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SIAM J. APPL. MATH. ? 1988 Society for Industrial and Applied Mathematics 
Vol. 48, No. 1, February 1988 007 

TRAVELLING COMBUSTION WAVES IN A POROUS MEDIUM. 
PART I-EXISTENCE* 

J. NORBURYt AND A. M. STUARTt 

Abstract. A one-space-dimensional, time-dependent model for travelling combustion waves in a porous 
medium is analysed. The key variables are the temperature of the solid medium and its density and the 
temperature of the gaseous phase and its density. The key parameters ,, A and a are related (respectively) 
to the driving gas velocity, the specific heat of the combustible solid and the ratio of consumption of oxygen 
to that of solid. The regions of existence of the different types of combustion waves are found in (,, A) 
parameter space, with a = 0. The types of combustion wave are classified by the switch mechanism that 
turns off the combustion, which occurs over a finite, but unknown, interval. Because the model is linear 
outside the combustion zone, the eigenvalue problem governing the existence of travelling waves may be 
reformulated as a two-point free boundary problem on a finite domain. Existence and nonexistence theorems 
are established for this unusual bifurcation problem. 

Key words. combustion, travelling waves, existence 

AMS(MOS) subject classifications. 34B15, 35B32, 80A30 

1. Introduction. In this paper we analyse a one-dimensional, time-dependent model 
for porous medium combustion. The equations form a simplified version of the model 
proposed by Lawson and Norbury in [3] and the details of the simplifications may be 
found in [5]. We pose the equations on an infinite domain and seek travelling wave 
solutions to the problem. The equations are linear outside a finite region of space in 
which combustion occurs and so we reduce the eigenvalue problem governing the 
existence of travelling waves to a two-point free boundary problem. By applying local 
bifurcation theory we prove the existence of a branch of nontrivial solutions to this 
free boundary problem. We examine the structure of the solutions on this branch 
(shown by Fig. 1 in ? 6) by a combination of numerical and series expansion techniques. 
In particular we demonstrate the importance of the parameters representing the inlet 
gas velocity and the specific heat of the combustible solid in determining the existence 
and form of the travelling wave solutions. 

A wide variety of combustion phenomena have been modelled by idealising a 
propagating combustion zone as a travelling wave solution of an appropriate set of 
model equations. In particular, Matkowsky and Sivashinsky [4] model solid fuel 
combustion in such a fashion. The situation which we analyse is somewhat different 
from this because, while we also consider the combustion of a solid, the medium is 
assumed to be porous. This affects the modelling fundamentally: first, we must include 
a description of the conservation of gas mass and energy, and second, the nature of 
the reaction rate differs substantially from that in solid fuel combustion because the 
reaction rate is limited by the ability of the gaseous reactants to diffuse between the 
gas mainstream and the reaction sites. 

The derivation of the model which we analyse here is described in [5]. The four 
dependent variables are o-, u, w and g which represent, respectively, the heat capacity 
of the solid, the solid temperature, the gas temperature and a quantity proportional 
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156 J. NORBURY AND A. M. STUART 

to the product of the oxygen concentration and the gas temperature. The heat capacity 
is a linear function of the concentration of combustible solid, and thus the equation 
for ow governs the concentration of combustible solid. The parameter , is proportional 
to the inlet gas velocity, while the parameter A is linearly related to the specific heat 
of the combustible solid. The parameter a is proportional to the ratio of the rate of 
consumption of oxygen to that of solid. 

The equations are 

(1.1) - = -Ar, 
a t 

au a2u 
(1.2) '-= 2 - w-u + r, 

aw 
(1.3) ,u=w -w 

az 

(1.4) ag = 
a 

r. 

Here the reaction rate r is given by 

(1.5) r = ,u l/2H(g)H(o-r)-H(u - uC)f(w)g, 

where H(u) is defined to be zero when u ?0 and unity when u > 0. The function f(w) 
is usually defined to be proportional to w2; however, much of the analysis applies to 
a general positive function fi We now make the following definition. For both the 
partial differential equation system (1.1)-(1.8) and the ordinary differential equation 
system (2.1)-(2.6) we define the burning zone to be the interval in z space in which 
the reaction rate r satisfies r > 0. T E [0, 1). 

The boundary conditions for (1.1)-(1.5) are taken to be 

(1.6) U(?OO, t) = Ua, W(_00, t) = Ua and g(-oo, t) = ga. 

The ambient temperature Ua is typically much smaller than u,, the critical switching 
temperature. 

Throughout this paper we will take a 0 and redefine f(w) to absorb the factor 
ga. In so doing we are describing combustion processes in which either the rate of 
oxygen depletion is slow or in which the initial concentration of oxygen is high. This 
will not affect much of the analysis, although for ,u << 1 it will clearly be unrealistic, 
by virtue of (1.4). We discuss this matter further in ? 6. 

