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Approximation of dissipative partial
differential equations over long time intervals

Abstract In this article the numerical analysis of dissipative semilinear evolution equa.
tions with sectorial linear part is reviewed. In particular the approximation theory fo,
such equations over long time intervals is discussed. Emphasis is placed on studying the
effect of approximation on certain invariant objects which play an important role in unde;.
standing long time dynamics. Specifically the existence of absorbing sets, the upper anq
lower semicontinuity of global attractors and the existence and convergence of attractive
invariant manifolds, such as the inertial manifold and unstable manifolds of equilibrium
points, is studied.

1 Introduction

In this paper we consider initial value problems of the form
ur = fu), u(0) = uo. (1.1)

In particular, our interest is in the approximation of the equation as ¢t — oo. Recall
that standard error estimates typically grow exponentially with the time interval under
consideration and are hence of no direct value in this context. Our study will be focussed
on partial differential equations but, to introduce the main ideas, we consider several
illustrative examples in ordinary differential equations.

Examples
(1) Dissipativity. Consider the equation (1.1) with vector field f : IR — IR defined by
o) = u—u°. (1.2)
It is straightforward to show that
1d " 4
bl <4
- ) <1~ [

and hence that
lu(t)]* <1+ e *[Ju(0)]> — 1].

Thus there exists 7' = T'(|u(0)], ¢) such that
@) <1+ VE>T.

This shows that the solution satisfies an asymptotic bound which is independent of initial
data. Many physical systems exhibit such a property and it is often a mathematical
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manifestation of some form of energy dissipation. In some cases it may be important to
preserve the property under approximation.
The backward Euler method applied to (1.1), (1.2) yields the map

Tl ¥ il LT Y | e
A little calculation shows that

U7 < U+ 2881 — U
and hence that

PR w6 + BT 2

Induction yields
U™ <14 (14+2A8)7|U°)? —1).

Thus there exists N = N(|U°|,€) such that
U2 <1+4+¢ Vn>N.

This shows that the dissipativity of the equation is preserved under discretization for any
At > 0.

In contrast, the explicit Euler scheme applied to (1.1),(1.2) is not dissipative: we
obtain the map

g = U + AU — (U™,

If we let "
V=[+ E]E
and set U° = V, then the map admits the solution
U” = (—1)"V.
Since |[U™| = |U? , it is clear that the amplitude of the solution is not bounded indepen-

dently of initial data for any n, however large; thus dissipativity does not occur for all
fixed At > 0. Indeed, if |U°| > 1, to obtain dissipativity for the explicit Euler scheme
requires the restriction

2
< —
U -1
These two examples illustrate a general principle — only certain methods (such as
backward Euler) will dissipate on the whole phase space for any At > 0. Most methods
(such as forward Euler) will dissipate on any bounded set, but this requires a time-

step restriction dependent upon the size of that set. In section 3 we shall discuss the
dissipativity of numerical schemes. O

At

(i) The Global Attractor. The notion of dissipativity observed in the previous example
can be abstracted thus: a system is dissipative if there is a bounded set B, independent
of initial data, which all trajectories starting within any bounded set F enter and remain
inside after a finite time 7' = 7'(E,B). An analogous definition can be made for maps.
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The set B is known as an absorbing set. For the equation (1.1), (1.2), and its backward
Euler approximation, B = [—1 — ¢, 1 + €.

The global attractor A is found by mapping the set B forward under the equation (1.1)
and seeing what remains as ¢ — co. A precise definition is given in section 4. For equation
(1.1), (1.2) the global attractor is simply the interval [—1, 1]. This may be understood by
noting that, since f : IR + IR, the flow is in gradient form as (1.2) may be written as

flu) = —F'w), Flu)= 3012

Hence p
| CAP(u(®)} = .

Thus F(u) acts as a potential well for the equation (1.1), (1.2); since F' has minima at
u = +1 and a maximum at u = 0 it follows that any bounded set in IR is mapped into
an € neighbourhood of the interval [—1, 1] in a finite time 7' = T'(¢). Figure 1.1 shows the
potential well F' governing the flow of (1.1), (1.2).

In many situations it is of interest to understand the effect of approximation on the
global attractor for (1.2). However, the global attractor may be very sensitive to per-
turbation and can undergo discontinuous shrinking under arbitrarily small perturbations.
Consider (1.2) with vector field given by f(u) :

—(u+1P+e u<-1
fe(u) =1 e(uw®/2 —3u/2), —-1<u<l (1.3)
—(u—12—¢ u>1

This vector field is C*(IR, IR) for every € > 0. Furthermore, using the gradient structure of
the equation it is straightforward to show that the problem is dissipative with absorbing
set B =[—1—6,1+4 8] for any 6 > 0 and hence has an attractor A.. The gradient flow
has potential F'(u) shown in Figure 1.2 for € > 0 and in Figure 1.3 for ¢ = 0.

The important point to observe from these figures is that for every ¢ > 0 the attractor

A= {0}, €>0,

a single point whilst for e =0

Ao = [-1,1],

an entire interval. This shows that the attractor Ag is upper-semicontinuous with respect
to € > 0 but it is not lower-semicontinuous. Although the perturbation induced by € in this
example is not directly analogous to a numerical approximation, it nonetheless indicates
an important point — without strong assumptions it may be difficult to prove lower-
semicontinuity of attractors with respect to perturbations of any kind, including those
induced by numerical approximation. This will be clearly illustrated in section 4. Roughly
speaking, the difficulty associated with the attractor Ay is its lack of hyperbolicity, or
viewed another way the fact that it is not exponentially attracting. 0O

(iii) Attractive Invariant Manifolds. Since attractors may vary discontinuously under
approximation, it is sometimes of interest to study objects which are more robust under
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perturbation. An important example is an exponentially attractive invariant manifold.
For the purposes of this article it is sufficient to think of an invariant manifold as a
graph relating one subset (or projection) of the solution variables to another subset (or
projection); in this context the invariance means that solutions starting on the graph
remain on the graph for all time.

Consider the equations

pr=p—p°, p(0) = po,

(1.4)
g =—q+3p* —2p*, ¢q(0)=qo.

For (1.4), setting
yields

Thus the graph w = 0, that is ¢ = p?, is invariant for the equation and, furthermore, the
set of points ¢ = p? is exponentially attracting since w(#) = exp(—t)w(0). Thus w = 0 is
an exponentially attracting invariant manifold.

