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Suppose that a consistent one-step numerical method of order r is applied to a smooth
system of ordinary differential equations. Given any integer m > 1, the method may
be shown to be of order r + m as an approximation to a certain modi"ed equation. If
the method and the system have a particular qualitative property then it is important to
determine whether the modi"ed equations inherit this property. In this article, a technique
is introduced for proving that the modi"ed equations inherit qualitative properties from the
method and the underlying system. The technique uses a straightforward contradiction
argument applicable to arbitrary one-step methods and does not rely on the detailed
structure of associated power series expansions. Hence the conclusions apply, but are not
restricted, to the case of Runge�Kutta methods. The new approach uni"es and extends
results of this type that have been derived by other means: results are presented for integral
preservation, reversibility, inheritance of "xed points, Hamiltonian problems and volume
preservation. The technique also applies when the system has an integral that the method
preserves not exactly, but to order greater than r . Finally, a negative result is obtained by
considering a gradient system and gradient numerical method possessing a global property
that is not shared by the associated modi"ed equations.

1. Introduction

In this article we consider the relationship between solutions to a given system of ordinary
differential equations, numerical approximations to them, and solutions to associated
modi"ed equations. Our goal is to show that if an underlying system and an approximation
scheme possess solutions sharing certain qualitative properties, then there is a family
of associated modi"ed equations possessing solutions that also share these properties.
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Although many results of this type may already be found in the literature, we provide a
general framework and a uni"ed method of proof. Our method of proof, which is analytical,
is not as succinct as other more algebraic approaches, but it is readily accessible to readers
with a basic knowledge of numerical methods for initial value problems.

The presentation is structured as follows. In Section 2 we establish the notation
for the semigroups generated by the underlying differential equation and the numerical
method. We work within a general class of one-step methods that satisfy a certain local
approximation property: the expansions of the true and approximate semigroups in powers
of the time-step ∆t agree up to order r . (Since we are dealing with ordinary differential
equations the local semigroup property may be extended to a local group property, but
in many interesting applications global existence is only assured in forward time so that
we retain the concept of semigroup.) Standard error estimates for such methods show that
the error over a "nite time interval is of O(∆tr ). Runge�Kutta methods are included in
our framework, together with a variety of non-standard one-step methods used in practice,
such as those that ensure conservation of invariants for Hamiltonian systems or volume for
systems de"ned by divergence-free vector "elds.

In Section 3 we discuss modi"ed equations. Here, given an integer m > 1, the idea
is to "nd an O(∆tr ) modi"cation of the original ordinary differential equation with the
property that the numerical method is O(∆tr+m) accurate as an approximation of this
modi"ed equation. We prove a general result concerning the existence and approximation
properties of modi"ed equations for the general class of one-step methods introduced in
Section 2. This straightforward result is well known in the numerical analysis literature,
and also has related counterparts in the mathematical physics literature where interpolation
of near-identity maps is important. Our proof simply sets the notation and methodology
used in the remainder of the article. Modi"ed equations were "rst studied in detail in
the numerical analysis community by Warming & Hyett (1974) within the context of
partial differential equations. In this area the modi"ed equation approach is often useful
in interpreting the qualitative properties of errors introduced by numerical approximation,
such as numerical dissipation or dispersion for wave propagation problems. For further
results on the usefulness and applicability of the modi"ed equation approach, especially
in the context of ordinary differential equations, see Grif"ths & Sanz-Serna (1986), Beyn
(1991), Reich (1993, 1996), Calvo, Murua & Sanz-Serna (1994), Hairer (1994), Reddien
(1995), Fiedler & Scheurle (1996) and Sanz-Serna & Murua (1997). A major application
has been the derivation of exponentially small error estimates, starting with the work of
Neishtadt (1984) and continued in, for example, Benettin & Giorgilli (1994), Hairer &
Lubich (1997), and Reich (1996).

The main contribution of this article is contained in Section 4 where the qualitative
properties of modi"ed equations are studied. By use of a straightforward contradiction
argument we show that if the numerical method shares a certain structural property with the
underlying system, then the family of associated modi"ed equations inherits this property.
Such results motivate the use of numerical methods that respect qualitative features of
the ordinary differential equation. The speci"c structural properties that we consider are
preservation of a scalar function, reversibility, inheritance of "xed points, conservation
of the canonical symplectic two-form for Hamiltonian systems and conservation of
volume. A negative example is also given: we show that the global limit set behaviour
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of gradient systems is not necessarily shared by modi"ed equations for gradient numerical
methods.

The fact that structure-preserving numerical methods may possess modi"ed equations
with analogous structure has been known for some time. For early references in the
numerical analysis literature see Mackay (1992), Sanz-Serna (1992) and Sanz-Serna &
Calvo (1994) and for some early applications see Auerbach & Friedman (1991) and
Yoshida (1993). More recently, modi"ed equations for problems with special structure
have been explored in greater detail using several different approaches, as in Hairer (1994),
Calvo, Murua & Sanz-Serna (1994), Benettin & Giorgilli (1994), Reich (1993, 1996),
Hairer & Stoffer (1997) and Sanz-Serna & Murua (1997).

The work of Reich, in particular, describes a very general algebraic approach to
the study of structure in modi"ed equations which we now outline for the purposes of
comparison with our analytic approach. For differential equations whose vector "elds lie
in a certain linear subspace g of the in"nite-dimensional Lie algebra of smooth vector
"elds, the semigroup generated lies in a corresponding subset G of the Fréchet manifold of
smooth diffeomorphisms. Assuming G is a submanifold and that the tangent space to G at
the identity is g, Reich shows that general one-step methods with semigroups in G possess
modi"ed equations with vector "elds in g. In this sense, the modi"ed equations possess the
same structure as the underlying differential equation. The primary goal of this article is
to demonstrate that a straightforward contradiction argument may be applied to a general
one-step method to obtain similar results, without directly relying upon the geometrical
relationship between G and g. Our approach is less succinct than that of Reich, but "ts
more naturally into a traditional numerical analysis framework. The approach also allows
us to prove some new results: Theorems 4.2 and 4.4. Theorem 4.2 concerns methods that
`almost' preserve an integral of the system; that is, they preserve the integral to a higher
order than the classic order suggests. Examples of such methods have been proposed by
Calvo, Iserles & Zanna (1996). Theorem 4.4 concerns the preservation of "xed points.

Most of the work mentioned in the references above, and also the analysis presented
here, applies to "xed-stepsize implementations. Reich (1996), Hairer & Stoffer (1997) and
Hairer (1997) have recently explored the idea of developing customized variable-stepsize
strategies for which an appropriate modi"ed equation theory exists.

