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Probabilistic and deterministic convergence proofs for
software for initial value problems
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The numerical solution of initial value problems for ordinary differential equations is fre-
quently performed by means of adaptive algorithms with user-input tolerance τ. The time-
step is then chosen according to an estimate, based on small time-step heuristics, designed to
try and ensure that an approximation to the local error commited is bounded by τ. A ques-
tion of natural interest is to determine how the global error behaves with respect to the
tolerance τ. This has obvious practical interest and also leads to an interesting problem in
mathematical analysis. The primary difficulties arising in the analysis are that: (i) the time-
step selection mechanisms used in practice are discontinuous as functions of the specified
data; (ii) the small time-step heuristics underlying the control of the local error can break
down in some cases. In this paper an analysis is presented which incorporates these two
difficulties.

For a mathematical model of an error per unit step or error per step adaptive Runge–
Kutta algorithm, it may be shown that in a certain probabilistic sense, with respect to a
measure on the space of initial data, the small time-step heuristics are valid with probability
one, leading to a probabilistic convergence result for the global error as τ → 0. The
probabilistic approach is only valid in dimension m > 1; this observation is consistent with
recent analysis concerning the existence of spurious steady solutions of software codes which
highlights the difference between the cases m = 1 and m > 1. The breakdown of the small
time-step heuristics can be circumvented by making minor modifications to the algorithm,
leading to a deterministic convergence proof for the global error of such algorithms as τ → 0.
An underlying theory is developed and the deterministic and probabilistic convergence results
proved as particular applications of this theory.
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1. Introduction

In this paper we consider the approximation of initial-value problems for ordinary
differential equations by means of adaptive time-step software. We prove convergence
results framed in terms of the tolerance τ. A fairly complete mathematical model of the
software code is studied, incorporating step-rejections, due to violation of an estimated
error bound, together with upper bounds on the maximum step-size and maximum step-
size ratio. Thus we obtain a discontinuous dynamical system governing the evolution
of the approximation of the solution itself, together with the time increments.

The heuristics underlying the algorithm are designed to ensure that the global
error is bounded by a power of the tolerance τ. However, the heuristics break down
for certain trajectories. The purpose of this paper is to include the possibility of this
breakdown in a rigorous analysis of the discontinuous dynamical system governing the
adaptive algorithm. Two types of results are proven. In the first type we prove that the
probability of the heuristics breaking down is small with respect to a measure on the
space of initial data; this leads to a proof of convergence with probability one. In the
second type of result we make minor modifications of the standard algorithm; these
modifications are designed to ensure that the algorithm actually behaves correctly even
when the heuristics underlying it break down.

The use of probabilistic reasoning in numerical analysis has been fairly
widespread in the context of linear algebra, starting with the work of Demmel [4],
leading to more recent work in, for example, [5, 8] and [15]. Demmel’s work itself
was partially motivated by Smale’s pioneering analysis of Newton’s method; see [10].
However, to the best of our knowledge a probabilistic approach to the analysis of
numerical methods has not been undertaken in the context of differential equations.
The first result in the literature concerning the behaviour of the global error with
respect to tolerance τ appears to be [12]; this work has been developed further in,
for example [7, 9]. The work of [12] forms the basis for the work presented here
but we extend in three important ways. Firstly, in [12] the assumption is made that
the leading term in the expansion for the local error estimate does not vanish along
the trajectory being approximated; this assumption does not hold for all trajectories
and, furthermore, for trajectories close to those which violate the assumption, certain
constants appearing in [12] will be large; this issue is not addressed in [12]. Sec-
ondly, the paper [12] relies on an asymptotic expansion for the error in powers of the
time-step ∆t and only the analysis of the leading order term is given in detail; here
we control the complete error, leading to more precise estimates on how small the
tolerance and initial time-step need to be for the analysis to hold. This issue is related
to the first point since these upper bounds on the tolerance and initial time-step may
be particularly severe for solutions close to trajectories along which the leading term
in the error estimate disappears. Thirdly, [12] employs a simplified model of the step-
size selection mechanism that does not incorporate step-size rejection and maximum
step-size and step-size ratio bounds explicitly in the analysis.

The first of these points is addressed in [3], although the second and third points
are not addressed there. In [3] the basic step-size selection procedure is appended
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with a computational estimate of the leading term in the error estimate and, whenever
this is small, the step-size selection procedure is modified. Using this modification of
the algorithm the authors of [3] improve upon the results of [12].

The paper [13] is also an important contribution to the rigorous analysis of
automatic step-size control. However, in the context that interests us here that work
is slightly lacking in two main respects: firstly, the maximum step-size is assumed
a priori to be bounded by a positive power of the tolerance τ, something which is
not true for most software codes used in practice – see [6]; secondly, as in [3, 7, 9]
and [12], step-size rejection is not included in the analysis.

We now introduce the mathematical background in which our results are framed,
starting with the initial-value problem which we wish to approximate. Consider the
equation

du
dt

= f(u), u(0) = U, (1.1)

where f ∈ C∞(Rm,Rm). Thus we have a local solution u(t) = S(U, t) defined, for
every U ∈ Rm, and t in an interval I1 = I1(U) ⊆ R. Furthermore, on its interval of
existence we have S(U, ·) ∈ C∞(I1,Rm). Thus for (U, t) ∈ Rm × I1(U), we may
form the Taylor series expansion

S(U, t) =
r+1∑
j=0

1
j!
β

(0)
j (U, 0)tj

+
tr+2

(r + 1)!

∫ 1

0
(1− s)r+1β

(0)
r+2(U ; st) ds, ∀r ∈ Z+, (1.2)

where

β
(0)
j (u, t) =

∂j

∂tj
{
S(u, t)

}
.

For simplicity we assume in the remainder of the paper that f and all its derivatives
are uniformly bounded on Rm. This simplifies the analysis and statement of results
but is not actually necessary for the results to hold.

We also consider two explicit Runge–Kutta methods approximating the flow
generated by (1.1). Consider the equations

ηi = U + t

l∑
j=1

aijf(ηj), i = 1, . . . , l. (1.3)

Since the ηi represent the internal stages of an explicit Runge–Kutta method, it follows
that aij = 0, i 6 j. Hence ηi(U, t) ∈ C∞(Rm × R,Rm). Given b(k)

i for i = 1, . . . , l
and k = 1, 2 we define, for k = 1, 2,

S(k)(U, t) = U + t

l∑
i=1

b
(k)
i f

(
ηi(U, t)

)
(1.4)
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noting that S(k)(U, t) ∈ C∞(Rm×R,Rm). The mapping S(1) will be used to advance
the solution, whilst S(2) will be used to control the error. For all (U, t) ∈ Rm×R we
may form the Taylor series expansions

S(k)(U, t) =
r+1∑
j=0

1
j!
β

(k)
j (U, 0)tj

+
tr+2

(r + 1)!

∫ 1

0
(1− s)r+1β

(k)
r+2(U ; st) ds, ∀r ∈ Z+, (1.5)

where

β
(k)
j (u, t) =

∂j

∂tj
{
S(k)(u, t)

}
.

Equations (1.3) and (1.4) with k = 1, 2 define two-distinct Runge–Kutta methods.
We assume that the two Runge–Kutta methods have order s and q1. To be more precise
we shall assume that

β
(1)
j (u, 0) ≡ β

(0)
j (u, 0), j = 0, . . . , s,

β
(2)
j (u, 0) ≡ β

(0)
j (u, 0), j = 0, . . . , q1,

β
(1)
j (u, 0) ≡ β

(2)
j (u, 0), j = 0, . . . , q2,

(1.6)

and that agreement between the β’s does not occur at the next order in each of the three
cases. Note that q2 > min{s, q1} and that, if s 6= q1, then q2 = min{s, q1}. We do not
specify which of the two methods has higher order; this allows us to consider methods
operating both in extrapolation (s > q1) and non-extrapolation (s 6 q1) modes.

The numerical method for the approximation of (1.1) is now described. Let Un
denote our approximation to u(tn) where

tn =
n−1∑
j=0

∆tj.

The sequences {Un} and {∆tn} are generated as follows. Define

E(u, t) =
∥∥S(1)(u, t)− S(2)(u, t)

∥∥/tρ. (1.7)

(Throughout the paper ‖ · ‖ will denote the Euclidean norm on Rm.) Here ρ = 0 if we
consider error per-step (EPS) and ρ = 1 if we consider error per unit step (EPUS).
Thus

E(u, t) = O(tq),

where q = q2 + 1− ρ. Then Un and ∆tn are generated so that

Un+1 = S(1)(Un; ∆tn), U0 = U,

∆tn+1 = βk∆t(0)
n+1, ∆t(0)

0 = ∆tinit,

(1.8)
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where k = k(Un,∆tn) is the minimal non-negative integer such that

E(Un+1,∆tn+1) 6 τ (1.9)

and

∆t(0)
n+1 = min

{
θ

(
τ

E(Un,∆tn)

)1/q

∆tn, α∆tn,D
}
. (1.10)

Here 0 < β < 1, 0 < θ < 1 < α and D ∈ R+. Throughout, θ and D will be fixed
independently of τ. For all results in sections 4 and 5 we will assume that α is fixed
independently of τ whilst for the results in section 6 only we will assume that α→ 1+

as τ → 0+. Thus, unless explicitly stated, α will be assumed independent of τ ; this
is the case for most software used in practice.