The model defined by (1.2)-(1.6) does not include the effect of radiation in the 
solid energy equation (1.2). However, the qualitative nature of the results in this paper 
are not affected if we include this effect. In fact, the results of ?? 2-4 are completely 
unchanged. The details of the algebra involved in the power series expansions in ? 5 
will, however, be modified, as will the quantitative nature of the numerical results in ? 6. 

In ? 2 we derive the eigenvalue problem governing the existence of travelling wave 
solutions to the partial differential equations (1.1)-(1.8). In ? 3 we show how this 
problem may be converted to a two-point free boundary problem. In ? 4 we prove two 
theorems on the existence of solutions to the free boundary problem. In ? 5 we employ 
perturbation series expansions to determine the form of the solution in various para- 
meter limits. In ? 6 we describe some numerical results which extend our understanding 
of the solution behaviour away from regions in which the expansions are valid. 
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EXISTENCE OF POROUS MEDIUM COMBUSTION WAVES. I 157 

Because of the form of the reaction term (1.5) there is no bifurcation of travelling 
combustion waves from the trivial state of no burning. However, we demonstrate a 
technique for obtaining a local analytical description of the global solution branch 
representing combustion. We do this by stretching an artificial trivial solution with a 
burning zone of zero length onto a solution with a burning zone of finite length. This 
rescaling, which relies on the nature of the step function in the reaction rate (2.5), 
enables the techniques of local bifurcation theory to be applied. The resultant approxi- 
mations in the neighbourhood of the bifurcation point then provide starting points for 
a global analysis of the solution branch by use of numerical techniques. 

In summary, the analytical, numerical and series expansion results in this paper 
support the conjecture that Figs. 1 and 3 (see ? 6) define the generic behaviour of 
solution branches representing travelling wave solutions of (1.1)-(1.6). In particular 
we find that increasing the inlet gas velocity or the solid specific heat leads to regimes 
in which steady combustion cannot occur. Furthermore, we find that for solutions to 
exist, we require A > 0; thus it is necessary to allow for changes in the overall solid 
heat capacity of the medium in order that combustion may occur. This is in contrast 
with the theory of homogeneous combustion, where it is frequently assumed that the 
concentration of reactant is so small, relative to the concentration of inerts, that the 
overall physical properties of the medium do not change as the combustion reaction 
takes place. The stability of the steady travelling wave solutions will be discussed in 
Part II of this paper [7]. 

2. The governing eigenvalue problem. We make the transformation of independent 
variable x = z-ct in (1.1)-(1.3) and write '-d/dx. We also define Q(x) =co(z, t), 
W(x) = w(z, t) and U(x) = u(z, t). The equations become 

(2.1) Q'= Ar, 

(2.2) uW'= U- W, 

(2.3) U"+QU'+ W-U+r=0. 

The reaction rate (1.5) is now 

(2.4) r = H(Q-Tc)H( U-uc),u1/2f( W). 

The boundary conditions (1.6) and (1.7) give us 

(2.5) U(?oo)= ua and W(-oo)= ua. 

By assuming U ua (<uc) as x -> oo so that no reaction occurs at x = +00, we deduce 
that the solid concentration there is given by its initial value, so that 

(2.6) Q(oo) = c. 

The set of equations (2.1)-(2.6) forms a nonlinear eigenvalue problem for the 
wave velocity c and the solution is a heteroclinic orbit in the four-dimensional 
(Q, W, U, U') phase-space of the problem. We now examine the structure of the burning 
zone for the case of travelling waves. We claim that there are two distinct classes of 
travelling wave dependent upon the nature of the switch from r = 0 to r #0 . We describe 
these. 

(i) A (U, U) wave. This is the case in which both ends of the burning zone are 
determined by points at which U = uc. In other words the reaction switches off because 
the solid temperature becomes too low. 

(ii) A (Q, U) wave. In this case the left-hand end of the burning zone occurs 
because of solid exhaustion (Q = Tc), whereas the right-hand end is marked by the 
point at which the solid temperature falls below uc. 
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158 J. NORBURY AND A. M. STUART 

Because of the boundary condition (2.6) on Q(oo) no other switching combinations 
are possible. If a > 0 then another switching mechanism becomes possible since oxygen 
exhaustion becomes possible at the right-hand end of the burning zone. This case is 
discussed further in ? 6. 

Examination of the ordinary differential equation system (2.1)-(2.7) shows that 
for r 0 the only solution is the trivial one 

(2.7) U=W=ua and Q=c. 

This solution exists for all values of the wave velocity c and represents the ambient 
state of no burning. 

Nontrivial solution branches are necessarily disjoint from the trivial branch of 
solutions since any nontrivial solution satisfies 11 U uc > ua. Thus it is not immedi- 
ately clear that we may obtain any local analytical description of nontrivial solution 
branches. Our approach is to reduce the problem of finding travelling waves to a 
shooting problem on a finite domain and then to seek solutions characterised by 
11 U u UC. In so doing we are motivated by the study of nonlinear parabolic equations 
with discontinuous forcing terms [6]. 

