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The viscous Cahn�Hilliard equation may be viewed as a singular limit of the
phase-field equations for phase transitions. It contains both the Allen�Cahn and
Cahn�Hilliard models of phase separation as particular cases; by specific choices of
parameters it may be formulated as a one-parameter (say :) homotopy connecting
the Cahn�Hilliard (:=0) and Allen�Cahn (:=1) models. The limit :=0 is
singular in the sense that the smoothing property of the analytic semigroup changes
from being of the type associated with second order operators to the type
associated with fourth order operators. The properties of the gradient dynamical
system generated by the viscous Cahn�Hilliard equation are studied as : varies in
[0, 1]. Continuity of the phase portraits near equilibria is established independently
of : # [0, 1] and, using this, a piecewise, uniform in time, perturbation result is
proved for trajectories. Finally the continuity of the attractor is established and, in
one dimension, the existence and continuity of inertial manifolds shown and the
flow on the attractor detailed. � 1996 Academic Press, Inc.

1. Introduction

In this paper we prove various analytical results concerning the viscous
Cahn�Hilliard (VCH) equation in dimension d=1, 2 or 3 namely:

(1&:) ut=2w, x # 0, t>0,
(1.1)

:ut=2u+f (u)+w, x # 0, t>0,
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together with the boundary conditions

u=w=0 for x # �0, t>0, (1.2)

and initial condition

u(x, 0)=u0(x), x # 0. (1.3)

Throughout the paper : # [0, 1] and 0 is a bounded domain in Rd with
sufficiently smooth boundary �0. We make the following assumption
about the function f ( } ):

Assumption (F). The function f ( } ) has the form

f (u)= :
2p&1

j=0

bj u j, b2p&1<0

where p=2 if d=3 and p<� otherwise.

The equation arises as a model of phase transitions and is derived in
[17]. Note that the typical function f ( } ) arising in applications is

f (u)=#&1[u&u3] (1.4)

and that this satisfies Assumption (F).
Our aim in this paper is two-fold. First, by setting :=0 and :=1 in

(1.1)�(1.3) we obtain two distinct models of phase separation namely the
Cahn�Hilliard model of spinodal decomposition and the Allen�Cahn
model of grain boundary migration. It is of interest to understand how
these models are related and the homotopy parameter : enables us to do
this. Note that the model (1.1)�(1.3) itself arises as a singular limit of the
phase-field equations for phase separation: see [3]. Secondly, for :=1 the
dynamics of the resulting reaction-diffusion equation are very well under-
stood. It is an interesting question in the theory of differential equations to
extend this knowledge to other equations and the model (1.1)�(1.3) enables
some steps to be made in this direction. Numerical results showing the
insensitivity of the global attractor for (1.1)�(1.3) to changes in : may be
seen in [3].

In Section 2 we describe an existence and regularity theory for the
equation, based on the theory of analytic semigroups in [10, 18, 15]. In
Section 3 we consider the continuity with respect to : of phase portraits
near equilibria; our approach is based on a formulation for trajectories of
evolution equations as boundary value problems in time and is motivated
by [14]. In Section 4 we use the results of Section 3 to prove a shadowing-
type result for trajectories of the viscous Cahn�Hilliard equation, again
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with respect to variations in the parameter :. The form of results is very
closely related to, and motivated by, the work of Babin and Vishik [1];
however the results do differ slightly in form and non-trivially in proof and
may therefore be of independent interest. In Section 5 we consider the
existence of a global attractor and discuss its continuity with respect to :
using the results of Hale [9]; furthermore, (in one dimension) we apply a
theorem of Mischaikow [16] which enables us to study the dynamics on
the attractor with respect to variation in the parameter :. In Section 6 we
also work exclusively in one dimension and prove existence and perturbation
results for an inertial manifold. Numerical data presented in [2] indicate
that results similar to those proved here also hold for (1.1) subject to
Neumann boundary conditions.

Throughout this paper C denotes a generic constant independent of :,
but possibly depending upon other quantities. The notation C: is used to
denote a constant depending upon : # (0, 1] which may become unbounded
as : � 0.