Note that, by (1.8) and (1.10), it follows that

∆tn+1 6 ∆t(0)
n+1 6 min{α∆tn,D},

so that a maximum step-size ratio of α and a maximum step-size of D are imposed
by the algorithm. Note also that ∆tn+1 is discontinuous as a function of ∆tn and Un,
the potential discontinuities being introduced through the selection of the integer k.
In summary, we have a dynamical system of the form

Un+1 = Φ(Un,∆tn),
∆tn+1 = Γ(Un,∆tn),

(1.11)

where Φ is smooth and Γ discontinuous as functions of their arguments. In fact, we
will prove implicitly that such a function Γ is well-defined in the course of the paper.
We will need the following definition of truncation error in the remainder of the paper:

T (u, t) = S(1)(u, t)− S(u, t). (1.12)

In section 2 we introduce some background properties and notation for the un-
derlying Runge–Kutta methods (1.3), (1.4). In section 3 we prove a number of basic
results concerning the adaptive algorithm (1.7)–(1.10) which are used in subsequent
sections to prove our main theorems. In section 4 we state a basic convergence result
of O(τ s/q) for the adaptive algorithm (see theorem 4.1) and use it to study linear con-
stant coefficient differential equations. The case s < q1 and ρ = 1 (so that q = q2 = s)
leads to an error per unit step code with global error O(τ). Similarly, the case s < q1

and ρ = 0 so that q2 = s and q = s + 1 leads to an error per step code with global
error O(τ s/(s+1)). In section 5 we use theorem 4.1 to prove that, with probability one,
the adaptive algorithm converges on a general class of nonlinear problems and that
the global error is O(τ s/q) as τ → 0. Actually we prove more, estimating the proba-
bility that the error constant in the global error falls below a given specified number
– see theorem 5.1. The probabilistic approach is only valid in dimension m > 1; this
observation is consistent with recent very interesting constructions of spurious steady
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solutions of software codes which highlight the difference between the cases m = 1
and m > 1 – see [1].

In section 6 we present certain modifications to the algorithm (1.7)–(1.10) which
allow the global error to be controlled in the exceptional cases shown to have small
probability in section 5. This leads to several deterministic convergence results, namely
theorems 6.2 and 6.4. In practice we believe that the probabilistic convergence results
of section 5 are of more value than the deterministic results of section 6. This is
because the modifications to the basic algorithm which we propose to obtain deter-
ministic results are not currently used in practice; furthermore, they are in any case
only of use for certain exceptional cases of small probability. It would be of interest
to study the effect on these cases of small probability of the modifications to the basic
algorithm (1.7)–(1.10) proposed in [3]; currently [3] does not include the effect of
step-size rejections. The reader interested only in probabilistic convergence results
need only study section 2, section 3, up to and including assumption 3.5, and sections
4 and 5.

We have chosen to analyse an algorithm which faithfully represents most of the
important features of real adaptive Runge–Kutta based algorithms for the solution of
initial-value problems. Nonetheless, any writer of software code will be able to find
features not addressed in this analysis. We mention three such features and indicate
how the analysis given here could be extended to include them.

The first is the fact that the error estimate in real codes typically has an absolute
and a relative component. Specifically, the constraint (1.9) is replaced by

E(Un+1,∆tn+1) 6 τ max
{
a, b‖Un+1‖

}
(1.13)

for some fixed a, b > 0. This change can be studied by similar techniques to those
used here since, provided bounded solutions are studied,

sup
t∈[0,T ]

∥∥u(t)
∥∥ 6 c

and, for Un which are close to u(tn) for τ small, (1.13) implies that

E(Un+1,∆tn+1) 6 τ max{a, bc} + o(τ).

The similarity of this inequality to (1.9) enables adaptation of the analysis given in
this paper to the case where (1.13) is used rather than (1.9).

The second is the fact that many Runge–Kutta codes use Richardson extrapolation
to estimate the error. Specifically we have

S(1)(u, t) = S(u, t) + T (u, t)

and T (u, t) = O(ts+1). Thus the error estimate is

E(u, t) =
∥∥S(1)(u, t)− S(1)

(
S(1)(u, t/2), t/2

)∥∥/tρ.
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A little manipulation shows that

E(u, t) = O(ts+1−ρ)

and that E(u, t) is proportional to f(u). Hence the methodology presented in this
paper may be applied to this situation.

The third is the fact that only explicit Runge–Kutta methods are considered. To
study implicit methods, an additional criterion would have to be added to the adaptation
of the time-step, namely to choose it sufficiently small that the implicit equations have
a unique solution in a small neighbourhood of the solution at the previous time-step.
If this is done then similar techniques to those used here could be applied. However,
implicit methods are typically used for stiff problems and the question of deriving
stiffness independent error estimates would require special attention.

2. Properties of the underlying methods

Here we describe the basic properties of S(·, ·) and the S(k)(·, ·) which we require in
the remaining sections. We start by defining elementary differentials. Let

e(i) = (0, 0, . . . , 1, 0, . . . , 0)T ∈Rm,

K(j) =
(
K

(j)
1 , . . . ,K(j)

m

)T
∈Rm,

f(u) =
(
f1(u), . . . , fm(u)

)T
∈Rm,

where fj(u) :Rm 7→ R and f(u) :Rm 7→ Rm. In the above, only the ith entry of
the vector e(i) is non-zero. We define the M th Fréchet derivative of f , namely
f (M) : RMm 7→ Rm, by

f (M)(z)
(
K(1), . . . ,K(M)

)
=

m∑
i=1

m∑
j1=1

. . .

m∑
jM=1

∂Mfi(z)

∂zj1 · · · ∂zjM
K

(1)
j1
· · ·K

(M)
jM

e(i).

The elementary differentials of f are denoted Fs :Rm 7→ Rm and their order by rs;
these are defined recursively by:

(i) f(u) is the only elementary differential of order 1;

(ii) if Fs(u), s = 1, . . . ,M , are elementary differentials of order rs, s = 1, . . . ,
M , respectively then f (M)(u)(F1(u), . . . , FM (u)) is an elementary differential
of order 1 +

∑M
s=1 rs.

Lemma 2.1. For k = 0, 1, 2 and each j for which they are defined, the β(k)
j (U, 0) are

linear combinations of elementary differentials of order j.

Proof. See Butcher [2]. �
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Lemma 2.2. For each j > 1 for which β(k)
j (u, t) are defined and for k = 1, 2, there

exist l p× p matrices d(k)
i,j (u, t), and a p× p matrix d(0)

j (u, t), i = 1, . . . , l, such that

β
(k)
j (u, t) =

l∑
i=1

d
(k)
i,j (u, t)f

(
ηi(u, t)

)
, k = 1, 2,

β
(0)
j (u, t) = d

(0)
j (u, t)f(u).

Proof. See lemma 4.6.4 of [14] for k = 1, 2. For k = 0 the result follows by the
chain rule. �

Lemma 2.3. Let f(u) = Au for some m × m matrix A. Then for k = 1, 2 and

j = 1, 2, . . . we have real numbers c(k)
j such that

β
(k)
j (u, 0) = c

(k)
j Aju.

Proof. If f(u) = Au then f (M)(z) is identically zero for M > 1. It follows that
the only elementary differential of order j is Aju and lemma 2.1 gives the desired
result. �

In the case where linear problems are considered (section 4) s (see the discussion
after equation (1.6)) will be taken to be the effective order of the method when applied
to the class of linear autonomous problems. This may be higher than the order on the
general class of problems (1.1) because of the special structure of the truncation error
predicted by lemma 2.3. Similar considerations apply to q1, q2 and q.

Now define

B1(u) :=
[
β

(1)
q2+1(u, 0)− β

(2)
q2+1(u, 0)

]
/(q2 + 1)!,

(2.1)

B2(u, t) :=
∫ 1

0

[
β

(1)
q2+2(u, ts)− β

(2)
q2+2(u; ts)

](1− s)q2+1

(q2 + 1)!
ds,

b1(u) =

{
B1(u)/‖f(u)‖, ‖f(u)‖ 6= 0,

0, ‖f(u)‖ = 0;
(2.2)

b2(u, t) =

B2(u, t)/‖f(u)‖, ‖f(u)‖ 6= 0,

0, ‖f(u)‖ = 0.

Note also that, by (1.5) with r = q2 and (1.6)–(1.7),

E(u, t) = tq
∥∥B1(u) + tB2(u, t)

∥∥ = tq
∥∥f(u)

∥∥∥∥b1(u) + tb2(u, t)
∥∥. (2.3)
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Thus the leading order term in the error estimate E(u, t) is zero when f(u) = 0 or
when b1(u) = 0. Such points, and their neighbourhoods, will be of crucial importance
in the remainder of the paper. We briefly outline why this is so. Assume that f(Un)
and b1(Un) are non-zero for all n. It then follows from (1.7) and (1.9) that

∆tqn
∥∥f(Un)

∥∥∥∥b1(Un)
∥∥ 6 τ +O

(
∆tq+1
n

)
so that, provided ∆tn is small, ∆tn 6 Cτ 1/q. It then follows from (1.6), (1.12) that
the local truncation error is of order ∆tnτ s/q. A straightforward Gronwall argument
proves that the global error behaves like τ s/q. This is the essence of the result in [12]
where f(u) and b1(u) are assumed to be bounded away from zero on any trajectory
under consideration. Since we do not wish to make this assumption, the behaviour
of the algorithm near to points where f(u) and b1(u) disappear will be of crucial
importance to us.