3. Reduction to a shooting problem. First we derive the shooting problem appropri- 
ate to case (i), the ( U, U) switch. We define the burning zone to be 0< x < L. Thus 
for x 0 (0, L), r = 0 and the governing equations are linear and integrable. 

-oo<x<0. 
The solution of (2.1)-(2.7) for -oo<x<0 is 

(3.1) U(X) Ua+(Uc-Ua) e ax, 

(3.2) W(X) Ua + (Uc + Ua) eax/(1 + a), 

(3.3) Q(x) = qL 

Here qL is an unknown, to be determined as part of the solution, and a is the positive 
root of a quadratic and given by 

(3.4) 2 (q+t,-l)+[(qL+ , - 4(qLll 1/2. 

To ensure that a positive root a exists, so that U and W are bounded at x =-oo, we 
require qL < p 

L<x <oo. 
In L < x < oo, (2.1)-(2.6) integrate to give 

(3.5) U(x) = Ua + B(uc- Ua) eP+(xL) + (1 - B)(uc- Ua) e(x 

B(uc - Ua) eP+(x-L)+(1 B)(uc-Ua) eP_(xL) (3.6) W(X)=Ua + e(e _x+1) 

(3.7) Q(x) = c. 

Here B is an unknown, to be determined, and 83+ and 83 are the roots of 

(3.8) 82+ (C+ A -1)8 + (CA -1 _ 1) = 0. 

Hence 

2,8 =_-(c + 1) i [(c + A -1)2 -4(c 1 - 1)]1/2. 

To ensure that we have two negative roots (which we need to determine c) we require 
/I < C. 
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EXISTENCE OF POROUS MEDIUM COMBUSTION WAVES. I 159 

We may now write down the governing equations on an unknown, but finite, 
domain (0, L) with boundary conditions given by the solutions found for x 0 (0, L). 

0< x < L. 

(3.9) QI = Au 1/2f( W), 

(3.10) U"+ QU'+ W- U+A 1'2f(W) = 0, 

(3.11) W'=(U- W)/,. 

The ordinary differential equations (2.1)-(2.6) imply continuity of Q, U, U' and W at 
x = 0 and x = L. Thus, at x = 0, we obtain 

(3.12) Q(0) = qL(a), 

(3.13) U(0)= UC 

(3.14) U'(0)-(uc ua) a, 

(3.15) W(0) = u +(UC 
- 

Ua) 
1 + ,MCa 

Here qL(a) is determined implicitly by (3.4). At x = L, we obtain 

(3.16) Q(L) = c, 

(3.17) U(L)= uc= 

(3.18) U'(L)-B(uc-Ua)P83 + (1-B)(uc-Ua)P, 

(3.19) W(L)=Ua+ 
B(uc Ua) (1 B)(uc-Ua) 

(p8+ + 1) + (p43-+ 1) 

Equations (3.9)-(3.19) form a two-point boundary value problem involving a 
fourth order system of ordinary differential equations (for Q, W, U and U') and four 
unknown constants; these constants are a, L, c and B. Notice that the system (3.9)-(3.15) 
is properly posed as an initial value problem, so that the extra boundary conditions 
at x = L determine the four constants. Since one of the unknowns is L, the length of 
the domain, the problem is of free-boundary type. It is also nonlinear via the coupling 
of the differential equations and through the nonlinear dependence of the 83's on c. 
In order that a solution of this boundary value problem is a true bounded travelling 
wave solution we must also impose the constraints that any solution found must satisfy 

(3.20) qL= Q(0) < A < Q(L) = c. 

Also, since we are considering a (U, U) switch, we require 

(3.21) Tc < Q(0). 

Note that 0 ' r < 1. 
We can eliminate B and c from the boundary value problem in the following way. 

Using (3.9), (3.16), (3.18) and (3.19) we may show that 

(3.22) U'(L) + (uC - ua)Q(L) -/A[ W(L)- Ua] = 0- 

Thus we now define the following one-parameter shooting problem. 
Definition of shooting problem 1 for the (U, U) switch. Integrate (3.9)-(3.11), 

subject to initial conditions (3.12)-(3.15) until x = L: U(L) = uc. The correct value of 
a is found when (3.22) is satisfied. 
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160 J. NORBURY AND A. M. STUART 

Remarks on shooting problem 1. (i) Notice that when the shooting problem has 
been solved the correct values of c and B may be determined directly from the final 
values of Q and U' by using (3.16) and (3.18). 

(ii) The solution of the shooting problem only represents a true travelling wave 
solution if constraints (3.20) and (3.21) are satisfied. 

