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We show that results concerning the persistence of invariant sets of ordinary dif-
ferential equations under perturbation may be applied directly to a certain class of
partial differential equations. Our framework is particularly well-suited to encom-
pass numerical approximations of these partial differential equations. Specifically,
we show that for a class of PDEs with a C1 inertial form, certain natural numerical
approximations possess an inertial form close to that of the underlying PDE in the
C1 norm. © 1998 Academic Press

1. INTRODUCTION

We consider a class of evolution partial differential equations (PDEs)
that are known to possess an inertial manifold. An inertial manifold is
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a smooth finite-dimensional, exponentially attracting, positively invariant
manifold (which contains the global attractor), first introduced in Foias,
Sell, and Temam [14, 15]. See also Constantin, Foias, Nicolaenko, and
Temam [6, 7], Fabes, Luskin, and Sell [11], Foias et al. [13], Foias, Sell,
and Titi [16], Mallet-Paret and Sell [30], and Sell and You [35]. Thus, while
the dynamical system generated by the solutions of the PDE is infinite
dimensional, the reduction of the PDE to its inertial manifold yields a
finite-dimensional system, called an inertial form, whose long-time behav-
ior is the same as that of the PDE. In particular, this finite-dimensional
system has the same bounded invariant sets as the original PDE. Thus one
might expect that results concerning the persistence of invariant sets un-
der perturbation derived in the context of ordinary differential equations
(finite-dimensional systems) might apply directly to infinite-dimensional sys-
tems that possess inertial manifolds. Furthermore, of particular interest in
the case of PDEs is to understand the behavior of bounded invariant sets
under numerical approximation.

In general, we consider PDEs that may be expressed as an evolution
equation,

du

dt
+Au+ R�u� = 0; (1.1)

u�0� = u0

on a Hilbert space H. We denote the inner product in H by �·; ·� and
norm � · �2 = �·; ·�. We assume that A is a densely defined sectorial linear
operator with compact inverse. Thus it is possible to choose ζ ≥ 0 such
that all eigenvalues of Ã x= A + ζI have strictly positive real part. For
0 < α < 1 we define Ãα = �Ã−α�−1, where

Ã−α = 1
0�α�

∫ ∞
0
tα−1e−Ãtdt: (1.2)

We denote by D�Ãα� the domain of Ãα. See Henry [19] and Pazy [32]. For
α = 0 we define Ã0 = I. Then D�Ãα� is a Hilbert space with the inner
product �Ãαu; Ãαv� and norm �u�α = �Ãαu� for all u; v ∈ D�Ãα�.

The operator A generates an analytic semigroup L�t�. We assume that
R�u� satisfies sufficient conditions so that the initial value problem �1:1�
generates a semigroup S�t� x D�Ãγ� → D�Ãγ� for some γ ≥ 0; which is
locally Lipschitz continuous on D�Ãγ� for each t ≥ 0. That is, �S�t�u −
S�t�v�γ ≤ C�u− v�γ, where C depends on the norms of u; v ∈ D�Ãγ� and
t. We suppose further that the system �1:1� is dissipative. That is there
exists a ball of radius R in D�Ãγ�, B�0; R�, that is absorbing: for every
r > 0 there exists a T �r� ≥ 0 such that S�t�B�0; r� ⊂ B�0; R� for all t ≥ T
(see Hale [18] and Temam [37]).
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We employ the notation

�u� x= �u�γ ∀u ∈ D�Ãγ�
and

�T�op x= sup
u∈D�Ãγ�
�u�=1

�Tu�γ

for a linear operator T ∈ L�D�Ãγ�� and when γ is fixed in an argument.
Let 3 be any real number. We denote by H3 the finite-dimensional space
spanned by all of the generalized eigenfunctions of the operator A with
corresponding eigenvalues with real part less than or equal to 3. We denote
by P3 the projection of H onto H3 and by Q3 = I − P3.

Let τ > 0. The solution of �1:1� u�τ� = S�τ�u0 may be written as a map

G�τ; u� x= L�τ�u+N�τ; u�; (1.3)

where

L�τ�u x= e−Aτu; N�τ; u� x= −
∫ τ

0
L�τ − s�R�S�s�u�ds: (1.4)

For convenience we frequently drop the explicit dependence of the map G
on τ. If M is an invariant bounded subset of the solution operator S�t�, it
is invariant under G as well. On the other hand for any bounded invariant
subset M of G, the set M̃ = ⋃0≤t≤τ S�t�M is a bounded invariant subset of
S�t�. It therefore suffices to study the behavior of the invariant sets of G
under perturbation.

In this paper we apply results concerning the persistence of bounded
invariant sets derived for finite-dimensional systems to the map G, which
could be defined on an infinite-dimensional space. To accomplish this we
will seek a finite-dimensional system that has the same bounded invariant
sets as does �1:3�. In particular we will require the map G to have an
inertial manifold. To date inertial manifolds have been constructed as the
graph of a smooth function, 8 x P3H → Q3H for some suitably chosen 3
(8 is shown to be C1 in Chow, Lu, and Sell [5], Demengel and Ghidaglia
[9], Ou and Sritharan [31], and Sell and You [35] under essentially the same
conditions as for the existence of an inertial manifold). If the map G has an
inertial manifold of this type, the reduction of the map G to this manifold
provides a map defined on the finite-dimensional space P3H, given by

pn+1 = Lpn + P3N�pn +8�pn�� = P3G�pn +8�pn��: (1.5)

This map is called an inertial form, and it has the same dynamics as G on
the inertial manifold.
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The map Gh might originate from a fully discrete or semi discrete ap-
proximation to �1:1�. Our main assumptions on the map Gh are that G
and Gh are close in the C1 norm on bounded sets that contain all of the
bounded invariant sets of the map G. We emphasize that if the map Gh is
a numerical approximation of the PDE, our assumptions on Gh are exten-
sions to a C1 setting of classical estimates indicating that trajectories of Gh

approximate trajectories of the PDE over finite-time intervals.
The task is to write the map Gh in the form of �1:5�, and in such a way

that it is close to �1:5� in the C1 norm. Since we compare maps defined
on finite-dimensional spaces, results concerning the persistence of invariant
sets studied in the context of finite-dimensional systems under perturbation
may be obtained and then extended directly to the map G, and hence, to
the PDE and its numerical approximation. These results include Beyn [3],
Beyn and Lorenz [4], Fenichel [12], Hirsh, Pugh, and Shub [21], Kloeden
and Lorenz [26], Pliss and Sell [33], Sacker [34], and Stuart [36]. Some
of these have already been extended to infinite-dimensional systems. In
particular, the work of Fenichel in Jones and Shkoller [23] and the work of
Hirsh, Pugh, and Shub in Bates, Lu, and Zeng [2].