In the context in which we are interested, attractive invariant manifolds are important
since they are either contained within the attractor (unstable manifolds) or contain the
attractor (inertial manifolds) — see section 5. In general, the exponential attraction of the
manifolds in question ensures good stability properties under perturbation. O

In this paper we review the analysis of the effect of numerical approximation on dissi-
pativity, attractors and certain attractive invariant manifolds. Most of the results appear
elsewhere in the literature but some are presented in the context of partial differéntial
equations for the first time. Furthermore, an overview of the subject is given which re-
lates a variety of different topics concerned with numerical approximation over long-time
intervals.

In section 2 we describe the mathematical setting for the partial differential equations
studied and for their approximations. In section 3 we discuss discretization to preserve
dissipativity. Section 4 contains a study of the upper and lower semicontinuity of the global
attractor under numerical approximation. Section 5 is concerned with the upper and
lower semicontinuity of attractive invariant manifolds; in particular unstable manifolds
and inertial manifolds will be considered.
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Figure 1.3: Potential Well for Equations (1.1), (1.3) with e =0

FOR ALL FIGURES F(u) IS ON THE VERTICAL AXIS AND v ON THE HORIZONTAL AXIS
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2 Mathematical Setting

In the remainder of this paper we study the behaviour of the abstract evolution equation

du

= + Au = F(u), u(0)= ue. (2.1)
We consider (2.1) as an ordinary differential equation in a separable Hilbert space X with
inner product (e,e) and norm | e |?* = (s,e). We assume that A is a densely defined

sectorial operator with compact inverse, eigenvalues {\;} and associated eigenfunctions
{pi}. We also assume, without loss of generality, that A is positive definite and that the
eigenvalues \; are ordered so that

0< RE{)\l} S RG{)\Q} S kel o
As in [39] we set X* = D(A*) where A* = (A=*)"! and for a > 0

i oo
PN P
I'(a) Jo .

For o = 0 we define A° = I. Then X* is a Hilbert space with norm |e|? = (A*/%e, A%/?s).
The operator A generates an analytic semigroup L(t). (In section 5 we encounter the case
where A is not positive definite in our study of unstable manifolds; in that case the spaces
X and their associated norms are defined by considering the operator A = A + ([ for
¢ > 0 chosen to make A positive definite).

We assume that F satisfies conditions sufficient that (2.1) generates a semigroup S(t)
with the properties that

AS(t) : X7 — X7, v €(0,1), such that u(t) = S(¢)uo,

K = K(t,2,y) > 0 : [S(t)e — S(t)yly < Kz — ylo, (2.2)

{S(t)uo}i>o is relatively compact in X".

Thus (2.1) has solution u(t) = S(t)ug for every up € X7. Conditions on F'(e) which yield
(2.2) may be found, for example, in [23].
In the following we employ the notation

B,(v,r)={ue X" :|lu—v|,<r}.

Three examples, to which the theory considered in the remainder of the paper applies,
are now described.

Examples
(i) Reaction-Diffusion.

u = Au+ Ag(u), =z €,
u=0, ze€df, (2.3)

g(u) = Z?i}l bju?, byp_y <O0.
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We take X = L%(Q) in this case. Existence of a Lipschitz continuous semigroup may be
proved for 7y = 2 so that S(t) : Hj(9) — Hy(Q).

(ii) Navier-Stokes equation in 2 Dimensions.
u+u-Vu=gAu—Vp+h(z), z€Q,
V-u=0z e, (2.4)
u=0, ze€&dnN.

Here X is the Hilbert space H comprising divergence free velocity fields contained in
the space L?(§)? - see, for example, [44]. Existence of a Lipschitz continuous semigroup
maybe proved for y = 1.

(iii) Lorenz Equations.

zy=—o0(z—y)
Y =TT — Yy — T2 (2.5)
zi = —bz+ zy '

Here X = IR® and, again, existence of a Lipschitz continuous semigroup may be proved
forallt >0 O

We shall consider the approximation of (2.1) in space by a finite difference, finite
element or spectral method to yield the equation

dU
-E+AW=me U(0) = Up . (2.6)

for U(t) € V C X. Here V is a finite dimensional subspace of X.
For the temporal discretization we will consider the # method in the form
Un+1 5 Un
i T AU = PO, U(0) = U, (2.7)

where

U™ .= Uttt 4 (1 —0)U", 8 € 0,1].

We assume that A" defines a sectorial operator on V and note that we may then
define X" to be the Hilbert space comprised of elements of ¥V with norm | e |? =
(Aol Ahe/2q), We employ the following notation:

Bho(v,r) = {u € X : lu—v|pq < r}.

We also assume that (2.6) and (2.7) generate discrete Lipschitz continuous semigroups
Sh(t) : V=V and SHA: Y s V respectively.
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3 Dissipativity

We start by making a precise definition of dissipativity, motivated by the Example (i) in
section 1.

Definition 3.1 Equation (2.1) (resp. (2.6), (2.7)) is said to be dissipative in X, 8 €
[0,00), (Tesp. XMB) if there exists p > 0 such that for any r > 0 there is a T = T(p,r)
(resp. N = N(p,r)) such that

S(1)B,(0,r) C By(0,p) Wt > T

(resp.
S™(t)Bh(0,7) C Byp(0,p) Vt>T

ShAIB, (0,7) C Bhg(0,p) Vn > N.)

Remarks

(i) The notion of dissipativity for ordinary differential equation is discussed, for example,
in [40] and [46]. Generalizations to partial differential equations may be found in [20] and
[44].