2. Existence and Regularity

In this section we formulate (1.1)�(1.3) as an ordinary differential equa-
tion in a Banach space and apply semi-group theory (cf. [10, 18]) to prove
existence and regularity results together with continuity results, in :, for
trajectories. Let ( } , } ) and | } | denote, respectively, the inner product and
norm of L2(0). We define the linear operator A=&2 with domain of
definition D(A)=H2(0) & H 1

0(0). By spectral theory we may also define
the spaces H4 s=D(As�2) with norms |v| s=|As�2v| for real s. It is well known
that H4 s is a subspace of Hs(0) and that | } | s and & } &s#& } &H s(0) are
equivalent on H4 s. In particular |v| 1=&A1�2v&=|{v| is equivalent to &v& :=
&v&1 on H 1(0) and

&v&s�C |v| s \v # H4 s, s�0. (2.1)

We use the notation

B(v, r) :=[u # H 1
0(0) : &u&v&�r],

B2(v, r) :=[u # D(A) : &u&v&2�r].

We define G: L2(0) � D(A) to be the Green's operator for A. Thus

v=Gf � Av=f.
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Finally we introduce the invertible operator B: : L2(0) � L2(0) defined by

B: :=:I+(1&:) G (2.2)

and the operator A: :=B&1
: A whose domain of definition is, for :>0,

D(A:) = D(A) so that D(As�2
: ) = H4 s and for : = 0, D(A0) = H4 4. It is

convenient to use the notation |v|B :=(v, B:v)1�2. Clearly, for :>0 there
exists C such that

:1�2 |v|�|v|B�C |v| \v # L2(0) (2.3)

and for :=0, |v|B=|v| &1 :=&v&H &1(0) . Furthermore for each : # (0, 1] and
;�0, B;

: : L2(0) � L2(0) is bounded and has a bounded inverse.
It follows that (1.1)�(1.2) may be written as the abstract initial value

problem

B:ut+Au=f (u), (2.4)

or equivalently

ut+B&1
: Au=B&1

: f (u), (2.5)

with

u(0)=u0 . (2.6)

Note that, since B&1
: is bounded from L2(0) into itself for each :>0,

Eq. (2.5) is qualitatively of second-order in space for :>0, although it
also has a non-local character. In contrast, for :=0 the equation is of
fourth-order in space and local in character. Thus :=0 is a singular limit
for the equation.

Under Assumption (F) it may be shown (see, for example, [8]) that
f (u) satisfies the following estimates: for all u, v # B(0, R) there exists
C=C(R)>0 such that

| f $(u) w|�C &w&, (2.7)

| f (u)&f (v)|�C &u&v&, (2.8)

| f "(u) wz|�C &w& } &z&, (2.9)

|A( f $(u) w)|�C( |w| 3+|u| 3 &w&), (2.10)

| f $(u) v|&1�C |v|. (2.11)
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Let the set of equilibria of (2.4) or (2.5) be denoted by E so that

E=[v # H4 2 : Av=f (v)] (2.12)

and E is clearly independent of :. Then, under Assumption (F) and
smoothness of �0, there is a constant C>0:

|v| 3�C \v # E. (2.13)

Throughout the paper we assume that E contains only hyperbolic
equilibria so that E contains N distinct points. Equation (2.4) has the :
independent Lyapunov functional V # C(H 1

0(0), R) defined by

V(v) := 1
2 |v| 2

1&(F(v), 1), (2.14)

where F(u) :=�u f (s) ds. Solutions of (2.4) clearly satisfy

|ut |
2
B+

d
dt

V(u)=0. (2.15)

In [9] it is shown that there exist ci>0, i=1, 2 such that

V(v)�c1 |v| 2
1&c2 \v # H 1

0(0). (2.16)

It also follows from Assumption (F) that _C=C(R)>0 such that

V(v)�C \v # B(0, R). (2.17)

Hence, under Assumption (F), equation (2.15) yields the a priori estimate

|u(t)| 1�C(R) \t�0 (2.18)

for solutions of (2.4) with u0 # B(0, R). This fact is used to establish global
existence of solutions to (2.4).