The technical results in this work show that the inertial manifold persists
under C1 perturbation. We are, however, mainly interested in the conse-
quences of this persistence. The essential improvements on previous studies
are the generality of the setting and the extension to C1 approximation. In
many cases numerical schemes approximating PDEs that have inertial man-
ifolds are already known to have inertial manifolds. This was first shown in
Foias, Sell, and Temam [15] and in Foias, Sell, and Titi [16] for a Galerkin
approximation of the underlying PDE. Demengel and Ghidaglia [10] looked
at the behavior of the inertial manifold under a time discretization. Foias
and Titi [17] studied a finite difference approximation. Jones and Stuart
[24] studied maps of the form �1:3�: under appropriate conditions, the map
is shown to possess an inertial manifold. Approximations of this map, which
are also studied here, are shown to possess inertial manifolds in that work.
The approximations of G we consider may be interpreted as being a fully
discrete approximation of the PDE generating the map G. The approxima-
tions may include finite difference, finite element, spectral approximations
and their time discretizations. The results and conclusions of this work
have been previously presented for some specific PDEs and numerical al-
gorithms. See Jones [22] and Jones and Titi [25].

Many results concerning the relationship between the long-time behavior
of numerical schemes and the PDE they approximate already exist. They
include Constantin, Foias, and Temam [8] and Titi [38] where sufficient
conditions on the Galerkin scheme are derived to infer the existence of a
nearby stable stationary solution for the Navier–Stokes equations from the
apparent stability of the time-dependent Galerkin approximate solutions;
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stable periodic orbits are studied analogously in Titi [39]. The relation of
the large-time behavior of finite element approximations to the solutions of
the Navier–Stokes equations is considered in Heywood and Rannacher [20].
Other works followed that studied the behavior of solutions near equilib-
rium of PDEs under numerical approximation. They include Alouges and
Debussche [1], Larsson and Sanz-Serna [27, 28], and Stuart [36]. We expect
that many of these results will hold for PDEs with inertial manifolds as a
consequence of our main theorem.

We now outline the paper. In Section 2 we give sufficient conditions
for a map G to have an inertial manifold representable as the graph of
a C1 function. In Section 3 we study the behavior of the manifold under
C1 perturbation. The consequences for the persistence of invariant sets are
discussed in Section 4. We conclude in Section 5 with an application to
a PDE, a Galerkin spatial discretization, and a semi-implicit Euler time
discretization.

2. THE MAP G

We consider a general map G that depends on a parameter τ > 0, of the
form

G�τ; u� = L�τ�u+N�τ; u�: (2.1)
Such a map was motivated in the previous section, but it need not be �1:3�.
Again we may drop the explicit dependence of the map on τ when no
confusion may arise. We suppose further that the map G has the following
properties.

2.1. Assumptions (G).

The map G is dissipative with the ball B�0; R� ⊂ D�Ãγ� absorbing for
some R > 0. The linear operator L ∈ L�D�Ãγ�� and for every real 3
the spaces P3H and Q3H are invariant subspaces for L. Moreover, there
exist positive constants a; b depending on 3, τ, positive constants K1;K2
depending on 3, τ, R, and c ∈ �0; 1� depending on τ only such that

b�p� ≤ �Lp� ≤ c�p� ∀p ∈ P3H; �G1�
�Lq� ≤ a�q� ∀q ∈ Q3H: �G2�

We assume that N ∈ C1�D�Ãγ�;D�Ãγ��. More specifically, we assume that
�RN�u�� ≤ K1; �RDN�u�w� ≤ K2�w� ∀u;w ∈ D�Ãγ�; �G3�

where R = I, P3, or Q3, and DN is the Fréchet derivative of N . Moreover,
there is an RN > R such that N�u� = 0;DN�u� = 0 for all u ∈ D�Ãγ� x
�u� ≥ RN . Finally, we assume that �R� ≤ σ�3�, and where σ�3� is a
positive constant depending on 3.
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2.2. Conditions (C).

Let ε; ` ∈ �0;∞�, and µ ∈ �0; 1�, be arbitrarily chosen but fixed. In ad-
dition, let Bi = 2σ�3�Ki, i = 1; 2 (the reason for enlarging the constants
K1;K2 will become clear when we turn to perturbations of G in Section 3).
We assume that there exist real 3 and τ > 0 depending on ε; ` such that
the following inequalities hold,

4B2�1+ `� ≤ b− a; �C1�

aε+ B1 ≤ ε; �C2�

θ x= a `+ B2�1+ `� ≤ `φ; �C3�
where φ x= b− B2�1+ `� > 0 (notice that by (C1), φ > 0), and

a+ B2�1+ `� ≤ µ: �C4�
Condition (C1) is equivalent to the well known gap condition in the real
part of the spectrum of the operator A which is sufficient for the existence
of an inertial manifold (see the references above). The verification of (C2)
corresponds to the operator A having eigenvalues with sufficiently large
real part, while (C3) again corresponds to sufficiently large spectral gaps in
the real part of the spectrum of A. The condition (C4) requires that the
gap in the spectrum occurs for eigenvalues with sufficiently large real part.

We have from Jones and Stuart [24]

Theorem 2.1. Under assumptions (G) and Conditions (C) the map G
has an inertial manifold representable as the graph of a function 8 x P3H →
Q3H. Moreover, 8�p� = 0 for p ∈ P3H x �p� ≥ cRN + B1, and

sup
p∈P3H

�8�p�� ≤ ε; �8�p1� −8�p1�� ≤ `�p1 − p1� ∀p1; p2 ∈ P3H:

Remark. In the case that the map G is �1:3�, the inertial manifold given
by Theorem 2.1 is an inertial manifold for the PDE �1:1�. That is, the
manifold is independent of the parameter τ.