(ii) For the finite dimensional approximations (2.6) and (2.7) it is clear that, for any fixed
h > 0, all the spaces X" are equivalent for all & > 0 so that dissipativity in one space
implies dissipativity in them all; however, in most cases, interest is in deriving discrete
absorbing sets that have radii p bounded independently of h — 0, for any given a > 0.
(iii) In many applications of the partial differential equation the initial data is taken
in Bo(0,7); however, the smoothing properties induced by e 4! often means that it is
equivalent to take data in B, (0,7) for some v € (0,1) — see [23], [44]. :

(iv) Frequently dissipativity is proved initially in X. Use of the uniform Gronwall lemma
[44] or, for certain gradient systems, a Lyapunov function [20] enables this to be extended
to dissipativity in X? for some # > 0. O

Throughout this section we assume that A is self-adjoint. We consider the case where

7:%and

f(u) == F(u) — Au : (3.1)

satisfies the structural assumption
3a,b> 0: (f(u),u) <a—blul?, Yue X:C X. (3.2)

Note that, since Xz = D(A?), it follows that {Au,u) = |A%u|2 is well-defined for u € X2
in the weak sense. There are many examples of equations satisfying (3.2) described in,

for example, [44]. In particular the three examples described in section 2 all satisfy (3.2).
Under (3.1), (3.2) it follows from (2.1) that

1d
5%‘1612 < g = b|u|2

and application of the Gronwall lemma shows that (2.1) is dissipative in X with
p=1(a+e)/b]? (3.3)
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for any € > 0.
Under approximation in space, equation (2.1) yields (2.6), where now we define

o (u) = Fiu) — APy (3.4)

In some applications it is of interest to perform the spatial approximation in such a way
that f"(e) satisfies a structural assumption analogous to (3.2), namely that

Ja,b>0: (fA(u),u) <a—blu?, YueVCX (3.5)

Note that, without loss of generality, we have assumed that the same constants a and b
appear in (3.2) as in (3.5). The question of spatial discretization to retain the dissipativity
of the underlying problem has been addressed by several authors. The earliest work in
this direction appears to be [42], [31], [16], [15]. In [42] the dissipative properties of a
Legendre-Galerkin approximation to a reaction-diffusion equation (2.3) were studied in
both L2(Q) and H}(Q); however the restrictions on the discretization parameters required
in this analysis are initial data dependent and it is natural to seek schemes for which this is
not required. In [15] a finite difference scheme is constructed for the Kuramoto-Sivishinsky
equation which preserves a condition closely related to (3.2) without initial data dependent
restrictions on the discretization parameters; it is interesting to note that the work of [15]
employs the same energy conserving approximation to uu, analysed by Fornberg in [19].
In addition to proving dissipativity of the scheme, the paper [15] also studies conditions
under which numerical approximations will blow up if energy-conserving discretizations
of uu, are not used; related issues for the viscous Burger’s equations have been studied
in [11]. The dissipative properties of certain nonlinear Galerkin methods are studied in
[31] and [16]. In [13] analogous properties to those derived in [15] are proved for finite
difference and finite element methods applied to a reaction-diffusion equation and in [37]
for the Ginzburg-Landau equation. The dissipativity of certain finite element methods
for the Navier-Stokes equation is studied in [2] and spectral methods for a nonlinear
convection-diffusion equation in f26].

Henceforth we assume that spatial discretization has been performed in such a way that
(3.5) holds. It is then natural to study the effect of time-discretization on dissipativity.

The following result is of interest in this context. We employ the notation p given by (3.3)
and define

R = sup |f*(v)].

lvl<p
Recall that the true absorbing set has radius p. Note that R may be unbounded as A — 0
since f*(e) = F"(e) — A*e and A" approximates an operator A with domain D(A4) C X.

Theorem 3.1 Dissipativity Consider application of (2.7) to (2.6) under the structural
assumption (3.4), (3.5). Then (2.7) is dissipative in X for every 6 € [3,1]; furthermore,
the absorbing set Bo(0,0) has radius o given by

A
p+ SR, 0=4,

_ ) p+AH(1-0)R, 6€(3,1), Ate (0,525
g = il 0 ‘1 1 At 2p (36)
20-1F> € (25 )7 = ((29_1)R,OO)

g B=1
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Proof. We have

Lrn+1 i Un oy o
isithed SRy (3.7
where f satisfies (3.5). Since
n+1 n
L # + (0 — %)(U”“ - U") (3.8)
the inner product with U™ yields, for 8 € [1,1],
U - :
< a—bjU™|2 3.9
e Lol IR (3.9
Let
o1=p+At(1—OR, o= (20’_’_ I (3.10)

We show that Bo(0,01) is an absorbing set for all § € [£,1] and that Bo(0,03) is absorbing
for § € (3,1]. The result then follows — for 6 € (1,1) the minimum of 01,0, has been
chosen for each At € (0, 00).

First consider By(0,01). Let € > 0. It is clear that either

a—BUP < —, (3.11)
or
a—HUPE s (3.12)
If (3.12) holds then we have
U < p

and, since U™? = U+ 4 (§ — 1)(U"+! — U™), we have |U™t!| < 5. Now, if (3.11) holds
and if |U"| < oy then, by (3.9), we have |[U™!| < |U™| < 0. These two observations
show that Bo(0,01) is positively invariant since, under either (3.11) or (3.12) wé have
|U"| < 01 = |U™!| < 0y. Furthermore, it follows from (3.9), (3.11) that iterates starting
in any bounded set containing Bo(0, o1) enter Bo(0,01) in a finite number of steps. Thus
we have exhibited an absorbing set By (0, 01).

Now consider By(0, 03). Since U™ = U™ + (1 — §)U™, equation (3.9) yields

|Un+ll? o |Un|2
SA7 < a—b[O*|U™* + 20(1 — O) (U™, U™H) + (1 - 6)*|UP)

<a— b |UM? - 0(1 - 0)|[U™? — 8(1 — O)|U™ > + (1 — 0)*|U™*]
<a—b[0(20 — DIU™)? + (1 — )(1 —20)|U™)?).

Hence
(14 2At60(20 — D)]|U™ 2 < [1 — 2Atb(1 — 8)(1 — 20)]|U™|* + 2aAt. (3.13)
Algebra shows that, for 8 € (3,1],

|1 — 2Atb(1 — 0)(1 — 26)|
1+ 2At60(20 — 1)]

<1, VAt>D0.
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Thus applying the Gronwall lemma to (3.13) yields

li nZ < Sl L
msup |U"" < pop 1y

and it follows that Bo(0,02) is absorbing. This completes the proof. O.

Remarks

(i) Note that, for § = 1 the absorbing set has radius identical to that arising in the con-
tinuous case. For 6 = % the dissipaitivty is rather weak since, because of the dependence
of R on h, the absorbing set depends on At/h? for some p > 0. Thus a form of Courant
restriction is required to make the absorbing set mesh independent. For example, if we
consider the reaction-diffusion equation (2.3) and a standard finite element approximation
based on piecewise linear triangulation of Q, then p = 2.

(ii) In [27] the two-step backward differentiation formula is analysed for problems satis-
fying (3.2) and shown to be dissipative. For gradient systems it is possible to find second
order time-accurate schemes which preserve dissipativity, without requiring a Courant
restriction, by exploiting a discrete version of a Lyapunov function; see [13], where a
modification of the Crank-Nicolson method constructed in [12] and the two-step back-
ward differentiation formula are analysed in this context.

