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that it approximates white noise. In both cases the fastest natural frequency of the
oscillatorsisO(N). The model problems are integrated numerically in the stiff regime
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both strong and weak convergence are considered. Order reduction phenomena are
observed numerically and proved theoretically.
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1. Introduction

In the field of computational statistical mechanics, stiff oscillatory systems with
broad frequency spectra often arise. It is hence of interest to develop a theory of
the numerical analysis for such problems. In the area of stiff dissipative systems
the understanding of numerical algorithms has been greatly enhanced by the study
of a variety of simple model problems][ here we introduce, and then study
numerical methods for, several model problems in stiff oscillatory systems. A
review of existing literature in this area may be found 14][and in Section 6
of [15].

The context for the models we study is as follows. Many problems arising from
the molecular modeling of materials may be written in the form

dx
T ax, y, X(0) = Xo,

dy

a = b(X, y)v Y(O) = Yo,

(1.1)

wherex € R™andy € RP with p 3> m. We think ofx as representing variables of
intrinsic interest (observables) and yfs representing variables of interest only
inasmuch as they effect the evolution xaf For such problemsxg, Yo) is often
incompletely known and it is natural to think of a probability meagumn R™P
which governs this initial data. In principle, we may write

Y(t) = f(YO» {X(S)}Ossst)
so that

d
d—: = a(X, F (Yo, {X(S)}o<s<t)): X(0) = Xo.

Itis often the case that in some limit (suchpas> co) this equation simplifies
to yield a relatively simple stochastic process for the varialgs; furthermore,
this process is sometimes Markovian. If the limiting stochastic process is known
explicitly it is therefore natural to approximate it directly to find information about
X, rather than to simulate the large systéiil). However, in many situations
some form of stochastic process foiis believed to exist but its form is either
unknown or not explicitly computable (se®] for example). In such a situation it
is natural to approximatél.1) directly and to ask what is the minimal resolution
of they variable necessary to accurately approximxata order to make headway
with this question we will consider two simple models where the limiting process
for x is knownbut study its approximation through under-resolved simulation of
(1.1). Of course if the limit procesis known explicitly it should be approximated
directly; we consider approximation ¢f.1) simply to shed light on the general
case where the limit process is not known explicitly, or not even known to exist.
A related, but different, approach may be found in the work of Chorin e8jl.
[4], [5]. They attempt to develop an equation %(t) = Ex(t), wherek is with
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respect tqu on (Xg, Yo). By assuminghat i is stationary for(1.1) they consider
the equation

dX
— = AX
T (X)),

where A(X) = E(a(x, y) | x = X) and nowE(- | x = X) is, with respect tqu

on (X, y), conditional orx = X. This approach has had some success and further
analytical justification may be forthcoming through the study of its application to
models such as those studied here and &, [11].

We recognize that the models we consider are somewhat artificial since, as the
limits are known explicitly, the numerical methods studied would never be used
in practice. However, the analysis sheds light on what may be expected in the
general case when the limit is not explicitly known and may hence be viewed as
a (hopefully) useful first step in the numerical analysis of stiff oscillatory systems
with random data.

Section 2 introduces two basic models, both motivated by a simple mechanical
description of a heat bath. In the first, a family of harmonic oscillators is used to
construct an approximate delta function, through Fourier analysis, and this is used
as aforcing term for a scalar ODE. In the second, a family of harmonic oscillators is
used to construct an approximation to white noise, again through Fourier analysis,
and this is used as a forcing term for a scalar ODE. For both models the fastest
natural frequency of the oscillators@i N), whereN is the number of oscillators.

The approximation to a delta function or to white noise becomes exattasoo;
theorems making this precise are given. See &po [

Our aim is to study the convergence of numerical methods for these models in
the regime

N At fixed, At —-> 0, N — oco. 1.2

In statistical mechanics, the interaction of an observable with a heat bath can be
modeled by a purely mechanical system with random d&tf16]. That work mo-
tivates the choice of constructing a delta function and white noise through families
of oscillators since there Fourier-based approximations of delta-function induced
jumps arise in the modeling of the energy-loss mechanism from the observable to
the heat bath, whilst the Fourier-based white noise models the (expected) energy
gain mechanism, given a random distribution on the initial data. Numerical exper-
iments in [L5 study the observable—heat bath interaction numerically under the
limit (1.2). The purpose of this paper is to further understand the numerical analysis
of such problems by isolating, and then studying separately, the approximation of
delta functions and white noise through numerically approximated Fourier series.
Section 3 contains a preliminary discussion of the situation where the equation for
the observable is discretized, but exact samples of the rapidly varying heat bath
are used,; this helps to place subsequent analysis in context.

Section 4 contains an analysis of the delta jump model and the numerical
approximation is studied in a discreté-norm under the limit procesd.2). In
Section 5 the white noise problem is studied in a disck€tenorm in time, from
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the point of view of strong convergence of the numerical approximation (with

respect to an appropriate probability measure) utl@y. In Section 6 the white

noise problem is again studied, but from the viewpoint of weak convergence of the

numerical approximation undeét.2). Here we construct pathwise approximations

to SDEs, through Fourier analysis. This necessarily requires that the dimension of

the model problems grows to infinity in the limit. It would also be of interest to

study numerical aspects of weak approximations of SDEs through deterministic

problems with random data as outlined1f for such constructions the system size

is fixed and a separation of time-scales facilitates the construction of white noise.
Our results show that:

e For the delta jump model, only certain special methods exhibit convergence
to the correct limit under1.2). Other methods accurately approximate an
incorrectlimit.

e For the delta jump model convergence undep) is at a reduced rate when
compared with the fixedN, At — 0 behavior—an order reduction phe-
nomenon §].

e For the white noise model, similar reduced rates of convergence (order re-
duction) are again observed, both for strong and weak convergence.

e For the white noise model the rates of convergence are better for weak than
for strong convergence, a situation familiar from standard approximation
theory for SDEs12).