The proof of Theorem 2.1 will essentially be repeated below when we
show a stronger result, namely that the map 8 is continuously differen-
tiable. The basic idea is to look for a fixed point of the map T1 defined
below on the space

0�ε; `� =
{
9 ∈ C�P3H;Q3H� x sup

p∈P3H
�9�p�� ≤ ε;

9�p� = 0; ∀p ∈ P3H x �p� ≥ cRN + B1;

�9�p1� −9�p2�� ≤ `�p1 − p2� ∀p1; p2 ∈ P3H
}
:
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Let 9 ∈ 0�ε; `�. Then for any p ∈ P3H one first shows that there exists a
unique ξ�p;9� ∈ P3H such that

p = Lξ + P3N�ξ +9�ξ�� (2.2)

holds. The map T1 is then defined to be

�T19��p� = L9�ξ� +Q3N�ξ +9�ξ��:
That such a ξ exists solving �2:2� is shown in Jones and Stuart [24] and
follows from Assumptions (G) and Conditions (C) (see Lemma 2.3 below
for a related argument). Moreover, the map T1 is shown to be a contraction
on 0�ε; `�. In particular, we have for µ given in Conditions (C), 91;92 ∈
0�ε; `� that

sup
p∈P3H

�T191�p� − T192�p�� ≤ µ sup
p∈P3H

�91�p� −92�p��: (2.3)

To show 8 ∈ C1 we use a standard technique (see, for example, Fenichel
[12], Hirsh, Pugh and Shub [21], and Chow, Lu, and Sell [5]): we formulate
a map for which D8 would be the fixed point if 8 were differentiable.
Using a contraction argument we then show that such a map indeed has
a fixed point which is the Fréchet derivative of 8, D8. To better motivate
this map we first prove

Lemma 2.2. Suppose that Conditions (C) and Assumptions (G) hold.
Suppose further that the fixed point of the map T1, 8, is differentiable and
that supp∈P3H �D8�p��op ≤ `. Then ξ�p� solving �2:2� is differentiable and
η = Dξ

Dp
ρ, ρ ∈ P3H satisfies

ρ = Lη+ P3DN�ξ +8�ξ���I +D8�ξ��η

D8�p�ρ = LD8�ξ�η+Q3DN�ξ +8�ξ���I +D8�ξ��η:
Proof. Consider the function F�p; ξ� = p− Lξ − P3N�ξ +8�ξ��. Ac-

cording to �2:2� we know that there exists a unique ξ ∈ P3H such that
F�p; ξ�p�� = 0. We would like to implement the implicit function the-
orem to show that Dξ/Dp exists. In fact all we need to show is that
DF/Dξ is invertible in a neighborhood of �p; ξ�p�� for all p ∈ P3H, since
N�· +8�·�� is C1. However, we are able to show that DF/Dξ is invertible
on all of P3 × P3. Since L in invertible on P3H, we need only show that
L−1P3DN�ξ +8�ξ���I +D8�ξ�� has norm less than one for all ξ ∈ P3H.
Using (G1) and (C1) we find that

�L−1P3DN�ξ +8�ξ���I +D8�ξ��η� ≤ B2�1+ `��η� ≤
1
4
�η�:

Now that we have established that ξ is differentiable, we differentiate �2:2�
to obtain the system given in the lemma.
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Consider the complete metric space

G�`� x=
{
ϒ ∈ C�P3H;L�P3H;Q3H�� x Dϒ�p� = 0;

∀p ∈ P3H x �p� ≥ cRN + B1; �ϒ�G x= sup
p∈P3H

�ϒ�p��op ≤ `
}
:

Motivated by the above lemma we define a map T9 on G�`� as follows.
Given any fixed 9 ∈ 0�ε; `� and any p; ρ ∈ P3H we first find a unique
η�p;9;ϒ� ∈ P3H such that for ξ ∈ P3H solving �2:2�

ρ = Lη+ P3DN�ξ +9�ξ���I + ϒ�ξ��η: (2.4)

The map T9 is then given by

�T9ϒ�p��ρ = Lϒ�ξ�η+Q3DN�ξ +9�ξ���I + ϒ�ξ��η: (2.5)

That for any ρ ∈ P3H there is a unique η ∈ P3H solving �2:4� is estab-
lished by

Lemma 2.3. Suppose that Conditions (C) and Assumptions (G) hold.
Given ρ ∈ P3H, 9 ∈ 0�ε; `�; and ϒ ∈ G�`�, there exists a unique η ∈ P3H
such that �2:4� holds. Moreover, we have that

�η� ≤ �ρ�
φ
; (2.6)

where φ is given after (C3).

Proof. Since �2:4� is linear and L has a bounded inverse on P3H (by
Assumptions (G)), we need only show that L−1P3DN�ξ+9�ξ���I +ϒ�ξ��
has norm less than one. This estimate is given in Lemma 2.2.

Directly from �2:4� and (G1) we obtain that

�η� ≤ b−1�ρ− P3DN�ξ +9�ξ���I + ϒ�ξ��η�
≤ b−1�ρ� + b−1B2�1+ `��η�:

Using (C3) we find that �2:6� holds. Thus the map T9 defined by �2:5� is
well-defined.

Lemma 2.4. Suppose that Conditions (C) and Assumptions (G) hold.
Then the map �2:5� maps G�`� into G�`�. Moreover, T9 is a contraction on
G�`� for each 9 ∈ 0�ε; `� with unique fixed point denoted by ϒ9, and this
fixed point is continuous with respect to 9.
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Proof. Let ϒ ∈ G�`�. Then using (G2), (G3), (C3), and �2:6� we have
that

�T9ϒ�p�ρ� ≤ a `�η� + B2�1+ `��η�

≤ �a `+ B2�1+ `��
�ρ�
φ
≤ `�ρ�: (2.7)

Hence, �T9ϒ�G ≤ `.
To show that T9ϒ�p� = 0 for all p ∈ P3H x �p� ≥ cRN + B1 notice that

for such p we have, using �2:2� and Assumptions (G), that

cRN + B1 ≤ �p� ≤ c�ξ� + B1: (2.8)

Hence, RN ≤ �ξ� and N�ξ+9�ξ�� = 0;DN�ξ+9�ξ�� = 0. Repeating the
calculation leading to �2:8�, we find, using Assumptions (G), that cRN +
B1 ≤ c�ξ� ≤ �ξ�. By assumption ϒ�ξ� = 0 for such ξ, and hence so does
T9�p� for all �p� ≥ cRN + B1.

