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Abstract. The effect of using grid adaptation on the numerical solution of model convection-
diffusion equations with a conservation form is studied. The grid adaptation technique studied is
based on moving a fixed number of mesh points to equidistribute a generalization of the arc-length of
the solution. In particular, a parameter-dependent monitor function is introduced which incorporates
fixed meshes, approximate arc-length equidistribution, and equidistribution of the absolute value of
the solution, in a single framework. Thus the resulting numerical method is a coupled nonlinear
system of equations for the mesh spacings and the nodal values. A class of singularly perturbed
problems, including Burgers’s equation in the limit of small viscosity, is studied. Singular pertur-
bation and bifurcation techniques are used to analyze the solution of the discretized equations, and
numerical results are compared with the results from the analysis. Computation of the bifurcation
diagram of the system is performed numerically using a continuation method and the results are
used to illustrate the theory. It is shown that equidistribution does not remove spurious solutions
present on a fixed mesh and that, furthermore, the spurious solutions can be stable for an appropriate
moving mesh method.

Key words. convection-diffusion equations, mesh adaptation, equidistribution, continuation

AMS subject classifications. 65M20, 65M50, 65N50, 35B40

PII. S1064827595280454

1. Introduction. The solution of boundary value problems (BVPs) using finite
difference methods consists of discretizing the differential equations on a finite mesh
and solving the system of equations for the values of the functions at these mesh loca-
tions. Adaptive meshes are widely utilized for problems containing strong gradients
and for problems where important features of the solution develop on small length
scales. References for applications in computational fluid dynamics are given in [18]
and [12], [13], [14], [20] give more general references for the application and analysis
of mesh adaption. Adaptive meshes are essential if accurate and reliable estimates of
the solution structure are to be made, and much effort is put into designing suitable
meshes for complex geometries. However, the analysis of the reliability of adaptive
meshing strategies with regard to giving accurate solutions and rejecting spurious
ones is still in its infancy. The fundamental question we ask is this: how well do the
qualitative properties of the discrete system with mesh adaption reflect the qualitative
properties of the continuous system it is approximating?

Our studies of this question will focus on adaptive numerical discretizations of
reaction-convection-diffusion BVPs of conservation form:{

ut = εuxx − f(u, ux),
u(0) = A, u(1) = −A, A > 0,

(1.1)
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where

f(u, ux) = F (u)x, F (u) > 0 if u > 0 and F (u) = F (−u).(1.2)

We look at both steady states and time-evolving solutions. The steady states satisfy
the identity

εux − F (u) = −k/2,(1.3)

where k is a suitable constant. We note that even if f is a linear function of u, the
addition of an adaptive strategy to solve (1.1) typically leads to a nonlinear discrete
system.

An important example of such an equation is the viscous Burgers equation where

f(u, ux) = uux, F (u) =
u2

2

in (1.1), (1.2). This is an important test problem for many methods in computational
fluid dynamics and has a unique, monotone decreasing, and symmetric steady solution
given by

u(x) = −m tanh

(
m(x− 1

2 )

2ε

)
,(1.4)

where m is a constant given by the unique solution of

m tanh
(m

4ε

)
= A.(1.5)

This steady solution is a global attractor for the time-dependent problem.
As F (u) = F (−u) the steady state of (1.1) is invariant under the action of the

map

u→ −u, x→ 1− x.

All continuous steady solutions of (1.1) under (1.2) are necessarily symmetric and
satisfy

u(x) = −u(1− x)

so that

u(1/2) = 0.

If ε is small then there is a sharp transition layer in the solution where u(x) changes
sign. This layer is centered at x = 1

2 and is of O(ε) in width. Outside the transition
layer |u| is close to A.

In contrast, when ε = 0, the resulting inviscid equation has many steady weak
solutions which satisfy ux = 0, F (u) = F (A) and are given by

u(x) = A if x < x0, u(x) = −A if x ≥ x0.(1.6)

For these solutions the transition layer is at x0, where x0 is arbitrary. Only one of
these is the weak limit of a viscous solution. However, exponentially small (in ε)
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changes in the symmetry of the boundary conditions of the viscous problem can lead
to solutions with significantly displaced transition layers. This phenomenon is referred
to as supersensitivity in the papers of [9], [10], [11], and [19]. For the time-dependent
problem, if ε is small, a solution will rapidly evolve to one with ux close to zero almost
everywhere. This solution, again, has a thin transition layer of width O(ε), where u
changes sign, which is centered at a point determined by the initial conditions. Over
much longer time scales this transition layer moves slowly towards the point x = 1/2
and so the solution converges to the symmetric steady state. This phenonenon is
often called metastability [3].

When a method using a fixed mesh at points xj = j/J, j = 0, . . . , J (not
adapted to the solution) is used to find the steady states of (1.1) it is well known
[6] here that this may give rise to spurious solutions. Such solutions frequently place
the transition layers in an incorrect position. Typically, however, when working with
problems that have sharp transition layers, an adaptive strategy is used which places
mesh points xj into regions where the computed solution has a high gradient. Such
strategies are hoped to produce reliable answers and to preserve qualitative proper-
ties of the solution such as symmetry and monotonicity. In this paper we consider
strategies which move a fixed number of mesh points so as to equidistribute a positive
monitor function of the solution. A natural question to ask is: can such an adaptive
stategy for finding the steady solutions of (1.1) place the transition layer in the correct
position and give monotone solutions? Briefly, the answer to this question is “no, in
general.” Indeed, we show that even when the transition layer is well resolved by the
mesh (so that many points are moved into the region where u changes sign), it can
still appear in entirely the wrong position.

To demonstrate this we solve for the steady state of (1.1) using an adaptive strat-
egy in which a fixed number of J mesh points xj are placed in such a manner that a
generalization of the the arc-length of the solution is equidistributed over each interval
[xj , xj+1]. If ε is sufficiently large compared with 1/J , then the numerical method
has a unique, monotone, symmetric solution with a transition layer at x = 1/2. How-
ever, as ε is reduced then asymmetric (spurious) solutions bifurcate from this branch
when ε = εSB . Close to εSB then both the true and spurious solutions are monotone
decreasing in x. These asymmetric solutions persist as ε is reduced. Further asym-
metric solutions arise at subsequent symmetry breaking bifurcations from the main
branch. For small ε these asymmetric solutions are perturbations of the many weak
solutions arising in the continuous problem when ε = 0, and they exhibit transition
layers placed almost arbitrarily in the interval [0, 1]. Similar behavior (including the
existence of a related value εSB) is observed for the case of a uniform grid. Thus
a unique numerical solution which correctly places the transition layer exists only if
ε > εSB . We make some estimates of εSB and show that its value is not significantly
reduced by using the arc-length-based adaptive strategy. However, we show that if a
strategy is used which ensures that the estimate |uj+1−uj | for |ux| is equidistributed
by the mesh, then the resulting solution is both monotone decreasing and symmetric
for all values of ε. However, such an equidistribution method is typically not robust
and will not perform well in some computations due to the nonsmoothness of the
monitor function.