In the remainder of the section we prove some results concerning the functions
now defined.

Lemma 2.4. Let J ⊂ Rm be bounded. Then, if dB1(·) denotes the Jacobian of B1(·),

sup
u∈J

∥∥b1(u)
∥∥ <∞, sup

(u,t)∈J×[0,D]

∥∥b2(u, t)
∥∥ <∞,

sup
(u,v,s)∈J×J×[0,1]

∥∥dB1
(
su+ (1− s)v

)∥∥ <∞.
Proof. We consider the EPUS case ρ = 1 and q2 = q; the EPS case q2 = q − 1 is
similar. Since S(k)(U, t) ∈ C∞(Rm × R,Rm) it follows that

β
(k)
j (U, t) ∈ C∞

(
Rm × R,Rm

)
for j = 1, . . . , q+ 2; thus lemma 2.2 gives an expression for β(k)

j (u, t) for j = 1, . . . ,
q + 2. By lemma 4.2.6 in [14] we have that there are constants ci = ci(u) such that∥∥f(ηi(u, t))∥∥ 6 (1 + cit)

∥∥f(u)
∥∥. (2.4)

Thus lemma 2.2 gives∥∥β(1)
j (u, t)− β

(2)
j (u, t)

∥∥ 6 kj(u, t)∥∥f(u)
∥∥ (2.5)

for some functions kj(u, t) which are bounded for (u, t) ∈ J × [0,D] and j = 1, . . . ,
q + 2. Hence, since by (2.3),∥∥b1(u)

∥∥ =
∥∥f(u)

∥∥−1∥∥B1(u)
∥∥, ∥∥b2(u, t)

∥∥ =
∥∥f(u)

∥∥−1∥∥B2(u, t)
∥∥,

the first two results follow from (2.2). Also β(k)
q+1(U, t) ∈ C1(Rm×R,Rm) and hence

dB1(w) :=
1

(q + 1)!
dβ

(1)
q+1(w, 0) − dβ

(2)
q+1(w, 0) ∈ C(Rm × R,Rm).

The third result follows. �

The final result of this section concerns the truncation error given by (1.12).
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Lemma 2.5. Let J ⊂ Rm be bounded. There is a constant K = K(J,D) such that,
for all u ∈ J , t ∈ [0,D],

T (u, t) 6 K
∥∥f(u)

∥∥ts+1.

Proof. By (1.2), (1.5) and (1.6) we have∥∥S(1)(u, t)− S(u, t)
∥∥ 6 C∥∥β(1)

s+1(u, t) − β
(0)
s+1(u, t)

∥∥ts+1.

Hence (2.5) gives the desired result. �

3. Properties of the error control

In this section we prove three basic lemmas concerning the behaviour and error con-
trol properties of the algorithm (1.7)–(1.10) in the following three situations: (a)
‖B1(S(U, t))‖ is bounded away from zero; (b) ‖B1(S(U, t))‖ is small for some t
because ‖b1(S(U, t))‖ is small for some t; (c) ‖B1(u)‖ is small for some t because
‖f(S(U, t))‖ is small for some t. These are lemmas 3.4, 3.7 and 3.8 respectively.
In subsequent sections we use these lemmas as building blocks for our theorems.
Sections 4 and 5 require only material from this section up to and including assump-
tion 3.5, whilst section 6 requires all the material from this section.

In lemma 3.3, we prove that the time-step ∆tn is bounded away from zero
uniformly in n and hence that any finite time T can be reached by the algorithm.

We start by introducing some notation. As mentioned in the previous section
the neighbourhoods of points where f(u) and b1(u) disappear will be crucial in our
analysis and this motivates the following. Let

Ψ(ε) :=
{
u ∈ Rm:

∥∥b1(u)
∥∥ < ε

}
,

(3.1)
Ψ(0) :=

{
u ∈ Rm:

∥∥b1(u)
∥∥ = 0

}
=
⋂
ε>0

Ψ(ε)

and

Γ(δ) :=
{
u ∈ Rm:

∥∥f(u)
∥∥ < δ

}
,

(3.2)
Γ(0) :=

{
u ∈ Rm:

∥∥f(u)
∥∥ = 0

}
=
⋂
δ>0

Γ(δ).

Define, given sets I, J ⊂ Rm,

χ = Γ(δ) ∪Ψ(ε),

Jε,δ = J\χ, Iε,δ = I\χ, Jε = J\Ψ(ε), Iε = I\Ψ(ε).
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We also define the constants C3, . . . , C9 (depending on bounded J ⊂ Rm and
D) by

C3 = sup
u∈J

∥∥b1(u)
∥∥, C4 = sup

(u,t)∈J×[0,D]

∥∥b2(u, t)
∥∥,

C5 = sup
(u,v,s)∈J×J×[0,1]

∥∥dB1
(
su+ (1− s)v

)∥∥, C6 = sup
u∈J

∥∥f(u)
∥∥,

C7 =
{
C6[C3 +DC4]

}−1/q
, C8 = Lip

{
f(u), u ∈ J

}
,

C9 = sup(u,t)∈J×[0,D]E(u, t)/tq , C10 = min

{
θ2q

αq
, βq
}

1
C9
.

These constants are finite by lemma 2.4, the smoothness of f(u) and (2.3).
In the following either or both of δ and ε may be fixed independently of τ or

may be chosen proportional to a positive power of τ. Thus we set

δ = δ0τ
a, ε = ε0τ

b, (3.3)

for some δ0, ε0 > 0 and a, b > 0. We always assume that a and b in (3.3) are chosen
so that

τ/(δε1+q)→ 0 as τ → 0. (3.4)

This automatically holds if a = b = 0. Only the case a = b = 0 will be used in
sections 4 and 5. In the case where a = 0 in (3.3), then (3.4) implies that

τ/(δ2ε2)→ 0 as τ → 0, (3.5)

since q > 1.
We now consider a solution, or families of solutions, of (1.1) defined for t ∈ [0, T ]

and satisfying u(t) ∈ I, where I ⊂ Rm is bounded. Let J = N (I, d) for some fixed
d > 0, independent of τ. We will show that our numerical approximation lies in J in
lemmas 3.4, 3.7 and 3.8; the theorems proved using those lemmas will hence involve
constants depending upon J.

The first lemma of this section bounds the time-step selected by the algorithm at
a point where ‖B1(u)‖ is bounded away from zero.

Lemma 3.1. Let u ∈ Jε,δ. Then all t ∈ R+ satisfying E(u, t) 6 τ and t ∈
[0, εq/C4(q + 1)] also satisfy tq 6 (q + 1)τ/δε.

Proof. If E(u, t) 6 τ and u ∈ Jε,δ then (2.3) gives∥∥b1(u) + tb2(u, t)
∥∥tq 6 τ/δ.

But ∥∥b1(u) + tb2(u, t)
∥∥ > ∥∥b1(u)

∥∥− t∥∥b2(u, t)
∥∥ > ε−C4t > ε/(q + 1).

Thus εtq 6 (q + 1)τ/δ and the result follows. �

The second lemma simply uses induction to extend the previous result over
several steps.
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Lemma 3.2. Assume that there exist integers M = M(τ) and N = N(τ) such that

Un ∈ Jε,δ for n = M, . . . ,N. Then if ∆t(0)
M 6 εq/C4(q + 1) it follows that, for τ

sufficiently small,
∆tqn 6 (q + 1)τ/δε, ∀n = M, . . . ,N.

Proof. Note that if

∆t(0)
n 6

εq

C4(q + 1)

then
∆tn 6

εq

C4(q + 1)

by (1.8), since β < 1.
We use induction. Clearly the result holds for n = M by lemma 3.1. Assume

that it holds for n = p 6 N − 1. Then, by (1.10) and (3.4),

∆t(0)
p+1 6 α

(
(q + 1)τ

δε

)1/q

6 εq

C4(q + 1)

for τ sufficiently small. Lemma 3.1 completes the induction. �

Define φ = τ 1/q/C
1/q
9 and note that

E(v, t) 6 τ, ∀v ∈ J, t ∈ (0, φ), (3.6)

provided that τ is sufficiently small to ensure that φ 6 D. The next lemma gives a
bound on the time-step ∆tn from below; the bound is expressed in terms of φ.

Lemma 3.3. Assume that there exists an integer N = N(τ) such that Un ∈ J for
n = 0, . . . ,N . Then, for all τ sufficiently small,

∆tn > min

{
θ2φ

α
, βφ,∆t0

}
, n = 0, . . . ,N. (3.7)

Proof. Clearly (3.7) holds for n = 0. Assume that it holds for n = m 6 N − 1 for
induction. Let Ẽm := E(Um,∆tm). If

Ẽm > τ(θ/α)q (3.8)

then, by definition of C9,
τ(θ/α)q 6 C9∆tqm, (3.9)

so that ∆tm > θφ/α. By (3.8), (3.9) and (1.10)

∆t(0)
m+1 = min

{
θ
(
τ/Ẽm)

)1/q∆tm,D
}
> min

{
θ∆tm,D

}
> min

{
θ2φ/α,D

}
.
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For τ sufficiently small we obtain

∆t(0)
m+1 > θ2φ/α.