We need to show that T9ϒ is continuous. Let p0 ∈ P3H be arbitrar-
ily chosen and fixed. We need to show that �T9ϒ�p0� − T9ϒ�p1��op may
be made arbitrarily small by requiring �p0 − p1� sufficiently small. By
Lemma 2.3 and Lemma 2.3 in Jones and Stuart [24], we may chose ξi; ηi ∈
P3H, i = 0; 1 so that

pi = Lξi + P3N�ξi +9�ξi�� (2.9)

ρ = Lηi + P3DN�ξi +9�ξi���I + ϒ�ξi��ηi (2.10)

�T9ϒ�pi��ρ = Lϒ�ξi�ηi +Q3DN�ξi +9�ξi���I + ϒ�ξi��ηi; (2.11)

for i = 0; 1 and for arbitrary ρ ∈ P3H such that �ρ� = 1. We find, using
�2:9�, (G1), (G3), and the properties of 9 ∈ 0�ε; `�, that

�ξ1 − ξ0� ≤ b−1[�p1 − p0� + B2�1+ `��ξ1 − ξ0�
]
:

From (C3) we find

�ξ1 − ξ0� ≤
�p1 − p0�

φ
: (2.12)

A similar calculation using �2:10� shows that

�η1 − η0� ≤
1
φ2

(
B2�ϒ�ξ1� − ϒ�ξ0��op

+�1+ `��P3DN�ξ1+9�ξ1�� − P3DN�ξ0 +9�ξ0���op
)
;
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where we have also used �2:6� to obtain �ηi� ≤ �ρ�φ−1 ≤ φ−1 for i =
0; 1. Since 9, ϒ and DN are continuous by assumption, both �ξ1 − ξ0�,
�η1 − η0� can be made arbitrarily small independently of ρ by requiring
�p1 − p0� to be sufficiently small. Using this fact one may obtain directly
from �2:11� that T9ϒ�·� is continuous.

We show now that the map T9 is a contraction on G�`� uniformly in 9 ∈
0�ε; `�. That is, the Lipschitz constant is less than one, and it is independent
of the specific choice of 9. Let p; ρ ∈ P3H, with �ρ� = 1, ξ solve �2:2�.
Then by Lemma 2.3 there exists ηi i = 1; 2 such that

ρ = Lηi + P3DN�ξ +9�ξ���I + ϒi�ξ��ηi (2.13)

�T9ϒi�p��ρ = Lϒi�ξ�ηi +Q3DN�ξ +9�ξ���I + ϒi�ξ��ηi:
We obtain directly from �2:13� that

−L�η1 − η2� = P3DN�ξ +9�ξ���ϒ1�p� − ϒ2�p��η1

+ P3DN�ξ +9�ξ���I + ϒ2�p���η1 − η2�:
Estimating as above, using Assumptions (G), Conditions (C) and �2:6�, we
find that

�η1 − η2� ≤
B2�ρ�
φ2 �ϒ1 − ϒ2�G: (2.14)

We have that

�T9ϒ1�p� − T9ϒ2�p��ρ = L�ϒ1�p� − ϒ2�p��η1 + Lϒ2�p��η1 − η1�
+Q3DN�ξ +9�ξ���ϒ1�p� − ϒ2�p��η1

+Q3DN�ξ +9�ξ���I + ϒ2�p���η1 − η1�:
Estimating as before we find that

��T9ϒ1�p� − T9ϒ2�p��ρ� ≤
a+ B2�1+ `�

φ
��ϒ1 − ϒ2��G:

However, from (C1), a + B2�1 + `� ≤ a + �b − a�/4 and φ = b − B2�1 +
`� ≥ b− �b− a�/4. Thus

��T9ϒ1�p� − T9ϒ2�p��ρ� ≤
a+ �1/4��b− a�
b− �1/4��b− a���ϒ1 − ϒ2��G

x= µc��ϒ1 − ϒ2��G; (2.15)

and µc < 1. Hence, T9 is a contraction on G�`�, and there is a unique
ϒ ∈ G�`� such that T9ϒ = ϒ.
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Finally, we show that the unique fixed point of T9 denoted ϒ9 is contin-
uous in 9. We obtain from �2:15� that

�ϒ91
− ϒ92

�G ≤
1

1− µc
�T91

ϒ91
− T92

ϒ91
�G:

To show that the right hand of this last inequality tends to zero as
supp∈P3H �91 −92� → 0 is similar to the proof that T9�p� in continuous
in p shown above. We omit the details. However, the estimates require
that N;DN;9;ϒ are all uniformly continuous. Since they all have compact
support, this readily follows.

Theorem 2.5. Under Assumptions (G) and Conditions (C) the inertial
manifold for the map G is C1.

Proof. We need only to show that 8 given in Theorem 2.1 is C1. Let
ϒ8 be the fixed point of T9 with 9 = 8, where the graph of 8 is the
inertial manifold for the map G given in Theorem 2.1. We will show that 8
is differentiable and that ϒ8 = D8 is the Fréchet derivative of 8. Suppose
that 80�p� ∈ 0�ε; `�, 80�p� ∈ C1�P3H;Q3H� and that �D80�G ≤ `. That
is, D80 ∈ G�`�. For example, we could take 80 ≡ 0. Set ϒ0 = D80. Let ξn ∈
P3H solve �2:2� with 9 = 8n and ηn ∈ P3H solve �2:4� with ϒ = D8n,
9 = 8n and where the sequence �8n�, n ≥ 0, is defined iteratively by

8n+1�p� = L8n�ξn� +Q3N�ξn +8n�ξn��: (2.16)

As in Lemma 2.2 we may differentiate 8n to obtain

D8n+1�p�ρ = LD8n�ξn�ηn +Q3DN�ξn +8n�ξn���I +D8n�ξn��ηn:
Notice that T8nD8n = D8n+1. Hence, D8n+1 is in G�`� for n ≥ 0.