2. Background

Consider a system of ordinary differential equations in Rp of the form

du

dt
= f (u) (2.1)

where the vector "eld f : Rp → Rp is assumed to be of class C∞. For any u0 ∈ Rp we
denote by S : B× [0, T ]→ Rp the local evolution semigroup generated by (2.1) where B
is a closed ball at u0 and T > 0. In particular, for any U ∈ B the curve

u(t) = S(U, t) = St (U ) (2.2)

is a solution to (2.1) with initial condition u(0) = U , de"ned for all t ∈ [0, T ].
Furthermore, for each t ∈ [0, T ] the mapping St : B → Rp is a C∞ diffeomorphism
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onto its image, and we denote its derivative at a point U ∈ B by dSt (U ) ∈ Rp×p. We will
use the fact that the mapping B × [0, T ] 3 (U, t) 7→ dSt (U ) ∈ Rp×p is continuous in U
and continuously differentiable in t , and we note that dSt (U ) is invertible for each U ∈ B
and t ∈ [0, T ]. Hence, by compactness, there exist real numbers Ci > 0 (i = 1, . . . , 4)
such that

C1 6 |||dSt (U )||| 6 C2 and C3 6 |||dSt (U )−1||| 6 C4, (2.3)

for all U ∈ B and t ∈ [0, T ], where ||| · ||| denotes the Frobenius norm on Rp×p.
We will consider one-step numerical methods for (2.1) of the form

G∆t (Un,Un+1) = 0, (2.4)

where G∆t : Rp × Rp → Rp is a given C∞ map that depends smoothly on the parameter
∆t . For any u0 ∈ Rp we assume the numerical scheme generates a local evolution
semigroup in the sense that there is a closed ball B at u0, real numbers h, T > 0, and
a mapping S̄∆t : B → Rp such that for any U ∈ B and ∆t ∈ [0, h] the sequence {Un}
generated by

Un = S̄n∆t (U ) (2.5)

satis"es (2.4) for all n∆t ∈ [0, T ]. Here S̄n∆t denotes the n-fold composition of the map
S̄∆t .

Given any u0 ∈ Rp we assume without loss of generality that B = B and T = T .
Furthermore, we assume the numerical scheme is consistent of order r as an approximation
to (2.1); that is, for any U ∈ B we have

∂ i

∂t i

∣∣∣
t=0

S̄t (U ) = ∂ i

∂t i

∣∣∣
t=0

St (U ), i = 1, . . . , r, (2.6)

where r > 1 by consistency.
For any n∆t ∈ [0, T ] with ∆t ∈ [0, h] let dS̄n∆t (U ) ∈ Rp×p denote the derivative of

S̄n∆t : B → Rp at a point U ∈ B, and let ‖ · ‖ denote the Euclidean norm on Rp. Then,
by standard results from the numerical analysis of ordinary differential equations (see, for
example, Stuart & Humphries (1996, Theorem 6.2.1)) there exist real numbers C5 > 0 and
C6 > 0 depending on U ∈ B and T such that

‖St (U )− S̄n∆t (U )‖ 6 C5∆t
r (2.7)

and

|||dSt (U )− dS̄n∆t (U )||| 6 C6∆t
r (2.8)

for any t = n∆t ∈ [0, T ] with∆t ∈ [0, h]. Additionally, in view of (2.3) and (2.8), there is
a real number C7 > 0 depending on U ∈ B and T such that the derivative of the mapping
S̄n∆t : B → Rp satis"es

|||dS̄n∆t (U )||| 6 C7. (2.9)
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3. Associated modi"ed equations

To any ordinary differential equation of the form (2.1), and numerical approximation
scheme (2.4) of order r , we can associate a modi"ed equation of index N of the form

dv

dt
= f̃ (N )∆t (v), (3.1)

where N > 1 is an integer and the modi"ed vector "eld f̃ (N )∆t : Rp → Rp is de"ned as

f̃ (N )∆t (v) = f (v)+
N∑
i=1

∆tr+i−1qi (v) (3.2)

for some functions qi : Rp → Rp (i = 1, . . . , N ). It is convenient to de"ne the modi"ed
equation of index zero to be the original equation (2.1). Thus we have

f̃ (0)∆t (u) = f (u), ∀u ∈ Rp. (3.3)

For any v0 ∈ Rp we denote by S̃(N ) : B̃ × [0, T̃ ] × [0, h̃] → Rp the local evolution
semigroup generated by (3.1) where B̃ is a closed ball at v0 and h̃, T̃ > 0. In particular,
for any V ∈ B̃ and ∆t ∈ [0, h̃] the curve de"ned by

v∆t (t) = S̃(N )∆t (V, t) = S̃(N )t,∆t (V ) (3.4)

is a solution to (3.1) with initial condition v∆t (0) = V , de"ned for all t ∈ [0, T̃ ]. For any
t ∈ [0, T̃ ] and ∆t ∈ [0, h̃] we denote by dS̃(N )t,∆t (V ) ∈ Rp×p the derivative of the mapping
S̃(N )t,∆t : B̃ → Rp at a point V ∈ B̃. As for the underlying system, we will use the fact that,
for any ∆t ∈ [0, h̃], the mapping B̃ × [0, T̃ ] 3 (V, t) 7→ dS̃(N )t,∆t (V ) ∈ Rp×p is continuous
in V and continuously differentiable in t , and we note that dS̃(N )t,∆t (V ) is invertible for each

V ∈ B̃ and t ∈ [0, T̃ ]. In what follows we will consider the semigroups generated by (2.1),
(2.4) and (3.1) in the neighbourhood of a common point in Rp. In this case, without loss
of generality, we take B̃ = B and T̃ = T .

With the above notation in hand we next show that, given an integer N > 1, it is
possible to construct C∞ functions qi (i = 1, . . . , N ) such that the numerical scheme (2.4)
is an order r + N approximation to (3.1). The local construction of the functions qi is
outlined in the lemma below and is based on the observation that the N th modi"ed vector
"eld (3.2) differs from the (N + 1)st by a single term, that is

f̃ (N+1)∆t (v) = f̃ (N )∆t (v)+∆tr+NqN+1(v).

With this observation the basic strategy for constructing the functions qi becomes clear:
choose the qi such that each new term in (3.2) improves the order of approximation by one
power of ∆t .
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LEMMA 3.1 Given u0 ∈ Rp suppose that for some integer s > r the expansions

S∆t (u0) = u0 +
s∑
i=1

∆t i Fi (u0)+O(∆t s+1)

S̄∆t (u0)− S∆t (u0) =
s∑

i=r+1
∆t i F (0)i (u0)+O(∆t s+1)

are valid, where {Fi }si=1 and {F (0)i }si=r+1 are C∞. Then, for every integer N such that
0 6 N 6 s − r − 1, there exists a modi"ed equation (3.1) with the property

S̄∆t (u0)− S̃(N )∆t,∆t (u0) =
s∑

i=r+N+1
∆t i F (N )i (u0)+O(∆t s+1) (3.5)

where {F (N )i }si=r+N+1 are C∞.
Proof. By assumption, the result is true for N = 0. Assuming s > r + 1 we proceed
by induction. Suppose the result is true for some N with 0 6 N < s − r − 1 and let
qN+1(v) := F (N )r+N+1(v), so that

f̃ (N+1)∆t (v) = f̃ (N )∆t (v)+∆tr+N F (N )r+N+1(v). (3.6)

Expanding S̃(N+1)t,∆t (u0) for small t and setting t = ∆t leads to an expression of the form

S̃(N+1)∆t,∆t (u0) = u0 +
s∑
i=1

∆t i F̂i (u0)+O(∆t s+1) (3.7)

for some {F̂i }si=1 in C∞. By comparing Taylor expansions of S̃(N )t,∆t (u0) and S̃
(N+1)
t,∆t (u0)

with t = ∆t , we "nd from (3.6) that
S̃(N )∆t,∆t (u0)− S̃(N+1)∆t,∆t (u0) = −∆tr+N+1F (N )r+N+1(u0)+O(∆tr+N+2).