As a second investigation we look at the time-dependent problem (1.1) using an
adaptive method which moves the mesh points xj(t) as the solution evolves in time to
again equidistribute its arc-length. The discrete solutions of the steady state of (1.1)
using the adaptive mesh are steady states of this method. We show through some
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numerical experiments that the discrete solution with the transition layer placed at
x = 1/2 is unstable when ε < εSB and that for a range of initial data, the adaptive
solution converges to a problem with an asymmetrically placed transition layer. Thus
the spurious solutions have a marked effect on the dynamics of the computed profile,
with the metastability of the asymmetric states of the continuous problem being
replaced by the stability of these states in the discrete problem.

The basic reason for this rather peculiar behavior is that in the continuous prob-
lems supersensitivity implies that the location of the transition layer is uniquely de-
termined by exponentially small perturbations to the boundary conditions. For small
ε the effect of these perturbations is easily overcome by the errors introduced by the
discretization process. An adaptive method which places mesh points in regions of
high gradient only does not seem to affect this process. An interesting question is
whether the correct location of the transition layer could be obtained by using a nu-
merical method which places points close to the boundary, and we leave this for future
investigation. We expect that the ideas in this paper are also relevent to problems
which are only algebraically sensitive to the small diffusion parameter, but that then
the effects will be less dramatic.

The remainder of this paper is organized as follows. In section 2 we derive a
suitable numerical method for the steady state of (1.1) which incorporates a mesh-
adaption procedure based upon a generalization of the well-known arc-length method.
In section 3 we analyze this method when applied to the examples given. In particular,
we determine the nature of the (discrete) solution branches as parametrized by ε and
estimate the location of bifurcation points where the nonspurious computed solution
loses stability. We also study the form of the solution for ε small. In section 4
we describe some numerical calculations of the steady state branches and compare
them with the analytic estimates in section 3. Finally, in section 5 we make some
time-dependent calculations of the solutions of (1.1), based upon the moving-mesh
strategy of [8], and show how the spurious steady state solutions affect the underlying
dynamics of the problem.

2. Adaptive mesh discretizations of the steady BVP. Our derivation of
discretization of the steady state of the equations is based upon the conservation form

εux − F (u) = −k/2,
u(0) = A, u(1) = −A,

where the constant k is to be determined. In section 5 we will look at the time-
dependent formulation.

Let U be the discretized solution variable u and H the vector of mesh spacings
so that

U = (u0, u1, . . . , uJ)T ,
H = (h1, h2, . . . , hJ)T .

(2.1)

Thus the hj determine the (nonuniform) mesh distribution and J is the number of grid

cells. Hence xl =
∑l
j=1 hj and uj denotes our approximations to u(xj). Discretizing

the conservation equation over the interval [xj , xj+1] and taking the mean of F (u)
over this interval we obtain{

ε
uj+1−uj
hj+1

= 1
2 (F (uj+1) + F (uj)− k) , j = 0, . . . , J − 1,

u0 = A, uJ = −A.(2.2)
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Although we will mainly work with this discretization, we observe that subtracting
two succesive such equations gives the quivalent formulation

ε

(
uj+1 − uj
hj+1

− uj − uj−1

hj

)
/h =

1

2
(F (uj+1)− F (uj−1)) /h,(2.3)

where h = (hj+1 + hj)/2.
If the mesh is specified, (2.2) represents (J + 2) equations for (J + 2) unknowns

U and k. Our interest, however, lies in the case where the mesh is adaptive so that
the J mesh parameters forming the vector H are calculated as part of the solution.
Thus we must specify further equations for the mesh. A common approach to mesh
adaption is to use an equidistribution principle; see [8], [12], [13], [14], [20]. In these
methods, there is a function M(u, ux, x) > 0, commonly called a monitor function,
such that, if xi is the location of the ith mesh point (with x0 = 0 and xJ = 1), then∫ xi+1

xi

M(u, ux, x)dx =
1

J

∫ 1

0

M(u, ux, x)dx.

In practice, of course, the integrals are approximated on the mesh.
Different monitor functions lead to different meshes with varying properties, and

the “correct” choice of monitor function is not always clear. In [4] a monitor function
for a certain two-point BVP is shown to give “optimal” accuracy in a suitable norm.
Alternatively, it is proposed in [1] that for certain partial differential equations in-
variant under various rescaling groups, the most appropriate monitor function to give
the correct dynamics of the solution is one which generates meshes that scale in a
similar manner to the exact solution. These various considerations notwithstanding,
the most commonly used monitor function is arc-length, for which

M(u, ux) ≡
√

1 + u2
x;

see [20], [18]. Here we consider a monitor function which is a generalization of this
one so that

M(u, ux) ≡
√

(1− α) + αu2
x.

This formulation reduces to arc-length equidistribution if α = 1
2 , gives a uniform mesh

if α = 0, and gives equidistribution with respect to |ux| if α = 1. By varying α we
may relate the properties of various mesh-adaptation principles, including the limiting
case α = 0 of a uniform mesh.

To equidistribute the mesh we thus aim to choose H such that∫ xj

xj−1

√
(1− α) + αu2

xdx =

∫ xj+1

xj

√
(1− α) + αu2

xdx.

Approximating the arc-length to be constant within the interval yields

h2
j ((1− α) + αu2

x)
j−1/2

= h2
j+1((1− α) + αu2

x)
j+1/2

, j = 1, . . . , J − 1.

A natural discretization of this equation gives

α(uj − uj−1)2 + (1− α)h2
j = α(uj+1 − uj)2 + (1− α)h2

j+1, j = 1, . . . , J − 1.(2.4)
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Since (2.4) yields only J − 1 equations as j ranges from 1, . . . , J − 1 we need the
additional constraint that

J∑
j=1

hj = 1.(2.5)

Thus (2.4), (2.5) give J more equations for the unknowns hj . Coupled with (2.2), this
gives us a system of 2J + 2 equations and unknowns. Since (2.4) is independent of j,
the quantity on each side is a constant s2. Thus,{

α(uj − uj−1)
2

+ (1− α)h2
j = s2, j = 1, . . . , J,∑J

j=1 hj = 1.
(2.6)

Thus (2.2), (2.6) form 2J + 3 equations in the 2J + 3 unknowns {uj}Jj=0, k, {hj}Jj=1,
and s. This set of equations can be written as

N(Q, ε, α) = 0,

where Q = (UT , k,HT , s)T ∈ R3J+3 and N : R2J+3 × R× R→ R2J+3. By a solution
we will always mean a real vector Q ∈ R2J+3 with hj > 0 ∀j = 1, . . . , J .