2. Model Problems

Consider the equations

Uy 4+ j%u; =0,
I =S (2.1)
uj (0) = aj, Uj(0) =0, j=0,...,N,
and
ZN = f(ZN) + HN(t)’
2.0) = 7, 2
where
N
Hu(®) =) uj ().
j=0
We consider two choices for tHe; jN=0: the first is
=3 a=1 j>=1 [MP1]
The second is
1 2
= i =/ =7 j > 1 MP2
B=—=m 3 \/;m, =L [MP2]

here they; are i.i.d. Gaussian random variables with mean 0 and variance 1
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Throughout the following we assume thate C*(R, R) and satisfies the
global Lipschitz condition

[f(x)— f(Y| <Lix—y| VXx,y eR.

Formal calculations indicate that for [MP1],€t < = andN large, z, should
behave likez solving

7= f@.  2(00)=2z+ % (2.3)

For [MP2] the analogous formal limit is the SDE:
dz= f(2)dt+dWw, z(0) = zg, (2.4)

whereW is a standard Brownian motion on<0t < x. The following three results
make this intuition precise:

Theorem 2.1. Consider z(t) solving[MP1] and zt) solving (2.3). Then for
T € (O, 7]
C(M)
120) = 2O ez =~
Theorem 2.2. Consider z(t) solving[MP2] and zt) solving (2.4). Then for
T € (O, 7]

sup Elz(t) — z,()? < ca
te©,T) N

It is often the case that weak convergence results can be obtained at faster rates
than strong convergence and we now demonstrate this. We consider expectations
of functionsg: R — R whose Fourier transforg satisfies:

Hypothesis H. There exists a real numbet > 1 and a positive constantC
such that

1§(k)| < Ci(1+kD™?  VkeR.

In the following theorem, in Proposition 2.5, and in Section 6, we consider
the casef = 0. Thusz solving (2.4) is a pure Brownian motion. This allows
relatively straightforward analysis using Fourier techniques; more sophisticated
methods would be required to analyze the case of nonkero

Theorem 2.3. Let f(z) = 0and letg R — R satisfy Hypothesikl. Consider
z,(t) solving[MP2] and zt) solving(2.4). Thenfor T € [0, r]:

CN-A/2, 1<B<3,
sup|Eg(z(T)) — Eg(z«(T))| < {CN7tlog(1+ N), B =3,
%eR CN-1, B >3,
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where C = C(B, Cy), with 8 and G as in Hypothesid, is independent of
T €0, 7].

These theorems are proved at the end of the section.

Since, whenf = 0, z,(t) is a Gaussian random variable for edchtheorems
similar to Theorem 2.3 could be proved directly by use of limit theorems for sums
of Gaussian random variables. Our proof, though less direct, explicitly calculates
the time evolution of the probability density function (pdf) Irt), which may be
of independentinterest, and hence yields convergence rates which are independent
of T € [0, ]. Estimates for the difference betwep(z, t), the pdf forz(t) solving
(2.4), andpy(z, t) the pdf forz,(t) solving [MP2] may be found after the proof of
Theorem 2.3.

In Section 3 we briefly consider the numerical solutio@®) by thed-method,
taking theexactsolution of (2.1) as input data. The results are stated in order
to enable comparison with the fully discrete problems considered in subsequent
sections: in Sections 4, 5, and 6 we consider numerical solutiof&s1f (2.2) in
the regimg1.2) and address the question of whether the numerical approximations
identify the correct limiting behavior, as given in Theorems 2.1, 2.2, and 2.3. We
solve(2.1) by a family of parametrized energy conserving methbbdamely, for
a € [0, 1],

UMt —2u! + UM+ j2AE200 =0,

25
Ujozaj, Ujlzaj[l—oljzAtz], @3
and(2.2) by thed-method g € [0, 1], for t" = nAt:
ZM 70 = AOF(Z™YH) + (1 —0)F(ZM)]
+ AOHA A + (1 — o) HA M) (2.6)

with Z% = z5 and whereH 2! (t") is the approximation td,(t") with the u; (t")
computed througii2.5).

The following lemma will be useful in the study @.5), (2.6). The first state-
ment is taken from15]; the second is proved by a minor modification of the
techniques in15].

Lemma 2.4. (i)Let NAt < 2.The sequencZ"}n>0 generated by2.6) satisfies
n , N
Z" = g+ AtY F(Z™) + (NADEg + Y _ &y sin(g;n)
m=0 j=1

N
+(1—0—a)At ) _ 23 sir(pn/2), (2.7)
j=1

1 For j At € (0, 2) the method2.5) conserves a small perturbation of the energy of the underlying
harmonic oscillator.
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where zn:’ denotes a sum with weiglit — ) on m= 0,6 on m=n, and1
otheergg Furthermore ¢; andy; are given by
cosp; = 1— 1j2At?
and
1-3j2At L @-DG-0)jar

Vi = -
J /1_%j2At2

(i) Let NAt < 2. If HAY(+) is replaced by K(-) in (2.6), then

n N
Z" = 0+ ALY f(Z™) + (nAbao + Y ajy] sin(jnAt)

m=0 j=1
N
+(1—20)At Y g sin(jnAt/2), (2.8)
j=1
where
L At
"' Jtan|at2)

The constrainN At < 27 is required to avoid the resonances which arise if
the denominator of; passes through zero.