When r = 0 (which corresponds to a combustion process in which the ash has 
zero heat capacity) a similar reduction to a one-parameter shooting problem is possible 
for case (ii), the (Q, U) switch. The only difference from the shooting problem 1 is 
that the initial conditions become 

(3.23) Q(0) = 0, 

(3.24) U(O)=ub, 

(3.25) U'(0) = (Ub Ua) a, 

(3.26) W(0) = Ua + (Ub-Ua)/ (/a + 1). 

Now a is known and given, from (3.4) with qL =0. The shooting parameter is Ub. 

Definition of shooting problem 2 for the (Q, U) switch. Integrate (3.9)-(3.11), 
subject to initial conditions (3.23)-(3.26) until x = L: U(L) = u,. The correct value of 
Ub is found when (3.22) is satisfied. 

Remarks on shooting problem 2. (i) The solution only represents a true travelling 
wave solution if certain constraints, namely (3.20) and Ub ' uc, are satisfied to ensure 
that we are in the regime of a (Q, U) switch. 

(ii) We can define a two-parameter shooting problem in the (more realistic) case 
X #0 . The two-parameters are then a and Ub. We return to this more general shooting 
problem in ? 5. 

4. Existence theorems. We now prove two theorems about the existence of non- 
trivial solutions to the travelling wave problem. The following theorem reflects an 
energy balance, relating the amount of solid consumed to the amount of heat produced. 

THEOREM 4.1. Nontrivial solutions to the nonlinear eigenvalue problem defined by 
(2.1)-(2.6) can only existfor O<A <,Ac, where Ac = (uc-Ua) 1. 

Proof. Integrate (2.3), using (2.2), from -oo< x <oo. This gives 
C+00) +00 

U'(oo) - U'(-oo) + J QU' dx+,u W(oo)- W(-oo)] + J r dx = 0, 

where r is defined by (2.4). Since we know that U'(?oo) =0 and W(oo)= Ua for 
travelling wave solutions, we have 

QU' dx+f rdx=0. 

Integrating by parts, using (2.1), gives us 

Ua[Q(oo) - Q(-oo)] + (1-A U)r dx = 0. 

But, we may now eliminate Q(oo) - Q(-oo), again using equation (2.1), to obtain 
r+0 

f[1 + A (Ua -U)]r dx = O. 

Since r = 0 for x 0 (0, L) we finally have 
L 

(4.1) [ 1+ A (Ua 01-k ,l2f( W) dx =0. 
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EXISTENCE OF POROUS MEDIUM COMBUSTION WAVES. I 161 

Thus any travelling wave solution must satisfy (4.3). Since f( W) > 0, U(x) > u, > ua 

for x e (0, L) and L> 0 for nontrivial solutions, the result follows. 0 
We now examine shooting problem 1 in greater detail. In what follows it is 

advantageous to pose the shooting problem on a fixed domain. Thus we rescale the 
independent variable x by defining y=x/L. Applying this transformation to (3.9)- 
(3.11) we obtain 

(4.2) Q = A- u 2Lf(W) 

(4.3) U37, + LQUy + L2( W- U) + ,,9/2L2f(W) = 0, 

(4.4) Wy = L( U -W)/. 

Boundary conditions (3.12), (3.13) and (3.15) at y=0 are unchanged. Boundary 
condition (3.14) becomes 

(4.5) Uy(0) = (u, - Ua) La. 

The matching conditions which implicitly determine L and a are (3.17) and (3.22), 
which become 

(4.6) U(1) = u, and L [1 +A(Ua - U)Ju1/2f( W) dx = 0. 

We have used (4.1) rather than (3.22), since they may be shown to be equivalent, by 
applying the method of Theorem 4.1 on the finite length burning zone. 

Examination of the boundary value problem defined by (4.2)-(4.6) and (3.12), 
(3.13) and (3.15) shows that it possesses the family of trivial solutions 

(4.7) L=, = a=a, = Uuc, Q=qL(C) - and W=-ua+(uc-ua)/(1+ ga) 

parameterised by a e R. Since the transformation of variable y = x/L is only valid for 
nonzero L, these solutions do not correspond to true travelling wave solutions. However, 
we may now apply the techniques of local bifurcation theory [1] to determine the 
possible location of bifurcation points on the trivial branch(es) of solutions into 
nontrivial solutions. Because of constraints (3.20) and (3.21), the only trivial solution 
of any interest to us is the one with ci = 0, so that Q-,. This is because it is the only 
trivial solution which, when perturbed by an arbitrarily small amount, can satisfy both 
(3.20) and (3.21). The following theorem examines the possibility of bifurcation from 
this particular trivial solution. 

THEOREM 4.2. Consider the trivial solution (4.7) of shooting problem 1 given by 
Y = 0, namely 

(4.8) Q--,u, U-uc, W-uc, L= 0 and a = 0. 