In section 5 we generalize these ideas to include both the time-dependence of u
and a dynamic strategy for moving the mesh points.

3. An analysis of the discretized model equations. To analyze the so-
lutions of (2.2), (2.6) considered as functions of ε and α we apply techniques from
bifurcation theory, determining the existence of a symmetric solution branch and then
looking for asymmetric solutions bifurcating from it as ε varies. We can then com-
pare the qualitative properties of the discrete solution with those of the continuous
solution. To start our investigation, we take ε to be large and establish the existence
of a unique, monotone decreasing, and symmetric solution of the discrete equations.
This we refer to as the main solution branch and we establish some general properties
of the symmetric and monotone decreasing solutions of (2.2), (2.6). As ε is reduced,
the main solution branch remains symmetric but loses monotonicity. However, fur-
ther asymmetric solutions of (2.2), (2.6) arise. In particular, we show that there are
symmetry breaking bifurcation points on the main branch leading to such asymmetric
solutions. It is interesting that (as ε is reduced) these occur before the main branch
loses monotonicity. If α = 1, however, then the symmetry breaking points do not
exist. Finally, we apply the implicit function theorem to show that, provided ε is suf-
ficiently small, then we may construct many solutions of the finite difference scheme,
some of which may have arisen at the symmetry breaking points.

3.1. The solution for ε � 1. If we consider solutions which are bounded in
the limit of ε→∞ so that F (uj) is bounded, and set −k/2 = εK, then in this limit
equation (2.2) reduces to

uj+1 − uj
hj+1

= K.(3.1)

Using the boundary conditions, u0 = A and uJ = −A, this gives

uj = A+K

j∑
i=1

hi.
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Therefore, to satisfy the last equation in (2.2) and (2.5), we require that K = −2A.
Thus, to leading order in 1/ε,

uj = A

(
1− 2

j∑
i=1

hi

)
.

To obtain the location of the mesh points we substitute these identities into the
equation (2.6) to give

4α(A2h2
j ) + (1− α)h2

j = s2.

Thus hj is a constant which must therefore equal 1/J . Hence we have

hj = 1
J ,

J2s2 = 4αA2 + (1− α).

Hence, the unique bounded asymptotic solution of (2.2) for ε→∞ is given by

uj = A(1− 2j
J ),

hj = 1
J ,

J2s2 = 4αA2 + (1− α).

This is, in fact, the exact solution of the steady solutions of (1.1) at ε =∞, sampled
on a uniform grid.

3.2. Properties of the main solution branch. The solution constructed
above for ε � 1 has a uniform mesh and is both monotonic, so that uj > uj+1,
and symmetric, so that

uj = −uJ−j and hj = hJ+1−j .(3.2)

Both the symmetry and monotonicity of the discrete solution are in qualitative agree-
ment with the true solution of the continuous problem. As F (u) satisfies the symmetry
condition F (u) = F (−u), then as ε is reduced the equations (2.2), (2.6) will continue
to admit a symmetric solution satisfying (3.2). For large enough ε this solution will
also be monotonic with uj > uj+1. As ε is reduced then, in general, there will be a
first value of ε at which asymmetric solutions (not satisfying (3.2)) bifurcate from it
and a further (smaller) value at which monotonicity is lost.

We now study how the monotone and symmetric solutions vary as ε reduces.
In particular, we examine the way in which the mesh changes from being uniform
and obtain some bounds for the values of hj ; these are useful subsequently in finding
bifurcation points. For this we assume that the function F (u) satisfies the following
conditions:

F (u) = F (−u), F (0) = 0,(3.3)

dF/du = G(u), G(u) > 0 if u > 0, G(u) > G(v) if u > v > 0,(3.4)

where G(u) is bounded for finite u. This includes Burgers’s equation for which f(u) =
u2/2 and G(u) = u.
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Lemma 3.1. Let
{
{uj}Jj=0, k, {hj}Jj=1, s

}
be a symmetric, monotone-decreasing

solution of (2.2), (2.6) satisfying (3.2) with

uj > uj+1.

Suppose further that F (u) satisfies (3.3), (3.4) and α > 0. Then, for j < J/2 we have

hj > hj+1(3.5)

and

∆j := uj − uj+1 > ∆j−1.(3.6)

Corollary 3.2. Under the same conditions as in Lemma 3.1 it follows that, for
J > 2,

1

J
< h1 <

1

2
,(3.7)

A

(
1− 2

J

)
< u1 < A,(3.8)

and √
4Aα+ (1− α) < Js < 2A

√
α+
√

1− α.(3.9)

Proof of Lemma 3.1. It follows from (2.2) that for a monotone decreasing solution,
the function

aj :=
F (uj+1) + F (uj)

2
− k

is negative, and from (3.3) it is monotone decreasing if j < J/2. Consequently, a2
j is

monotone increasing if j < J/2. Now combining (2.2), (2.6) we have

h2
j+1

(
α
a2
j

4ε2
+ (1− α)

)
= s2.

It follows immediately if α > 0 that, as s is independent of j, then as a2
j is increasing,

then hj+1 is decreasing in j. We immediately deduce from (2.6) that (uj+1 − uj)2 is
increasing in j. If α = 0 then as

ε2∆2
j = h2

j+1a
2
j

and hj is constant, we deduce that as a2
j is increasing, then so is ∆j . This proves the

lemma.
Proof of Corollary 3.2. Inequality (3.7) follows simply from the observations that

hj is symmetric in j and is decreasing for j < J/2 and that
∑J

1 hj = 1. Inequality
(3.8) is similar and uses the elementary identity that

∑
∆j = 2A. To obtain the

estimate (3.9) we make use of the geometric result that the least arc-length of the
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solution occurs when the points uj lie on a straight line of uniform gradient joining the

two end-points, which has length
√

4Aα+ (1− α). Similarly, the greatest arc-length
occurs when the solution is two horizontal line-segments through u = A and u = −A
joined by a vertical line-segment through x ∈ (0, 1). Such a curve has arc-length
2A
√
α+
√

1− α.
In general the solution does not stay monotonic as ε is reduced. As a final result

on the monotonic solutions we give an estimate for the value of ε at which they lose
monotonicity

Lemma 3.3. If the symmetric solution first loses monotonicity at ε = ε∗, as ε
decreases, then at ε = ε∗, u1 = A and

ε∗(u2 −A) =
h2

2
(F (u2)− F (A)).