We will show that �8n� is a Cauchy sequence in C1�P3H;Q3H�. Since
�8n� is Cauchy in 0�ε; `� (which follows from �2:3�), it converges to 8,
the function whose graph is an inertial manifold for the map G in 0�ε; `�.
Thus it suffices to show that D8n is Cauchy in G�`�. The argument we use
is similar to the one given in Lemma 4.1 in Chow, Lu, and Sell [5] and
Hirsh, Pugh, and Shub [21]. Let ϒ8n the fixed point of T9 with 9 = 8n.
Define eN = supm;n≥N �ϒ8m − ϒ8n�G. Thanks to Lemma 2.4 we have that
eN → 0 as N →∞. Also we have for n ≥ N ≥ 0

�D8n+1 − ϒ8n+1
�G ≤ �D8n+1 − ϒ8n�G + �ϒ8n − ϒ8n+1

�G

≤ �T8nD8n − T8nϒ8n�G + eN
≤ µc�D8n − ϒ8n�G + eN:

An induction argument shows that for n ≥ m ≥ N
�D8n − ϒ8n�G ≤ µm−Nc �D8N − ϒ8N�G +

eN
1− µc

: (2.17)
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Therefore, we find that for such n;m

�D8n −D8m�G ≤ �D8n − ϒ8n�G + �ϒ8n − ϒ8m�G + �ϒ8m −D8m�G

≤ 2µm−Nc �D8N − ϒ8N�G + 2
eN

1− µc
+ eN:

Then, for any ε̃ > 0, we may choose N large enough so that each of the last
two terms on the right hand side of the last inequality are less than ε̃/3. We
then choose m > N large enough so that the first term on the right hand
side is less than ε̃/3. This shows that the sequence D8n is C1-Cauchy. We
conclude that 8n → 8 in 0�ε; `� and D8n → D8 in G�`� as n→∞. We
conclude from �2:17� by passing to the limit that D8 = ϒ8.

3. PERTURBATIONS OF G

In this section we study the behavior of bounded invariant sets of the
map G under perturbation. Keeping in mind that we are mainly inter-
ested in numerical approximations of the PDE, we consider a map Gh;o�u�
which may be defined on a finite-dimensional subspace, Xh

1 , of D�Ãγ�. The
space Xh

1 could be spanned by polynomials as in a finite-element space ap-
proximation. Let Ph be the projection Ph x H → Xh

1 . The map Gh;o�τ; u�
approximates the map G. For example, if G is the time τ map of the semi-
group of �1:1�, then Gh;o�τ; u� may be a fully discrete approximation to
�1:1�. We will find it convenient to express the map Gh;o�τ; uh� as a map
on D�Ãγ�. We therefore define

Gh�τ; v� x= Gh;o�τ; Phv�:

Then Gh x D�Ãγ� → D�Ãγ�. Rather than making specific assumptions
about the space Xh

1 and the projection Ph, we make the following assump-
tions about the map Gh. We recall that B�0; R� x= �u ∈ D�Ãγ� x �u� ≤ R�.
We set E�v� x= G�τ; v� −Gh�τ; v� for v ∈ D�Ãγ�. Dropping the explicit
dependence on the parameter τ, we assume the following.

3.1. Assumptions �Gh�.
• �G�v� −Gh�v�� = �E�v�� ≤ K�R�h ∀v ∈ B�0; 2R�,
• �DG�v� − DGh�v��op = �DE�v��op ≤ K�R�h ∀v ∈ B�0; 2R�,

where DE is the Fréchet derivative of E,

where R is given in Assumptions (G). The Assumptions �Gh� require only
that the map Gh approximate the map G in the C1 norm over the set
B�0; 2R�, which contains all of the bounded invariant sets of the map G.
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While the map G is assumed to be dissipative, we cannot expect in gen-
eral that the map Gh satisfying Assumptions �Gh� will be dissipative. In
particular, the inertial manifold may not survive this perturbation. If the
map Gh is dissipative, then Assumptions �Gh� are enough to guarantee
that Gh has an inertial manifold. This follows from Theorem 3.1 below.
See also [15, 16, 10, 17, 22, 24, 23, 25, 36]. Our goal, however, is to show
that those bounded invariant sets known to persist under C1 perturbation
proven in the context of finite-dimensional dynamics persist for the map G
and its perturbation Gh. To accomplish this we construct a system similar
to the inertial form, �1:5�, for the map Gh which agrees with Gh in a re-
gion containing the bounded invariant sets of G. This new map will be C1

close to the inertial form for G, �1:5�, over this region.
Let θ x �+ → �0; 1� be a fixed C1 function such that θ�x� = 1 for 0 ≤ x ≤

2, θ�x� = 0 for x ≥ 4, and �θ′�x�� ≤ 2 for x ≥ 0. Define θR�x� = θ�x/R2�.
We consider the map

u = G̃h�v� x= Lv +N�v� − θR��v�2�E�v�
x= Lv +Nh�v�; (3.1)

where L is given in Assumptions (G). The map G̃h agrees with the map
Gh inside the ball B�0; R� and

�G�v� − G̃h�v�� ≤ K�R�h;
�DG�v� −DG̃h�v��op ≤ K�R�h ∀v ∈ D�Ãγ�:

(3.2)

That the map G̃h has an inertial manifold is a simple consequence of the
existence proof of the inertial manifold for maps, Theorem 2.1. Indeed, we
have

Theorem 3.1. Under Assumptions (G), �Gh�, and Conditions (C), there
exists an h1 > 0 depending on τ;3; ε; ` such that the map G̃h has an iner-
tial manifold representable as a graph of a C1 function 8h x P3H → Q3H.
Moreover, 8h ∈ 0�ε; `�, D8h ∈ G�`�.

Proof. We want to show that Nh�v� x= N�v� − θR��v�2�E�v� has the
same properties as N�v� given in Assumptions (G). Thanks to the prop-
erties of the nonlinear term N�v� given in Assumptions (G), Assumptions
�Gh�, and the properties of the function θ�x�, we have that

�RNh�v�� ≤ �RN�v�� + θR��v�2��RE�v��
≤ σ�3��K1 +K�R�h� ∀v ∈ D�Ãγ�;
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where R = P3, Q3, or I and by Assumptions (G), �R� ≤ σ�3� for R = P3,
Q3, or I. Similarly, for all v ∈ D�Ãγ�
�RDNh�v��op ≤ �RD�N�v� − θR��v�2�E�v���op

≤ �RDN�v� − θR��v�2�DE�v��op + �DθR��v�2�·RE�v��op

≤ σ�3�
(
K2 +K�R�h+

8
R
K�R�h

)
:

Without loss of generality we may assume that R ≥ 1. Thus for some h1 > 0,
we obtain

�Nh�v�� ≤ B1; �DNh�v��op ≤ B2 ∀v ∈ D�Ãγ�; (3.3)

for all h ≤ h1.
These estimates show the reason for deriving Theorem 2.1 with the con-

stants B1; B2 enlarged in Assumptions (G). Theorem 2.1 and Theorem 2.5
apply and the map G̃h has a C1 inertial manifold.