We now prove Theorems 2.1-2.3.
Proof of Theorem 4. In this case

Hy(t) =

dhy ®
dt 7

where

t <L sin(jt
ha() = : +Z;S|n§l ).
j:

Straightforward Fourier analysis shows that

H(h (.)_;)_<Z) ’ <E (2.9)
" 2 2 Jleen ~ N ‘
Writing (2.2), (2.3) as integral equations gives
t
20 =20+ [ f@o)dstho. (2.10)
0

t
2(t) = 7o +/ f(2(s)) ds+ % (2.11)
0
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Subtracting and defining,(t) = z,(t) — z(t) gives
t T
&(t) = f [f(z(s) — f(z(s)]ds+ [hN(t) - 5] :
0
Taking L2-norms and using2.9) gives, fort < [0, r]:
2C t

&0l = S +2rL /O le )12 ds

A Gronwall argument gives the desired result. O

Proof of Theorem 2. In the case of [MP2] it follows that

hy(t) = 1o +Z[ sin(jt) 2.12)

From [13, Chapter 2, Theorem 2.5] it is known that, with probability one, as
N — oo,

hy(t) — W(t)

uniformly fort € [0, ], whereW(t) is standard Brownian motion. Hence, almost

surely,
W(t) = ”_Ot n Z[ sin(jt) (2.13)

from which it follows that, for each € [0, x]:

2 sin(jt) sin(kt

Elh®) ~WOR = E Y gy T SD
kN1 T J
2sirf(jt)

j2

j=Nt1 T
2C
aN’

IA

Rewriting (2.4) as an integral equation gives
t
zt) = 20+ / f(z(s)) ds+ W(t). (2.14)
0
Subtracting from(2.10) and definingg, (t) = z,(t) — z(t) gives

t
eut) = /0 [f(zu(s) — f(z(s)]ds+ [hy(t) — W(D)].
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Thus
t 2 4c
Eley(®)® < ZE{/ [f(z(9) - f(z(s))]ds} + -
0 7TN
t
< 2n|_2/ Ele.(s)|?ds+ £.
0 7N
A Gronwall argument gives the desired result. O

Proof of Theorem 3. We wish to study the rate of convergence of the quantity

IEg(z(t)) — Eg(z(1))] (2.15
to 0 asN — oo in the case when
f()=0. (2.16)
The pdfp(z, t) for the problem(2.4) under(2.16) is the solution of the parabolic
initial-value problem
p _ 19%p
ot 209z’
p(z,0) = 8(z - 29).

Similarly, for each fixedv := {nj}j>0, the pdfp,(z t; w) for the problem(2.2)
satisfies the hyperbolic initial-value problem

opy 0 [dhy
{ at oz < dt p“) =0, 2.17)

Pu(z, 0; ) = 8(z - 20),

wherehy(t) = hy(t; w) is given by(2.12). We set

ﬁN(Za t) = IEpN(Zv tv CL)),

and note that
Eg(z(t)) = / p(z, Hg(2) dz, (2.18)
Eg(zy(t)) = / Pu(z,1)g(2)dz (2.19)

Thus we shall first estimate the closenesgpgto p, and thereby derive bounds
on the quantity (2.15).
We define

o0

I@N(k,t;w)=/ e¥?py(z,t; w)dz

oo



78 B. Cano, A. M. Stuart, E.\8, and J. O. Warren

Applying the Fourier transform to (2.17), it is a straightforward matter to check
that

9 _dh,
— Py —ik
TRAT:

and therefore

ﬁN = 01 f)N(k’ 03 a)) = ikZo’

Pk, t; @) = kzo glkhn ()
where we have made use of the fact thal0; w) = 0. Hence,
1 [, ,
pv(z,t; w) = 2_/ k-2 gktn(to) gj
T J o0

so that
1 o
Pz = 5 / ko (k1) dk

o0

wherey, (K, 1) is the characteristic function fdw, (t; w); i.e.,

Un(k, 1) = E explikhy(t; w)}
k22 k2 Q sinzjt}

=exp——— — — .
2 m = j2
k2[t2 2 Msirjt

= exp _E ;‘F;; j2

k2|t2 2L 1-—cog2jt)
= expi = ;+;;T

K{t2 1,1 1. cog2jt)

T

As

and, by straightforward Fourier series expansion,

1 & cog2jt
+=> gzj ). (2.21)
A

we deduce (formally, at least) that, Bls— oc:
1
Yk, t) — exp{—ékzt},
1 oo 112
Pzt — oo [ eMrme i dk=p.

We now aim to make these statements precise.
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Since the Fourier series on the right-hand side of (2.21) converges uniformly
fort € [0, 7] to the function on the left-hand side of (2.21):

o3kt _ exp{ L2 |: rT_ = Z Cos(zjt):” vt € [0, 7].
=

Also, from (2.20) we have that

2 1¢h 1 1 cog2jt)
llfN(k,t)=eXp{—%k2|:;+;ZJ—2—;Z j2 .

i=1

Alternatively, the last two lines can be rewritten as, respectively,

e Kt exp{ 1k2[ +$°“ (2.22)
Un(k, 1) =exp{ 1k2[ sl“ (2.23)

where
sm2 jt N sir? jt

N 2
so2y Ut a2y

=1

On subtracting (2.23) from (2.22) and noting that
et —eP<[1-eP]  ab=0 (2.24)

we deduce that

, -
e 8K (k. b)] < e K/ [1 exp(—k;'z SITZH>]~ (229

Further, since

sir? jt 1 1
> -zJ =) &= N
j>N+1 ] j>N+1 J
it follows from (2.25) that
&2 — gk, t)| < e /2T [1 — e K/TN], (2.26)

Now we consider (2.18) and (2.19). By virtue of Parseval’s identity

Eg(z(t)) — Eg(z: (1))

/ [p(z,t) — Pu(z, )] 9(2) dz

o]

1 ©
- = / h@-D[e- 1Kty (k 1]gK)dk.
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Thus,

1 [ 1 N
[Eg(z(t)) — Eg(zu (D) < —/ &7 — yu(k, DI 100 dk.  (227)

21 J_o
Applying Hypothesis H in (2.27) and recalling (2.26), it follows that
[Eg(z() — Eg(zu(t)] < % / e L — e N1l P k. (2.28)
0
In order to complete the analysis, it remains to bound the right-hand side in (2.28).
First, we note that
1-e?@<min(, a), a>0.
Applying this in (2.28) witha = k?/(zr N), it follows that
Ci [ _jon B k?
[Eg(z(t)) — Eg(zy(t)| < — € 1+KkPmin( 1, — | dk. (2.29
T Jo N