Then a necessary condition for bifurcation into nontrivial solutions of shooting problem 
1 isA=A,. 

Proof. Let q = (qj, 0, 4, e, q) represent the linearisation of (Q, U, W, L, a) about 
the trivial solution (4.8). We consider the solution and its linearisation as elements of 
the Banach space C 1(0, 1) x C2(0, 1) x C1(0, 1) x DR x DR. Then qi satisfies 

qty = eA. 1/21f(u,) and 0Y = oy = 0, 

where the initial conditions are 

41(0) = _(, + ,U2) n, 

a(0) = oy(O) = 0, 

O(?) = -(uc 
- UJ)IX- 
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162 J. NORBURY AND A. M. STUART 

The matching conditions are 

(4.9) 0(1) = 0, [1 +A(Ua-Uc)]L1/ 2f(UC) dy = O. 
0 

This linear problem for di defines the Frechet derivative of the shooting problem 
defined by (4.2)-(4.6) and (3.12), (3.13) and (3.15), with respect to the trivial solution 
(4.8). In the case A # Ac (= (uC - Ua)-f) the null-space of the Frechet derivative is 
one-dimensional and spanned by the eigenfunction 

(4.10) (Of, 0, 4, ;, 77 ) = (- (1 + p?), 0, -(Uc - Ua)/.L, 0, 1). 

This eigenfunction corresponds to bifurcation into the trivial branch of solutions (4.7) 
parameterized by cy. However, in the case A = Ac, the null-space of the Frechet derivative 
is- two-dimensional and spanned by (4.10) and a second eigenfunction 

(4.11) (4, 0, 4, , ,) = (Ac, 1/2f(uC)Y 0, 0, 1, 0). 

This extra eigenfunction derives from the noninvertibility of expression (4.9) for e at 
A = Ac. Consequently, A = A, is the only point at which bifurcation into nontrivial 
solutions can occur. 0 

Remarks on Theorem 4.2. (i) Since the null-space of the Frechet derivative is 
even-dimensional we have not determined a sufficient condition for bifurcation at 
A = Ac [1]. However, in ? 5, we prove that there is a nontrivial branch of solutions of 
shooting problem 1 bifurcating from the trivial solution (4.8) at A = AC, by constructing 
a power series expansion for the nontrivial solution. 

(ii) The two-dimensional null-space of the Frechet derivative at A = Ac provides 
the necessary degrees of freedom for bifurcation into nontrivial travelling wave sol- 
utions, since it allows the possibility of solutions of shooting problem 1 that satisfy 
(3.20). We return to this point in Theorem 5.1. 

5. Approximations by power series. In this section we examine the asymptotic form 
of the travelling wave solutions in the two separate limits A -> Ac and , -> 0. We also 
examine the case A -> Ac, ,u - 0 for a limiting value of (A - Ac)/,u which is of particular 
interest. 

Power series solution for fixed ,u > 0 and (Ac - A) - 0. Here we construct a regular 
power series expansion of the solution of shooting problem 1 which bifurcates from 
the trivial solution at A = Ak. Since these solutions are necessarily of small sup-norm 
relative to the trivial solution (4.12) of shooting problem 1, we deduce that they are 
characterised by L<< 1. Thus we rescale (4.2)-(4.6) and (3.12), (3.13) and (3.15) by 
setting L = s, where ? << 1. 

The appropriate form of the power series expansion is then 

u=Uc +e2 U2+83U+*** 

W=UC+EW1+e?W2W+*** 
Wr= ?a1 2 (_+* 

a=Eai+E 2a2+' 

A =Ac- 2+ c c2+-. 

To first order we obtain in terms of the original variable x, for 0 < x < e, 
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EXISTENCE OF POROUS MEDIUM COMBUSTION WAVES. I 163 

(5.1) Q(x) = A + a1[2x -(1 + ,Y)-] + 0(?2), 

(5.2) U(x) = uC +-(,-X)x + O(E,), 
AC 

(5.3) W(x) = uC - AC1 +0(82) 

Here a, is given by 

(5.4) a1,= 1/2f(ucAC; 

the value of AC2 is determined at higher order. 
Since this regular convergent series expansion always satisfies the matching condi- 

tions (4.9) and (4.10), by suitable choice of a and (A - AC) expanded as series in 8, 

this demonstrates the existence of a branch of nontrivial solutions of shooting problem 
1 bifurcating from A = Ac. Using the power series expansion of this bifurcating solution 
we may now prove the following result. 

THEOREM 5.1. For A < 1 there exists a nontrivial branch of travelling wave solutions 
of the problem defined by (2.1)-(2.6) bifurcating from A = Ac. For it > 1 there does not. 