Hence, using the induction hypothesis (3.5),

S̄∆t (u0)− S̃(N+1)∆t,∆t (u0) = [S̄∆t (u0)− S̃(N )∆t,∆t (u0)]+ [S̃(N )∆t,∆t (u0)− S̃(N+1)∆t,∆t (u0)]

= ∆tr+N+1F (N )r+N+1(u0)−∆tr+N+1F (N )r+N+1(u0)

+O(∆tr+N+2)
= O(∆tr+N+2).

This, along with (3.7), gives the required result. 2

Henceforth, we will always assume that the expansions in the statement of Lemma 3.1
are valid for all integers s > r and that the functions qi , and hence the modi"ed
equations (3.1), are chosen so that (3.5) holds. Since the original vector "eld f is C∞
this assumption automatically holds for S∆t and will also hold for most methods S̄∆t used
in practice. The following result then follows from a standard Gronwall-based convergence
analysis.
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THEOREM 3.2 Given any u0 ∈ Rp and any integer N > 1 there exists a ball B at
u0, real numbers h, T > 0, and smooth functions qi (i = 1, . . . , N ) such that the local
evolution semigroups St , S̄∆t , S̃

(N )
t,∆t : B → Rp for (2.1), (2.4) and (3.1), respectively,

are de"ned for all t = n∆t ∈ [0, T ] with ∆t ∈ [0, h]. Furthermore, there is a constant
C8 = C8(T, N , B) > 0 such that for each U ∈ B

|||dS̃(N )t,∆t (U )− dS̄n∆t (U )||| + ‖S̃(N )t,∆t (U )− S̄n∆t (U )‖ 6 C8∆t
r+N , (3.8)

for all t = n∆t ∈ [0, T ] with ∆t ∈ [0, h].

REMARKS

(1) Note that combining (2.7), (2.8) and (3.8) (and without loss of generality taking the
same constant) gives the bound

|||dS̃(N )t,∆t (U )− dSt (U )||| + ‖S̃(N )t,∆t (U )− St (U )‖ 6 C8∆t
r , (3.9)

which compares solutions of the original and modi"ed equations.

(2) The key result (3.8) shows that the numerical method applied to the original system
(2.1) behaves like an order r + N method with respect to the modi"ed equation
of index N . In other words, the method computes a very accurate approximation
to a perturbed problem. This idea has links with the concept of backward error
in numerical linear algebra, see Golub & Van Loan (1996). It is natural to ask
whether the perturbed problem has the same structure as the original problem; in
the linear algebra context this is known as structured backward error analysis. In the
next section we address this question for a variety of different families of ordinary
differential equations.

(3) Note that the constant C8 in (3.8) and (3.9) depends upon T , N and B. Hence, in
particular, the bounds are valid only for "nite time intervals and they are not uniform
in the index N . However, by optimizing over the index, Neishtadt (1984), Benettin
& Giorgilli (1994), Hairer & Lubich (1997) and Reich (1996) have shown that the
difference between the numerical approximation and a modi"ed equation remains
exponentially small over arbitrarily long time intervals as ∆t → 0 for a variety of
problems of interest.

4. Qualitative properties of the modi"ed equations

In this section we employ an induction on N to establish various properties of the modi"ed
equation (3.1). In view of Theorem 3.2 we see that, given any u0 ∈ Rp, the ball B at u0 and
the values h, T > 0 will in general depend upon N . In the following induction arguments
we will choose a ball B and numbers h, T > 0 such that all the local evolution semigroups
St , S̄∆t , S̃

(m)
t,∆t : B → Rp (m = 1, . . . , N + 1) are de"ned for any t = n∆t ∈ [0, T ] with

∆t ∈ [0, h]. Note that h may shrink to zero as N → ∞, but will be non-zero for every
"xed integer N > 1.
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By virtue of Theorem 3.2 we may assume, without loss of generality, that the same
constants C1,C2,C3 and C4 which appear in (2.3) may be used to bound the derivatives of
the semigroups for the modi"ed equations up to index N + 1. Thus, for 1 6 m 6 N + 1,

C1 6 |||dS̃ (m)t,∆t (U )||| 6 C2 and C3 6 |||dS̃ (m)t,∆t (U )
−1||| 6 C4. (4.1)

4.1 Integrals for the modi"ed semigroup

Suppose that the underlying system (2.1) and the approximation scheme (2.4) share an
integral F ∈ C1(Rp,R). That is, for any u0 ∈ Rp the function F is invariant under the
local semigroups St and S̄∆t in the sense that, for any U ∈ B and ∆t ∈ [0, h], we have
F(St (U )) = F(U ) and F(S̄n∆t (U )) = F(U ) for all t ∈ [0, T ] and n∆t ∈ [0, T ]. We
then have the following result, which is also proved in Reich (1993, 1996) by Lie algebraic
methods.

THEOREM 4.1 Suppose the underlying system (2.1) and the approximation scheme (2.4)
share an integral F ∈ C1(Rp,R). Then F is an integral for the associated modi"ed
equation (3.1) of index N for any integer N > 1. Hence, the modi"ed equation (3.1)
has the form

dv

dt
= f (v)+∆tr

N∑
i=1

∆t i−1qi (v),

where

∇F(v) · qi (v) = 0, ∀v ∈ Rp, i = 1, . . . , N .

Proof. For induction assume the modi"ed equation of index N has F : Rp → R as an
integral. Note that this is true for N = 0 since the modi"ed equation of order zero is the
original equation (2.1).