Consequently, there exists a u∗ ∈ [u2, A] with

ε∗ =
h2G(u∗)

2
.

Proof. The solution first loses monotonicity when ∆j = 0 for some j. As ∆j is
monotone increasing by Lemma 3.1, this must occur first when j = 0 so that u1 = A.
It then follows from taking j = 0 in (2.2) that k = 2F (A). The first result then
follows by considering (2.2) when j = 1 and the second by dividing both sides of the
identity by u2 −A and applying the mean value theorem.

3.3. Symmetry breaking bifurcations. We now show that (2.2), (2.6) has
further asymmetric solutions which bifurcate from the symmetric branch described
above. Hence the uniqueness and symmetry of the solution is lost as ε reduces. In
particular, we show that there are symmetry breaking points at which asymmetric
solutions (not satisfying (3.2)) bifurcate from the symmetric branch at a nonzero
value of ε. To establish this we investigate the linearization of (2.2), (2.6) about the
symmetric solution and establish the existence of an asymmetric null eigenvector at
a specific value of εSB . This is the condition for a point on the symmetric branch
to be an infinitesimal symmetry breaking bifurcation. Such a point is actually a
symmetry breaking bifurcation point provided that certain nondegeneracy conditions
are satisfied. Generically this is so, and we observe (numerically) that additional
spurious solutions do indeed bifurcate at these points. Furthermore, these spurious
solutions appear to persist for all ε→ 0. Owing to the action of the symmetry group,
all such bifurcations are necessarily pitchfork bifurcations and lead to two solution
branches u+ and u− in a neighborhood of εSB such that

u−(x) = −u+(1− x).

Numerical calculations demonstrate that u− and u+ only exist for ε < εSB .
The value of εSB is determined in the following theorem.
Theorem 3.4. If F (u) satisifies (3.3), (3.4) and α < 1, there is a symmetry

breaking bifurcation on the symmetric solution branch of (2.2), (2.6) at a point ε =

ε
(1)
SB, where ε

(1)
SB satisfies the equation

h1G(u1) = 2ε
(1)
SB

(
1 +

α

1− α
(u1 −A)2

h2
1

)
.(3.10)
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Equivalently,

ε
(1)
SB = (1− α)

h3
1G(u1)

2s2
.(3.11)

Further infinitesimal symmetry breaking bifurcations from the main symmetric

branch will occur for (smaller) values of ε
(j)
SB which satisfy

ε
(j)
SB = (1− α)

h3
jG(uj)

2s2
, j = 2, . . . , J − 1.(3.12)

Lemma 3.5. If F (u) satisfies (3.3), (3.4) and α < 1 then there must be a value
of ε satisfying (3.11). Such a value satisfies

εSB > ε∗,

where ε∗ is the greatest value of ε at which the main solution branch loses monotonic-
ity.

Corollary 3.6. Consider a solution of the discrete Burgers equation with
F (u) = u2/2, G(u) = u, and A = 1.

(i) If α = 0 then

ε
(1)
SB =

h1u1

2
.(3.13)

Furthermore

1

2J

(
1− 2

J

)
< ε

(1)
SB <

1

2J
.(3.14)

(ii) For all α ∈ [0, 1), ε
(1)
SB satisfies the following inequalities:

(1− α)(1− 2
J )

2J(2
√
α+
√

1− α)2
< ε

(1)
SB <

J2(1− α)

16(1 + 3α)
.(3.15)

Note. The particular case α = 0 corresponds to a solution of (1.4) using a non-
adaptive mesh, and (3.13) was first derived in [16] using a different method from the
one we shall now give. The estimates (3.14), (3.15) are new. In section 5 we compare
these bounds with numerically computed values of the symmetry breaking point.

Corollary 3.7. For the resulting solution of the discrete Burgers equation, if

ε <
(1− α)(1− 2/J)

2J(2
√
α+
√

1− α)2
,(3.16)

then an infinitesimal symmetry breaking bifurcation has occurred on the main branch
for a value εSB > ε.

We can draw some useful conclusions from the previous lemmas. If we first
consider a mesh without adaptivity, numerical evidence indicates that if ε > 1/2J then
the computed solution is nonspurious, and if ε < (1−2/J)/2J then spurious solutions
exist in agreement with (3.14). Both of these estimates are reasonable. The natural
length scale of the transition layer is O(ε), and to obtain an adequate resolution of
the transition we must have a mesh such that 1/J is of the same magnitude as ε.
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Thus spurious solutions are likely to exist if this is not the case, and we have to take
a minimum value of J to limit the effects of spuriosity. For the value of ε in (3.16)
it is likely that there are additional nonsymmetric solutions to the original equations.
This result (perhaps rather surprisingly) indicates that using an adaptive mesh does
not significantly improve on this result, and a comparable value of J may have to be
taken to avoid spuriosity. This is true even though the adaptive method may place
many more points in the actual transition layer than the nonadaptive one. Note,
however, that the case α = 1 eliminates such spurious bifurcations. This is examined
further in section 3.5.

Proof of Theorem 3.4. To prove the theorem we consider a linearization of (2.2),
(2.6) about a symmetric solution. For the original system to have a bifurcation point
it is necessary that the linearization should have a nonzero null-eigenvector δ with

δ = (w0, w1, . . . , wJ ; g1, . . . , gJ ; t; l)T ,

where wj corresponds to the linearization of uj , gj to hj , t to s, and l to k, respectively.
A linearization of (2.2), (2.6) implies that these components satisfy the following
system of linear equations:

(3.17)

(hj+1G(uj) + 2ε)wj + (hj+1G(uj+1)− 2ε)wj+1 + (F (uj) + F (uj+1)− k)gj+1 − hj+1l

= 0,

j = 0, . . . , J − 1,

α((uj − uj+1)wj + (uj+1 − uj)wj+1) + (1− α)hj+1gj+1 − st = 0,(3.18)

j = 0, . . . , J − 1,

J∑
1

gj = 0,(3.19)

together with the further boundary condition that

w0 = wJ = 0.(3.20)

As uj = uJ−j and G(uj) = −G(−uj) it follows (after some manipulation) that
if l = t = 0 then (3.18)–(3.20) admits an antisymmetric solution which breaks the
symmetry condition (3.2) and satisfies

wj = wJ−j , gj = −gJ+1−j , l = t = 0.(3.21)

By [7] it follows that if such a solution is nonzero, then εSB is an infinitesimal sym-
metry breaking bifurcation point, and asymmetric solutions of (2.2), (2.6) bifurcate
from the main branch at this point. Thus we must show that there exists such an ε
where a solution of the form (3.21) is indeed nonzero.