Proof We showed in ? 3 that there is a one-to-one correspondence between 
solutions to the travelling wave problem and shooting problems 1 and 2, provided that 
certain constraints on the solutions of the shooting problems are satisfied. We have 
demonstrated, by means of i a power series expansion, the existence of a nontrivial 
branch of solutions to shooting problem 1 for all u. Thus we must determine when 
constraints (3.20) and (3.21) are satisfied (since these are the constraints that ensure 
that solutions of shooting problem I are also solutions of the travelling wave problem). 

From (5.1) it is clear that (3.21) is satisfied for sufficiently small 8, since 0 T X < 1 
and c = Q(L) = g + 0(e). Using the expression (5.4) for a, we obtain 

Q(sLl) = z +2ACg / f(u_)(1 p) + 0(82). 

Hence, for sufficiently small 8, the constraint ,i < Q(L) is satisfied if ,u < 1, whereas 
for ,u > 1 it is not. 0 

Form of solutions for 0 < A < Ac and ,t -> 0. Examination of the approximate form 
of solutions of shooting problem 1 in this regime leads to the conclusion that Q(0)- 
-#1/4A, where a is a positive number. Hence these solutions cannot satisfy constraint 
(3.21). Thus we expect that, for fixed 0< A Ac and , -> 0, we are in a parameter 
regime where a (Q, U) switch operates and so we consider shooting problem 2. 
Furthermore it can be shown that in this parameter regime solutions do not exist unless 
X = 0, so we consider this case. 

Analysis shows that consistent scalings of the variables in the case IL << 1 are 

Q -,114QO, L- 1-1/4Lo, U-U0, W-Wo and Ub~-UbO, 

where a subscript zero indicates an order one quantity. If we now define y = ,A/4x 

then with the scalings described above shooting problem 2 gives, to leading order, 

Qoy = Af( Uo), 

UOYY + Q0UOY +f( Uo) = O, 

Wo= Uo, 

together with initial conditions 

QO(O) =0, U0(O) = Ubo and Uoy(0) =0, 
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164 J. NORBURY AND A. M. STUART 

and matching conditions 

UO(LO) = uc and Uoy(LO) + Qo(Lo)/Ac = 0. 

Here we have used (3.4) with qL = 0 to determine the approximate form of a, namely 
_ _ 3 

In [9] the existence of a nontrivial solution of this leading order problem is proved 
for all 0< A <Ac. In order to assess the validity of the expansion procedure, it is 
valuable to compare it with a numerical solution of the full shooting problem for , 
small. Using the numerical method discussed in ? 6, we solved shooting problem 2 for 
a succession of small values of ,u. We then estimated the exponents a and b in the 
expressions L oc a and Q(L) kcb by a local interpolation of this form. The results 
are in good agreement with the formal expansion predictions of a = - 4 and b = 4; for 
instance, we find that for ,u = 0.00123 the numerically estimated values for a and b 
are -0.249 and 0.253, respectively. 

Form of solution for (A -Ac) and ,u - 0, and L = 0(,u 1/2). We now examine the 
asymptotic form of solutions for which (A - Ac) and ,u - 0. For (A - Ac) - 0 and ,u of 
order unity we have seen that the solutions are characterised by small burning zones, 
whereas for ,u - 0 and (A - Ac) of order unity, they are characterised by burning zones 
of length O( -1/4). Thus we expect that in the corner of parameter space A - Ac, 1 << 1 
we will. obtain different forms of solution depending- upon our scaling of the length. 
In this section we examine the case L = o 0 1/2) which is of particular interest because 
it allows us to determine analytically the end of the curve in (A, ,u) parameter space 
which divides regions in which (U, U) and (Q, U) switches operate. 

Consider shooting problem 2. We generalise the problem slightly to allow for the 
free boundary condition Q(O) = rQ(L) = rc. (See Remark 2 on shooting problem 2.) 
This corresponds to analysing ash with a nonzero heat capacity and is thus more 
realistic than the simplified case of X = 0 considered so far. Note that r E [0, 1). 

We define y = x/,u12 and L = Lqk 1/2. Since we are analysing a bifurcating solution, 
we consider L as given and determine A, the bifurcation parameter, as L varies. 

Equations (3.9)-(3.11) give 

Qy = A,uf( W), 

U,*_+ 
112QU,+py(W- U)+p 3/2fW)=0? 

1-k /2 WY= (U -W). 

The initial conditions are 

Q(O) = (l - a - a 2)/(1 + Fa), 

(5.5) U(O)=Ub, 

Uy (O>) (Ub Ua) al 1/2 

W(O) = Ua + (Ub -Ua)/(1 + 1ka). 

The free boundary conditions, which determine a, Ub and A are 

(5.6) Q(0) = rQ(Lj), 

(5.7) U(Ll) = uc, 

(5.8) Uy (Lj) + L2(u-Ua)Q(Li)-l3/2[W(Li)-Ua0=? 
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The appropriate -form for the expansion is 

Q=IkQl+g 5/2 Q2+..., 

Ub U, + /3/2 Ubl /3Ub2+ .. 