Consider any u0 ∈ Rp. Then, for any U ∈ B and ∆t ∈ [0, h] we have

F(S̃(N )t,∆t (U )) = F(U ), (4.2)

for all t ∈ [0, T ]. Equivalently, for any ∆t ∈ [0, h], we have

∇F(u) · f̃ (N )∆t (u) = 0, ∀u ∈ Im(S̃ (N )∆t

)
, (4.3)

where

Im
(
S̃ (N )∆t

) = {u ∈ Rp | u = S̃(N )t,∆t (U ), U ∈ B, t ∈ [0, T ]}. (4.4)

Now assume, for contradiction, that F is not an integral for the modi"ed equation of
index N + 1, which is of the form

dv

dt
= f̃ (N+1)∆t (v) = f̃ (N )∆t (v)+∆tr+NqN+1(v). (4.5)
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Then there exists u0 ∈ Rp such that

∇F(u0) · qN+1(u0) 6= 0. (4.6)

Otherwise, ∇F(u) · f̃ (N+1)∆t (u) = 0 for all u ∈ Rp and F would be an integral.
Let C9(u0) = ∇F(u0) · qN+1(u0)/2 6= 0 and assume, without loss of generality, that

C9 > 0; otherwise, if C9 < 0, then one can rede"ne F by changing sign. By continuity
there is a closed ball D at u0 such that

∇F(U ) · qN+1(U ) > C9 > 0, ∀U ∈ D. (4.7)

Consider a point U ∈ D ∩ B and let h, T > 0 be such that, for any ∆t ∈ [0, h], the
evolution semigroups satisfy S̃(N+1)t,∆t (U ) ∈ D for all t ∈ [0, T ] and Un = S̄n∆t (U ) ∈ D for
all n∆t ∈ [0, T ]. Then, for any ∆t ∈ [0, h] and t ∈ [0, T ], we have by (4.3) and (4.5)

∂

∂τ

∣∣∣
τ=t
F(S̃ (N+1)τ,∆t (U )) = ∇F(S̃(N+1)t,∆t (U )) · f̃ (N+1)∆t (S̃(N+1)t,∆t (U ))

= ∆tr+N∇F(S̃(N+1)t,∆t (U )) · qN+1(S̃(N+1)t,∆t (U ))

> C9∆t
r+N , (4.8)

which implies
|F(S̃ (N+1)T,∆t (U ))− F(U )| > C9T∆t

r+N , (4.9)

for all ∆t ∈ [0, h].
By compactness of the closed ball D, since F ∈ C1(Rp,R), there is a real number

C10 > 0 such that

|F(U )− F(V )| 6 C10‖U − V ‖, ∀U, V ∈ D. (4.10)

Furthermore, in view of (3.8), the modi"ed equation of index N + 1 and the numerical
scheme (2.4) have solutions satisfying

‖S̃ (N+1)T,∆t (U )− S̄n∆t (U )‖ 6 C8∆t
r+N+1, (4.11)

for all ∆t = T/n and n > n∗, where n∗ is any positive integer such that T/n∗ ∈ [0, h].
Since by hypothesis F is an integral for the local numerical semigroup we use (4.10) and
(4.11) to write

|F(S̃ (N+1)T,∆t (U ))− F(U )| = |F(S̃ (N+1)T,∆t (U ))− F(S̄n∆t (U ))|
6 C10‖S̃ (N+1)T,∆t (U )− S̄n∆t (U )‖
6 C8C10∆t

r+N+1, (4.12)

for all ∆t = T/n and n > n∗. This yields a contradiction, since for ∆t < TC9/C8C10
both (4.9) and (4.12) cannot hold. Hence F must be an integral for the modi"ed equation
of index N + 1. The result follows by induction. 2

The same argument can be used in the case where a method fails to preserve an integral
exactly, but preserves it to higher accuracy than the classic order would suggest. See, for
example, Calvo, Iserles & Zanna (1996) for instances of such methods.
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THEOREM 4.2 Suppose that the system (2.1) preserves an integral F ∈ C1(Rp,R), and
that given any U ∈ B, with B compact, there exist h, T > 0 such that

|F(S̄n∆t (U ))− F(U )| 6 C11∆t
l , ∀∆t ∈ [0, h], n∆t ∈ [0, T ],

for some constant C11 = C11(B, T ) and integer l > r . Then all modi"ed equations of
index up to and including l − r also preserve F ; that is,

∇F(v) · qi (v) = 0, ∀v ∈ Rp, i = 1, . . . , l − r.

Proof. Applying the induction argument used in the previous theorem, we "nd that the
bound (4.12) is degraded by a term of O(∆t l), and hence the contradiction remains for
indices up to l − r . 2

We note that Theorem 3.2 yields two corollaries to the above result:

(i) Over any "nite time interval the numerical solution approximates to O(∆tl) a
modi"ed equation that preserves F (namely, the modi"ed equation of index l − r ).

(ii) For any N > 1 the modi"ed equation of index N approximates the numerical
solution to O(∆tr+N ) and preserves F to within O(∆t l) over any "nite time
interval.

4.2 Reversibility and the modi"ed semigroup

The system (2.1) is said to be reversible if there exists an invertible linear transformation
ρ : Rp → Rp such that

f · ρ(y) = −ρ · f (y), ∀y ∈ Rp, (4.13)

where · denotes composition. (This de"nition, which is also used by Stoffer (1995) and
Hairer & Stoffer (1997), is more general than the de"nition of reversibility that is found
in some texts, such as Strogatz (1994).) The implication of property (4.13) on local
semigroups can be summarized as follows. Consider two compact sets B1 and B2 such
that B2 = ρ(B1), and let S1,t , t ∈ [0, T1] and S2,t , t ∈ [0, T2] be the local semigroups for
(2.1) de"ned on B1 and B2. (Note that S1,t and S2,t can be identi"ed by extending their
domain to a compact set including both B1 and B2 and possibly reducing the time-interval
on which they are de"ned; similar considerations apply to the numerical method and to
the modi"ed equations considered below.) The reversibility property (4.13) implies that
the time domains of S1,t and S2,t can be extended to [−T2, T1] and [−T1, T2], respectively,
and implies that the semigroups enjoy the property

ρ · S1,t (y) = S2,−t · ρ(y), ∀y ∈ B1, t ∈ [−T2, T1]. (4.14)

Moreover, for any y ∈ B1 and T > 0 such that S1,t (y) ∈ B1 for all t ∈ [−T, T ], we have

S2,t · ρ · S1,t (y) = ρ(y), ∀t ∈ [−T, T ]. (4.15)
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Another way to characterize the above relations that will prove useful in our
development is the following. De"ne a function ψ : [−T, T ]→ Rp by

ψ(t) = ρ · S1,t (y)− S2,−t · ρ(y). (4.16)

Differentiating with respect to time and using (4.16) we see that ψ(t) satis"es an equation
of the form

dψ

dt
= g(t, ψ) where g(t, ψ) = ρ · f (S1,t (y))+ f (ρ · S1,t (y)− ψ). (4.17)

Since ψ(0) = 0, and (4.13) implies g(t, 0) = 0 for all t ∈ [−T, T ], we deduce that
ψ(t) ≡ 0 is the unique solution to (4.17). Hence (4.14) holds, and (4.15) follows from the
properties of the semigroup.