The next result shows that the inertial manifolds converge in the C1

norm as h → 0. From now on Graph�8� and Graph�8h� are the inertial
manifolds for the maps G and G̃h, respectively.

Theorem 3.2. Suppose that Assumptions (G), �Gh�, and Conditions (C)
hold and that h ≤ h1 so that the map G̃h has an inertial manifold as in
Theorem 3.1. Then for any ε′ > 0, there exists an h0�ε′� > 0 such that

sup
p∈P3H

�8�p� −8h�p�� ≤ Kh

sup
p∈P3H

�D8�p� −D8h�p��op ≤ ε′

for all h ≤ h0.

Proof. The proof uses the uniform contraction principle. Let p ∈ P3H
be given. We denote by 8h the function whose graph is an inertial manifold
of the map G̃h. Set

p = Lξ + P3N�ξ +8�ξ��

�T18��p� = L8�ξ� +Q3N�ξ +8�ξ��;
for some ξ ∈ P3H as in �2:2�. Notice that �T18��p� = Q3G�ξ + 8�ξ��.
With the same ξ we set

ph x= Lξ + P3Nh�ξ +8�ξ��:
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The map Th1 is defined exactly as T1 was in Section 2, only N is replaced
by Nh defined in �3:1�. Let 8 and 8h the fixed points of T1 and Th1 , respec-
tively. We have by the uniform contraction theorem, that is, from �2:3�,

sup
p∈P3H

�8�p� −8h�p�� ≤ 1
1− µ sup

p∈P3H
�T18�p� − Th1 8�p��: (3.4)

However,

�T18�p� − Th1 8�p�� ≤ �T18�p� − Th1 8�ph�� + �Th1 8�ph� − Th1 8�p��:
We have that �T18�p�−Th1 8�ph�� = �Q3�G�ξ+8�ξ��− G̃h�ξ+8�ξ����,
which by Assumptions (G), �Gh�, and �3:2� is less than or equal to
σ�3�K�R�h. The previous section shows that the map T18�·� is differen-
tiable and its derivative is bounded (Lemma 2.4). Thus by the mean value
theorem �Th1 8�ph� − Th1 8�p�� ≤ K�ph − p�. Notice that �ph − p� is
�P3�G�ξ + 8�ξ�� − G̃h�ξ + 8�ξ����. Thus from Assumptions �Gh� this is
less than or equal to σ�3�K�R�h for all p ∈ P3H. Returning to �3:4� the
first inequality in the proposition follows.

The second inequality in the proposition follows in a similar manner. Let
ρ ∈ P3H with �ρ� = 1 given. By Lemma 2.3 there exists η ∈ P3H such
that

ρ = Lη+ P3DN�ξ +8�ξ���I +D8�ξ��η

D8�p�ρ = L8�ξ�η+Q3DN�ξ +8�ξ���I +D8�ξ��η;
where ξ is as in the first part of the proof. We have that

D8�p�ρ = Q3DG�ξ +8�ξ���I +D8�ξ��η:
Set

ρh x= Lη+ P3DNh�ξ +8�ξ���I +D8�ξ��η:
The map Th9 is defined exactly as T9 was in Section 2 only N is replaced

with Nh defined by �3:1�. The maps D8 and D8h are the fixed points of
T8 and Th8h , respectively. We obtain by the uniform contraction theorem

sup
p∈P3H

�D8�p� −D8h�p��op

≤ 1
1− µc

sup
p∈P3H

�T8D8�p� − Th8hD8�p��op; (3.5)

where µc is defined in �2:15�.
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We estimate the term on the right hand side as

T8D8�p�ρ− Th8hD8�p�ρ =
(
T8D8�p�ρ− Th8D8�ph�ρh

)
+ (Th8D8�ph�ρh − Th8hD8�p�ρh)
+ Th8hD8�p��ρh − ρ�

x= E1 + E2 + E3:

The first term E1 is Q3�DG�ξ + 8�ξ�� −DG̃h�ξ + 8�ξ����I +D8�ξ��η,
which can be majorized using Assumptions �Gh�, �3:2�, �2:6�. In particular,
�E1� ≤ σ�3�K�R��1+ `�φ−1h for all p ∈ P3H, and all ρ ∈ P3H x �ρ� = 1.

The two terms in E2 are

Th8D8�ph�ρh = LD8�ξ�η+Q3DNh�ξ +8�ξ���I +D8�ξ��η;

Th8hD8�p�ρh = LD8�ξ1�η1 +Q3DNh�ξ1 +8h�ξ1���I +D8�ξ1��η1:

In the first term

ph = Lξ + P3Nh�ξ +8�ξ��

ρh = Lη+ P3DNh�ξ +8�ξ���I +D8�ξ��η;
as above. In the second ξ1, η1 are such that (with p, ρ the same as above)

p = Lξ1 + P3Nh�ξ1 +8h�ξ1��

ρh = Lη1 + P3DNh�ξ1 +8h�ξ1���I +D8�ξ1��η1:

Just as in the derivation of �2:12� we have that �ξ1 − ξ� ≤ φ−1��p−ph� +
�8�ξ1� −8h�ξ1���, which can be majorized by σ�3�K�R�h for all p ∈ P3H
by using Assumptions �Gh� and the first estimate in the lemma. Similarly,
one finds by adding and subtracting appropriate terms that

�η1 − η� ≤ φ−1
∥∥P3DNh�ξ1 +8�ξ1���I +D8�ξ1��
− P3DNh�ξ +8�ξ���I +D8�ξ��∥∥

op
�η�

+φ−1�1+ `��∥∥P3DNh�ξ1 +8h�ξ1��
− P3DNh�ξ1 +8�ξ1��

∥∥
op
�η1�:

Recall that Nh�v� = N�v� − θR��v�2�E�v�. Moreover, N�·� is uniformly
continuous on H, and E�u� tends to zero uniformly on B�0; 2R� as h→ 0.
In addition, DN and DE have analogous properties. Thus the first term in
the above estimate is controlled. Moreover, Nh is uniformly continuous on
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all of H, 8h converges uniformly to 8 on H, and so the second term in the
above estimate tends to zero as h goes to zero. The bounds on �η�; �η1�
are provided in Lemma 2.3. Hence, �η1 −η� may be made arbitrarily small
uniformly in ρ by requiring h to be sufficiently small. We conclude, there-
fore that given and ε′ > 0 there is a K�ε′� > 0 such that �E2� ≤ ε′ for all
h ≤ K�ε′� and for all p ∈ P3H and ρ ∈ P3H x �ρ� = 1.

