβ 6= 3:

I ≤ tβ−3

πN

∫ t
√
πN

0

(
u

t + u

)2 du

(t + u)β−2

≤ tβ−3

πN

(t + u)3−β

3− β
∣∣∣∣t
√
πN

0

,

= tβ−3

πN

t3−β

3− β [(1+
√
πN)3−β − 1]

= C

N
[(1+

√
πN)3−β − 1]

≤
{

C N−1 whenβ > 3,
C N(1−β)/2 when 1< β < 3,

whereC = C(β) is a positive constant. Similarly, whenβ = 3:

I ≤ 1

πN

∫ t
√
πN

0

du

t + u
= 1

πN
log(t + u)

∣∣∣∣t
√
πN

0

= 1

πN
(log(t + t

√
πN)− log t)

= 1

πN
log(1+

√
πN) ≤ C N−1 log(1+ N),

whereC is a positive constant. To summarize the situation, for 0< t
√
πN ≤ 1

we have that

I ≤
C N(1−β)/2, 1< β < 3,

C N−1 log(1+ N), β = 3,
C N−1, β > 3,

(A.3)

whereC = C(β) is a positive constant.
(1b) Now suppose thatt

√
πN ≥ 1. Then,(

1

t

)3−β
≤
(√
πN

)3−β
, 1< β < 3. (A.4)

We shall make use of this below. First, since(t + u)−βu2 ≤ (t + u)2−β for
0≤ u ≤ 1, and(t + u)−β ≤ 1 for u ≥ 1, we have from (A.2) that

I ≤ tβ−3

πN

(∫ 1

0

e−u2/2π

(t + u)β
u2 du+

∫ ∞
1

e−u2/2π

(t + u)β
u2du

)

≤ Ctβ−3

N

(∫ 1

0

du

(t + u)β−2
+ 1

)



94 B. Cano, A. M. Stuart, E. S¨uli, and J. O. Warren

=


C

N

(
(1+ 1/t)3−β − 1

3− β + 1

)
; β 6= 3,

C

N
(log(1+ 1

t
)+ 1); β = 3.

Finally, using (A.4) this implies that, fort
√
πN ≥ 1:

I ≤
C N(1−β)/2, 1< β < 3,

C N−1 log(1+ N), β = 3,
C N−1, β > 3.

(A.5)

From (A.3) and (A.5) we deduce that

I ≤
C N(1−β)/2, 1< β < 3,

C N−1 log(1+ N), β = 3,
C N−1, β > 3.

(A.6)

for all t > 0, whereC = C(β) is a positive constant.
Now we consider termI I in (A.1):

I I =
∫ ∞
√
πN

e−k2t2/2π

(1+ k)β
dk

= 1

t

∫ ∞
√
πN

e−(kt)2/2π

(1+ kt/t)β
d(kt) = tβ−1

∫ ∞
t
√
πN

e−u2/2π

(t + u)β
du.

(2a) Suppose that 0< t
√
πN ≤ 1:

I I ≤ tβ−1

{∫ 1

t
√
πN

e−u2/2π

(t + u)β
du+

∫ ∞
1

e−u2/2π

(t + u)β
du

}

≤ tβ−1

{∫ 1

t
√
πN

1

(t + u)β
du+

∫ ∞
1

e−u2/2π du

}
≤ Ctβ−1

{
(t + u)1−β

1− β
∣∣∣∣1
t
√
πN

+ 1

}

= Ctβ−1

{
(1+ t)1−β − t1−β(1+√πN)1−β

1− β + 1

}
≤ C(|tβ−1(1+ t)1−β − (1+

√
πN)1−β | + tβ−1)

≤ C(N(1−β)/2+ tβ−1)

≤ C N(1−β)/2,

where in the transition to the last line we made use of the fact thatt
√
πN ≤ 1.