(iii) Theorem 3.1 is a synthesis of the ideas contained in [13], [28] and [2]. In [13] the
dissipativity of the backward Euler scheme is studied for reaction-diffusion equations; in
that paper a discrete version of the uniform Gronwall lemma is proved and employed to
establish dissipativity in Hg(Q2) as well as L%(§}). In [28] Runge-Kutta methods are stud-
ied for ordinary differential equations (1.1) satisfying (3.2); it is proved that irreducible
algebraically stable methods preserve dissipativity, making a connection with the exsiting
theory of contractive methods derived in [6]. In [2] it was observed that, in the context of
the Navier-Stokes equations (2.4), a linearization of the §—method for 8 € (3, 1] has an
absorbing set independent of At > 0. This interesting fact has been generalized slightly
here and incorporated into our proof. A similar analysis for convection-diffusion equations
may be found in [26].

(iv) The linearisation of the #—method considered in [2] is of some practical interest since
it allows the direct implementation of a dissipative numerical method involving only the
inversion of linear systems at each step. This approach can be used in cases where F'(e)
may be represented as the sum of a bilinear form and a forcing function so that

F(v)= B(v,v)+g¢g

and the numerical approximation F'*(e) may be represented as the sum of a bilinear form
and a forcing function

F*"v) = B*v,v)+g.
It is then possible to consider the time-stepping scheme
n+l _ n
S
If B satisfies the property

+ AN = BY U, UMY 4+ g, U(0) = V.

(v, B(w,v)) =0 Yo,w e X7
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(as in the Navier-Stokes equations, for example) and a spatially discrete analogue of this
condition also holds then it is possible to generalise the analysis of Theorem 3.1 to cope
with this case — see [2] for details. O

This concludes our analysis of dissipativity. We remark that the dissipativity of linear
multistep methods is still an open question, as is the matter of the effect of the nonlinear
solver on implicit methods such as (2.7). We also note that we have asked here for
dissipativity of numerical schemes on the whole phase space V for fixed h, At; this is an
extremely strong condition. In many cases we might expect to obtain dissipativity on any
compact set £ C V for At, h sufficiently small in terms of the size of E. Such results have
been proved for Runge-Kutta methods applied to the ordinary differential equation (1.1)
under (1.3) in [29], [30], for nonlinear Galerkin methods in [10] and [41] and for spectral
approximation of reaction diffusion convection equations in [26]; however there are still
many open questions in this area for the approximation of partial differential equations.

4 The Global Attractor

In this section we define the global attractor for (2.1), (2.6) and (2.7) and then study the
relationship between the true and approximate attractors. We employ the notation

distg(u, A) = infyea |u — v|g
dists(B, A) = sup,cp dists(u, 4)
Ns(A,€) = {u € XP : distg(u, A) < €}
Niup(A,€) = {u € XM : disty, g(u, A) < €}.

Notice that distg(B, A) = 0 is equivalent to the statement B C A so that “dist” defines
a semidistance — the asymmetric Hausdorff semidistance. We will also find the concept
of an invariant set useful. A set B is said to be invariant under S(t) if S(¢)B = B for all
t > 0.

Definition 4.1 A set A € X" (resp. X™7) is said to attract a set U € X" (resp.- X"7)
under a semigroup S(t) (resp. S*(t),SH%!) if, for any € > 0 AT = T(e) (resp. N = N(e))
such that

SHU e Ny(A,¢e) Vi > T,

(resp.
SMOU € Npy(Aye) VE>T,

SEAT € Nio(A €) Vo> N.)

An attractor is a compact invariant set which attracts an open neighbourhood of itself.
An attractor A is said to be a global attractor if it attracts every bounded set U € X7
(resp. U € X™7.)
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We now show how the existence of an absorbing set, together with some compactness,
gives the existence of a global attractor [44]. To formalise this idea we require the following
definition:

Definition 4.2 The w—limit set of a bounded set U € X7 (resp. X"7) for S(t) (resp.
Sh(t), Sh81) is defined by

w(U) = UJSU,

s>01t>s
(resp.
w(U) = U S 1)U,
s>01t>s
wU) =) U 800
m>0n>m

The following theorem is proved in [44]:

Theorem 4.1 If S(t) (resp. S"(t),S™2!) has an absorbing set B.,(0,p) (resp. Bn(0,p))
and if It. > 0 (resp. n. > 0) such that {S(t)E}isi, (resp. {S*(t)E}isee, {SE4 E}usn,)
is relatively compact for any bounded set E € X7 (resp. X"7), then w(B,(0,p)) (resp.
w(Br,(0,p)) is a global attractor for S(t) (resp. S*(t),SHAa).

Remarks

(i) In [44] Theorem 4.1 is used to construct attractors for S(¢) : X — X by finding
absorbing sets in X and X”,8 > 0. In [20] the global attractor for gradient systems is
constructed directly by using a Lyapunov function and the existence of absorbing sets is
a consequence of the existence of an attractor or, alternatively, can be deduced from the
existence of a Lyapunov function.

(ii) In finite dimensions relative compactness is automatic and the existence of an absorb-
ing set in X implies the existence of an attractor. This has been used in a number of cases
to construct global attractors for numerical schemes - see [42], [15], [13], [37] and [28]; in
addition, the papers [42], [13] and [37] also prove h— independent estimates on the size
of the attractor in X"# for some B > 0. Furthermore, discrete Lyapunov functions can
also be used to construct a global attractor for the numerical approximation of gradient
systems; see [13].

(1ii) In many cases it is not possible to show that an approximate scheme has a global
attractor as the example of the forward Euler method applied to (1.1), (1.2) shows; how-
ever, the work of [22] shows that local attractors can be constructed for the approximation
under reasonable hypotheses. O

For the remainder of this section we assume that it has been established that (2.1),
(2.6), (2.7) have global attractors A, A" A" respectively and that, furthermore, these
sets may be constructed as w—limit sets of absorbing sets:

3B € [y,1), absorbing sets Bg(0,p), Brp(0,p) for S(t),Sh(t),Shat.
(4.1)
A =w(Bs(0,p)), A" = w(Brs(0,0)), A = w(Bus(0,0)).
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We assume also that B 3(0,0) is bounded in X7 so that,
dr=r(c)>0:U € Brp(0,0) = U € B,(0,r). (4.2)

In the light of our preceding remarks we know that these assumptions may be quite
strong as only local attractors may exist for the approximate semigroup; however, since
our aim is to convey the essential ideas, we proceed in this framework. These ideas can
be modified to allow for the case where A, A" or A" are only local attractors as in [22].