3=UC+y/2 Wbl + , k2 W 

W= UC+,'2W1+pi2W2+_. 

a = al1 + a2/15/2 + . . . 

A =AcAC1,u3/2 _ * v A =A ,,, 

Substituting these expressions into the governing differential equations we obtain, 
to first order, 

Ql = (1- a1) + Akf(uj)y, 

U1 = 
WI 

= Ubl + (U. -ua)uy -(Ua)lyy 

From matching condition (5.7) we obtain 

(5.9) Ubl = -f uc)L2_(Uc - Ua)aiLl. 

Application of matching condition (5.6) gives us 

(1- a1) =[(1- a1) + Acf(uc)Lj], 

which rearranges to give 

(5.10) T1 1-T 

From these results we deduce the following theorem. 
THEOREM 5.2. Travelling wave solutions with a (Q, U) switch exist in the regime 

, << 1, A -A, and L = L, 1/2 only for 

(5.11) A2f(u,)(1+ ) ' L1 

Proof Since we require that Ub> uc in order that we have a (Q, U) switch in 
operation (and shooting problem 2 is applicable) we must have Ubl > 0. From (5.9) 
this gives 

2(uc -ua)al 

f(uc) 

Using (5.10) to eliminate a1, and noting that Ac =(uc -u- Ua)-, we obtain the lower 
bound on L1. 

Also, since all solutions must satisfy a1 > 0 in order that Q(O) < , and (3.20) is 
satisfied, the upper bound on L, follows from (5.10). O 

Remarks on Theorem 5.2. (i) There will always be a region in parameter space 
in which (Q, U) switch solutions exist, since 

2 
< for1allO<1 

(ii) For r= 0 the upper bound on L1 disappears; 
(iii) For r $ 0 the proof of nonexistence of solutions in the asymptotic corner 

,u << 1 and A -Ac can be extended to all solutions which satisfy L >>L, L 1/2 again 
provided that > 0 and a = 0. 
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We now proceed to second order in the asymptotic expansion. The step-by-step 
asymptotic solution of the equation for W is awkward because of the presence of a 
boundary layer of thickness O( :1/2) at y =0. Hence it is advantageous to integrate 
the linear equation for W explicitly to determine W as a function of U. This gives us 

(5.12) W(y) 
_ U" 

+ Ul(y) 32-a exp{ 212y}(uc-ua)y2 
(5.12) 

~ ~ ~ ~ EdU1 U 
(y) -exp I (O5/2) 

dy d 

The details of the second-order components of the solution provide little informa- 
tion of interest. However, we do evaluate A,1. A straightforward evaluation of the 
matching condition (5.8) to 0( p3), using (5.12) to avoid a full boundary layer analysis 
in the neighbourhood of y = 0, gives us 

(5.13) Akj1Akcf(uc)Lj Acf2(uc)L3/3 - a1f(uuc)L2 + a2Ak1Ll. 

In particular wes may use this expression to calculate the locus of points dividing 
regions of (U, U) switches and (Q, U) switches. By (5.11) this locus of points is 
characterised by a value of 

2 /1-X\ 
L, 

ACf(uC) V1 + T} 

Substituting this into (5.13) shows that, for ,u << 1, the locus of points dividing the two 
possible switching regimes is given by 

1 -_r 2 
1-k3/2 (5.14) A =c-1 + T) 3f(uc) 

Form of solutionsfor (A -Ac) and,u - 0 and L = O( p1/2); the (U, U) switch case. In 
the previous part of this section we derived expressions for solutions of the (Q, U) 
switch problem in the parameter regime (A - Ac) and ,u - 0 and L = O(,u 1/2). We also 
derived an asymptotic expression for the locus of points in (A, A) parameter space 
dividing regimes in which (Q, U) and (U, U) switches operate. Here we derive 
expansions for the (U, U) switch case in the same parameter regime. 

The differential equations and form of series expansion are the same as tor the 
(Q, U) switch case. To first order we obtain 

(5.15) Ql = (1-a,) + Acf(uc)y, 

(5.16) Ul = (uc - Ua)ay -f(uc)y 2/2. 

To ensure that U,(Li) = 0 we require that 

(5.17) a, = Acf(uc)L1/2. 

Note that a result analogous to Theorem 5.2 provides an upper bound on L, in order 
that we are in -the regime of a (U, U) switch, namely 

(5.18) L f,< 

As in the (Q, U) switch case we can proceed to the second order. However we obtain 
no more useful information by doing this and so we omit the procedure. 

6. Results of the numerical solution of the shooting problems. In this section we 
discuss results obtained from the numerical solution of shooting problems 1 and 2. 
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The numerical solution of two-point boundary value proble'ms is discussed in a number 
of standard texts [2], [8]. To obtain the results in this section we use a shooting method 
combined with Newton-Kantorovich iteration. 