HereC = C(β) is a positive constant.
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(2b) Now suppose thatt
√
πN ≥ 1. Then,

I I ≤ tβ−1
∫ ∞

t
√
πN

e−u2/2π

(t + u)β
du

≤ tβ−1e−t2N/2
∫ ∞

t
√
πN

du

(t + u)β

= tβ−1e−t2N/2 (t + t
√
πN)1−β

β − 1

= e−t2N/2 (1+
√
πN)1−β

β − 1

≤ e−1/2π

β − 1
N(1−β)/2

(√
π + 1√

N

)1−β

≤ C N(1−β)/2,

whereC = C(β) is a positive constant. Thus, to summarize,

I I ≤ C N(1−β)/2, β > 1, (A.7)

with C = C(β) a positive constant. Finally, substituting the bounds (A.6) and
(A.7) into (A.1) we arrive at the estimate (2.30).

Appendix B

Proof of Proposition2.5. Clearly,

| p̄N(z, t)− p(z, t)| = 1

2π

∣∣∣∣∫ ∞−∞ eik(z0−z)[e−
1
2 k2t − ψN(k, t)] dk

∣∣∣∣
≤
∫ ∞
−∞
|e− 1

2 k2t − ψN(k, t)|dk. (B.1)

We substitute (2.26) into (B.1) to conclude that

| p̄N(z, t)− p(z, t)| ≤
∫ ∞
−∞

e−k2t2/2π [1− e−k2/πN ] dk

= 1

t

∫ ∞
−∞

exp

{
− (kt)2

2π

}
d(kt)

− 1√
t2+ 2/N

∫ ∞
−∞

exp

{
− (k

√
t2+ 2/N )2

2π

}

×d

(
k

√
t2+ 2

N

)

= C0

[
1

t
− 1√

t2+ 2/N

]
, (B.2)
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where we put

C0 =
∫ ∞
−∞

exp

{
− s2

2π

}
ds.

Next, we note the elementary inequality

1− 1

(1+ 2y)1/2
≤ min(1, y), y ≥ 0. (B.3)

Choosingy = 1/(Nt2) in (B.3) we deduce that

1− 1

(1+ 2/Nt2)1/2
≤ min

(
1,

1

Nt2

)
.

Consequently,

| p̄N(z, t)− p(z, t)| ≤ C0

t
min

(
1,

1

Nt2

)
, (B.4)

After multiplying (B.4) bytα, α > 0, and integrating with respect tot between
0 andT , we obtain∫ T

0
tα| p̄N(z, t)− p(z, t)|dt

=
∫ 1/

√
N

0
tα| p̄N(z, t)− p(z, t)|dt +

∫ T

1/
√

N
tα| p̄N(z, t)− p(z, t)|dt

≤ C0

∫ 1/
√

N

0
tα−1 dt + C0

N

∫ T

1/
√

N
tα−3 dt ≡ I + I I . (B.5)

Elementary calculations show that

I = 1

α
N−α/2, α > 0, (B.6)

and

I I = C


1

N

1

α − 2

(
1−

(
1√
N

)α−2
)

for α 6= 2,

1

2N
log N for α = 2.

(B.7)

It follows from (B.7) that

I I ≤
C N−α/2 for 0< α < 2,

C N−1 log(1+ N) for α = 2,
C N−1 for α > 2,

(B.8)

whereC = C(α, T) is a positive constant. Finally, inserting (B.6) and (B.8) into
(B.5), we obtain(2.31).
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Next we derive a similar bound where instead of theL∞-norm we have the
L2-norm under the integral sign. By Parseval’s identity and(2.26):

‖ p̄N(·, t)− p(·, t)‖2L2(R) ≤ C
∫ ∞
−∞

[e−
1
2 k2t − ψN(k, t)]

2 dk

≤ C
∫ ∞
−∞

e−(1/π)k
2t2

[1− 2e−k2/πN + e−2k2/πN ] dk

≤ C

[∫ ∞
−∞

e−k2t2/π dk− 2
∫ ∞
−∞

e−(k
2/π)(t2+N−1) dk

+
∫ ∞
−∞

e−(k
2/π)(t2+2N−1) dk

]
≤ C

[
1

t
− 2

(t2+ 1/N)1/2
+ 1

(t2+ 2/N)1/2

]
.