For the last term, E3, we use �2:7�, �2:6�, and Assumptions �Gh� to
conclude that

�E3� ≤ `�ρ− ρh�
= `�P3��DG�ξ +8�ξ�� −DG̃h�ξ +8�ξ����I +D8�ξ��η��
≤ σ�3�K�R�`�1+ `�φ−1h:

Returning to �3:5�, we conclude that given any ε′ > 0 there is a h0�ε′� > 0
such that

sup
p∈P3H

�D8�p� −D8h�p��op ≤ ε′

for all h ≤ h0.

4. CONSEQUENCES

While the persistence of the inertial manifold under C1 perturbations is
interesting in its own right, there are some consequences that are interesting
to consider. The restriction of the map G to its inertial manifold gives the
map for pn ∈ P3H

pn+1 = P3G�pn +8�pn�� (4.1)

defined on the finite-dimensional space P3H. This finite-dimensional sys-
tem, called an inertial form, has the following properties:

• The inertial form has the same dynamics as the original map G.
• If the map G originates from the PDE as in �1:3�, and if M is a

bounded invariant set for the PDE, P3M is a bounded invariant set of the
inertial form.
• The map P3G is at least C1 on the space P3H which is finite

dimensional.

Next we consider perturbations of the map G. Again the map Gh may
be a fully discrete (space and time) approximation of �1:1�. We will give
an example in the next section. We need only assume Assumptions �Gh�.
That is, we assume that the map Gh is close to the map G in the C1
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norm, uniformly over some appropriately chosen ball containing the global
attractor of the map G. The map G̃h, �3:1� and restricted to its inertial
manifold gives the system

pn+1 = P3G̃h�pn +8h�pn��: (4.2)

This finite-dimensional system has the properties:

• Equation �4:2� has the same dynamics as the original map G̃h and
agrees with the map Gh in the ball B�0; R�.
• The map P3G̃h�pn + 8h�pn�� is at least C1 on the space P3H

which is finite dimensional.
• P3G�p+8�p�� −P3G̃h�p+8h�p�� may be made arbitrarily small

in the C1 norm on B�0; R� by requiring h to be sufficiently small. See
Theorem 3.2.

Since both �4:1� and �4:2� are finite-dimensional systems, one may apply
results concerning the persistence of invariant sets under perturbation stud-
ied for finite-dimensional systems directly to the infinite-dimensional map
G. Results that apply include those described in [3, 4, 12, 21, 26, 33, 34, 36].
Moreover, the bounded invariant sets of G reside in the ball B�0; R�. The
above results indicate that the perturbed invariant sets converge to the true
set for h sufficiently small. However, the map G̃h agrees with the map Gh

inside B�0; R�. In particular,

Invariant sets that are known to persist under C1 perturbation for the
finite-dimensional case are captured by the map Gh for h sufficiently
small.

5. AN EXAMPLE

We consider a dissipative PDE that may be expressed as an evolution
equation in a Hilbert space H (as �1:1�) in the form

du

dt
+Au+ R�u� = 0; (5.1)

u�0� = u0:

We will assume that the linear operator A is an unbounded self-adjoint
operator with compact inverse. We assume that the nonlinear term is C1

and satisfies

�Aγ−βR�u�� ≤M�ρ� ∀u ∈ D�Aγ� x �Aγu� ≤ ρ:

�Aγ−βR′�u�µ� ≤M�ρ��Aγµ� ∀u;µ ∈ D�Aγ� x �Aγu� ≤ ρ;
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with γ ≥ 0 and β ∈ �0; 1� and where M�·� x �+ → �+ is a given monotonic
increasing function. For convenience we set � · � x= �Aγ · �. We suppose that
the PDE is dissipative in the sense that there is an R > 0 such that for any
solution of the PDE there is a T ∗�u0� > 0 such that

�u�t�� ≤ R ∀t ≥ T ∗:
Thanks to the dissipative property of the PDE we may truncate the non-

linear term as we did for the map

F�u� x= θ2R��u�2�R�u�:
One may check that F�u� = 0 for �u� ≥ 4R, F�u� = R�u� for �u� ≤ √8R,
and

�Aγ−βF�u�� ≤ K1 ∀u ∈ D�Aγ�:

�Aγ−βF ′�u�µ� ≤ K2�Aγµ� ∀u;µ ∈ D�Aγ�;
for some positive constants K1;K2 depending on R. The evolution equation

du

dt
+Au+ F�u� = 0 (5.2)

has the same dynamics as the original PDE inside the absorbing set B�0; R�.
Remark. The reason for choosing the cut-off function θ2R so that

F�u� = R�u� for �u� ≤ √8R is so that when we verify Assumptions �Gh�
we need only check that the perturbation approximates the evolution
equation �5:1� and not the prepared equation �5:2�.

As in the Introduction we define

L�τ� = e−Aτ; N�τ; u0� = −
∫ τ

0
e−�τ−s�AF�u�s��ds;

where τ > 0 and u�s� solves �5:2�. Then

G�τ; u0� = L�τ�u0 +N�τ; u0� (5.3)

and G�τ; u0� = u�τ�.
We assume that the eigenvalues of A, 0 < λ1 ≤ λ2 : : : ≤ λj → ∞, re-

peated with their multiplicities satisfy for any positive K3, K4

λm ≥ K3; λm+1 − λm ≥ K4λ
β
m+1 (5.4)

for some m ≥ 0. We set P3 = Pm the projection onto the first m eigen-
functions of the operator A and Qm = I − Pm. Because A is self ad-
joint, σ�3� = 1 in Assumptions (G). PDEs that are known to satisfy the
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above assumptions include the Kuramoto–Sivashinsky equation, the com-
plex Ginzburg–Landau equations, certain reaction-diffusion equations, as
well as other PDEs. See the references mentioned in the introduction.