Our aim is to study the relationship between A and A" or A and A*!. ;From the
example in section 1 we expect that it may be possible to show that dist- (A", A) is small
(upper-semicontinuity) but that showing that dist., (A, A") is small (lower-semicontinuity)
will not, in general, be possible. The following theorem concerns upper-semicontinuity.

Theorem 4.2 Upper-Semicontinuity of Attractors Assume that:

(1) equations (2.1), (2.6) have global attractors A and A" given by (4.1) and that (4.2)
holds;

(II) for any T,é6,0 >0 3IH = H(T,6,0) > 0 such that
ISH)U — S*(t)U|, <6, T<t<2T
for all U € By (0,0) and h € (0, H).
Then dist,(A", A) — 0 as h — 0.

Proof. Recall that, since A" = w(By4(0,0)), it is sufficient to show that for any € >
037 > 0 and H > 0 such that, if A € (0, H), then S*(¢)Br5(0,0) C N, (A, e) vVt > T.
Now, by (4.2) we have that By g(0,0) C B,(0,r). Thus, for any ¢ > 037 > 0:

S()Bhs(0;0) C N (A, e/2) ¥t > T, * (4.3)

since A is the global attractor for S(¢) in X”. Furthermore, by assumption II of the
theorem, for any ¢ > 0 3H > 0 :

dist, (S*(¢)Bh s(0,0),S(t)Brs(0,0)) < €/2, T <t<2T, - (4.4)
for h € (0, H). Equations (4.3) and (4.4) show that, provided k € (0, H),
SMt)Brs(0,0) C Noy(Aye), T <t <2T.
For the purposes of induction assume that, provided A € (0, H)
Sh(t)Brp(0,0) C Ny(Aye), kT <t<(k+1)T (4.5)

and note that we have proved this for k& = 1. Since S*(kT)B 3(0,0) C Bys(0,0) (by

definition of an absorbing set) we may repeat the arguments above (with the role of ¢ = 0
taken by t = kT') to deduce that

dist, (S™(t)Bh (0, 0), S()Bhs(0,0)) < /2, (k+1)T <t < (k+2)T
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for h € (0, H). Hence by (4.3) we deduce that, provided that h € (0, H) we have
SHM()Bug(0,0) C N, (Ae), (k+1)T.<t< (k+2)T. (4.6)

Since (4.5) implies (4.6), induction on k shows that, for any ¢ > 0 37" > 0, H > 0 such
that
Sh()Brp(0,0) C No(A,e), t>T

provided that A € (0, H). Since € > 0 is arbitrary, this yields the convergence result. O

Remarks

(i) Theorem 4.2 was first proved in [22] in a more general form where the existence of an
approximate global attractor was not assumed but, rather, an approximate local atttractor
constructed during the course of the proof.

(i1) Related results may be found in [33] where the weaker concept of uniformly asymp-
totically stable sets was studied for ordinary differential equations and in [34] where the
method was generalized to partial differential equations. The paper [25] relates the ap-
proach of [33] to that of [22]. The book [44] also contains a result similar to Theorem
4.2.

(iii) In [42] the upper semicontinuity of approximate attractors was considered for (2.3)
under Legendre-Galerkin approximation; in [35] such an analysis is considered for the
finite element method applied to (2.3). The upper semicontinuity of attractors for the
ordinary differential equations (1.1), (1.3) under approximation by Runge-Kutta methods
is studied in [28]. For g¢-step linear multistep methods the issues are somewhat more
complicated since the natural phase space for the temporal approximation is { X7}¢. This
issue is considered in [24] where the existence and upper semicontinuity of attractors for
strictly A(a)-stable multistep methods is proved.

(iv) Note that, depending upon the value of v, the error estimate in assumption (II) of
Theorem 4.2 may be required for. non-smooth initial data. The issue of non-smooth error
estimates, and the relationship to attractor convergence, is considered in [35]. For finite
difference methods the derivation of such non-smooth error estimates is considered for
the Navier-Stokes equations in [45]. In [37] the use of non-smooth error estimates for
finite difference approximations of the complex Ginzburg-Landau equation is avoided by
deriving discrete regularity results for the approximate schemes which essentially enable
B to be chosen arbitrarily large.

(v) Note that a result similar to Theorem 4.2 can be proved which incorporates the effect
of time-discretization; see [22]. O

We now proceed to discuss the lower-semicontinuity of attractors under numerical
approximation. As the example in section 1 shows this will not, in general, be possible
unless strong hyperbolicity conditions are imposed upon the attractor. In order to make
these conditions precise we need some further definitions. In the following we use dF' to
denote the Fréchet derivative of F.

Definition 4.3 An equilibrium point @ € X" of (2.1) (resp. U € X" of (2.6), (2.7))
satisfies

At = F(q),
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(resp. g B
A0 = FYUY).)

The unstable manifold of @ (resp. U) denoted by W*(z) (resp. WE(U), VV,’:N((:/)) is the

set

{uo € X7 :(2.1) has a solutionVt <0& u(t) — u as t - —o0},

(resp.

{Uo € XM :(2.6) has a solutionVt <0& U(t) = U as t — —o0},

{Up € X" :(2.7) has a solutionV¥n <0& U™ - U as n — —c0}.)

The local unstable manifold of u (resp. U) denoted by W*(u;¢) (resp. W¥(U;e),
Wi a(Us€)) is the set

{uog € W*(a) : u(t) € B,(u,e) Vt <0},

(resp.

{Up € WHU) : U(t) € Bro(U,€) Vt <0},

{Uo € Wi a, U):U™ € By, (U,¢) ¥n <0}.)
An equilibrium point @ of (2.1) (resp. U of (2.6), (2.7)) is said to be hyperbolic if the
spectrum of the linear operator A — dF(u) : D(A) v X (resp. A" —dF*U):V — V)

contains no points on the imaginary azxis.

In the following we use the notation
E=4{ve X" : Av=Fla)},

Eh={V eV: AV = F}V)}

to denote the equilibria of (2.1) and of (2.6) or (2.7).