Now,

1− 2(1+ y)−1/2+ (1+ 2y)−1/2 ≤ C2 min(1, y2),

whereC2 is a positive constant. Taking

y = 1

Nt2

in this inequality, we deduce that

‖ p̄N(·, t)− p(·, t)‖L2(R) ≤ C√
t

min

(
1,

1

Nt2

)
,

whereC is a positive constant. Thus∫ 1

0
tα‖ p̄N(·, t)− p(·, t)‖L2(R) dt ≤ C

[∫ 1/
√

N

0
tα−

1
2 dt +

∫ 1

1/
√

N

tα−
5
2

N
dt

]
.

Consequently, we obtain(2.32).

Appendix C

We wish to evaluate

S := 1t
M−1∑
m=0

∣∣∣∣∣ N∑
j=1

βj [v
( j )
m − w( j )

m ]

∣∣∣∣∣
2

,

where (
v
( j )
n

w
( j )
n

)
=
(

sin(ϕj n)
sin( jn1t)

)
or

(
cos(ϕj n)

cos( jn1t)

)
.
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In the two applications of this result

|βj | ≤ C

j
.

Now

S=
N∑

j,k=1

βjβk[Sj,k
1 − 2Sj,k

2 + Sj,k
3 ],

where

Sj,k
1 = 〈v( j ), v(k)〉M , Sj,k

2 = 〈v( j ), w(k)〉M , Sj,k
3 = 〈w( j ), w(k)〉M .

HereM1t = π. But, for example,

Sj,k
1 = 1t

M−1∑
n=0

v( j )
n v(k)n

= 1t

2

M−1∑
n=0

cos[(ϕj − ϕk)n] ± 1t

2

M−1∑
n=0

cos[(ϕj + ϕk)n]

with + for the cosine case and—for the sine case. Similar expressions are found
for the other inner productsSj,k

2 , Sj,k
3 . Using [8, 1.342(2)] it follows that

M−1∑
n=0

cos(nx) = sin[Mx]

2 tan[x/2]
+ sin2[Mx/2]. (C.1)

Summing two terms of the form (C.1) withx = x± and

x± = ϕj ± ϕk, x± = ϕj ± k1t, x± = ( j ± k)1t,

gives the three inner products required to computeS.
In all three cases there isk∗ = k∗( j ) which minimizesx−. Sinceϕj = j1t +

O( j 31t3) we haveκ > 0 such that

k∗( j ) = j ∀ j ≤ κN2/3.

Then, forl = 1,2,3:

Sj,k
l =

π

2
+O( j 21t2)+O(1t) ∀ j ≤ κN2/3. (C.2)

Otherwise

Sj,k∗
l ≤ C. (C.3)

Using|tan(y)| ≥ |y|/C for |y| ≤ ymax< π we deduce that, fork 6= k∗( j ):

|Sj,k
l | ≤ C

[
1t +1t

min{1, ( j 3+ k3)1t2}
|x±|

]
(C.4)
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noting thatx± depends uponj andk. From the properties ofϕj it follows that

N∑
k=1,k 6=k∗( j )

1t

k|x±| ≤
C

j log(N)
. (C.5)

Thus if |βj | ≤ C/j then, by (C.2)–(C.4),

S ≤
κN2/3∑
j=1

C

j 2
[ j 21t2+1t ]

+
N∑

j>κN2/3

C

j 2

+
N∑

j=1

[
C

j
min{1, j 31t2}

N∑
k=1,k 6=k∗

1t

k|x±|

]
.

Hence by (C.5) we obtain

S≤ C log |1t−1|1t2/3.