Extending the notation established above, a one-step method such as (2.4) is said to be
reversible if, whenever the structure (4.13) is present, we have

S̄2,∆t · ρ · S̄1,∆t (y) = ρ(y)
for any y ∈ B1 and ∆t ∈ [0, h] such that S̄1,∆t (y) ∈ B1. Here S̄1,∆t and S̄2,∆t are the
local semigroups on B1 and B2 generated by the method. Stoffer (1995) showed that all
symmetric Runge�Kutta methods are reversible in this sense, and Hairer & Stoffer (1997)
showed that when a symmetric Runge�Kutta method is applied to a reversible system, all
modi"ed equations are reversible. Below, we use a different technique to show that the
same result holds for all one-step methods of the form given in Section 2. A similar result
can also be proved by modifying the techniques presented in Reich (1996).

THEOREM 4.3 If equation (2.1) and the numerical method (2.4) are reversible, then
so are all modi"ed equations. More precisely, assume (4.13) holds and assume for any
compact sets B1 and B2 such that B2 = ρ(B1) the method de"ned by (2.4) has the property

S̄2,∆t · ρ · S̄1,∆t (y) = ρ(y) (4.18)

for any y ∈ B1 and ∆t ∈ [0, h] such that S̄1,∆t (y) ∈ B1. Then, for any N > 1,
qi · ρ(y) = −ρ · qi (y), ∀y ∈ Rp, i = 1, . . . , N

so that
f̃ (N )∆t · ρ(y) = −ρ · f̃ (N )∆t (y) ∀y ∈ Rp.

Proof. For induction assume the modi"ed equations up to index N are reversible, that is

f̃ (i)∆t · ρ(y) = −ρ · f̃ (i)∆t (y), 0 6 i 6 N , y ∈ Rp. (4.19)

Note that this is true for N = 0 since the modi"ed equation of index zero is the original
equation (2.1).

Now suppose the modi"ed equation of index N + 1 is not reversible. This implies that
qN+1 · ρ(u0) 6= −ρ · qN+1(u0) (4.20)
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at some point u0 ∈ Rp. By continuity, there exists a ball D around u0 and some constant
C12 > 0 such that

‖qN+1 · ρ(y)+ ρ · qN+1(y)‖∞ > C12, ∀y ∈ D. (4.21)

Let B1 = D and B2 = ρ(B1), and for i = 1, 2 let Si,t , S̄ni,∆t , S̃
(m)
i,t,∆t : Bi → Rp

(m = 1, . . . , N + 1) be the semigroups generated by (2.1), (2.4) and (3.1), respectively.
Given y = u0 let h, T > 0 be suf"ciently small such that, for any ∆t ∈ [0, h], we have
S1,t (y), S̃

(N+1)
1,t,∆t (y) ∈ B1 for all t ∈ [−T, T ] and S̄n1,∆t (y) ∈ B1 for any n∆t ∈ [0, T ].

De"ne a function ψ : [−T, T ]→ Rp by

ψ(t) = ρ · S̃ (N+1)1,t,∆t (y)− S̃ (N+1)2,−t,∆t · ρ(y).
Then differentiating with respect to time gives

dψ

dt
(t) = ρ · f̃ (N+1)∆t (S̃ (N+1)1,t,∆t (y))+ f̃ (N+1)∆t (S̃ (N+1)2,−t,∆t · ρ(y)),

and by the de"nition of ψ(t) we obtain

dψ

dt
(t) = ρ · f̃ (N+1)∆t (S̃ (N+1)1,t,∆t (y))+ f̃ (N+1)∆t (ρ · S̃ (N+1)1,t,∆t (y)− ψ(t)). (4.22)

Using (3.2), (4.13) and (4.19) we have

ρ · f̃ (N+1)∆t (v) = ∆tr+N [ρ · qN+1(v)+ qN+1 · ρ(v)]− f̃ (N+1)∆t · ρ(v)
and substituting into (4.22) yields

dψ

dt
(t) = ∆tr+N [ρ · qN+1(S̃ (N+1)1,t,∆t (y))+ qN+1 · ρ(S̃ (N+1)1,t,∆t (y))

]
+[ f̃ (N+1)∆t (ρ · S̃ (N+1)1,t,∆t (y)− ψ(t))− f̃ (N+1)∆t · ρ(S̃ (N+1)1,t,∆t (y))

]
.

This expression may be written as

dψ

dt
(t) = ∆tr+N [ρ · qN+1(S̃ (N+1)1,t,∆t (y))+ qN+1 · ρ(S̃ (N+1)1,t,∆t (y))

]+ A(t)ψ(t),

where A(t) is obtained from the integral form of the mean value theorem for vector-valued
functions. If B(t) is the fundamental matrix solving

dB

dt
(t) = A(t)B(t), B(0) = I,

then

ψ(t) = ∆tr+N B(t)
∫ t

0
B(s)−1

[
ρ · qN+1(S̃ (N+1)1,s,∆t (y))+ qN+1 · ρ(S̃ (N+1)1,s,∆t (y))

]
ds.

Now assume for contradiction that

B(t)
∫ t

0
B(s)−1

[
ρ · qN+1(S1,s(y))+ qN+1 · ρ(S1,s(y))

]
ds = 0
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for all t ∈ [0, T ], with T suf"ciently small. Since B(t) is close to the identity for small t ,
a straightforward continuity argument shows that

ρ · qN+1(S1,s(y))+ qN+1 · ρ(S1,s(y)) = 0, ∀s ∈ [0, T ].
This contradicts (4.21). Thus there are τ ∈ [0, T ] and δ > 0 such that∥∥∥∥B(τ ) ∫ τ

0
B(s)−1

[
ρ · qN+1(S1,s(y))+ qN+1 · ρ(S1,s(y))

]
ds

∥∥∥∥ > 2δ.
In view of (3.9) we have∥∥∥∥B(τ ) ∫ τ

0
B(s)−1

[
ρ · qN+1(S̃ (N+1)1,s,∆t (y))+ qN+1 · ρ(S̃ (N+1)1,s,∆t (y))

]
ds

∥∥∥∥ > δ
for all ∆t ∈ [0, h] with h suf"ciently small, and thus

‖ψ(τ)‖ > ∆tr+N δ, ∀∆t ∈ [0, h]. (4.23)

Now de"ne
Φ(τ) = S̃ (N+1)2,τ,∆t · ρ · S̃ (N+1)1,τ,∆t (y)− ρ(y)

so that
ψ(τ) = S̃ (N+1)2,−τ,∆t (Φ(τ)+ ρ(y))− S̃ (N+1)2,−τ,∆t · ρ(y).