If ∆t(0)
m+1 < φ then by (3.6) ∆tm+1 = ∆t(0)

m+1 > θ2φ/α whilst if ∆t(0)
m+1 > φ then

∆tm+1 > βφ by (3.6). Hence, if (3.8) holds then we have

∆tm+1 > min{θ2φ/α, βφ} (3.10)

and (3.7) holds with n = m+ 1. If (3.8) does not hold then

Ẽm 6 τ(θ/α)q (3.11)

and, by (1.10),
∆t(0)
m+1 = min{α∆tm,D}. (3.12)

If ∆tm+1 < βφ then ∆t(0)
m+1 = ∆tm+1; this follows since, by (1.8),

∆tm+1 = βk∆t(0)
m+1,

where k = 0 or where there is an integer k > 0 such that

E
(
Um+1, β

j∆t(0)
m+1

)
> τ, 0 6 j < k,

6 τ, j = k. (3.13)

But βk−1∆t(0)
m+1 = (1/β)∆tm+1 < φ so that (3.6) shows (3.13) is impossible so that

k = 0. Thus, if (3.11) holds we have from (3.12), for τ sufficiently small,

∆tm+1 > min{βφ, α∆tm,D} = min{βφ,∆tm}. (3.14)

This completes the proof. �

We now consider the numerical error. Let un = u(tn) and defineEn = ‖un−Un‖
(not to be confused with the functions E(·, ·) and Ẽm defined from it). Recall that s
is the order of the method S(1)(·, ·) used to advance the solution.

Lemma 3.4. Let a = 0 in (3.3) and assume that u(t) ∈ I2ε,2δ for TL 6 t 6 T0. Also
let M = M(τ), N = N(τ) be such that TL 6 tM 6 tN−1 6 T0. Assume in addition
that there exists a constant K such that, for all τ sufficiently small,

∆t(0)
M 6

εq

C4(q + 1)
and EM 6 K

( τ
δε

)s/q
.

Then there exist K1,K2 > 0 such that, for n = M, . . . ,N ,

En 6
[
EM +K1

( τ
δε

)s/q
(tn − tM )

]
exp
[
K2(tn − tM )

]
(3.15)

and
Un ∈ Jε,δ and ∆tqn 6 (q + 1)τ/δε, (3.16)

for all τ sufficiently small.
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Proof. We prove first that if (3.15) holds for n = M, . . . ,m then (3.16) holds for
n = M, . . . ,m. We have En 6 K3(τ/δε)s/q so that by (3.4) we have, for τ sufficiently
small, En 6 d. Since um ∈ I it follows that Um ∈ J. Also∥∥f(Un)

∥∥> ∥∥f(un)
∥∥− ∥∥f(Un)− f(un)

∥∥ > 2δ − C8‖Un − un‖

> 2δ − C8K3τ/δε > δ
by (3.5), for τ sufficiently small. Also∥∥B1(Un)

∥∥> ∥∥B1(un)
∥∥− C5‖Un − un‖ =

∥∥b1(un)
∥∥∥∥f(un)

∥∥− C5‖Un − un‖

>
∥∥b1(un)

∥∥∥∥f(Un)
∥∥− ∥∥b1(un)

∥∥∥∥f(un)− f(Un)
∥∥− C5‖Un − un‖

> 2ε
∥∥f(Un)

∥∥− (C3C8 + C5)‖Un − un‖. (3.17)

By (3.5) we may choose τ sufficiently small that

(C3C8 + C5)
K3τ

δε
6 δε.

Then
(C3C8 + C5)‖Un − un‖ 6 δε 6

∥∥f(Un)
∥∥ε

so that ‖B1(Un)‖ > ε‖f(Un)‖. Thus ‖b1(Un)‖ > ε as required. Hence Un ∈ Jε,δ for
n = M, . . . ,m >M if (3.15) holds for n = M, . . . ,m. It follows that, if (3.15) holds
for n = M, . . . ,m then

∆tqn 6 (q + 1)τ/δε, n = M, . . . ,m, (3.18)

by lemma 3.2.
Thus, to prove the lemma, it is sufficient to prove that if (3.15) holds for n =

M, . . . ,m then it holds for n = m+ 1, using (3.18). To this end note that

Em+1 =
∥∥S(um; ∆tm)− S(1)(Um; ∆tm)

∥∥
6
∥∥S(1)(um; ∆tm)− S(1)(Um; ∆tm)

∥∥+
∥∥S(1)(um; ∆tm)− S(um; ∆tm)

∥∥
6 (1 +K2∆tm)Em +K3∆ts+1

m .

This last line of the calculation follows from the Lipschitz constant and truncation
error bounds for the Runge–Kutta method – see [14], theorem 4.6.7, for example;
thus K2, K3 depend upon J. By (3.18) we have

∆tsm 6
[
(q + 1)τ/δε

]s/q
.

Thus there are constants K1, K2 depending upon J such that

Em+1 6 (1 +K2∆tm)Em +K1∆tm(τ/δε)s/q .

Since 1 + x 6 ex and 1 6 ex for all x > 0 the inductive hypothesis gives

Em+1 6
[
EM +K1(τ/δε)s/q(tm − tM)

]
exp
[
K2(tm+1 − tM )

]
+K1∆tm(τ/δε)s/q exp

[
K2(tm+1 − tM )

]
=
[
EM +K1(τ/δε)s/q(tm+1 − tM)

]
exp
[
K2(tm+1 − tM )

]
.

This completes the induction and (3.15) is established. �
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Remarks. (i) If ε > 0 and δ > 0 are fixed then, for τ sufficiently small and u(t) ∈ Iε,δ,
it may be shown that no step-rejections occur so that k = 0 in (1.8). Lemma 3.4 is
thus simply a refinement of Stetter’s theory from [12] (where step-size rejection is
ignored and the leading term in the local error is assumed to be bounded from zero),
with the addition of maximum step-size and step-size ratios to the step-size selection
mechanism. Estimating the probabilities that ε and δ take specified positive values
leads to the probabilistic convergence results of section 5.

(ii) If the numerical solution enters Γ(δ) or Ψ(ε) then the step-size selection
mechanism may allow the time-step to increase to a value where the asymptotic
considerations underlying the theory valid for u(t) ∈ Iε,δ fail. It has proved impossible
in this situation to obtain a convergence theory unless modifications (not used in
practice) are made to the step-size selection mechanism. These modifications are
given in assumptions 6.1 and 6.3 and lead to the deterministic convergence results of
section 6.

(iii) Lemma 3.3 addresses a question raised in [11] which is this: do practical
step-size selection mechanisms ensure that, for any given tolerance τ, any finite time
T may be reached by the code in a finite number of steps? The answer is in the
affirmative – under natural smoothness assumptions, sequences where the time-step
decreases in a geometric fashion are not produced.

In the next two lemmas, and in sections 5 and 6, we will make the following
assumption which implies that Ψ(ε) and Γ(δ) are disjoint for sufficiently small ε and δ.

Assumption 3.5. There is a constant εc > 0 such that, for each ε ∈ [0, εc), the set
Ψ(ε) is the disjoint union of a countable set of neighbourhoods {Ψi}Mi=1 with M 6∞,
each containing a point zi ∈ Rm at which b1(zi) = 0. Thus, for each ε ∈ [0, εc),

Ψ(ε) =
M⋃
i=1

Ψi, Ψi ∩Ψj = ∅, ∀i 6= j.

Furthermore, for any finite integer M0 there are constants C1 and C2 such that, for all
ε ∈ [0, εc),

Ψi ⊆ B(zi, C1ε), i = 1, . . . ,M0, min
16i6M0

∥∥f(zi)
∥∥ > C2.

Important remark. This assumption will hold for generic f(u) within the class of
sufficiently smooth functions. To understand that this is so in the linear case, for
example, see section 5.1. To make such a genericity statement precise in the general
case would require placing a probability measure on an appropriate space of functions
in which f lies and showing that assumption 3.5 holds with probability one; to do
this would complicate the paper unnecessarily and would not yield deeper insight.
Thus we simply assume that assumption 3.5 holds. The simple reason why it does
hold generically is that points where B1(u) = 0 will typically be isolated, since
B1 :Rm 7→ Rm and such functions picked at random will have isolated zeros. (Note
that B1(u) depends upon f and its derivatives so that picking f at random induces a
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random choice of B1.) Since the assumption 3.5 holds whenever the zeros of B1(u)
are isolated, the intuition that the assumption is generic follows. �

In the following we take M0 < ∞ to be sufficiently large that {zi}
M0
i=1 are the

only equilibria contained in J.

Lemma 3.6. Let assumption 3.5 hold and assume that u(t) ∈ Ψ(2ε)∩ I for T0 < t <
TR. Then, for ε sufficiently small,

TR − T0 6 8C1ε/C2.

Proof. By assumption 3.5, u(t) ∈ Ψi, u(t) ∈ B(zi, 2C1ε) for T0 < t < TR so that∥∥u(TR)− u(T0)
∥∥ 6 4C1ε.

Now

u(TR) = u(T0) +

∫ TR

T0

f
(
u(s)

)
ds

which implies that

u(TR)− u(T0) =

∫ TR

T0

f(zi) ds+

∫ TR

T0

[
f
(
u(s)

)
− f(zi)

]
ds.