Setting l = t = 0 in (3.18), (3.18) and taking j = 0 we have

(h1G(u1)− 2ε)w1 + (F (A) + F (u1)− k)g1 = 0(3.22)

and

α(u1 −A)w1 + (1− α)h1g1 = 0.(3.23)
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The reduced system (3.22), (3.23) has a nonzero solution for which w1 6= 0 and
g1 6= 0 iff

det

(
h1G(u1)− 2ε F (A) + F (u1)− k
α(u1 −A) (1− α)h1

)
= 0.(3.24)

Calculating the determinant in (3.24) and simplifying the resulting expression
using the identity

ε(u1 − 1) = F (A) + F (u1)− k

gives the expression (3.10). On substituting the definition of s we have the equivalent
condition

D1 ≡ (1− α)G(u1)h3
1

2s2
− εSB = 0.(3.25)

We can now construct the resulting null-eigenvector satisfying (3.21). In this case,
the equation for w2 and h2 is given by(

h2G(u2)− 2ε F (u1) + F (u2)− k
α(u2 − u1) (1− α)h2

)(
w2

g2

)
=

( −(h2G(u1) + 2ε)w1

α(u2 − u1)w1

)
.(3.26)

This problem will have a solution (w2, g2) provided that the matrix in (3.26) has a
nonzero determinant that is

(1− α)h2(h2G(u2)− 2ε)− α(u2 − u1)(F (u1) + F (u2)− k) 6= 0(3.27)

which, on rearranging, is equivalent to the condition

D2 ≡ (1− α)G(u2)h3
2

2s2
− εSB 6= 0.(3.28)

Here we note that the equivalent term D1 is identically zero at the bifurcation. We
shall show presently that a bifurcation first occurs when ui is monotone decreasing
and hi decreases monotonically if i < J/2. Thus if D1 = 0 it immediately follows
that as G(u) is monotone, then D2 6= 0. Hence a solution w2, g2 of (3.26) exists. By
a similar procedure we may calculate the subsequent terms (wi, hi).

We note that if D1 6= 0 but D2 = 0, then a further bifurcation will occur with a
null-eigenvector for which w1 = g1 = 0 but w2, g2 6= 0. Thus a series of symmetry-
breaking bifurcations occurs when each of the terms Di is equal to zero. This com-
pletes the proof.

We now show that such a value of ε must exist.
Proof of Lemma 3.5. We look at the quantity

D1 ≡ (1− α)G(u1)h3
1

2s2
− ε.

By the estimates of the last section, u1, h1, s, and 1/s are bounded above as ε→∞,
and hence D1 is negative for large ε. On the contrary, as ε decreases, then if the
solution remains monotone, these values are also bounded below (and are positive) so
that D1 is positive for small ε. Thus there must exist a value of ε at which D1 = 0.
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Now suppose that the main solution loses monotonicity when ε = ε∗. At such a point
U1 = A and hence from (2.6) we have that (1− α)h2

1 = s2. Thus at this point

D1 =
h1G(A)

2
− ε∗.

Now, from Lemma 3.3 we have

h2G(u∗)
2

− ε∗ = 0,

where u∗ < A. Thus, as G(u) is monotone increasing in u and h2 < h1 we have that
D1 is positive if ε = ε∗. Thus D1, which first becomes zero at a value εSB > εm
where the solution is still monotone.

Proof of Corollaries 3.6 and 3.7. The results in Corollaries 3.6 and 3.7 follow
immediately from an application of the estimates of u1, h1, s in Corollary 3.2 to the
identity (3.11).

3.4. Asymptotic solutions when ε� 1. The symmetry breaking bifurcation
generates solutions additional to the main branch for small values of ε. In fact, for very
small values of ε there are a very large number of solutions of (2.2), (2.6) As stated in
the introduction, these are numerical perturbations of the many weak solutions which
exist when ε = 0, closely related to the supersensitivity of the underlying problem.
To determine these we first recast (2.2) in the form

ε(uj+1 − uj) +
1

2
hj+1(F (uj+1) + F (uj)− k) = 0.(3.29)

We show that the combined system (3.29), (2.6) has solutions when ε = 0 and we use
the implicit function theorem to deduce the existence of solutions when ε > 0 as O(ε)
perturbations of the ε = 0 case.

Setting ε = 0 in (3.29) gives

hj+1(F (uj+1) + F (uj)− k) = 0,(3.30)

together with the mesh-defining equations (2.6) and the boundary condition

u0 = A, uJ = −A.

We see immediately that this system has a solution if either

hj+1 = 0(3.31)

or

F (uj+1) + F (uj)− k = 0.(3.32)

The values of j for which hj = 0 correspond to points in the solution where there is
a transition layer. We shall assume that the transition layer occurs for L+1 ≤ j ≤M
over JT ≡ M − L intervals of the mesh. In the transition layer, it follows from (2.6)
that if hj = 0 then a monotone decreasing solution satisfies

uj+1 − uj = −s/√α.(3.33)
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Fig. 1. The form of the solution when ε = 0 showing the transition layer.

For values of j for which j and j + 2 are not in the transition layer we have from
applying (3.32) twice that

F (uj) = F (uj+2),

and hence from the monotonicity of F (u) we deduce that

uj = uj+2.

Thus there is a constant δ for which

(uj+1 − uj)2 = (uj+2 − uj+1)2 ≡ 4δ2.(3.34)

A solution of this form is illustrated in Figure 1.
From this result and from (3.32) we may deduce that, since u0 = A,

u1 = A+ 2δ, u2 = A, uJ−1 = −A− 2δ, uJ−2 = −A, etc.(3.35)

These results imply that hj is constant over all intervals outside the transition layer
and takes the value

hj ≡ H =
1

J − JT(3.36)

so that

4αδ2 + (1− α)H2 = s2.(3.37)

By (3.33) we have

uM = uL − JT s/
√
α,(3.38)
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and this gives another relationship between s and α since uM and uL are determined
by the parity of L and M.

The solution of the system when ε = 0 is thus characterized completely by the
values of H, δ, and s, each of which is given uniquely by the values of L and M (and
hence of JT ). Indeed, the solution is independent of the function F (u). We observe
that if L is even, then uL = A, and if L is odd, then uL = A+ 2δ, with similar results
for uM . This gives us three cases of solutions to consider.