Since S̃ (N+1)2,−t,∆t is close to the identity mapping for t small, the mean value theorem and
(4.23) yield

‖Φ(τ)‖ > ∆tr+N δ
2

, ∀∆t ∈ [0, h], (4.24)

after reducing T if necessary. However, since the numerical method is reversible, we have

Φ(τ) = S̃ (N+1)2,τ,∆t · ρ · S̃ (N+1)1,τ,∆t (y)− S̄n2,∆t · ρ · S̄n1,∆t (y)
for n∆t = τ with ∆t ∈ [0, h]. By Theorem 3.2 we deduce that

‖Φ(τ)‖ 6 C13∆t
r+N+1, ∀∆t ∈ [0, h]. (4.25)

Since (4.24) and (4.25) give a contradiction, we deduce that (4.20) cannot hold. This
completes the inductive step. 2

4.3 Fixed points of the modi"ed semigroup

The next theorem shows that any numerical method which inherits the equilibria of (2.1)
as "xed points has modi"ed equations which inherit these as equilibria.

THEOREM 4.4 Suppose that there is a point y∗ ∈ Rp such that f (y∗) = 0 and S̄∆t (y∗) =
y∗ for all ∆t > 0. Then, for any N > 1, we have qi (y∗) = 0 (i = 1, . . . , N ) and hence

f̃ (N )∆t (y
∗) = 0, ∀∆t > 0.
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Proof. For induction assume that the modi"ed vector "elds up to index N have the
property f̃ (N )∆t (y

∗) = 0 for all ∆t > 0. Note that this is true for N = 0 since f̃ (0)∆t = f .

Now suppose f̃ (N+1)∆t (y∗) 6= 0 for some ∆t > 0. Since

f̃ (N+1)∆t (v) = f̃ (N )∆t (v)+∆tr+NqN+1(v)

this implies that qN+1(y∗) 6= 0, and thus f̃ (N+1)∆t (y∗) 6= 0 for all ∆t > 0.
To obtain a contradiction, let D be a closed ball around y∗ and let h, T > 0 be

suf"ciently small such that S̃(N+1)t,∆t (y∗) ∈ D for all t ∈ [0, T ] and ∆t ∈ [0, h]. Introduce a
maximum Lipschitz constant in D by

L := max{Lip[ f ],Lip[q1], . . . ,Lip[qN+1]},
and let y(t) = S̃(N+1)t,∆t (y∗) and z(t) = y(t)− y∗.

Now, since S̄n∆t (y
∗) = y∗, Theorem 3.2 shows that

‖z(t)‖ 6 C8∆t
r+N+1 (4.26)

for any t = n∆t ∈ [0, T ] with ∆t ∈ [0, h]. By the de"nition of L we thus have
‖ f (y(t))− f (y∗)‖ 6 L‖z(t)‖ 6 LC8∆t

r+N+1 (4.27)

and
‖qi (y(t))− qi (y∗)‖ 6 LC8∆t

r+N+1, 1 6 i 6 N + 1. (4.28)

Using the fact that

f̃ (N+1)∆t (y(t))− f̃ (N+1)∆t (y∗) = f (y(t))− f (y∗)+
N∑
i=1

∆tr+i−1[qi (y(t))− qi (y∗)],

together with (4.27) and (4.28), it follows that there is a constant C14 such that∥∥ f̃ (N+1)∆t (y(t))− f̃ (N+1)∆t (y∗)
∥∥ 6 C14∆t

r+N+1. (4.29)

Finally, since dz(t)/dt = f̃ (N+1)∆t (y(t)) and z(0) = 0, we have from (4.29) that

‖z(T )‖ =
∥∥∥∥ ∫ T

0
f̃ (N+1)∆t (y(t)) dt

∥∥∥∥
=
∥∥∥∥ ∫ T

0
f̃ (N+1)∆t (y∗)+ [ f̃ (N+1)∆t (y(t))− f̃ (N+1)∆t (y∗)

]
dt

∥∥∥∥
>
∥∥∥∥ ∫ T

0
f̃ (N+1)∆t (y∗) dt

∥∥∥∥− ∫ T

0

∥∥ f̃ (N+1)∆t (y(t))− f̃ (N+1)∆t (y∗)
∥∥ dt

> T∆tr+N‖qN+1(y∗)‖ − TC14∆tr+N+1.
Hence, after reducing h if necessary, there exists a constant C15 > 0 such that

‖z(T )‖ > C15∆t
r+N .

This contradicts (4.26), and thus we must have f̃ (N+1)∆t (y∗) = 0 for all ∆t > 0. 2
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4.4 Symplecticity of the modi"ed semigroup

Suppose now that the dimension p is even, say p = 2m, and the vector "eld f : Rp → Rp

is the Hamiltonian with respect to the canonical symplectic structure; that is,

f (u) = J∇H(u) (4.30)

for some smooth function H : Rp → R, where J ∈ Rp×p is of the form

J =
(

Om Im
−Im Om

)
. (4.31)

Here Om and Im denote the zero and identity matrices inRm×m , respectively. We now show
that when the numerical approximation scheme generates a symplectic semigroup, the
associated modi"ed equations share the same property. This result is already well known
(see Mackay (1992), Sanz-Serna (1992), Reich (1993, 1996), Benettin & Giorgilli (1994),
Calvo, Murua & Sanz-Serna (1994) and Hairer (1994) for example), and we simply provide
a new proof using the unifying technique of this article.

THEOREM 4.5 Suppose the underlying system (2.1) and the approximation scheme (2.4)
both generate symplectic semigroups. Then the associated modi"ed equation (3.1) of index
N generates a symplectic semigroup for any integer N > 1. Thus the modi"ed equation
(3.1) has the form

dv

dt
= J∇[H(v)+∆tr Q(N )(v;∆t)]. (4.32)

Proof. For any u0 ∈ Rp let S : B × [0, T ] → Rp denote the local semigroup generated
by (4.30) with image de"ned as

Im(S) = {u ∈ Rp | u = S(U, t), U ∈ B, t ∈ [0, T ]}, (4.33)

and let d f (u) ∈ Rp×p denote the derivative at any point u ∈ Rp of the Hamiltonian vector
"eld f : Rp → Rp given by (4.30).

Since the vector "eld we are considering is Hamiltonian, the mapping St : B → Rp is
symplectic for each t ∈ [0, T ] in the sense that

dSt (U )
T J dSt (U ) = J (4.34)

for all U ∈ B. An equivalent statement to (4.34) is that d f (u) ∈ Rp×p is in"nitesimally
symplectic for each u ∈ Im(S); that is,

d f (u)T J + J d f (u) = 0 (4.35)

for all u ∈ Im(S). That (4.35) holds follows from (4.30) since RT J + J R = 0 for any
matrix R = J A where AT = A.