In Appendix A we show that

o K2 CNI-8/2, 1< <3
/ e Kt/2m (14 k)P min(l, —) dk< {CN-tlogl+N), B=3,
0 7N CNL, 8>3,
(2.30)
whereC = C(p) is a positive constant. Finally, inserting (2.30) into (2.29), we
arrive at the required bound. O

By using the estimates from the proof of Theorem 2.3, some simple calculations
given in Appendix B enable the proof of the following:

Proposition 2.5. Let f(z) = 0. Considerpy(z, t), the pdf for z(t) solving
[MP2], and p(z, t), the pdf for £t) solving(2.4). Thenfor T € [0, x]:

T N /2 for0<a < 2,
/ I PuC, t) — PG, DlIL @ dt < C{ N~tlog(1+ N) fora =2,
0 N-1 foroa > 2,
(2.31)
where C= C(«) is a positive constanfFurthermore
- N~ (@/2+1/4) for—1 <a < g,
/ Py, ) — PG, DLz dt < C N~tlog(1+ N) fora = %
0 N-1 foro > %,
(2.32

where again C = C(«) is a positive constant
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3. Sampling versus Under-Resolved Approximation

In this section we address the issue of what features arise simply through the
samplingof Hy(t), which is rapidly varying, rather than through gagproximation
of Hy(t) through under-resolved simulation@1). We approximat€2.2) by the
6-method, taking the exact solution for theas input data. By use of the second
part of Lemma 2.4 we deduce that the approxima@®nto z(nAt) is given by
(2.8). No proofs will be given in this section as they are very similar to, but simpler
than, those appearing in subsequent sections; they rely on the (&8)afather
than(2.7).

To state our basic result it will be useful to introduce some notation. Given a
vector(vg, . .., vm_1)' we define

.
v=(vo,...,Um-1) ;

this notation will be extended to vectors other tharspecifically tow, z, andZ
and to vectors indexed by superscripts. We maRea Hilbert space, defining

m—1
(v, W)y = At Z UnWn,
n=0

2
”w”LZ(O,mAt) = (w, w)n.

For purposes of comparison with the numerical method, it will be useful to project
the solutions 0f2.3) or (2.4) onto the grid by defining" = z(nAt).

For the first result we define by
T

w = f(w), w(0)=Zo+2

r

-(1-20
+ 2( ),
noting that ifé = 3 this reduces to (2.3).

Theorem 3.1. Consider{Z"},>o solving (2.2), [MP1] by the #-method with
Hy(t) given exactly and Mt = r < 27, and {w"}n>0 the projection ofw(t)
solving(2.3) onto the grid Then for nAt € [0, ], and all At sufficiently small

lw = Z1Z20na < C(NAD AL

This result should be compared with Theorem 2.1. It shows that %
we loose no accuracy by approximating (2.2) numerically, whilstfet % we
approximate the wrong problem—the jump in the initial condition is incorrectly
represented. Recall that the conditior: 27 arises in Lemma 2.4 to avoid reso-
nances due to sampling. When we also approximatétfie) by solving for the
uj (t) numerically in the under-resolved regime (see (1.2)) the basic picture will
remain, although theoretical bounds on the rate of convergence are diminished
and the nature of the shifted initial condition will depend upoas well ash.
Furthermore, it will be necessary to restrick 2 to avoid numerical instability;
see Section 4.
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Theorem 3.2. Consider{Z"},>o solving (2.2), [MP2] by the 6-method with
Hy(t) given exactly and Mt = r < 2. Then for nAt € [0, 7], and all At
sufficiently small
sup E|z"— Z™M?2 < C(nAt)AL.
O0<m=<n-1

This should be compared with Theorem 2.2. The convergence rate is unaffected
by the numerical approximation of (2.2). Note, however, that in contrast to the
approximation of jumps, the value éf does not affect the basic convergence
result here. This basic picture will remain when we approximateufiie, and
henceH,(t), numerically, but the rates of convergence obtained will be reduced;
see Section 5. It is interesting to note at this point that the issue of regaining
optimal rates of convergence to solutions of ODEs forced by rough functions of
time is addressed in paper(]; that work does not apply directly to the problems
considered here, though modifications might well do.

4. Numerical Approximation of Jumps

In this section it is useful to define the vectst8, 31) by

sV = sin(jnAt)
and '

5 = sin(ng)).
Using the notational conventions established in the last section we see that, if
M At = 7 and using discrete orthogonality,

(s, sy, = ajk%. 4.1)
The following theorem should be compared with Theorems 2.1 and 3.1. By

“solving numerically” we mean use of the fully discrete metfiad), (2.6). Note
that the theoretical bound on the rate of convergence is reduced when compared
with Theorems 2.1 and 3.1, although numerical evidence indicates that this situa-
tion might be improved by more careful analysis.