In [21] the lower semicontinuity of attractors is considered when (2.1) is in gradient
form: it is supposed that a Lyapunov function V(e) : X7 +— IR exists for (2.1) in which
case, provided the equilibria are hyperbolic, the attractor A is given by

A=) We(v). (4.7)

vEE

(See [20] for a precise definition of Lyapunov function in this context). Using the tech-
niques of [21] it may then be shown, under assumptions I and II of Theorem 4.2, together
with an assumption that the local unstable manifolds are lower-semicontinous in X7 with
respect to h that

dist- (A4, A") = 0 as h — 0.

This is a lower semicontinuity result and the same method of proof has been employed
in [28] to consider the effect of time discretization on lower-semicontinuity for ordinary
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differential equations in gradient form. The proof of [21] explicitly uses the Morse de-
composition of the attractor induced by the gradient structure. However, in [29], [30]
it is shown that the assumption that the system be in gradient form is not required to
prove lower-semicontinuity with respect to certain perturbations. Rather it is sufficient to
assume that the attractor has the form (4.7) where every element of £ is hyperbolic. Here
we generalise the theorem of [29], [30] which concerns ordinary differential equations, to
equation (2.1). '

Theorem 4.3 Lower-Semicontinuity of Attractors Assume that:

(I) equations (2.1), (2.6) have global attractors A and A" and, furthermore, that A is
given by (4.7) where € comprises a finite number of hyperbolic equilibria,

(II) for any T,é6,r >0 3IH; = H.(T,6é,7) > 0,C = C(T,r) > 0 such that
IS(T)u — SMTYU], < 6+ Clu—Ul,,

for all uw € B,(0,7), U € By4(0,7) and h € (0, Hy);
(III) for everyv € £ and 6 >0 Ir =r(v,6) > 0, Hy; = Hy(v,8) > 0 such that

dist,(W*¥(v,r), A*) < §

for all h € (0, Hs).

Then
dist, (A, A") = 0 as h — 0.

Proof. 1t is sufficient to prove that, given any € > 0 3H > 0 such that for every y € A,
Jy* € A" with the property that |y —y"|, < 2¢for h € (0, H). Since A is given by (4.7) we
need only consider y € W*(v) for all v € £. Given v € € we let r be given by assumption
I1T. , .

Let 8B,(v;r) denote the boundary of B, (v;r); that is

0By(v,r) ={u e X" : |lu—v|=r}.

Now set
Q= Wy(v;r) ﬂaB,y(v;r)

and

W = W (v)\W¢(v; 7).

Then, for r sufficiently small,
wW=1{}85(1)Q.
£>0
Note that for every 7 > 0 and every point u € Q there exists a u~ € W*(v;r) such that
u = S(7)u~. Using this fact, together with the fact that W is a union of trajectories all
of which start on Q, the relative compactness of (2.2) shows that W is compact in X”.
Note that {B,(z,€):z € W} is an e-cover for W in X" and hence, since W is compact in
X7, we may extract a finite sub-cover. Denote this subcover by {B;(¢)}._, and note that
each B;(¢) contains a point y; € W, where B;(€¢) = B(y;, €). By construction 3z; € Q and
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T; > 0 such that S(T3)z; = yi for each y; € W. Now assumption III implies that, for any
§> 0,3z" € A* and Hj = Hj(v,6) > 0 such that

|$i—x?l’7 S(S VhE (07H;]’

and by the invariance of A" it follows that yh = Sh(t)zF € A*. It now follows from
assumption II that there exists Hi = Hi(v,8) > 0 such that

lyi — yP], = |S(T:)z: — SM(T)zk| < (14 C)é6 VA € (0,min{H}, H}}].
Since I is finite, we deduce that 3{y*}{_, and Hs = Hs(v,€) such that

lrgagglyz yily <e Vhe(0,Hs).

Thus, for every y € Bi(e) and 7 : 1 < i < I there exists y* € A" such that
ly — il <2 Vhe(0,Hs).
Since the B;(¢),i = 1,...,I form a cover of W we deduce that
dist, {W, A"} < 2¢ Yo € (0, H).

Noting that there are only a finite number of v defining the attractor through (4.7) and
using assumption Il we deduce that 3H = H () :

dist, {A, A"} < 2¢ Vh e (0,H)]
and the result follows. O

Remarks

(i) to establish III it is sufficient to show that, for every v € € JIr = r(v,8) > 0 and
Hy; = Hy(v,6) >0 and V € Eh ¢ o1 such that

dlstW(W“(v,r),Wh(V, r A4 (4.8)

for all A € (0,H). This is since the unstable manifold of a fixed point is necessarily
contained in the global attractor.

(ii) if assumption III is replaced by (4.8) then the method of proof for Theorem 4.3 shows
that the closure of the unstable manifold of an equilibrium point is lower-semicontinuous
with respect to numerical perturbations.

(iii) 1t is not difficult to generalise Theorem 4.3 to include the effect of time-discretization.
a

This concludes our analysis of the upper and lower semicontinuity of attractors with
respect to numerical perturbations. Two important points have been established. Firstly,
lower semicontinuity will not hold in general and thus it is natural to consider the effect
of numerical approximation on more robust objects; this motivates the study of inertial
manifolds which contain the global attractor and perturb smoothly. Secondly, the cases in
which lower semicontinuity can be established all require proving the lower semicontinuity
of local unstable manifolds of hyperbolic equilibria. Thus, in the final section we consider
inertial and unstable manifolds under perturbation.
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5 Attractive Invariant Manifolds

Motivated by the remarks at the end of the previous section, we now study the effect
of numerical approximation on attractive invariant manifolds. We start by showing how
the problems of the existence of both inertial manifolds and unstable manifolds can be
formulated in the same framework — a framework which requires the study of globally
Lipschitz mappings in a Banach space. We then state and sketch the proof of an ab-
stract theorem concerning perturbation of attractive invariant manifolds for such globally
Lipschitz mappings.

Inertial Manifolds.

Consider (2.1) in the case where the operator A is self-adjoint. For our discussion of inertial
manifolds we assume that there exists # € (0, 1) such that the operator F' in (2.1) satisfies
the following conditions: 3y > 0,3 € [0,1) and E(o) > 0 such that F' : X7 — X758
satisfies

|F(u)|'v—ﬁ < E(o) Vue B,(0,0) : )
Bl
|F(u) = F(v)|y—p < E(0)|u —v|, Yu,v € B,(0,0);

We introduce the following decomposition of X :
X=Y®Z Y =span{th,ts,..., 0}, Z=Y"

where Ap; = A\iy; (as in section 2) and the orthogonal complement is taken in X. We also
denote by P and @ the projections P: X — Y and Q : X — Z.