For induction assume that, given any u0 ∈ Rp, the modi"ed equation of index N
generates a local evolution semigroup S̃(N ) which is symplectic, and note that this is true
for N = 0, the unperturbed equation (2.1). Then, for any ∆t ∈ [0, h] and t ∈ [0, T ], the
mapping S̃(N )t,∆t : B → Rp satis"es

dS̃(N )t,∆t (U )
T J dS̃(N )t,∆t (U ) = J (4.36)



184 O. GONZALEZ ET AL.

for all U ∈ B. Equivalently, for any ∆t ∈ [0, h], the modi"ed vector "eld f̃ (N )∆t satis"es

d f̃ (N )∆t (u)
T J + J d f̃ (N )∆t (u) = 0 (4.37)

for all u ∈ Im(S̃ (N )∆t ).
Now assume, for contradiction, that the modi"ed equation of index N + 1, which is of

the form
dv

dt
= f̃ (N+1)∆t (v) = f̃ (N )∆t (v)+∆tr+NqN+1(v), (4.38)

generates a semigroup which is not symplectic. Then there exists u0 ∈ Rp such that

Φ(u0) 6= 0 (4.39)

where
Φ(u) := dqN+1(u)T J + J dqN+1(u). (4.40)

Otherwise, d f̃ (N+1)∆t (u) would be in"nitesimally symplectic for all u ∈ Rp and, for any

u0 ∈ Rp, the local semigroup S̃(N+1)t,∆t would be symplectic.
Let C16 = C16(u0) > 0 be such that

|||Φ(u0)||| = 2C16 > 0. (4.41)

Since qN+1 is C∞ smooth, it follows by continuity that there is a closed ball D at u0 such
that

|||Φ(U )||| > C16 > 0, ∀U ∈ D. (4.42)

GivenU ∈ D∩B let h, T > 0 be such that, for any∆t ∈ [0, h], the semigroups satisfy
S(U, t), S̃(N+1)∆t (U, t) ∈ D for all t ∈ [0, T ] and Un = S̄n∆t (U ) ∈ D for all n∆t ∈ [0, T ].
Furthermore, let V (t) = dS̃(N+1)∆t (U, t) and note that V (t) satis"es the matrix equation

dV

dt
= d f̃ (N+1)∆t (u∆t (t))V, V (0) = Ip (4.43)

where we have used the notation u∆t (t) = S̃(N+1)∆t (U, t). Using this relation together with
(4.37) and (4.38) it follows that, for any ∆t ∈ [0, h], we have
∂

∂τ

∣∣∣
τ=t
(
dS̃(N+1)∆t (U, τ )T J dS̃(N+1)∆t (U, τ )

)
= dS̃(N+1)∆t (U, t)T

(
d f̃ (N+1)∆t (u∆t (t))

T J + J d f̃ (N+1)∆t (u∆t (t))
)
dS̃(N+1)∆t (U, t)

= ∆tr+NdS̃(N+1)∆t (U, t)T
(
dqN+1(u∆t (t))T J + J dqN+1(u∆t (t))

)
dS̃(N+1)∆t (U, t).

(4.44)

For convenience we introduce the notation

A∆t (U, t) = dS̃(N+1)∆t (U, t)T J dS̃(N+1)∆t (U, t) (4.45)

and for future reference we note that A∆t (U, 0) = J . By (4.44) and (3.9) we deduce that

∂

∂τ

∣∣∣
τ=t
A∆t (U, τ ) = ∆tr+NdS(U, t)TΦ(S(U, t)) dS(U, t)+ r̂(U, t) (4.46)
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where
|||r̂(U, t)||| 6 K (U, t)∆t2r+N (4.47)

for some K = K (U, t) independent of ∆t . Hence, for any t ∈ [0, T ] we have

A∆t (U, t) = J +∆tr+N
∫ t

0
dS(U, s)TΦ(S(U, s)) dS(U, s) ds +

∫ t

0
r̂(U, s) ds. (4.48)

If we assume that ∫ t

0
dS(U, s)TΦ(S(U, s)) dS(U, s) ds = 0 (4.49)

for all t ∈ [0, T ], then standard continuity arguments lead to the conclusion
dS(U, s)TΦ(S(U, s)) dS(U, s) = 0 (4.50)

for all s ∈ [0, T ]. By the invertibility of dS(U, s), we then deduce that
Φ(S(U, s)) = 0 (4.51)

for all s ∈ [0, T ]. However, since S(U, s) ∈ D for all s ∈ [0, T ], we have a contradiction
with (4.42), and so there must exist τ ∈ [0, T ] (independent of ∆t) and δ > 0 such that∣∣∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
dS(U, s)TΦ(S(U, s)) dS(U, s) ds

∣∣∣∣∣∣∣∣∣∣∣∣ > δ. (4.52)

Using the above result in (4.48) gives

|||A∆t (U, τ )− J ||| > ∆tr+N δ −
∣∣∣∣∣∣∣∣∣∣∣∣ ∫ τ

0
r̂(U, s) ds

∣∣∣∣∣∣∣∣∣∣∣∣, (4.53)

and by (4.47) it follows that

|||A∆t (U, τ )− J ||| > ∆tr+N δ/2, (4.54)

for all ∆t ∈ [0, h], possibly by further reduction of h.
Now, using the identity

dS̃(N+1)∆t (U, t)T J dS̃(N+1)∆t (U, t)− dS̄n∆t (U )T J dS̄n∆t (U )
= 1

2

(
dS̃(N+1)∆t (U, t)+ dS̄n∆t (U )

)T
J
(
dS̃(N+1)∆t (U, t)− dS̄n∆t (U )

)
+ 12

(
dS̃(N+1)∆t (U, t)− dS̄n∆t (U )

)T
J
(
dS̃(N+1)∆t (U, t)+ dS̄n∆t (U )

)
(4.55)

we obtain the bound

|||dS̃(N+1)∆t (U, τ )T J dS̃(N+1)∆t (U, τ )− dS̄n∆t (U )T J dS̄n∆t (U )|||
6 (C2 + C7)C17|||dS̃(N+1)∆t (U, τ )− dS̄n∆t (U )|||
6 (C2 + C7)C17C8∆tr+N+1 (4.56)

for all ∆t = τ/n with n > n∗, where n∗ is any positive integer such that τ/n∗ ∈ [0, h].
The above expression follows from the bounds in (2.9), Theorem 3.2 and (4.1), and the
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notation C17 = |||J ||| > 0. By the de"nition ofA∆t , and the fact that the numerical scheme
generates a symplectic semigroup, we have

|||A∆t (U, τ )− J ||| 6 (C2 + C7)C17C8∆tr+N+1

for all ∆t = τ/n with n > n∗. This contradicts (4.54). Hence dqN+1(u) must be
in"nitesimally symplectic for all u ∈ Rp, which implies that the modi"ed equation of
index N + 1 generates a symplectic semigroup. The case N = 0 holds since it gives
the equation (2.1), and thus by induction the modi"ed equation of index N generates a
symplectic semigroup for any integer N > 1. By the results of Dragt & Finn (1976) we
deduce that, for any integer N > 1, the modi"ed equation is Hamiltonian as claimed. 2

4.5 Volume preservation and the modi"ed semigroup

All equations (2.1) with f divergence-free have semigroups which preserve phase volume.
Since Hamiltonian vector "elds are divergence-free this result holds for all Hamiltonian
problems; indeed, for dimension p = 2, it is equivalent to symplecticity of the semigroup.
It is possible to construct numerical methods that automatically inherit the property of
volume preservation; see, for example, Feng &Wang (1994), Feng & Shang (1995), Shang
(1994), Quispel (1995) and Suris (1996) (and earlier references cited therein to the Soviet
literature). We now give a result that applies to the modi"ed equations of one-step volume-
preserving methods; this result may also be proved by the techniques in Reich (1996).