But ‖f(zi)‖ > C2 and so

C2|TR − T0| 6
∥∥∥∥ ∫ TR

T0

f(zi) ds

∥∥∥∥ 6 4C1ε+ 2|TR − T0|C8C1ε. (3.19)

For ε sufficiently small the result follows. �

Lemma 3.7. Let assumption 3.5 hold, let b > 0 in (3.3), assume that u(t) ∈ Ψ(2ε)∩I
for T0 < t < TR and let N = N(τ), Q = Q(τ) be such that T0 < tN < tQ−1 <
TR 6 tQ. If there is a constant K such that, for all τ sufficiently small,

EN 6 K(τ/δε)s/q , ∆tqN 6 Kτ/δε,

then there exists a constant K3 > 0 such that, for all τ sufficiently small,

∆tp 6 ∆tmax,p := ∆tN + (α− 1)(tp − tN ), (3.20)

Ep 6
{
EN +K3∆tsmax,p−1(tp − tN )

}
exp
[
K2(tp − tN )

]
(3.21)

for p = N, . . . ,Q.
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Proof. We have ∆ti > 0, α∆ti > ∆ti+1 for all i > 0, by (1.8), (1.10). Thus

p−1∑
i=N

∆ti+1 6 α
p−1∑
i=N

∆ti,

which implies that
p−1∑
i=N

∆ti + ∆tp − ∆tN 6 α
p−1∑
i=N

∆ti.

Hence (3.20) follows.
Now

(tQ − tN )6 (TR − T0) + (T0 − tN ) + (tQ − TR) 6 (TR − T0) + ∆tQ−1

6 (TR − T0) + ∆tN + (α− 1)(tQ−1 − tN )

6 (TR − T0) + ∆tN + (α− 1)(TR − T0) 6 ∆tN + α(TR − T0).

By choosing Kτ 6 δεq+1 (which is possible by (3.4)) we have ∆tqN 6 εq and so, also
using lemma 3.6, it follows that there is a constant K4 > 0:

(tQ − tN ) 6 K4ε. (3.22)

Note that (3.21) holds for p = N . For induction assume that it holds for p =
N, . . . , P < Q. Then, by (3.4), (1.8), (1.10), (3.22) we have

Ep 6 [εs +K3D
sK4ε] exp[K2K4ε], p = N, . . . , P < Q.

Hence, for τ (and hence ε as b > 0) sufficiently small,

‖Up‖ 6
∥∥u(tp)

∥∥+ ‖Ep‖ 6
∥∥u(tp)

∥∥+ d

so that Up ∈ J, p = N, . . . , P. Similarly to the proof of lemma 3.4, we thus have

Em+1 6 (1 +K2∆tm)Em +K3∆ts+1
m , m = N, . . . , P. (3.23)

Applying theorem A in the appendix gives

EP+1 6
[
EN +K3

P∑
j=N

∆ts+1
j

]
exp

{
K2

P∑
j=N

∆tj

}
.

But, for N 6 j 6 P , equation (3.20) gives

∆tj 6 ∆tN + (α− 1)(tj − tN ) 6 ∆tN + (α− 1)(tP − tN ) = ∆tmax,P .

Hence (3.21) holds for p = P + 1 and the induction is complete. �
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Lemma 3.8. Let assumption 3.5 hold and let a, b > 0 be chosen so that δ = (τ/δε)s/q .
Assume that u(t) ∈ I2ε for TL 6 t 6 T0 and let M = M(τ), N = N(τ) be such that
TL 6 tM 6 tN−1 6 T0. Assume that

∆t(0)
M 6

εq

C4(q + 1)
(3.24)

and also that
∆tp 6

εq

αC4(q + 1)
(3.25)

if ‖f(Up)‖ 6 δ, ‖f(Up+1)‖ > δ. Finally, assume there is a constant K such that,
for all τ sufficiently small, EM 6 Kδ. Then there exist K1,K2 > 0 such that, for
n = M, . . . ,N ,

En 6
[
EM +K1δ(tn − tM )

]
exp
[
K2(tn − tM )

]
, (3.26)

Un ∈ Jε, (3.27)

∆tqn 6 (q + 1)τ/δε if
∥∥f(Un)

∥∥ > δ, (3.28)

for all τ sufficiently small.

Proof. We prove first that if (3.26) holds for n = M, . . . ,m 6 N then (3.27), (3.28)
hold for n = M, . . . ,m. We have En 6 K5δ, so that, by reducing τ sufficiently,

‖Un‖ 6
∥∥u(tn)

∥∥+K5δ 6
∥∥u(tn)

∥∥+ d

and so Un ∈ J. First assume that ∥∥f(Un)
∥∥ > C2/2.

Then, by the same argument that yields (3.17), we have∥∥B1(Un)
∥∥ > 2ε

∥∥f(Un)
∥∥− (C3C8 + C5)‖Un − un‖.

But
‖Un − un‖ 6 K5δ = K5(τ/δε)s/q .

By (3.4) it follows that, since s > 1,

‖Un − un‖

ε
→ 0 as τ → 0

and hence, for τ sufficiently small,

(C3C8 + C5)‖Un − un‖

ε
6 C2

2
6
∥∥f(Un)

∥∥
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so that ∥∥b1(Un)
∥∥ =
‖B1(Un)‖

‖f(Un)‖
> ε

and Un ∈ Jε. On the other hand, if∥∥f(Un)
∥∥ < C2/2

it is not possible that Un ∈ Ψ(ε), for if it were then Un ∈ Ψi for some i and, by
assumption 3.5,

C2

2
>
∥∥f(Un)

∥∥ > ∥∥f(zi)
∥∥− ∥∥f(Un)− f(zi)

∥∥ > ∥∥f(zi)
∥∥− C8C1ε

so that ‖f(zi)‖ < C2 for ε sufficiently small. This contradicts assumption 3.5. Hence
(3.27) follows from (3.26). That (3.28) follows from (3.26) may be seen from the
assumption on ∆tp if Up+1 ∈ J\Ψ(δ) and Up ∈ Ψ(δ), followed by application of

lemma 3.2, since (3.25) implies ∆t(0)
p+1 6 εq/C4(q + 1).

Since (3.27), (3.28) hold we have that

Em+1 =
∥∥S(um; ∆tm)− S(1)(Um; ∆tm)

∥∥
6
∥∥S(um; ∆tm)− S(Um; ∆tm)

∥∥+
∥∥S(Um; ∆tm)− S(1)(Um; ∆tm)

∥∥.
By continuity of the semigroup S(·, t) and by lemma 2.5 we obtain

Em+1 6 (1 +K2∆tm)Em +K3
∥∥f(Um)

∥∥∆ts+1
m ,

where, without loss of generality, we have chosen K2, K3 as given in the proof of
lemma 3.4. Now, if Um ∈ Γ(δ), then there is K6 > 0 such that

K3
∥∥f(Um)

∥∥∆ts+1
m 6 K6δ∆tm,

whilst if Um ∈ Jε\Γ(δ) = Jε,δ then (3.28) gives

K3
∥∥f(Um)

∥∥∆ts+1
m 6 K6(τ/δε)s/q∆tm = K6δ∆tm.

Hence

Em+1 6 (1 +K2∆tm)Em +K6δ∆tm

and an inductive step as in the proof of lemma 3.4 gives (3.26) for n = M, . . . ,m+1.
Since (3.27), (3.28) follow from (3.26) this completes the inductive proof. �
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4. Basic convergence theorem and applications

We employ the results of section 3 to obtain a basic convergence theorem concerning
the approximation of (1.1) by (1.7)–(1.10). In the following we set T <∞ and

η = η(U, T ) := inf
06t6T

∥∥f(S(U, t)
)∥∥,

ζ = ζ(U, T ) := inf
06t6T

∥∥b1
(
S(U, t)

)∥∥.
Let B denote a set with the property that there is a bounded set I = I(B,T ) such
that ⋃

U∈B

S(U, t) ⊆ I, ∀t ∈ [0, T ].

The basic theorem assumes that η, ζ > 0. Note that, since T < ∞, η > 0
occurs automatically provided that U is not an equilibrium point; on the other hand,
determining whether ζ > 0 would appear to be very hard in general. For linear
problems defined through an invertible matrix it will be shown to hold. Furthermore,
we shall show in section 5 that, in a certain probabilistic sense, η, ζ > 0 is very likely
to occur. Thus the following theorem will eventually be of more use than might appear
at first reading.

Theorem 4.1. Assume that ‖f(U)‖ 6= 0 and that ζ(U, T ) > 0. Then there are con-
stants K = K(B,T ), τc = τc(U,B, T ) and γ = γ(U,B, T ) such that, for all such
U ∈ B, the sequences {Un} and {∆tn} generated by the algorithm (1.7)–(1.10),
together with the truncation error (1.12), satisfy

∥∥u(tn)− Un
∥∥ 6 K( τ

ηζ

)s/q
,

min
{
C10τ,∆tq0

}
6 ∆tqn 6

4(q + 1)τ

ηζ

and ∥∥T (Un; ∆tn)
∥∥ 6 K( τ

ηζ

)s/q
∆tn

for all 0 6 tn 6 T, τ ∈ (0, τc) provided that ∆tinit 6 γ.