Theorem 4.1. Consider{Z"} > solving[MP1] numerically withd +« = 1and
NAt =r < 2and{z"}n>0 the projection of #) solving(2.3) onto the grid Then
for nAt € [0, ], and all At sufficiently small

1Z— ZIIZ210nar) < C(NAL) log] At~ H AL,

Proof. For simplicity we assume that there is an intelyesuch thatM At = .
Other choices ofAt can be handled by approximation. BZ.9) we may write
(2.11) as
t t & sin(jt
z(t) = zo+/ f(z(s))ds+ = +Z (.J ).
0 2 j=1 J
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By Lemma 2.4 we obtain

t n
7" = / f (z(s))ds — Atz’f(zm)
0

LY g SUNAY Za,u L_ypsin(jnAb)
j>N+1 j
N
+ Z a yj[sin(jnAt) — sin(gjn)]
j=1

N
+ (0 +a— DALY 23 sir(gn/2), (4.2)
j=1

where for [MP1],3; = 1, j > 1. Henceforth in this proof we sét+ « = 1. Now
the regularity of solutions to ODEs implies that

/ f(z(s))ds—AtZ’f(zm) < CAt.

m=0

sup
te[0,7]

Defininge™ = z" — Z", we have from (4.2), withq,| < CAt:

= AtZ’[f(zm) — £(Z™] +

U) N

+ Y T s

]>N+1 j=1
+ ZVJ[SS” ~§1.
j=1
Thus

2
n
|e"® < BAt? [Z/H(zm)— f(Zm)l} + 5C%At?

m=0
(])Sﬁk) N i
+5 +5) (Tt =kt = pos sk
j.k>=N+1 ik j.k=1

N 2
5% nls) -8
=1

Now, usingnAt < MAt =x,n+ 1 < 2n, andd € [0, 1], we deduce that

n 2 n 2
At? [Z/If(zm)— f(Zm)|] < At2L2 {Zwﬂ
m=0 m=0
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IA

n
APL2(n+ 1)) 1€
m=0

IA

n
2r AtL? ) " e
m=0
21 L2l pagy + 27 AtLZE"2.

Thus, choosing\t sufficiently small so thatl — 107 AtL?)~! < 2, we obtain
|€"? < 207 L2|lellf g nar + 1OCZAL?

5{(11'>Sr(1k) N _
+10 > X +10) (7 =kt = posglo
j,k=N+1 J j,k=1

2
+10

N
> yls? -5
=1

Summing oven < M and using (4.1) we obtain

n-1
leltzonay = 20mALL? [Z ||e||fz(0,mm)} +107C?At?
m=0
1 N
+ 57 Z I +57TZ(J_1_V])2
j=N+1 =1
M-1| N _ _ 2
+108t Y > o mls -8l -
m=0 |j=1
By using
1-(1-%Y<x  vxel0.1]
we obtain
1 H P
e T’ =0, =047, 4.3)
so that, sinceNAt =r:
1 N -, )
Y =0, Y (Tt =P =0, (4.4)
j>N+1 j=1

Hence

n-1
2 2 2
l€llt20nay = 207 ALL |:§ ”e”LZ(O,mAt):|

m=0
M-1 2
+ O(At) + 10At Z

m=0

XN:Vi[SfJ) —§0]

=1
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Fig. 4.1. (a)L?(0,t) error curves from [MP1] withf = 0 using method2.5), (2.6) with NAt =
/10 andd = 0, « = 1. (b) Log—log plot for the convergence rateld?(0, 1) error as a function of
At; the approximate slope is 0.4831.

The near-orthogonality of the!) and thes® enables a bound on the final term
(use Appendix C withg; = y;) and the required result follows from a Gronwall
argument. O

To verify this result numerically we performed a simulation for [MP1] with
f = 0 using method?2.5), (2.6). The parameters for the experiment were- 1,

6 = 0, andNAt = 7/10 for N = 2000, 4000, 8000, and 16,000. We observed
that theL?(0, t) error converged at a rate 61(At%4®3%), an improvement over

the proven bound(,/log At-1At/3); see Figure 4.1. To close the gap between
theory and experiment will require a more careful analysis of the term estimated
in Appendix C.

Note that the convergence rate was determined as the slope of the least-squares
fitline through the log—log data pointsin Figure 4.1. This methodology is employed
for determining all numerical convergence rates in this paper.

We now comment on what happens to the numerical methéd-itx # 1. In
this caseZ" has an extra contribution

N
(1—6 —a)At Y [1 — cosg;n)].
j=1
By use of Appendix C withg; = At = ¢/N < ¢/j it follows that

N
At Z cogpin) = At y cogjnAt) + 81,

N
j=1 j=1

where
1811220, mar) = Ollogl At HALYS).

2 Inthe proof of Theorem 3.1 the final term does not appear, thus improving the rate of convergence.
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Summing the resulting geometric series found by writing the cosine as the real
part of a complex exponential (by use 8f [L.342(2)]) shows thaZ" has an extra
contribution
1—-6 —a){r + 82},
where
18201 20, mar = OlloglAtHALY?),

From this it follows that fo® + « # 1 and under1.2), the numerical method
approximates the ODE

y=f(y, Y(0)=Zo+%+(1—9—0l)f 4.5)

instead of the true limiting equatia.3). Thus the numerical method accurately
computes the wrong limit. More precisely we have:

Theorem 4.2. Consider{Z"},~o solving[MP1] numerically with¥ +« # 1and
NAt =r < 2and{y"}n=o the projection of yt) solving(4.5) onto the grid Then
for nAt € [0, n]:

1Y = ZIZ20.nar) < C(NAL) log|At A3,

This result has been verified via simulation analogous to the experiment il-
lustrated in Figure 4.1. Again we observed that k€0, t) error converged at
rate approximately)(At/?), suggesting the theoretical upper bounds from The-
orems 4.1 and 4.2 may be improved.

5. Strong Numerical Approximation of White Noise

We employ the notation introduced in Section 3. The following theorem should be
compared with Theorems 2.2 and 3.2. By “solving numerically” we mean use of
the fully discrete method.5), (2.6). Note that the theoretical bound on the rate

of convergence is reduced when compared with Theorems 2.2 and 3.2; numerical
evidence is inconclusive as to whether this situation might be improved by more
careful analysis.