THEOREM 4.6 If the system and method preserve volume, then so do all modi"ed
equations. More precisely, assume that for any compact set B we have∫

St (B)
dv =

∫
S̄n∆t (B)

dv =
∫
B
dv

for all t = n∆t ∈ [0, T ] and ∆t ∈ [0, h] where h, T > 0 are suf"ciently small. Then, for
any N > 1, we have ∇ · f̃ (N )∆t (y) = 0 for all y ∈ Rp and ∆t > 0.

Proof. For induction assume the modi"ed vector "elds up to index N are divergence-free,
that is

∇ · f̃ (i)∆t (y) = 0, 0 6 i 6 N , y ∈ Rp, ∆t > 0. (4.57)

Since (2.1) preserves phase volume if and only if ∇ · f ≡ 0, we note that the inductive
hypothesis is true for N = 0. Now suppose the modi"ed vector "eld of index N + 1 is not
divergence-free for some ∆t > 0. This implies that

∇ · qN+1(u0) 6= 0 (4.58)

for some u0 ∈ Rp.
Since S̃(N+1)t,∆t is close to the identity for t small and qN+1 is smooth, we deduce from

(4.58) that there are numbers γ, h, T > 0 suf"ciently small and a number δ > 0 such that

|∇ · qN+1(y)| > δ, ∀y ∈
⋃

t∈[0,T ]
∆t∈[0,h]

S̃(N+1)t,∆t (B, t),
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where B is the closed ball at u0 of radius γ . Also, if we let

V (N+1)(t) =
∫
S̃(N+1)t,∆t (B)

dv,

then

dV (N+1)

dt
=
∫
S̃(N+1)t,∆t (B)

∇ · f̃ (N+1)∆t (v) dv

=
∫
S̃(N+1)t,∆t (B)

∆tr+N∇ · qN+1(v) dv.

Assuming "rst that ∇ · qN+1(u0) > 0, we obtain
dV (N+1)

dt
> δ∆tr+NV (N+1)(t), t ∈ [0, T ], ∆t ∈ [0, h].

This inequality leads to the bounds

V (N+1)(t) > exp(δ∆tr+N t)V (N+1)(0) > (1+ δ∆tr+N t)V (N+1)(0),

and hence

|V (N+1)(t)− V (N+1)(0)| > δ∆tr+N tV (N+1)(0), t ∈ [0, T ], ∆t ∈ [0, h]. (4.59)

Alternatively, in the case where ∇ · qN+1(u0) < 0, we have
dV (N+1)

dt
6 −δ∆tr+NV (N+1)(t), t ∈ [0, T ], ∆t ∈ [0, h],

and

V (N+1)(t) 6 exp(−δ∆tr+N t)V (N+1)(0) 6
(
1− δ∆t

r+N t
2

)
V (N+1)(0), (4.60)

for all t ∈ [0, T ] and ∆t ∈ [0, h], after reducing T if necessary. Thus, regardless of the
sign of ∇ · qN+1(u0), we deduce from (4.59) and (4.60) that

|V (N+1)(t)− V (N+1)(0)| > δ∆tr+N tV (N+1)(0)
2

, t ∈ [0, T ], ∆t ∈ [0, h]. (4.61)

To obtain a contradiction, let

V∆t (n) =
∫
S̄n∆t (B)

dv.

Then, since the numerical method conserves volume, we have V∆t (n) = V (N+1)(0), and
hence

|V (N+1)(t)− V (N+1)(0)| = |V (N+1)(t)− V∆t (n)| (4.62)
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for any t = n∆t ∈ [0, T ] with ∆t ∈ [0, h]. Using the relations

V (N+1)(t) =
∫
S̃(N+1)t,∆t (B)

dv =
∫
B
det[dS̃(N+1)t,∆t (v)] dv

and

V∆t (n) =
∫
S̄n∆t (B)

dv =
∫
B
det[dS̄n∆t (v)] dv,

together with (4.62) and the derivative bounds in Theorem 3.2, we "nd that there exists a
constant C18 such that

|V (N+1)(t)− V (N+1)(0)| 6 C18∆t
r+N+1

for any t = n∆t ∈ [0, T ] with ∆t ∈ [0, h]. This contradicts (4.61) and thus we must have
∇ · f̃ (N+1)∆t (y) = 0 for all y ∈ Rp and ∆t > 0. 2

4.6 A negative example

The results presented in this article "t into a general framework that may be summarized as
follows: if the differential equations have a certain structural property and the numerical
method has an analogous structural property for ∆t > 0, then all modi"ed equations
share this property for ∆t > 0. However, the results proved are strongly tied to structural
properties associated with certain subspaces of V(Rp), the in"nite-dimensional Lie algebra
of smooth vector "elds on Rp, as outlined in the introduction. Vector "elds sharing a
particular structural property do not necessarily form a subspace of V(Rp), and it is natural
to ask about the properties enjoyed by modi"ed equations in this case. As the next example
shows, modi"ed equations do not generically inherit structural properties shared by the
numerical method and underlying system.

Consider the scalar problem with f (u) = −u3. This is an example of a gradient system
with Lyapunov function F(u) = u4/4. For this problem we have

d

dt
F(St (u)) = − f (St (u))2. (4.63)

Hence, the Lyapunov function F decreases along every non-constant solution trajectory. It
follows that

St (u)→ 0, as t →∞, ∀u ∈ Rp. (4.64)

For the implicit Euler method Un+1 = Un + ∆t f (Un+1) it is readily shown that, for
f (u) = −u3,

F(Un+1)− F(Un)

∆t
6 −

(
Un+1 −Un

∆t

)2
.

It follows that, independently of ∆t ,

S̄n∆t (u)→ 0, as n→∞, ∀u ∈ Rp, (4.65)

which is the discrete analogue of (4.64).



QUALITATIVE PROPERTIES OF MODIFIED EQUATIONS 189

The "rst modi"ed equation associated with the implicit Euler method on this problem
has a vector "eld of the form

f̃ (1)∆t (u) = −u3 +
3∆t

2
u5.

In this case,

S̃ (1)t,∆t (u)→ 0, as t →∞, for |u| <
√

2

3∆t
,

and

|S̃ (1)t,∆t (u)| → ∞, as t →∞, for |u| >
√

2

3∆t
.

Hence, the "rst modi"ed equation does not have the property of global convergence to the
origin, even though this property is shared by the original equation and the discretization.
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