Proof. We apply lemma 3.4 with a = b = 0, TL = 0, T0 = T, δ = η/2 and ε = ζ/2.
Note that ζ > 0 by assumption and that η > 0 since ‖f(U)‖ 6= 0. The result on Un
and the upper bound on ∆tn follow, provided

∆t(0)
0 < γ =

ζq

2C4(q + 1)
,
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where C4 depends on B through J and ζ depends on U and T. The bound on the
truncation error follows from the estimate on the time-steps. The lower bound on ∆tn
follows from lemma 3.3. �

We now consider various cases where theorem 4.1 applies directly. The first of
these is the class of constant coefficient linear systems

ut = Au, u(0) = U, (4.1)

where the m×m matrix A has entries aij = {A}ij satisfying

‖A‖2
F :=

n∑
i,j=1

a2
ij = 1. (4.2)

Such a normalization can always be achieved by scaling time. We use the theory
of section 4 to prove results about this problem. The following lemma, concerning
solutions of (4.1), will be useful in this regard:

Lemma 4.2. Let A be an invertible m ×m matrix. All solutions of (4.1) subject to
(4.2) satisfy

η(U, T ) := inf
06t6T

∥∥Au(t)
∥∥ > e−T‖U‖

‖A−1‖
.

Proof. By (4.1)
Aut = A2u.

Hence, using 〈·, ·〉 to denote the inner product inducing the Euclidean norm ‖ · ‖, we
have

1
2

d
dt
‖Au‖2 = 〈Au,Aut〉 = 〈Au,A2u〉 > −‖Au‖.‖A2u‖.

But, since ‖ · ‖ 6 ‖ · ‖F , we have

1
2

d
dt
‖Au‖2 > −‖Au‖2‖A‖ > −‖A‖F ‖Au‖2 = −‖Au‖2.

Integrating gives
‖Au‖ > e−t‖AU‖.

Also, ‖v‖ 6 ‖A−1‖ · ‖Av‖ so that

‖Au‖ > e−t‖U‖/‖A−1‖.

The result follows. �

By lemma 2.3 we know that the truncation error on linear problems may be
of higher order than on nonlinear problems. Henceforth in this section we assume
that s and q1 have been chosen to be the effective orders of the methods in question
when applied to the class of linear problems of the form (4.1). Note that these orders
will be greater than or equal to the actual orders when applied to the fully nonlinear
problem (1.1). Similar considerations apply to q2 and q.
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Lemma 4.3. The functions B1(u) and b1(u) satisfy

B1(u) = aAq2+1u, b1(u) = aAq2+1u/‖Au‖ (4.3)

for some a 6= 0, when (1.7)–(1.10) is applied to (4.1). Hence, if A is non-singular,

ζ := inf
06t6T

∥∥b1
(
u(t)

)∥∥ > 0

for all solutions of (4.1). Specifically

ζ > |a|

‖A−1‖q2
.

Proof. From lemma 2.3, the definitions of B1(u) and b1(u) and from (1.6), the result
(4.3) follows. Now

‖Au‖ = ‖A−q2Aq2+1u‖ 6 ‖A−1‖q2‖Aq2+1u‖.

Hence ∥∥b1(u)
∥∥ = |a|

‖Aq2+1u‖

‖Au‖
> |a|

‖A−1‖q2
. �

The following results are a consequence of theorem 4.1 and lemmas 4.2, 4.3.

Corollary 4.4. For method (1.7)–(1.10) applied to (4.1) with A invertible, the set Ψ(ε)
is empty for all ε sufficiently small. Hence assumption 3.5 is automatically satisfied.

Theorem 4.5. Assume that the set B ⊂ Rm is bounded and that A is invertible. There
are constants C = C(B,T ), τc = τc(U,B, T ) and γ = γ(U,B, T ) such that, for all
U ∈ B\0 the algorithm (1.7)–(1.10) applied to (4.1) satisfies

∥∥u(tn)− Un
∥∥ 6 C (‖A−1‖q2+1τ

‖U‖

)s/q
,

for all 0 6 tn 6 T, τ ∈ (0, τc), provided ∆t(0)
0 6 γ.

A direct analysis of the linear problem would be interesting and might yield
more information than our analysis here which is a corollary of a general nonlinear
analysis.

There are some nonlinear problems where the specific choice of f and of the
numerical method imply that ζ > 0 for all initial data because b1(u) has no zeros. In
such situations theorem 4.1 may be applied directly. As an illustration consider the
following embedded Runge–Kutta pair:

η1 = U, η2 = U + tf(η1),
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S(1)(U, t) = U + tf(η1), S(2)(U, t) = U +
t

2

[
f(η1) + f(η2)

]
.

From expansions in powers of t we see that

S(1)(U, t) = U + tf(U),

S(2)(U, t) = U + tf(U) +
t2

2
df(U)f(U) +O(t3). (4.4)

It follows from (1.7) that

E(u, t) =
t

2
df(u)f(u) +O(t2).

Thus, by definition (2.2), (2.3) we see that

B1(u) = df(u)f(u)

and that

b1(u) =
df(u)f(u)

‖f(u)‖
.

With this expression we show that, for this particular error control method and some
specific choices of vector fields, the set Ψ(0) is empty. Consider the equations

xt = x+ x(x2 + y2), x(0) = X,
(4.5)

yt = y + y(x2 + y2), y(0) = Y.

Thus the Jacobian of the vector field f(·) governing the flow is(
1 + 3x2 + y2 2xy

2xy 1 + x2 + 3y2

)
. (4.6)

The determinant of this matrix is

(1 + 3x2 + y2)(1 + x2 + 3y2)− 4x2y2 = 1 + 4(x2 + y2) + 3(x2 + y2)2,

which is clearly non-zero for all real x and y. Hence b1(u) is bounded away from
zero for all u ∈ R2. Similar examples may be found in [3].

The preceding discussion shows that for certain adaptive algorithms of the form
(1.7)–(1.10) applied to certain specific vector fields there are no points where b1(u) = 0
so that theorem 4.1 may be applied directly. However, it is difficult in general to
determine whether this situation holds for a given method and a given vector field.
This is the motivation for the probabilistic considerations of the next section.
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5. Probabilistic convergence results

Theorem 4.1 applies whenever η and ζ are bounded away from zero and gives con-
vergence of the method (1.7)–(1.10). The values of η and ζ depend in practice upon
the choice of initial data. In this section we take the viewpoint that it is therefore
worthwhile to calculate the probability that η and ζ are bounded below by a certain
amount, with respect to random choice of the initial data.

Let B(0;R) be an open ball in Rm centred at 0 with radius R. We consider the
problem (1.1), and its numerical approximation (1.7)–(1.10), with initial data U chosen
at random uniformly onB(0;R). Thus we have a probability triplet (B(0;R),Bm,Lm)
where Bm are the Borel sets of B(0;R) and Lm is m-dimensional Lebesgue measure
restricted to B(0, R) and normalized to have total mass 1 on B(0, R). We will use
P (·) to denote the probability of an event. For simplicity of notation we will also let
Vol(·) denote the m-dimensional Lebesgue measure of a set in Rm since the measure
will essentially be volume whenever we use it.

Fix T > 0. For each numerical approximation of (1.1) let N be any integer
such that tN 6 T. Given ω ∈ B(0;R) we may define the family of random variables
X(·,∆tinit) by

X(ω; ∆tinit) := lim sup
τ→0

sup
N : 06tN6T

‖u(tN )− UN‖

τ s/q
;

thus the initial guess for the time-step, ∆tinit, yields the family of random variables
whose union form a stochastic process. We now consider the following family of
events, parameterized by ε:

Yε =
{
ω ∈ B(0;R) | ∃∆tc > 0: X(ω; ∆tinit) 6 ε−1, ∀∆tinit ∈ (0,∆tc]

}
.

If the event Yε occurs then the numerical error behaves like

∥∥u(tN )− UN
∥∥ 6 2τ s/q

ε
, ∀N : 0 6 tN 6 T, (5.1)

for ∆tinit and τ sufficiently small, and the method converges at the rate to be expected
from the small time-step heuristics underlying it. It is hence of interest to calculate the
probability of Yε given the random choice of initial data ω ∈ B(0;R). In this section
we prove the following theorem. The reader is encouraged to study the Important
remark following assumption 3.5 concerning its genericity. Note also that the zeros
of f are hyperbolic for generic f(u); in the proof, however, hyperbolicity can be
replaced by the weaker assumption that the set Γ(δ) is contained in the disjoint union
of non-intersecting balls of radius O(δ), for all δ sufficiently small.

Theorem 5.1. Let assumption 3.5 hold, assume that all zeros of f are hyperbolic, and
let m > 1. Consider the approximation of (1.1) by the numerical method (1.7)–(1.10)
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with U chosen at random uniformly (with respect to Lebesgue measure) in B(0;R).
Then there is εc > 0 and C = C(T ) > 0 such that, for any ε ∈ (0, εc),

P{Yε} > 1− Cεl,

where

l =
(m− 1)mq

(2m− 1)s
.

Hence, with probability 1, there is ε > 0 such that the numerical method converges
as predicted by (5.1) as τ → 0, for all ∆tinit sufficiently small.

Actually the proof shows that the set of initial conditions of small measure for
which a global error bound of the form τ s/q/ε cannot be obtained is contained in a
finite number of sets with volumes of size O(εl).