Case 1: L even and J −M even. In this case it follows from (3.35) that uL = A,
uM = −A. Thus summing the expression (3.33) over the transition layer we deduce
that

s = 2A
√
α/JT .(3.39)

Substituting this expression into (3.37) gives the following expression for δ:

δ = ±
√
A2

J2
T

− (1− α)

4α(J − JT )2
.(3.40)

The expression (3.37) is valid provided that

Γ1 ≡ α

1− α (J − JT )2 − J2
T

4A2
≥ 0.(3.41)

For example, when α = 1
2 , A = 1 this implies that

JT ≤ 2

3
J.

We see that for this example the values of δ, s, and H are (up to a sign of δ)
given uniquely by the value of JT and do not depend upon the precise values of L and
M . Thus the solution derived can have a transition layer anywhere in the interval,
provided that L is even.

Case 2: L odd and J −M odd. We have uL = A+ 2δ, uM = −A− 2δ so that

s =

(
2A+ 4δ

JT

)√
α.

Substituting into (3.37) implies that δ satisfies the quadratic equation

δ2 +
1− α

4α(J − JT )2
=
A2(1 + 2δ)2

J2
T

.(3.42)

In general, this equation has two solutions, and either may be observed. We will
discuss these in section 4.

Case 3: All combinations not included above. The analysis for this case follows
similarly, and we have that δ satisfies the quadratic equation

δ2 +
1− α

4α(J − JT )2
=
A2(1 + δ)2

J2
T

.(3.43)

We now turn our attention to the perturbations of the above solutions when ε
is small. To do this we define the solution when ε = 0 to be Uj , Hj , S,K, etc., so
that Hj = 0 in the transition layer. As uj is everywhere bounded, it is clear that
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the full problem described by (3.29), (2.6) is an O(ε) perturbation of that of (3.30),
(3.30). Hence an application of the implicit function theorem implies that a solution
of (3.29), (2.6) will take the general form

uj = Uj +O(ε), s = S +O(ε), k = K +O(ε),(3.44)

hj = Hj +O(ε) outside the transition layer,(3.45)

and

hj = O(ε) inside the transition layer.(3.46)

We state the full result as follows.
Theorem 3.8. Let α ∈ [0, 1). In each of the cases i = 1, 2, 3, the solution of

(3.30), (2.6) perturbs smoothly in the manner defined by (3.44), (3.45), (3.46) provided
that the corresponding variable Γi defined in (3.41) for Case 1 (with similar expressions
for the other two cases) satisfies the condition

Γi > 0.(3.47)

Furthermore, if (3.47) is satisfied, then to leading order in ε, the mesh in the transition
layer takes the form

hj+1 =
−2εs

(F (uj+1) + F (uj)− k)
√
α
,(3.48)

where uj , s, k take the values calculated in the three cases above.
Proof. To prove that we can apply the implicit function theorem and deduce

this result, we must show that the operator derived by linearizing (3.30), (2.6) about
the solution (Uj , Hj , S,K) is invertible or, equivalently, that it has no (nonzero) null-
eigenvector. The proof of this is straightforward but technical, and details of this
calculation are given in [2]

3.5. Existence and uniqueness of solutions for α = 1. When α = 1 we
have from (2.6) that |uj − uj+1| = s. Consequently, if the solution is monotone, we
have that the value of ∆j = uj−uj+1 given in Lemma 3.1 is constant. As the solution
can only lose monotonicity when ∆1 = 0, we deduce that a loss of monotonicity can
only occur if ∆j = 0 for all j. Thus uj is constant for all j, violating the boundary
conditions. We deduce that the main solution branch remains monotone for all ε.
As ε tends to zero the only possible monotone solution of (3.30) is one for which
h1 = hJ = 1/2, hj = 0 otherwise, and there is a transition layer with L = 1 and
M = J − 1. Similarly, from (3.25) we see that a symmetry breaking bifurcation can
only occur when α = 1 if εSB = 0. Thus, although the analysis in the previous section
does not rule out the existence of nonmonotone spurious asymmetric solutions when
α = 1 for small values of ε, we can deduce that such solutions cannot bifurcate
from the main branch. More significantly, they do not alter the stability of the main
branch. Thus taking α = 1 reduces the impact of the spurious solutions. We shall see
numerical evidence for this in the next section.

4. Numerical results for the examples. This section presents the numerical
solution of (2.2), (2.6) obtained through continuation in both ε and α using the
package AUTO [5]. In all cases J was kept fixed at J = 21, and we take F (u) = u2/2
(Burgers’s equation) and A = 1.
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Fig. 2. The value of u5 as a function of log(ε) when α = 0.

To compute a solution branch parameterized by ε we take as a starting solution
the monotone symmetric solution computed in section 3.1 with ε = 10. The value
of ε is then reduced and all bifurcations and bifurcating branches computed. At the
fixed value of ε = 1 × 10−3 we also look at the solutions as functions of α. Further,
disconnected branches can be found for very small values of ε by using the asymptotic
solution (when ε = 0) as a starting solution when ε is small.

4.1. Continuation in ε. We take α to be fixed at the two values of 0, 1/2
and compute the bifurcation diagrams in the two cases. As a suitable measure of the
solution we take the value of u5, as this is effective in distinguishing between solutions
with different locations of the transition layer.

Figures 2 and 3, then, show the corresponding bifurcation diagrams of the solu-
tion of (2.2), (2.6). Interestingly, in the second of these two figures, the bifurcating
branches are much easier to distinguish as the point u5 is moved into the transition
layer. In Figure 4 we also present the value of h1 as a function of ε in the case of
α = 1/2. In this figure we see that h1 tends to one of the three limits of 1/7, 1/8, and
0 as ε tends to zero.

It is clear from Figures 2 and 3 that when α = 0 and α = 1/2 there are symmetry
breaking bifurcations from the main branch, as predicted by Theorem 3.4, leading
to solution branches which are asymmetric. It is also clear that these solutions tend
toward an asymptotic limit as ε tends to zero. Using the notation of section 3.4 we
may thus characterize these solutions by the values of M and L such that a transition
layer occurs for j between L+ 1 and M . These values are indicated on Figure 2. It is
interesting to note that the solutions which have the transition layer at x = 0(L = 0)
as ε → 0 and at x = 1(L = 7) are the continuations of the two solutions u−, u+

which bifurcate from the main solution branch at the greatest value of ε. Subsequent
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Fig. 3. The value of u5 as a function of log(ε) when α = 1/2.

Fig. 4. The value of h1 as a function of log(ε) when α = 1/2.
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solution branches which have transition layers closer to x = 1/2 bifurcate from the
main branch at smaller values of ε. In Figures 5 and 6 we present the complete set
of solutions for ε = 1 × 10−3 with α = 0, 1/2, respectively. These clearly show the
oscillatory structure predicted in section 3.4.