Let S:( } , } ): R+_H 1
0(0) � H 1

0(0) denote the solution operator to (2.4)
so that u(t)=S:(t, u0). We denote by DS:( } , } ) and �t S:( } , } ) the Fre� chet
derivatives of S:(t, u) with respect to u and t respectively.

Using the theory in [10] for :>0, the results of [8] for :=0 and
similar results concerning the derivative of the solution operator, we have
the following existence and regularity theorem for solutions of (2.4).

Theorem 2.1. For any u0 # B(0, R) there exists for each : # [0, 1] a
unique solution u(t) to (2.4) such that u(t) # C([0, T ]; H1(0)) & C 1((0, T ];
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L2(0)) for every T >0. Furthermore S: # C1(R+_H 1
0(0), H 1

0(0)) and
there exist constants Ci (T, R, ;) and C :

i (T, R, ;) for i=1, 2, 3, 4 such that

|S0(t, u0)|;�C1 t&(;&1)�4 \t # (0, T ], \; # [1, 4]

|S:(t, u0)|;�C :
1t&(;&1)�2 \t # (0, T ], \; # [1, 2], : # (0, 1]

|�t S0(t, u0)|�C2 t&3�4 \t # (0, T ]

|�t S:(t, u1)|�C :
2t&1�2 \t # (0, T ], : # (0, 1]

|�t DS0(t, u0) w|�C3t&3�4 &w& \t # (0, T ]

|�t DS:(t, u0) w|�C :
3t&1�2 &w& \t # (0, T ], : # (0, 1].

&DS0(t, u0) w&�C4 &w& \t # (0, T ]

&DS:(t, u0) w&�C :
4 &w& \t # (0, T ], : # (0, 1].

Corollary 2.1. For each : # [0, 1], S:( } , } ) is a C1 gradient semigroup
for which orbits of bounded sets are bounded and which is completely
continuous and asymptotically smooth.

Proof. Let E be a bounded set in H 1
0(0). By (2.15)�(2.17) it follows

that [S:(t, '): ' # E ] is uniformly bounded in H 1
0(0) for all t�0. Further-

more, from Theorem 2.1 we deduce that [S:(t, '): ' # E ] is uniformly
bounded in & } &2#& } &H 2 for all t�1. Thus the semigroup is completely
continuous in the terminology of [9], p. 36. Corollary 3.2.2 of [9] shows
that the semigroup is asymptotically smooth. Finally, Theorem 2.1 shows
that each orbit S:(t, ') (' # H 1

0(0)) is pre-compact and hence, by (2.15),
S:( } , } ) defines a gradient system in the sense of Definition 3.8.1, [9]. K

The next lemma is of interest when studying the singular limit : � 0. It
estimates the smoothing properties of exp(&A:t) B&1

: in an : independent
way.

Lemma 2.2. Let (#&;) # [&2, 2]. Then there exists a constant K>0
such that

&e&A:tB&1
: u&#�

K &u&;

t(#&;)�4+1�2 \: # [0, 1], \t>0. (2.19)

Proof. Let A have eigenfunctions [,j]�
j=1 and eigenvalues [*j]�

j=1 and
set

u= :
�

j=1

aj ,j . (2.20)
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Define

�j=*2
j �(:*j+1&:), (2.21)

noting that these are the eigenvalues of A: .
Let *(�) be the positive root of

*2&:�*&(1&:) �=0 (2.22)

so that

*= 1
2 (:�+[:2�2+4(1&:) �]1�2). (2.23)

Note that, from (2.21) it follows that, since : # [0, 1], we have

�j�min(*j , *2
j )

and hence that there exists �*>0 such that

�j��*>0 \j # N, \: # [0, 1].

Calculation shows that

&e&A: tB&1
: u&2

# = :
�

j=1

a2
j �2

j *
#&2
j exp(&2�jt),

(2.24)

&u&2
;= :

�

j=1

a2
j *

;
j .

Thus it is sufficient to find K>0 such that, for all s # [&2, 2],

g(�) :=*(�)s&2 �2 exp(&2�t) ts�2+1�K \���*, : # [0, 1], t>0.