Now assume that (2.1) has an absorbing set B, (0, p). Then, if we are interested only in
the long-time behaviour of (2.1), it is sufficient to modify F' outside B, (0, p) in a smooth
fashion to obtain a globally bounded and Lipschitz function. Doing this in the standard
fashion (see [17]) we see that the following holds: 3y > 0,4 € [0,1) and F > 0 such that
F: X7 — X7P satisfies

|F(u)y—s < E Yue X7

(5.2)
|F(u) — F(v)|y—g £ Elu —v|, Yu,ve X

Thus we consider equation (2.1) under (5.2). Again a semigroup S(t) : X” +— X7 may be
defined so that u(t) = S()uo.

An inertial manifold for (2.1) under (5.2) is a set M defined by a graph ® € C(Y, Z)
so that

M={ue X" :Qu= ®(Pu)}
satisfies
u(0) e M= u(t) e MVte R

and, furthermore,

3AC, p > 0 dist, (S(t)ug, M) < Ce™#dist,(ug, M) V>0, ug € X".
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The existence of inertial manifolds was first considered in [17] using an approach based on
the Lyapunov-Perron method familiar from the construction of center manifolds. Related
results concerning the existence of inertial manifolds can be found in, for example, [38]
[7], [8], [14]. Here we outline a different proof for the existence of inertial manifolds which
is particularly convenient for the consideration of numerical perturbations; see [32] for
details.
Let U, = S(mT)ug. Then use of the variation of constants formula in (2.1) shows
that
Uni1 = G(Un) (5.3)

where G : X7 +— X7 satisfies
T
G(u) = Lu+ N(w), L:=e4T, N(u)= / e AT (S(s)u)ds.  (5.4)
0
Furthermore, using the spectral properties of A on Y and Z, together with (5.2) and the

smoothing properties of A, shows that there exist positive constants a,b,c, B such that
Assumptions G hold:

|Lz|, < alz|, Vze€Z; (G1)
JdweY:Lw=p, VpeY & bly|, < |Lyl, <clyl, VyeY; (G2)
R(N(u) — N(w))|y £ Blu —v|, Yu,ve X", |RN(u)l,<B Vue X7, (G3)

where R equals either I, P or Q).
In particular we have

a=etT p=e Ml =M B TP (5.5)

If we let p,, = Pu,, and ¢,, = Qu,, then the graph ® representing the inertial manifold
must satisfy

p = LE+PN(£+0(¢)) " (5.6)
O(p) = LO() + QN[+ 2(8)) (5.7)

together with the attractivity condition
|gm — @(Pm)ly < Ce™™ |g0 — (po)s- ’ (5.8)

To construct ® we seek a fixed point of the mapping 7 : C(Y, Z) — C(Y, Z) defined by

pir= L HPNE+ 8L (5.9)
(T®)(p) = LO(§)+ QN+ 2()) (5.10)

Any ® € C(Y, Z) satisfying (5.6), (5.7), (5.8) is only an inertial manifold for the time T
flow of the equation. It is necessary to show a posteriori that it is also invariant for the
equation (2.1) for every t > 0; see [32] for details. .

This completes our set-up of the problem of finding inertial manifolds as the graph of
a function relating projections of the solution of a globally Lipsctiz mapping in a Banach
space. After showing that the problem of existence for unstable manifolds may be set
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in the same framework, we consider the existence of @ satisfying (5.6), (5.7) and (5.8)
together with the effect of numerical perturbation. O

Unstable Manifolds.
Consider the equation

ve+Cuv =g(v), v(0)=1vo (5.11)

where C is a densely defined, positive-definite, sectorial operator on X. Thus we may
define the Banach spaces X := D(C*) with norm ||u||, := |C%ul,a € [0,00). We assume
further that ¢ : X7 — X is locally Lipschitz for some v € [0,1). Let (5.11) have an
equilibrium point v € X7 satisfying

Co = g(o). (5.12)
Introducing u = v — v we may write (5.11) as
ur+ Au= F(u), u(0)=1ug:=v—v (5.13)

where

A e o i,
(5.14)
F(u):=g(v+u) —g(v) — dg(v)u,

We assume that the operator A has spectrum {);}{2; satisfying
Re(M) £ ... < Re(A) <0< Re(Ag41) £ ...

for some integer ¢ > 1. This ensures that @ is an unstable equilibrium point of (5.11) so
that the unstable manifold is non-trivial.

We assume that dg(v) is a bounded linear map from X7 to X so that |dg(v)C™7|
is bounded; this implies that A is sectorial — see Corollary 1.4.5 of [23]. Thus we may
construct from A the Banach spaces X7 as in section 2. From this it follows, by application
of Theorem 1.4.8 in [23], that the Banach spaces X'* and X“ are equivalent and that
ol | la

Finally, we assume that there exists E(p) with F(p) — 0 as p — 04 such that, for all
s, € B(0, )

|F(u1) = F(uz)| < E(p)lur — uals.

This guarantees the existence of a local solution u(t) € X to (5.13) in the neighbourhood
of u = 0 (equivalently for (5.11) in a neighbourhood of v = v). As in the inertial manifold
case we can modify the function g outside a small neighbourhood of v, and hence F
outside a small neighbourhood of 0, in such a way that (5.13) now satisfies the condition
that there exists F(p) with F(p) — 0 as p — 04 such that, for all uy,u, € X7

|F'(u1) — F(ug)| < E(p)ur — uzly-

As for the construction of inertial manifolds we introduce a splitting of the space
X =Y & Z, where now Y and Z are found by spectral projections associated with the
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spectral sets Re(A) < Re(A;) and Re(A) > Re(Ag41) respectively. As before P : X — Y
and @ : X +— Z. By a similar process of using the variation of constants formula, we obtain
(5.3), (5.4) where, once again, Assumptions G are satisfied. In this case, by appropriate
choice of T, it may be shown that

a =

%, b=2, ¢>2, B=B(p)—0asp— 0. (5.15)
Again the unstable manifold may be found as a graph ® € C(Y, Z) satisfying (5.6), (5.7).

Thus it is possible to seek such a ® as a fixed point of the mapping 7 defined by (5.9),
(5.10).