If α = 0 then the first bifurcation occurs when ε = 2.38 × 10−2. If α = 1/2,
bifurcations occur when ε = 6.081×10−2, 5.835×10−2, 3.896×10−2, and 9.869×10−3.
Thus the value of ε for the first of these bifurcation points actually increases when the
adaptive procedure is used. If α = 1/2 then the location of the first of these bifurcation

points can be estimated from (3.14), which predicts that 0.004787 < ε
(1)
SB < 2.45. This

is consistent with the above computations. In Figure 7 we give a graph comparing the
estimates of (3.14) with the actual location of the bifurcation point. It is interesting
to note from this graph that εSB has a maximum value at about α = 0.9 before
decreasing to zero as α tends towards 1.

If we now take α = 1 then u5 is fixed for all ε. However, the value of h1 increases
towards 1/2 as ε tends towards zero. This behavior can be seen in Figure 8, which
plots h1 as a function of ε in this case. As predicted in section 3.5 we see that
there are no bifurcations from the main solution branch. The resulting profile when
ε = 1×10−3 is given in Figure 9. From this figure we can see that the transition layer
occurs at the right location but the grid points are concentrated in a small region.

4.2. Continuation in α. For continuation in the parameter α we have taken
one of the solutions at α = 1

2 and ε = 10−3 from Figure 3 as a starting solution. The
bifurcation diagram with α as the parameter is shown in Figure 10, for which u2 is
a convenient value to plot. This again shows a complex form with many solutions,
although the structure of the bifurcations in this case is less clear than the continuation
with ε.

4.3. Asymptotic properties of the solutions. As remarked above, it is clear
that as ε tends to zero, the computed solutions are converging to the asymptotic
solution predicted in section 3.4. We now make this comparison more precise. The
solutions at ε = 4× 10−5 from two different branches of the bifurcation diagram are
shown in Figure 11. In the figure, Solution 1 has L = 4,M = 17, and JT = 13 and
represents the symmetric solution on the main branch. In contrast, Solution 2 has
L = 7,M = 21, and JT = 14 and has a maximal degree of asymmetry. Since J = 21
for both cases, Solution 1 corresponds to Case 1 and Solution 2 corresponds to Case
3, described in section 3.4.

To verify the asymptotic analysis for Solution 1, we determine η ≡ u1−u0

2 from
the numerical computations and compare it with the value of δ given by (3.40). This
analysis implies that if ε = 0 then

δ = 4.4843× 10−2, h = 1/8,

so that in general η = δ + O(ε). At ε = 7.9 × 10−4, η ≈ 4.3 × 10−2 and |η − δ| ≈
1.8 × 10−3, and at ε = 4 × 10−5, η ≈ 4.45 × 10−2 and |η − δ| ≈ 8.8 × 10−5. These
values show that δ − η scales as ε, which is consistent with the asymptotic value.

Solution 2 is an example of Case 3 of section 3.4. For this solution the equation
(3.43) yields two values for δ, namely,

δ = 2/195 and δ = 0, h = 1/7.

Clearly, from the figure it is the latter value which is seen as a solution bifurcating
from the main branch. Presumably the other solution appears at a fold bifurcation.
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Fig. 5. The set of solutions when α = 0 and ε = 1× 10−3.

Fig. 6. The set of solutions when α = 1/2 and ε = 1× 10−3.
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Fig. 7. A comparison of the calculated value of εSB as a function of α with the upper and
lower bounds given in Corollary 3.6.

Fig. 8. The value of h1 as a function of log(ε) when α = 1.



612 C. J. BUDD, G. P. KOOMULLIL, AND A. M. STUART

Fig. 9. The solution when α = 1 and ε = 1× 10−3.

Fig. 10. The value of u1 as a function of α when ε = 1× 10−3.
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Fig. 11. Two of the solutions obtained when α = 1/2 and ε = 1 × 10−3 showing a symmetric
solution with a transition layer at x = 1/2 and an asymmetric solution with a transition layer at
x = 1.

5. Time-like iterations to steady state. We now consider the implications
of our steady state analysis for the solution of the full-time dependent problem (1.1),
in particular determining which of the solutions constructed is stable. To do this we
augment the partial differential equation with additional equations allowing the mesh
points to evolve and for which (2.6) represents a steady state. Thus we can study the
dynamical effect of the steady solution computed in section 3. We consider meshes
which evolve to equidistribute the quantity M(u, x), and for simplicity in this section
we only consider discretizations of Burgers’s equation with A = 1.

To apply such a moving mesh technique we follow [8] and introduce a new com-
putational coordinate ξ ∈ [0, 1] and a mesh function x(ξ, t) so that the ith mesh point
is at x(i/J, t). We then introduce a second partial differential equation to describe the
evolution of x. As the value of x is now a function of time, we must recast Burgers’s
equation in a moving coordinate system, x = x(ξ, t), so that{

ut = εuxx − 1
2 (u2)x + uxxt,

u(0, t) = A, u(1, t) = −A, u(x, 0) = g(x).
(5.1)

To evolve the mesh we then couple this with the following moving mesh equation
given in [8]: {

(xt)ξξ = − 1
τ (Mxξ)ξ,

x(0, t) = 0, x(1, t) = 1, x(ξ, 0) = y(ξ),
(5.2)

where 0 < τ � 1 is a relaxation parameter, M(x(ξ, t), t) is the quantity to be equidis-
tributed, and y(ξ) determines the initial mesh distribution. In this section we take
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α = 1/2 and consider the arc-length monitor function M =
√

1 + u2
x. From (5.2) it

can be seen that the solution equidistributes the quantity M if it reaches steady state.
The time evolution is introduced as a fast relaxation to equidistribution, avoiding the
solution of differential algebraic equations for the evolution problem. Our purpose in
this section is to study the stability and basins of attraction of equilibria under this
natural evolution process. For the stability properties of the equation (5.2), see [13].
Other time-like iteration schemes for the moving mesh equations are studied in [17].

5.1. Discretization of the equation. Following [8], equations (5.1) and (5.2)
are discretized using the method of lines. The spatial derivatives are, as before,
approximated using central differences and the resulting stiff system of ODEs, for the
solution variables and mesh locations, is solved using a stiff solver.

We set

xj(t) =

j∑
l=1

hl(t)

and define

U(t) = (u0(t), u1(t), . . . , uJ(t))T ,
X(t) = (x1(t), x2(t), . . . , xJ(t))T .