The idea behind the proof of this theorem is simple: from theorem 4.1 we need
to estimate the probability that (ηζ)s/q is greater than O(ε). Now ‖f(u)‖ and ‖b1(u)‖
are only small in small neighbourhoods of the points where f(u) and b1(u) are zero
and by hypothesis these points are isolated. By the definition of η and ζ we see that
these quantities are only small when the solution enters the small neighbourhoods
of the points where f and b1 are zero. Thus proving the theorem boils down to
estimating the probabilities of entering these small neighbourhoods and then putting
the information together to obtain the required probability. Estimating the probability
that a randomly chosen set of initial data points enters a small neighbourhood during
the time T forward evolution of a semigroup is the same as estimating the probability
that the backward time T evolution of the small neighbourhood contains the set of
initial data points. Lemma 5.2 is fundamental in this regard; we prove this lemma and
then use it to obtain the proof of theorem 5.1.

For the purposes of this section we define the action of the group S(·, t) on sets
by defining, for a set B ⊆ Rm,

S(B, t) =
⋃
U∈B

S(U, t).

We also define the diameter of a set B by

diam(B) = sup
x,y∈B

‖x− y‖.

Lemma 5.2. Given x ∈ Rm and ε > 0, let B = B(x, ε/2) and define

E(t) =
⋃

06τ6t
S(B, τ).

Then there are constants εc > 0 and C = C(x, T ) > 0 such that, for all ε ∈ (0, εc),

Vol
{
E(t)

}
6 C

[
sup

06t6T

∥∥f(S(x, t)
)∥∥+ ε

]
εm−1, ∀t ∈ [0, T ].
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Proof. We proceed by approximation. Let ∆t� 1 and define

Bn = S(B,n∆t), En =
⋃

06m6n
Bm.

By continuity of S(U, ·) it follows that, for any fixed t ∈ R+,

lim
N→∞, N∆t=t

∣∣Vol
{
E(t)

}
− Vol

{
EN
}∣∣ = 0. (5.2)

Now En = En−1 ∪Bn and Bn−1 ⊆ En−1 so that

Vol{En}= Vol{En−1}+ Vol
{
Bn\[Bn ∩En−1]

}
6 Vol{En−1}+ Vol

{
Bn\[Bn ∩Bn−1]

}
. (5.3)

Our objective is to estimate the last term in this inequality and iterate to prove the
desired result.

We first show that there exists C1 = C1(T ) such that

diam(Bj) 6 C1ε, ∀j: 0 6 j∆t 6 T. (5.4)

To see that this is true, let u, v be two arbitrary points in the set S(B, t) for some
t ∈ [0, T ]. Thus there are points ũ, ṽ ∈ B such that u = S(ũ, t), v = S(ṽ, t) and, by
continuity of S(·, t), it follows that there exists C1 = C1(T ) such that

‖u− v‖ 6 C1(T )‖ũ− ṽ‖.

But ‖ũ− ṽ‖ 6 diam(B) = ε and, since u, v are arbitrary in S(B, t), it follows that

diam
(
S(B, t)

)
6 C1(T )ε.

The result (5.4) follows.
Now note that Bn = S(Bn−1,∆t) so that, if y ∈ Bn then there exists z ∈ Bn−1

such that

y = z +

∫ ∆t

0
f
(
S(z, τ)

)
dτ.

Since S(z, τ) = z +O(τ) it follows that

y = z +

∫ ∆t

0
f(z) dτ +O(∆t2).

By (5.4) we know that ∥∥z − S(x, (n− 1)∆t
)∥∥ 6 C1ε
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and hence that

‖y − z‖6 ∆t
∥∥f(z)

∥∥+O(∆t2)

6
[
∆t
∥∥f(S(x, (n− 1)∆t

))∥∥+ LC1∆tε
]

+O(∆t2),

where L is the Lipschitz constant for f. Since y is an arbitrary point in Bn and since
z ∈ Bn−1 we have

Bn ⊆ N (Bn−1, δ∆t), (5.5)

where
δ = sup

06t6T

∥∥f(S(x, t)
∥∥+ LC1ε+O(∆t). (5.6)

Now, by the group property of S(·, t) we deduce that

N (Bn−1, δ∆t)\Bn−1 = S
(
B∗, (n− 1)∆t

)
for some set B∗ ⊂ Rm.

We now prove that there exists C2 = C2(T ) such that

B∗ ⊆ N (B,C2δ∆t)\B. (5.7)

Let a ∈ B∗. Then let b = S(a, (n− 1)∆t) ∈ N (Bn−1, δ∆t)\Bn−1. Hence there exists
c ∈ B with d = S(c, (n − 1)∆t) ∈ Bn−1 and ‖b− d‖ 6 δ∆t. By continuity of S(·, t)
in negative t it follows that there exists C2 = C2(T ) such that ‖a − c‖ 6 C2δ∆t.
Thus, since a is arbitrary, (5.7) holds. Now let

V(t) = Vol
{
S(B∗, t)

}
.

Since there exists κ > 0 such that∣∣∇.f(u)
∣∣ 6 κ, ∀u ∈ Rm,

we have
V(t) 6 eκtV(0).

But, since B is a ball in Rm, the volume of a neighbourhood can be calculated as the
product of the surface area and the width of the neighbourhood, and (5.7) gives

V(0) 6 Vol
{
N (B,C2δ∆t)\B

}
= C4ε

m−1δ∆t,

where C4 = C4(T ). Thus there exists C5 = C5(T ) such that

Vol
{
N (Bn−1, δ∆t)\Bn−1

}
= V

(
(n− 1)∆t

)
6 C5ε

m−1δ∆t.

By (5.3) and (5.5) we have

Vol{En}6 Vol{En−1}+ Vol
{
N (Bn−1, δ∆t)\Bn−1

}
6 Vol{En−1}+C5ε

m−1δ∆t.
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Thus, for N∆t 6 T, we have

Vol{EN} 6 Vol{E0}+ TC5(T )εm−1δ.

Using the expression (5.6) for δ and taking the limit ∆t→ 0, N →∞ with N∆t 6 T
gives the required result, after noting that E0 = B and hence has volume of O(εm). �

We now prove the probabilistic convergence theorem:

Proof of theorem 5.1. In the following we let η denote the random variable η(·, T ) and
ζ denote the random variable ζ(·, T ). Note that η, ζ are dependent positive-valued
scalar random variables. We define the set

Aε :=

{
ω ∈ B(0;R)

∣∣∣ K

(ηζ)s/q
6 ε−1

}
,

where K = K(B(0;R), T ) is given by theorem 4.1. Thus

P{Yε} > P{Aε}. (5.8)

We see that
P{Aε} = 1− P

{
ηζ < (Kε)q/s

}
. (5.9)

By the law of total probability, for any p ∈ (0, 1), we have

P
{
ηζ < (Kε)q/s

}
= P

{
ηζ < (Kε)q/s | η > (Kε)pq/s

}
P
{
η > (Kε)pq/s

}
+ P

{
ηζ < (Kε)q/s | η < (Kε)pq/s

}
P
{
η < (Kε)pq/s

}
.

Let
δ1 = (Kε)(1−p)q/s, δ2 = (Kε)pq/s.

Then
P
{
ηζ < (Kε)q/s

}
6 P

{
ζ < δ1 | η > δ2

}
+ P

{
η < δ2

}
.

Thus, since
P (A | B) = P (A ∩B)/P (B) 6 P (A)/P (B)

for any events A and B,

P
{
ηζ < (Kε)q/s

}
6 P{ζ < δ1}

P{η > δ2}
+ P{η < δ2},

so that

P
{
ηζ < (Kε)q/s

}
6 P{ζ < δ1}

1− P{η < δ2}
+ P{η < δ2}. (5.10)

Given a time T and randomly chosen initial condition U we have that

P{ζ < δ1} =
Vol{(

⋃
−T6t60 S(Ψ(δ1), t)) ∩B(0;R)}

Vol{B(0;R)}
(5.11)
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and

P{η < δ2} =
Vol{(

⋃
−T6t60 S(Γ(δ2), t)) ∩B(0;R)}

Vol{B(0;R)}
. (5.12)

(This follows from the argument that the probability that a given set enters a particular
small neighbourhood under forward evolution is equal to the probability that the small
neighbourhood contains that set under backward evolution.) Note that, by assump-
tion 3.5 and the fact that all zeros of f are hyperbolic, Ψ(δ1) and Γ(δ2) comprise
disjoint components contained in balls of radius δ1 and δ2 respectively. Note also
that each disjoint component of Γ(δ2) contains a point x: f(S(x, t)) = 0 for all t.
By lemma 5.2, and equations (5.11), (5.12), we deduce that there are constants Ci,
i = 1, . . . , 4, such that

P
{
ζ < (Kε)(1−p)q/s} 6 C1δ

m−1
1 = C2ε

(1−p)(m−1)q/s

and
P
{
η < (Kε)pq/s

}
6 C3δ

m
2 = C4ε

pmq/s.

We choose p to balance these two terms. Thus with p = (m − 1)/(2m − 1) we see
from (5.9) and (5.10) that, for all ε sufficiently small,

P{Yε} > 1− Cεl,

where l is given in the statement of the theorem. This completes the proof. �

The fact that the error estimate depends crucially upon the dimension being
greater than one is not simply a product of the analysis. The numerical experiments
of [3] indicate that in dimension one the error can behave badly for a set of initial
data of positive measure. Furthermore, the work of [1] shows that in dimension one
spurious steady solutions can be produced by adaptive algorithms for time integration
whilst in dimension greater than one this is extremely unlikely.

6. Modifications of the basic algorithm and deterministic convergence results

Recall that theorem 4.1 is useful in all but a small set of exceptional cases as made
precise by theorem 5.1. In this section we try to modify the algorithm (1.7)–(1.10) so
that these exceptional cases can be incorporated into the analysis to obtain convergence
results.