By Theorem 4.1 we know that we can restrict our attention to the region 0 < A < A. 
Furthermore we know that a branch of nontrivial solutions is born at 11 U 11j - uC and 
A Ac. Thus we may use this knowledge to provide an initial guess for a continuation 
procedure in the parameter A. Using numerical solutions obtained in this manner we 
then perform continuation in the parameter ,. 

Figure 1 shows the bifurcation diagram (11 U jjc, A) for the solution of shooting 
problems 1 and 2. The free parameters are fixed at = 5, u, = 0.9 and ua = 0.1 and we 
take f( W) = W2. The point Al divides the regions in which a (Q, U) switch operates 
(to the left) and a (U, U) switch operates (to the right). Note that d(jl Ujj,,)/dA is 
discontinuous there. A2 is the point at which constraint (3.20) ceases to be satisfied in 
the sense that Q(L) < ,u for A > A2. Thus, to the right of A = A2 solutions to the travelling 
wave problem cease to exist. This concurs with the result of Theorem 5.1, which holds 
in the neighbourhood of A = AC. 

u = Maximum Solid Temperature 

50- 

45- 

40- (Q, U) Switch i (U, U) Switch travelling No travelling wave solutions 
travelling I wave solutions 

wave 

30 - solutions 

25-I 

20 

15 

10 

5- \ | 0 Specific 5 
I @ Heat 

0 A 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

A1 A2 

FIG. 1. Bifurcation diagram for shooting problems 1 and 2; ,t = 5. 

Similar bifurcation diagrams are obtained for all values of ,. In particular the 
fact that 11 UI.OO becomes unbounded as A - 0 is a common feature of all the solutions; 
this fact is a direct consequence of (4.1), which implies that the average of U over L 
is O(A1) as A-*0. 

We now discuss the results obtained from continuation in the parameter ,u, for 
X = 0. For , << 1 a (Q, U) switch operates and the approximate form of the solution is 
given in ? 5. As ,u increases the length of the burning zone decreases (see Fig. 2) until, 
at , = jk(A), a minimum length is reached. As L begins to increase again we reach a 
second critical value of ,u = ,*(A) at which Ub = uc and a (U, U) switch takes over. 
Thereafter L, c and || UjjOO continue to increase monotonically with ,u. However, c/,u 
decreases until finally, at g =*(A), a point is reached at which c/l = 1. Hence 
constraint (3.20) is no longer satisfied and the solution to the travelling wave problem 
ceases to exist. 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

FIG. 2. Length of burning zone versus ,u; (Q, U) switch. 

From this description we deduce the importance of the loci ,u*(A) and ,*(A). 
We may find these numerically, again using a shooting method combined with Newton- 
Kantorovich iteration. Notice that we have determined the ends of these loci analyti- 
cally: ,ut*(A ) is determined implicitly by (5.14) and Au*(A ) is known to satisfy /U*(A,) = 1, 
by Theorem 5.1. Again these local analytic expressions provide starting points for the 
numerical procedure. 

The results of this section are summarised in Fig. 3, which shows the regions in 
(,u, A) parameter space in which nontrivial travelling wave solutions exist. Figure 3 
also delineates the regions in which (Q, U) and (U, U) solutions occur. Note that, for 
r = 0, the lowest curve disappears since we can find solutions for arbitrarily small , 
and A. 

Our numerical evidence supports the conjecture that when nontrivial travelling 
wave solutions exist they are unique, for our typical function f(w). This conjecture is 

No solutions ~ ~ ~ ~ Nosouton 

0 

FIG. 3. Summary of existence theory for steady combustion waves. 
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strengthened by the fact that there are no bifurcation points on the nontrivial solution 
branch in the neighbourhood of A = A,. The proof of this result again employs series 
expansions to demonstrate that the Frechetderivative of shooting problem 1, with respect 
to the nontrivial solution, is an invertible operator in the neighbourhood of A = A,. 

Throughout this paper we have been concerned with the case a 0 and so the 
variation of g, defined by (1.4), has been suppressed. The description of the solution 
behaviour will be modified for nonzero a, particularly for small values of the inlet 
velocity, proportional to A. For instance, we know from Theorem 5.2 that for r O0 
solutions of the travelling wave problem with a = 0 cease to exist for L sufficiently 
large, which corresponds to , being sufficiently small. This nonexistence is associated 
with the suppression of the equation for g, which governs the depletion of oxygen 
during the combustion process. In practice, for small enough values of the inlet gas 
velocity, the depletion of oxygen eventually becomes significant, regardless of the 
initial concentration. Thus, for small enough values of ,A, we expect that a third 
switching regime will occur corresponding to oxygen exhaustion at the right-hand end 
the burning zone combined with solid exhaustion at the left-hand end. 
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