(5.3)

The equation (5.1) is discretized on a nonuniform mesh in x to obtain

duj
dt

= Pj(U,X) +Qj(U,X)
dxj
dt

, j = 1, . . . , J − 1.(5.4)

Here, the operator P is as given in (2.3) so that

Pj(U,X) =
2ε

xj+1 − xj−1

[
uj+1 − uj
xj+1 − xj −

uj − uj−1

xj − xj−1

]
− 1

xj+1 − xj−1

[
u2
j+1

2
− u2

j−1

2

]
,

and we take a central difference discretization for the convective operator to give

Qj(U,X) =
uj+1 − uj−1

xj+1 − xj−1
.

The equations (5.2) are then discretized on a uniform mesh in ξ, to give

(xt)j+1− 2(xt)j + (xt)j−1 = Mj+ 1
2
(xj+1−xj)−Mj− 1

2
(xj −xj−1), j = 1, . . . , J − 1,

where

Mj+ 1
2

=

√
1 +

(
uj+1 − uj
xj+1 − xj

)2

.(5.5)

This gives

dX

dt
= AR(U,X),

where A is the inverse of a tridiagonal matrix with diagonal elements −2 and off-
diagonal elements 1, and R is a (J − 1) vector with jth element

Rj = Mj+ 1
2
(xj+1 − xj)−Mj− 1

2
(xj − xj−1).
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This can also be written as

dxj
dt

=
J−1∑
k=1

AjkRk, j = 1, . . . , J − 1.(5.6)

Using this in (5.4) we get

duj
dt

= Pj(U,X) +Qj(U,X)
J−1∑
k=1

AjkRk(U,X), j = 1, . . . , J − 1.(5.7)

Then the equations (5.6) and (5.7) represent a system of ODEs,

dZ

dt
= G(Z),(5.8)

where Z(t) = (u1(t), . . . , uJ−1(t), x1(t), . . . , xJ−1(t))T . Therefore, (5.8) represents the
system for the evolution in time of u and x at uniform grid locations in ξ. At steady
state, these equations reduce to the mesh adaptation introduced earlier, in the case
α = 1

2 .

5.2. Numerical results of the unsteady computations. The solution
branches in the bifurcation diagram of Figure 2 represent the equilibrium points of
the system (5.8). Thus the stability of these solution branches can be analyzed using
a linearized stability analysis of the system (5.8). This analysis can be performed by
AUTO and the resulting stability properties of the branches when A = 1 are given
in Figure 12, where the solid lines represent the stable branches and the broken lines
represent the unstable ones. The main branch undergoes supercritical and subcritical
bifurcations alternately at the sucessive symmetry breaking bifurcation points εi. In
particular, it loses stability as ε is reduced below ε1 = 6.081× 10−2. Thus the effect
of the spurious solutions is to destabilize the main symmetric solution branch. The
secondary branch bifurcating from the third bifurcation point at ε3 = 3.896 × 10−2

loses stability through a Hopf bifurcation at εH = 9.7 × 10−3. Since the underlying
partial differential equation cannot undergo a Hopf bifurcation, the oscillations result-
ing from the numerically observed Hopf bifurcation arise directly from the adaptive
mesh strategy.

To study the stability characteristics of the branches under large perturbations
we now consider evolution of the system (5.8) from specific initial data using the
backward Euler method. We have computed the solution at ε = 1.0 × 10−2. For
this value of ε there are seven equilibrium solutions, one on the main branch and
two on each of the secondary branches bifurcating from ε1, ε2, and ε3. For this value
of ε, the main branch and the secondary branch bifurcating from ε2 are unstable,
whereas the secondary branches emanating from bifurcations at ε1 and ε3 are stable.
Numerical experiments strongly imply that the stable solutions described above are
the only attractors of the time-dependent problem, with each having a nonzero basin
of attraction. It is thus of interest to ask which initial data is attracted to which
branch. To gain insight into this question we chose as initial data for the unsteady
computation, small perturbations of both the solution Ui and the equidistributed
mesh computed at the unstable equilibrium solutions. As a measure of the evolution
of the system we define

Mav =
1

J

J−1∑
j=0

Mj+ 1
2
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Fig. 12. The stability of the solutions described in Figure 3.

and

||M −Mav|| =
√√√√J−1∑

j=0

(Mj+ 1
2
−Mav)2,

where Mj+ 1
2

is defined as in (5.5). Thus ||M −Mav|| represents some measure of the
deviation of the solution from equidistribution. For all our computations we find that
||M −Mav|| increases initially as the solution moves away from the unstable branch.
However, once the solution is close to a stable branch the deviation from equidistri-
bution decays exponentially. The convergence history of the unsteady computation
with starting solutions close to the unstable branches at ε = 1.0 × 10−2 is shown in
Figure 13. To obtain the results summarized in Curve 1, initial data is taken which is
a perturbation of a symmetric solution labeled (4, 17) on the main branch. To obtain
the results in Curves 2 and 3, two nearby sets of initial data are chosen which are both
perturbations of the asymmetric unstable solution branch labeled (6, 20) bifurcating
from the main branch at ε2 but which lead to different time histories. In these time
histories the solutions represented by Curves 1 and 2 both converge slowly toward the
stable secondary branch emanating from ε3 labeled (5, 19). The oscillations in these
solutions, and the slow convergence, is due to the existence of complex eigenvalues of
the linearized system which have real part close to zero. This follows from the fact
that ε is close to the Hopf bifurcation point at εH . In contrast, Curve 3 exhibits
rapid convergence to the secondary branch emanating from ε1 labeled (7, 21). Thus
the secondary curve bifurcating from ε2 in some sense divides the initial data which
evolves toward the two equilibrium solutions.
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Fig. 13. The convergence history of the solutions of the time-dependent problem from various
sets of starting values. Here Curve 1 and Curve 2 represent solutions tending toward the third
solution branch, and Curve 3 a solution tending toward the first solution branch.

6. Conclusions. The results of our analysis and of our computations show that
the use of an adaptive strategy does not prevent the existence of spurious asymmetric
solutions of the discretization of the partial differential equation (1.1). Furthermore,
these solutions can be stable while the main symmetric solution branch (which is the
approximation to the true solution) is unstable. Hence, they have a profound and
misleading effect upon the dynamics of the solution. If we measure the “goodness” of
an adaptive strategy by the smallness of the value ε1 of ε at which the first spurious
branch of solutions bifurcates from the main branch, then it would seem that, using
a uniform mesh (with α = 0), we do rather better than taking an adaptive mesh
with almost any value of α < 1. Presumably, this is because the adaptive methods
reduce the density of mesh points close to the boundaries where we predict, from
considerations of supersensitivity, that important features of the solution need to be
resolved. We conclude that an adaptive strategy for problems of the form (1.1) which
concentrates on significant features such as the transition layer but ignores subtle
effects at the boundaries can give rise to most misleading results.
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