This completes our set-up of the problem of finding unstable manifolds as the graph of

a function relating projections of the solution of a globally Lipschitz mapping in a Banach
space. O

A numerical approximation of (2.1) or (5.11) will yield a mapping
U:1+1 . Gh(UrZ) (5.16)
where G* : X7 +— X" is defined by

G*(u) := L"u + N*(uw). (5.17)

We will not be more specific about the definition of L* and N* since this depends upon
whether inertial manifolds or unstable manifolds are being considered. We simply assume
that the space ¥V may be decomposed as V : Y* @ Z" and introduce the projections
Ph Vi Y QF:V— Z" Here Y* and Z* may be considered as approximations to
~ and Z. We denote by E" the X —projection E* : X +— V. :
For a wide variety of numerical methods it is possible to show that the following

Assumptions G" are satisfied: there exist positive constants a, b, ¢, B,C and C(p) such
that:

L2l < alely V2 € 24 (GM)

Tt € Yh: Lt = ¢ Vgh € Y & blylny < |EPlan < clyly Yy €Y (GR2)

IR(N™(u) — N*(v)) |y < Blu —v|ny Yu,v € VP |R(N*(u))|hy < B YueV (G"3)
where R equals either I, P* or Q*;

P — P*, < Ch; (GMa)

G(w) — G*(u")ly < C(p)(h+ |u—u*|;) Vu € B,(0,p), u" € B,(0,p) (V5 (G"5)
|Eh|7a |Ply, lPhl'y <G (GhG)

CHuly <€ lulsy € Cluly YueV. (G"7)

The choice of the constants a,b,c and B as being the same as those in Assumptions G
may be acheived without loss of generality. Assumptions (G*1) — (G"3) are analogous
to Assumptions (G1) — (G3) whilst Assumptions (G"4) — (G"7) concern the relationship
between the approximate mapping and the original mapping.
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As for the continuous case, an attractive invariant manifold can be represented as a
graph ®" : C(Y" Z") satisfying

p = LM+ PN+ 0"8) (5.18)
"(p) = L'O"(&)+ QN™(¢+ 0"(¢)) (5.19)

together with the attractivity condition

lgt — ®(p)], < Ce ™ T|gh — & (ph)|,. (5.20)

Here p. = Puy and g = Q.

The following theorem shows that provided certain conditions on a,b,c¢ and B are
satisfied (those yielding existence of attractive invariant manifolds for the mappings (5.3)
and (5.16)), then upper and lower semicontinuity of attractive invariant manifolds may
be shown under Assumptions G and G*.

Theorem 5.1 Continuity of Invariant Manifolds Assume that the mappings (5.3)
and (5.16) satisfy Assumptions G and Assumptions G* respectively. Assume further that
there exist constants §',¢ € (0,00), p € (0,1) and K € (1,00) such that:

b B(1+6) <y, (C1)
ac+ B <, (C2)
0 := a6+ B(1 + 6) < 64, (C3)

where ¢ :=b— B(1+6) >0 by (C1) and

a+ B(1+6) <up, (C4)
for all 6 € (6, K&') and € € V(‘e',]{e"). Then the mappings (5.3), (5.16) both possess at-
tractive invariant manifolds representable as graphs ® : Y — Z and ®* : YY" — 2%

respectively and satisfying (5.6), (5.7), (5.8) and (5.18), (5.19), (5.20) respectively. Fur-
thermore if either

c<1&3Ir>0:|Nw)l,=0 Yu:|Pul,>r (5.21)

or
b> 1 (5.22)
then:
(i) for any p € Y there exists C(p) > 0 such that

(p+ @(p)) — (P"p + ®"(P"p))|, < C(p)h;
(i) for any p* € Y there exists C(p") > 0 such that

|(Pp" + ®(Pp")) — (" + ®*(p"))|, < C(p")h.
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Sketch Proof The details of the proof can be found in [32]. The basic idea to establish
existence is to use the contraction mapping theorem. Conditions (C1)-(C3) enable this
for the mappings (5.3) and (5.16) under Assumptions (G1) — (G3) and (G*1) — (G"3)
respectively. Condition (C4) yields the required exponential attraction. To prove the
convergence result relating the true and approximate manifolds uses a modification of the
uniform contraction principle, using (G"5) to give the required continuity with respect
to perturbations. However, since ® and ®" are defined as graphs over different spaces
this application of the uniform contraction principle is not entirely straightforward. The
assumptions (G"4), (G"6) and (G"7) are used to get around this difficulty. O

Remarks

(i) The conditions (C1)—(C4) can be satisfied in the inertial manifold case provided that
both A; and Ag41 — A, can be made sufficiently large. This is known as the spectral gap
condition in [17] and identical conditions are derived in the existence proof sketched here;
see [32]. For unstable manifolds (C1)-(C4) are satisfied since a < 1 < b and B can be
made arbitrarily small by choice of p.

(ii) The method of proof of the continuity result is a generalisation of that used by [5] to
prove convergence of center-unstable manifolds in ordinary differential equations under
numerical approximation. In the context of unstable manifolds for partial differential
equations, a very similar ezristence proof can be found in [3].

(iii) The first proof concerning convergence of unstable manifolds under numerical ap-
proximation may be found in [4] where ordinary differential equations are considered. In
[1] the effect of time-discretization on the unstable manifold of scalar reaction-diffusion
equations is studied whilst in [36] the same question is considered under finite element
spatial approximation. See also [21].

(iv) The convergence of inertial manifolds under spectral approximation based on the
eigenfunctions of A is studied in [17], [18]. The same problem is considered for a specific
time discretization in [9].

(v) The abstract framework described ‘here used to study the existence and convergence
of inertial manifolds in semi and fully discrete finite element approximations of a scalar
reaction-diffusion equation and the Cahn-Hilliard equation in [32]. Furthermore, the
existence and convergence of local unstable manifolds in a fully discrete reaction-diffusion
equation is also analysed.

(vi) It is worth noting the different methods and assumptions employed in construct-
ing invariant manifolds in approximation schemes. The papers by [9] and [36] are based
on the Lyapunov-Perron type existence theory and, as such, require the derivation of
non-standard error bounds over long-time intervals together with certain spectral approx-
imation properties. The paper [1] is also based on a Lyapunov-Perron type approach and
requires a C'! approximation result over finite time intervals. The result of [32] described
here is based on the Hadamard graph transform and requires standard C° error bounds
on finite time intervals (G"5) together with the closeness of certain spectral sets and their
associated projections (G"4).
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