Theorem 5.1. Considef Z"}>o solvingMP2] numerically with NAt =r < 2.
Then for nAt € [0, 7], and all At sufficiently small

sup E|Z"— ZM? < C(nAt)At%3,

0<m=<n-1

Proof. By (2.13) we can almost surely rewrit@.14) as

t not 2 & sin(jt)
ty=2z0+ | f d +—+,/—§ —.
2(t) =12 /0 (z(s))ds N 7 & nj J
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Using the limited regularity of solutiont) to the SDE(2.4) it follows that

2

t n
/f(z(s))ds—AtZ’f(zm) < CAt.
0

m=0

E

By techniques similar to those employed in the previous section, butyvith
n;, we obtain from(4.2):

n
E€"? < 60+ DAL2L2 Y E|e"? + 6CAL

m=0
1 . i—1 2
+6 Y S +6) ((T'—w)
jZN+lJ j=1

N
+6

y7lsin(jn At) — sin(g;n)]?
j=1

+ 2ANAL?(0 + o« — 1)%.

In this proof we use the fact that = »; are i.i.d. random variables distributed as
N (0, 1) so that they are orthogonal undér. En;n; = .
Now
N N« 1
> yfsin(jnAt) —singim)® < O [Z At > _—2}
=1 j=1 j=Ne J
= O(At*N>™ + N7%).

Choosingy = % we obtain, also using4.4) and(n + 1) At < 2nAt < 27

n
Ele"? < 127 AtL? Y "El€"? + O(At??)

m=0

and the required result follows by a Gronwall argument. O

Once again we verified our result numerically, solving [MP2] vtk « = 0,
f(z) = —z, andNAt = 1 for N = 2000, 4000, 8000, and 16,000. Due to the
highly oscillatory behavior of a single realization path, we depict tR€0, t)
error, observing an approximate convergence rat®@kt®3°%% for this single
realization; see Figure 5.1. Note that Theorem 5.1 estimates the average error over
all paths, whilst our experiment is for a single path.

3 In Theorem 3.2 the final term does not appear in the analysis and hence the improved rate of
convergence.
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Fig. 5.1. (a) L2(0,t) error curves from [MP2] withf (z) = —z using method(2.5), (2.6) with
NAt = 1 andd = « = 0. (b) Log-log plot for the convergence rateldf(0, 1) as a function ofAt;
the approximate slope is 0.3997.

6. Weak Numerical Approximation of White Noise

Our analysis is confined to the simple case whiete 0 so that the desired weak
convergence properties of [MP2] solved numerically should approximate those of
pure diffusion. This enables us to use Fourier techniques. After the analysis some
experiments will be presented to show that the result is more general than that
presented in the following theorem and can be extended to noriz&manalyze

the case of nonzerb would require more sophisticated techniques, such as those
described in2].

The following theorem should be compared with Theorem 2.3. By “solving
numerically” we mean use of the fully discrete meth@db), (2.6). Numerical
evidence indicates that the rate of convergence in this theorem might be improved
by more careful analysis.

Theorem 6.1. Considef Z"},>; solving]MP2] numerically with NAt =r < 2.
Then for nAt € [0, 7], and all At sufficiently small

NP3, 1< <3
sup|Eg(z(nAt)) — Eg(Z™M| < C{N~?log(1+ N), B=3,
20eR N—2/3’ /3 > 3’

where C= C(8, Cy) with 8 and G as in Hypothesisi.

Proof. We letp
and

(z; w) denote the pdf foZ" solving (2.6), for each fixedw,

n
N,At

F_)E.At(z) = Epﬂ,m(z; w).
Since f (-) = 0 we have, by Lemma 2.4,

Zn:ZO+Sn,
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where

1 N2 _ .
"= ;no(nAt) + Z —j {yj sin(g;n) + 2At (1 — 6 — a) sirf(g;jn/2)}.
=

If p2,.(z;®) = po(2) then pl, (zzw) = po(z — s"); assuming thapy(z) =

8(z — zp) we obtain
Y
o.@ =5 [Pyl dodk

v (K) is the characteristic function fef' = s"(w); i.e.,
Y (k) = E expliks"(t; )}

- [0

2 . .
S = — Z[yj sin(ng;) + 2At(1 — 6 — a) sirf(gjn/2)]>.
j=1
By (2.23) and(2.24) we deduce that

Wk, NAL) — Y7 (K)| < @ KOAVY/2r[] _ g KISI-S],

wherey,

where

But

N
Z [ } sirf(jnAt)

j=1

SIS -8 =

+ Z yPIsin®(ng;) — sinf(jnAt)]

=1

N
+ ) 4At(L— 6 — @)y sin(ng)) Sirf(ng; /2)
j=1

N
+ ) AA (L - 6 — a)?sint(ng; /2)|.
j=1
Thus, by(4.3),

N
Cc . .
+ 2; F| sin(ng;) — sin(jnAt)|
J:

N A N 5
ZT ZAt

O(log|At~YAL) + Z >1sin(ng;) — sin(jnAt)|.
1_1

IA
-
=10

1
vi— T

SIS -] J

IA



90 B. Cano, A. M. Stuart, E.\8, and J. O. Warren

Buty; = j At+0O(j3At®) and so, by choosing = 3 and notingthanAt = O(1),

N C NA
I= j= i=N

[Wn(K, NAL) — 1 (k)| < e KOAaY/2r1 _ g CK/NFY

Now, by Parseval’s identity,

Eg(z,(nab) —Eg(Z") = / [Pu(z. nAD — Pl (2] 9(2)dz

[ee]

% / N &X@= D[y (k, nAt) — ", (K]G(K) dk.

Thus, by Hypothesis H,
IEg(z,(nAt)) — Eg(Z")| < % / e K mav?/2nyy _ e CRIN"Y(1 4 )Pk,
0

Analysis analogous to that at the end of the proof of Theorem 2.3 (using Appendix
A) but with N~ replaced byN ~%/3 gives the required result. O

For our first numerical experiment we solved [MP2] with= 0 and chose
g(z) = 72 Thusz is simply Brownian motion andtg(z(t)) = t. However,
calculatingEg(Z"™) accurately is a computationally intense task since, by Theorem
5.1, for sufficiently smoothy:

IEg(z(nAt)) — Eg(Z")| < O(N~%3).