As shown in Jones and Stuart [24, Section 4], Assumptions (G) and Con-
ditions (C2)–(C4) are satisfied for µ ∈ �e−1; 1� and with

τ = 1
λm+1

; b = e−λmτ; a = e−λm+1τ; c = e−λ1τ;

B2 = τ1−βK�K1;K2; `�;
where K�·� is some positive constant depending on K1;K2; `. The ver-
ification of (C1) follows exactly that of (C4). Indeed, we choose K4 =
4eK�K1;K2; `��1+ `�. (In the case we only require the inertial manifold to
be Lipschitz, the multiplication of four would not be required.) With this
choice for K4 we multiply �5:4� by τ and use the inequality ex − 1 ≥ x for
positive x. We conclude that e−λmτ − e−λm+1τ ≥ 4τ1−β�1 + `�K�K1;K2; `�,
which is (C1).

We have

Theorem 5.1. Suppose that �5:4� is satisfied. Then there exists an m suf-
ficiently large so that Assumptions (G) and Conditions (C) hold. For such m
the map G�u� = Lu+N�u� defined by �5:3� has an inertial manifold repre-
sentable as the graph of a C1 function 8 x PmH → QmH.

We turn to approximations of �5:1�. We consider for simplicity a Galerkin
approximation in the space variable and a semi-implicit time discretization.
Finite element approximations are considered in Jones and Stuart [24],
while finite difference approximations are studied in Jones [22] (see also
Lord [29]). A Galerkin approximation as well as other ways to approximate
the inertial manifold in the C1 norm is studied in Jones and Titi [25]).

In order to simplify the error estimates we assume for convenience that
the nonlinear term additionally satisfies

sup
µ∈D�Aγ�
�Aγµ�=1

�Aγ−β�DF�u1� −DF�u2��µ� ≤ L1�Aγ�u1 − u2�� (5.5)

sup
µ1;µ2∈D�Aγ�
�Aγµ1�=�Aγµ2�=1

�Aγ−β�D2F�u1� −D2F�u2���µ1; µ2��

≤ L2�Aγ�u1 − u2��; (5.6)

for all u1; u2 ∈ D�Aγ�. We emphasize that these assumptions are not nec-
essary for our results to hold.
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We approximate the solutions to �5:1� with

vn+1 − vn
1t

+Avn+1 + PNR�vn� = 0; (5.7)

where PN is the projection onto the first N eigenfunctions of the operator
A and vn ∈ PNH for all n ≥ 0. Theorem 5.1 requires that τ = 1/λm+1 in
the map G defined by �5:3�. Therefore, we consider the map

Gh;o�v0� = �I + 1tA�−1v0 − 1t
l∑
j=1

�I + 1tA�j−l−1PNR�vj−1�; (5.8)

where l1t = T = λ−1
m+1. We define the perturbed map Gh by

Gh�u� = Gh;o�PNu� ∀u ∈ H: (5.9)

Left to verify are the two statements of Assumptions �Gh�. Both are
classical error estimates showing that solutions of the perturbed system Gh

approximate the true solutions over finite-time intervals. In Jones and Stu-
art [24, Eq. (5.12)] such an error estimate is given, but for a discretization of
the prepared equation �5:2�. In the current setting we need only check the
closeness of �5:9� to the solutions of �5:1� (see the remark above). However,
rather than repeating the error analysis, we give the errors estimates given
in Jones and Stuart [24]. The estimates are not as sharp as for direct approx-
imation of �5:1�. This is due to the fact that the only Lipschitz property the
prepared nonlinear term satisfies is �Aγ−β�F�u� − F�v��� ≤ K�Aγ�u − v��
for u; v ∈ D�Aγ�.

We have from Jones and Stuart [24, Eq. (5.12)]

�G�u� −Gh�u��

≤ Kελm+1

(
λN
λm+1

)ε
1t +K

(
λm+1

λN+1

)1−β
; ∀u ∈ B�0; 2R�; (5.10)

where Kε→∞ as ε→ 0. This estimate makes use of �5:5�.
The second inequality in Assumptions �Gh� follows in the same way.

Under our assumptions about the term F�u� the Fréchet derivative of the
solution to �5:2� with respect to the initial data exists and

µ�t� = DS�t; u0�µ0

satisfies

dµ

dt
+Aµ+DR�S�t�u0�µ = 0; (5.11)

µ�0� = µ0:
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A similar situation holds for �5:8� and

DGh�u0�µ0 = �I + 1tA�−lPNµ0 −
l∑
j=1

�I + 1tA�j−l−1PNDR�PNuj−1�µj;

where the un are given by

un = �I + 1tA�−1PNu0 − 1t
n∑
j=1

�I + 1tA�j−n−1PNR�PNuj−1�:

Following the proof of �5:10� almost verbatim, we have that

�DG�u� −DGh�u��op

≤ Kελm+1

(
λN
λm+1

)ε
1t +K

(
λm+1

λN+1

)1−β
; ∀u ∈ B�0; 2R�: (5.12)

This is where �5:6� is used. One may check that the map Gh is a diffeomor-
phism provided the CFL like condition C21tλ

β
N < 1 is satisfied. We recall

that C2 depends on u as seen from the estimates on R�u� below �5:1�.
We therefore conclude with

Theorem 5.2. For m sufficiently large the map G, �5:3�, has an inertial
manifold representable as the graph of a C1 function 8. The finite-dimensional
system

pn+1 = PmG�pn +8�pn�� (5.13)

has the same dynamics as the map G; if M is a bounded invariant set of the
PDE, PmM is a bounded invariant set of �5:13�. For h (i.e., the right hand
side of �5:10�, �5:12�) sufficiently small, the map G̃h (defined in �3:1� from the
map Gh) has an inertial manifold representable as the graph of a C1 function
8h. The finite-dimensional system

pn+1 = PmG̃h�pn +8h�pn��
converges in the C1 norm to �5:13� over the ball B�0; R� as h tends to zero.

Those bounded invariant sets that are known to persist under C1 pertur-
bation reside in a neighborhood of the unperturbed set (see Pliss and Sell
[33] for example). However, the map pn+1 = PmG̃h�pn + 8h�pn�� agrees
with the Galerkin spatial discretization and the semi-implicit Euler time
discretization of �5:1� in the ball B�0; R�. Also the bounded invariants sets
of pn+1 = PmG�pn +8�pn�� are the same as those of �5:1�. We therefore
conclude that the discretization �5:7� of �5:1� captures those bounded in-
variant sets that are known to persist under C1 perturbation (in the context
of finite-dimensional results) for h sufficiently small.
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