We start by trying to eliminate the assumption on ζ made in theorem 4.1. This
can be done at the expense of making assumption 3.5 about the set Ψ(ε), making
the assumption that α → 1 as τ → 0 and accepting a reduced rate of convergence
in τ . Read the Important remark following assumption 3.5 on the genericity of the
assumptions.

In the following, define

β = (1 + q + q/s)−1(s+ 1)

and note that β 6 s/q as s > 1.
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Assumption 6.1. The constant α > 1 appearing in (1.10) satisfies α→ 1 as τ → 0.

This assumption is perhaps a reasonable one to make whilst the code is in its
asymptotic regime τ → 0 since the time-steps should not be allowed to change much
from step to step once τ is sufficiently small. However, codes used in practice do not
typically satisfy this constraint.

Theorem 6.2. Let assumptions 3.5 and 6.1 hold and assume that ‖f(U)‖ 6= 0. Then
there are constants K = K(B,T ), τc = τc(U,B, T ) and γ = γ(B,T ) such that, for
all such U ∈ B, the algorithm (1.7)–(1.10) and truncation error (1.12) satisfy∥∥u(tn)− Un

∥∥ 6 Kτβ/ηs/q
and ∥∥T (Un,∆tn)

∥∥ 6 K(τβs/(s+1)

ηs/q

)
∆tn

for all 0 6 tn 6 T, τ ∈ (0, τc) provided that ∆t(0)
0 6 γτβ/s.

Proof. Here a = 0, b > 0 in (3.3) and we let δ = η. We consider the two cases
u(t) ∈ I2ε,2δ and u(t) ∈ Ψ(2ε) ∩ I. We then apply lemmas 3.4 and 3.7 respectively
in these two regimes. In order to balance the error from each lemma we set

τ = ε1+(s+1)q/s = εq+1+q/s.

Then
(τ/ε)s/q = εs+1 and τβq/s =

τ

ε
. (6.1)

Also
τ/εq+1 = εq/s → 0 as τ → 0 (6.2)

so that, since δ is fixed, (3.4) holds and the theory of section 3 applies. The time-step
predicted by (3.20) of lemma 3.7 then satisfies, for some θ = θ(τ) > 0 satisfying
θ→ 0 as τ → 0,

∆tp 6 θε, p = N, . . . ,Q, (6.3)

by virtue of (3.22), (6.2) and assumption 6.2. Thus the error predicted by lemma 3.7
is O(εs+1) which, by (6.1), balances the error predicted by lemma 3.4, since δ is
fixed independently of τ. The error is thus of O(τβ/δs/q) and O(τβ) in lemmas 3.4
and 3.7, respectively.

The solution may alternately pass through I2ε,2δ and Ψ(2ε) any number of times
on the interval [0, T ]. In order to apply the two lemmas in this way we need to show
that the requisite conditions on the time-step are satisfied. Under the assumption on
∆t(0)

0 we deduce that

∆tq0 6 γq
τ

ε
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by (6.1) so that the initial condition required on ∆t0 for lemma 3.7 is satisfied if
U ∈ Ψ(2ε), by appropriate choice of γ, depending upon B and T through J. The

assumption on ∆t(0)
0 also shows that

∆t(0)
0 6 εqC4(q + 1)

by virtue of (6.2) so that lemma 3.4 may be applied if U ∈ I2ε,2δ.
It remains to show that we can pass from I2ε,2δ to Ψ(2ε) applying lemmas 3.4

and 3.7 respectively. After exiting I2ε,2δ, lemma 3.4 gives ∆tqN 6 (q+ 1)τ/δε so that
lemma 3.7 applies. Aftex exiting Ψ(2ε), lemma 3.7 shows that, by (6.3), τ sufficiently
small ensures that

∆t(0)
Q 6 α∆tQ−1 6 εq/C4(q + 1)

so that lemma 3.4 may be applied.
This completes the proof except for the bound on the truncation error. This last

step follows from the bound on the time-steps proved during the course of the lemmas.
The slight loss of accuracy as compared with the global error occurs because, when
estimating the global error, (3.22) is used to further reduce the error. �

Finally, we try to eliminate the dependence of theorem 6.2 on η and the assump-
tion that ‖f(U)‖ 6= 0. This can be achieved at the expense of an additional assumption
on the method and still further reduction in the rate of convergence. Let

σ = (s+ q + 2 + q/s)−1(s+ 1). (6.4)

The extra assumption is now given. The basic point here is that, in the neigh-
bourhood of an equilibrium point, the time-step can be very large and errors still
small. Assumption 6.3 ensures that large choices of the time-step do not persist after
the neighbourhood of the equilibrium point is left behind.

Assumption 6.3. The minimal non-negative integer k in (1.8) is chosen so that if
‖f(Un)‖ 6 τσ, ‖f(Un+1)‖ > τσ then, in addition to (1.9) holding,

∆tn 6 h(τ)τσ/(s+1),

where h(τ)→ 0 as τ → 0.

We may now prove:

Theorem 6.4. Let assumptions 3.5, 6.1 and 6.3 hold. Then there are constants K =
K(B,T ), τc = τc(B,T ) and γ = γ(B) such that, for all U ∈ B, the algorithm
(1.7)–(1.10) and the truncation error (1.12) satisfy∥∥u(tn)− Un

∥∥ 6 Kτσ
and ∥∥T (Un,∆tn)

∥∥ 6 Kτσs/(s+1)∆tn

for all 0 6 tn 6 T , τ ∈ (0, τc), provided that ∆t(0)
0 6 γτσ/s.
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Proof. Here a, b > 0 in (3.3) and we consider u(t) ∈ I2ε and u(t) ∈ Ψ(2ε) ∩ I. In
order to balance the errors from lemmas 3.7 and 3.8 we set( τ

δε

)s/q
= δ = εs+1,

giving τ = εs+q+2+q/s, δ = εs+1 so that( τ
δε

)s/q
= τσ (6.5)

and
τ

δεq+1 = εq/s → 0 as τ → 0. (6.6)

Thus (3.4) holds and the theory of section 3 may be applied. As in the proof of theorem
6.2, the time-step predicted by lemma 3.7 thus satisfies (6.3) for some θ > 0 satisfying
θ → 0 as τ → 0. Thus the error predicted by lemma 3.7 is O(εs+1) = O(τσ),
balancing the error predicted by lemma 3.8.

By assumption we have that

∆t0 6 ∆t(0)
0 6 γ

( τ
δε

)1/q

so that lemma 3.7 applies if U ∈ Ψ(2ε). Also, by (6.6),

∆t(0)
0 6

εq

C4(q + 1)

for τ sufficiently small so that lemma 3.8 applies if U ∈ I2ε. After exiting I2ε lemma
3.8 gives ∆tqN 6 (q+1)τ/δε so that lemma 3.7 applies. After exiting Ψ(2ε), lemma 3.7
shows that, by (6.3), for all τ sufficiently small,

∆t(0)
Q 6 α∆tQ−1 6 εq/C4(q + 1)

so that lemma 3.8 may be applied. This completes the proof. �

As an illustration we apply theorem 6.4 to the study of linear problems with A
invertible so that assumption 3.5 holds automatically by corollary 4.4. We obtain the
following:

Theorem 6.5. Assume that B is bounded and that A is invertible and that, in ad-
dition, the algorithm satisfies assumptions 6.1 and 6.3. Then there are constants
C = C(B,T ), τ∗ = τ∗(B,T ) and γ∗ = γ∗(B) such that, for all U ∈ B, the solution
u(t) of the linear equation (4.1), and its numerical approximation by the algorithm
(1.7)–(1.10), satisfy ∥∥u(tn)− Un

∥∥ 6 Cτσ
for all 0 6 tn 6 T, τ ∈ (0, τc), provided ∆t(0)

0 6 γ∗τσ/s.
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Appendix

Theorem A. Consider sequences {∆tn}N−1
n=M , {Pn}

N−1
n=M and {Gn}

N−1
n=M satisfying

N−1∑
n=M

∆tn = r,

N−1∑
n=M

∆tnGn = a1(r),
N−1∑
n=M

∆tnPn = a2(r)

and
∆tn, Pn, Gn > 0, n = M, . . . ,N − 1.

If the sequence {En}Nn=M satisfies

En+1 6 (1 + ∆tnGn)En + ∆tnPn, n = M, . . . ,N − 1,

then
EN 6

[
EM + a2(r)

]
exp
{
a1(r)

}
, n = M, . . . ,N.

Proof. Define {Qn}Nn=0 by

Qn+1 = (1 + ∆tnGn)−1Qn, QM = 1.

Then

En+1 6
QnEn
Qn+1

+ ∆tnPn

so that
Qn+1En+1 6 QnEn + ∆tnPnQn+1.

Hence

QNEN 6 QMEM +
N−1∑
n=M

∆tnPnQn+1,

which implies that

QNEN 6 EM +
N−1∑
n=M

∆tnPn = EM + a2(r). (A1)

But

Q−1
N =

N−1∏
n=M

(1 + ∆tnGn)

so that, noting that 1 + x 6 ex for all positive x, we have

Q−1
N 6

N−1∏
n=M

exp(∆tnGn) = exp

(
N−1∑
n=M

∆tnGn

)
= exp

(
a1(r)

)
. (A2)

Combining (A1) and (A2) gives the desired result. �
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