Hence to determine the rate of convergence, the statistical error in estimating the
expectatiori£g(Z") must be insignificant compared to this bound. Furthermore,
the variance of(Z") increases as increases, thus requiring more realizations to
accurately estimate this expectatién.

Figure 6.1 shows the difference in numerical estimates of the expectations up to
timet = 0.1, using eight million and ten million realizations with = 1600. Note
that the curves differ fot > 0.05 in the two cases, even f6K(10’) realizations
(though the relative errgt — Eg(Z"™)|/t is better behaved). Moreover, for large
t (t ~ 1), this statistical error overwhelms the quantity of intef&sf(z(nAt)) —
Eg(Z")|. This suggests that to examine the rate of weak convergence numerically
we are restricted to small time intervals and a large number of realizations. Note
that fort < 0.05 both estimates dig(Z") are fairly well converged and, in fact,

4 Variance reduction techniques could, perhaps, be used to relieve this problem; we have not chosen
to pursue this here as the data required to illustrate our point can be easily found by intensive simulation.
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Fig.6.1. |t—FEg(Z")|uptotimet = 0.1for N = 1600 andEg(Z") approximated with eight million
and ten million realizations.
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Fig. 6.2. (a)|Eg(z(nAt)) —Eg(Z")| error curves from [MP2] withf = 0 using method2.5), (2.6)
with NAt = 1 andd = « = 0. (b) Log—log plot for the convergence rate of errot at 0.05 as a
function of At; the approximate slope is 0.9196.

deviations are negligible in comparison with the quanftity Eg(Z")| which we
wish to estimate.
For our experiment we examined weak convergence up tottisad.05 with
6 = 0,a = 0,andN = 200, 400, 800, and 1600. We observed tiiaf(z(nAt) —
Eg(Z")|att = 0.05 converged atapproximate rate&dfAt%91%), animprovement
over the theoretical rate @?(At%3). These results are depicted in Figure 6.2.
Finally we repeated this experiment using a nonzero forcing funcfion): =
z— 7. We observed a convergence ratexirt®9313) suggesting that the theory
can be extended to incorporate nonzéro
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Appendix A

Our aim in this Appendix is to prove the estimate (2.30). The starting point is the
following decomposition:

00 2
f e Kt/2r (1 4 k)P min(l, k )dk
0 N

T

VaN e K2 |2 o g-kit?/2n
:/ — —d / ——dk=14+11. (A1)
0 (1+k? 7N Jan (L+K)#

We begin by estimating termfort > O:

(kt)2 d(kt)

| t—3 /-«/HN esztz/Zn
0

N (1+kt/t)f
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tB-3 ,tvzN e—u2/27r

2
—_— ———u“du
N 0 t+ l.,l)/3

(A.2)
(1a) First, suppose that@ t+/7 N < 1. Then, assuming # 3:

I <

th-3 VAN /oy N2 du
N Jo <t+u> (t +u)p-2

th=3 (t 4 u)3# VN

N 3-8
tF—3 3-F

_v- 35 _
= 3_ﬁ[(1+ﬂ) 1]

= %[(1+ VAN —1]

CN™! wheng > 3,
CN@-A/2 whenl<p <3,

IA

3

0

IA

whereC = C(p) is a positive constant. Similarly, whe¢h= 3:

1 (N dy 1 tvaN
| < — —— = —og(t+u
— N Jo t+u =N ot + )o

i(Iog(t +tv/7N) — logt)
7N

1
— log(1 4+ +v7N) < CN~tlog(1+ N),
T

whereC is a positive constant. To summarize the situation, fer 0/7N < 1
we have that

CN@-p)/2, 1<B<3,
| <{CNtlog(Ll+N), B=3, (A.3)
CNL, B > 3,

whereC = C(p) is a positive constant.
(1b) Now suppose that/7 N > 1. Then,

3-p g
(%) < (vnN)a o o1-p<a (A.4)

We shall make use of this below. First, sinte+ u)~fu? < (t + u)2# for
O0<u<1,and(t +u)® <1foru> 1, we have from (A.2) that

th=3 [ 1 e v/2n oo gu?/2
I < — / u2du+/ ——u?du
N \Jo t+uw? 1 (t+uw?p

ctf=3 /1 du
/ +1
N 0 (t + U)ﬂ_2

IA

93
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C/A+1/t)F -1 .
_ N(T”)’ p#3

€ log1 1); =3
o9+ o) + 1y B =3

Finally, using (A.4) this implies that, fdn/7 N > 1:

CN@-A/2, 1<pB <3,
| <{CNtlog(1+N), B=3, (A.5)
CN1, B> 3.

From (A.3) and (A.5) we deduce that

CN@-A/2, 1<pB<3
| <{CNltlog(1l+N), B=3, (A.6)
CN-L, B> 3.

forallt > 0, whereC = C(p) is a positive constant.
Now we consider ternhl in (A.1):

) efk2t2/27r
[ = / ——dk
N (L+K)P

1 [ e—(kt)z/er 00 e—u2/27'r
= —/ —d(kt) =tﬁ-1/ ——du
t Jan (14 kt/t)P /N (t+wh

(2a) Suppose that@ t+/7N < 1:
1 e~u?/2n 0o gU/2n
tp1 / 7du+/ 7 du
N (T4 WP 1 (t+uw?h
1 1 o0 )
tﬂ‘l{/ 7du+/ e /Z”du}
N (T4 wh 1

1-41
S R +1
VN

IA

IA

1-8
1-p _t1-8 1-8
_ Ctﬂl{(lH) t1-A(1 + /7 N) +1}

1-8
CtP A+ — A+ VaN) P+ tP 7Y

C(N(l—ﬂ)/2 + tﬂ—l)
C N(l—ﬂ)/27

IAIATA

where in the transition to the last line we made use of the facttthatN < 1.
HereC = C(B) is a positive constant.
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(2b) Now suppose that/7 N > 1. Then,

51 o0 e—u2/2n
I <t ———du
N (T4 wh

o0
< tﬁ—le—tzN/Z/ du
t

Jan (t+u)f
_ g2t + tv/mN)#
g—1
_ e—tzN/Z A4+ N)l_ﬁ
- B
e-l/2n 1 \1-#
< N(l—ﬂ)/2< T+ _)
=51 VTN
< CN(lfﬂ)/Z’

whereC = C(p) is a positive constant. Thus, to summarize,
[l < CN®P/2, B >1, (A.7)

with C = C(8) a positive constant. Finally, substituting the bounds (A.6) and
(A.7) into (A.1) we arrive at the estimate (2.30).

Appendix B
Proof of Propositior2.5.  Clearly,

m@o—mnﬁ=%vn“m”e%—wmmw

IA

fmm%“—wwKMdk (B.1)

We substitute (2.26) into (B.1) to conclude that

IPu(z, ) — pz. D] < f e K2 _ e KN gk

00 2
- / exp{—(ki} d(kt)

t oo 2
_(k/tT+2/N )2}
2

1 oo
N /_oo eXp{
xd (k,/t2 + %)

1 1
= Co {f - —WH/N} , (B.2)



96 B. Cano, A. M. Stuart, E.\8, and J. O. Warren

00 SZ
Co = / exp{—g} ds.

Next, we note the elementary inequality

where we put

1- A+ 2y)2 <min(1, y), y > 0. (B.3)

Choosingy = 1/(Nt?) in (B.3) we deduce that

1 . 1
l1-—————<min[l, — |.
A+2/Neyz = < Nt2)
Consequently,
" Nt2

After multiplying (B.4) byt®, « > 0, and integrating with respect tdetween
0 andT, we obtain

[Pu(Z, ) — p(z, )| < % min(l i) (B.4)

-
/ t*[pu(z, t) — p(z, t)| dt
0
1/+/N T
=/ tIpu(z, t) — p(Z,t)Idt+/ t*[pu(z, t) — p(z, t)| dt
0 1/¥N

1/V/N C T
< Co/ t*ldt + —Of t*S3dt=1+11. (B.5)
0 1/v/N

Elementary calculations show that
1

| = =N"92, o >0, (B.6)
o
and
1 1 (l < 1 )a_2> fora #2
il (= o ,
Il =C NlOt—Z VN (B.7)
—logN f =2
5N og or o
It follows from (B.7) that
CN—/2 forO<a < 2,
Il < {CNtlog(l+ N) fora =2, (B.8)
CN1 fora > 2,

whereC = C(a, T) is a positive constant. Finally, inserting (B.6) and (B.8) into
(B.5), we obtain(2.31).
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Next we derive a similar bound where instead of thg-norm we have the
L2-norm under the integral sign. By Parseval’s identity 62@6):

IA

BN 1) = PG, O 2q C/ [em 3 — y (k. D)2 dk

IA

C /N e—(l/ﬂ)kztz[l _ ze—kz/rrN + e—2k2/rrN] dk
—00

o 22 o0 2 2, N-1
C|:/ efkt/ndk_zf ef(k/n)(t +N )dk
—00 _

o0

IA

o0
+ / g (/M (42N dk}
—o0

1 2 1
<C|-- + .
t 24+ 1/N)Y2 (124 2/N)1/2
Now,
1-2+y) 24+ (1 +2y) 72 < Comin(l, y?),
whereC, is a positive constant. Taking

in this inequality, we deduce that

= c 1
IPu(+0) = P Dl = mm(l, W)

whereC is a positive constant. Thus

1 YYN 1 o3
/ t* I puC, 1) — pC, Dll2r dt < C [/ t* 2dt —i—f dt].
0 0 yvN N

Consequently, we obtai2.32).

Appendix C

We wish to evaluate

M—1 2
S:=At)
m=0

s

N
> Al - u]

j=1

w\ [ singgn) . cos(g;n)
wid |~ \sin(jnAt) © cogjnAt) )

where
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In the two applications of this result

C
|:81| < —.

J

Now
s ik ik ik
S= Y BALS" — 28" + 5",
j k=1
where
S_Ij.’k — <v(i)’ v(k)>M’ ngk — (v(j)’ w(k))M’ Sék — (w(i)7 w(k)>M

HereM At = 7. But, for example,
) M-1
Si’k = At Z v Py
n=0
At M—-1 At M-1
= — cos[(¢; — ex)n] £ — Cos[(¢; n
5 g (o — pon] £ = g [j + @on]

with + for the cosine case and—for the sine case. Similar expressions are found
for the other inner producIS2 % Using B, 1.342(2)] it follows that

sm[M X] .
cognx) = + sirf[Mx/2]. (C.1)
Z 2tanfx/2]
Summing two terms of the form (C.1) with= x* and
F=giton  xF=g £kAat,  xF=(j £KAL,

gives the three inner products required to com&ite
In all three cases there k§ = k*(j) which minimizesx™. Sinceg; = jAt +
O(j3At3) we havex > 0 such that

K'(D=1] Vj=wkN?
Then, forl =1, 2, 3:
k= % +OG2AR) + O(AD V] < kN3, (C.2)
Otherwise
g% <c. (C.3)

Using|tan(y)| > |y|/C for |Y| < Ymax < = We deduce that, fdt £ k*(j):

min{1, (j3+ k3 At?}
Ix*|

IS <cC [At + At (C.4)
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noting thatx* depends upo andk. From the properties afj it follows that

N At C
kIx*| = jlog(N)’

(C.5)
k=L.k=2k* ()

Thusif|8;| < C/j then, by (C.2)—(C.4),
KkN23

S < X; F[jzAtz—i—At]
]:

N
C
+ZF

j>kN23
N N
C At
~ min{1, j3At? )
t2 |:J' (L.5°at) 2 *k|xi|}
i=1 k=1 katk

Hence by (C.5) we obtain

S< Clog|At™At?3,