(2.25)

From (2.23) it follows that, for : # [0, 1],

*(�)�:�, *(�)�(1&:)1�2 �1�2 \� # R+. (2.26)

Now let

q=max
_�0

[_s�2+1e&2_]
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noting that q<� since s�&2. From the first bound in (2.26) and from
(2.25) we deduce that, since s�2,

g(�)�(:�)s&2 �2 exp(&2�t) ts�2+1

=:s&2�s�2&1(�t)s�2+1 exp(&2�t)

�:s&2(�*)s�2&1 q.

Similarly, but using the second bound in (2.26),

g(�)�[(1&:)1�2 �1�2]s&2 �2 exp(&2�t) ts�2+1

=(1&:)s�2&1 (�t)s�2+1 exp(&2�t)

�(1&:)s�2&1 q.

Putting these two bounds together gives

g(�)�min(:s&2(�*)s�2&1, (1&:)s�2&1) q \���*, \t>0.

Now, since s�2, we have

` := max
: # [0, 1]

min(:s&2(�*)s�2&1, (1&:)s�2&1)<�

and we deduce that (2.25) holds with K=`q. This establishes the lemma. K

Using Lemma 2.2 we may prove the following perturbation result for
trajectories of (2.4).

Theorem 2.3. Let !, !: # B(0, R) and let :, =, :+= # [0, 1]. There are
constants C1=C1(:, R, T ) and C2=C2(R, T ) such that, for all t # (0, T ],

&S:(t, !:)&S :+=(t, !:+=)&�C1[ |!:&!:+=|+=], \: # (0, 1],

&DS:(t, !) w&DS :+=(t, !) w&�C1= &w&, \: # (0, 1],
(2.27)

&S=(t, !=)&S 0(t, !0)&�
C2

t1�2 [ |!=&!0|+=]

&DS=(t, !) w&DS 0(t, !) w&�
C2=
t1�2 .

Proof. We recall the equations

B: u:
t +Au:=f (u:), u:(0)=!: (2.28)

B:v:
t +Av:=df (u:) v:, v:(0)=w (2.29)
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satisfied by S :(t, !:) and DS:(t, !:) w respectively. Note that, if

%(t) :=u:+=(t)&u:(t) (2.30)

then (2.28) gives

B:+=%t+A%=f (u:+=)&f (u:)+=(G&I ) u:
t .

Applying the variation of constants formula we obtain

&%(t)&�&e&A:+= t%(0)&

+"|
t

0
e&A:+=(t&s)B&1

:+=[ f (u:+=)&f (u:)+=(G&I ) u:
t ] ds" (2.31)

If :>0 then boundedness of B&1
:+= and equivalence of D(A ;

: ) and D(A;)
gives us

&%(t)&�&%(0)&+|
t

0

C:

(t&s)1�2 [ | f (u:+=)&f (u:)|+= |u:
t |] ds (2.32)

Applying the Lipschitz condition (2.8) on f and Theorem 2.1 we find that

&%(t)&�&%(0)&+|
t

0

C: &%(s)& ds
(t&s)1�2 += |

t

0

C: ds
(t&s)1�2 s1�2

�&%(0)&+C:=+|
t

0

C: &%(s)& ds
(t&s)1�2 . (2.33)

By application of the Gronwall lemma in [8], the first result follows.
If :=0 then (2.31) and Lemma 2.2 yields

&%(t)&�&%(0)&+|
t

0

C
(t&s)3�4 [ | f (u=)&f (u0)|+= |u0

t |] ds (2.34)

The Lipschitz condition (2.8), Lemma 2.2 and Theorem 2.1 gives

&%(t)&�&%(0)&+|
t

0

C &%(s)& ds
(t&s)3�4 += |

t

0

C ds
(t&s)3�4 s3�4

�&%(0)&+
C=
t1�2+|

t

0

C &%(s)& ds
(t&s)3�4 . (2.35)

Application of the Gronwall lemma in [8] gives the third result.
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We now consider the estimates on the derivative of the solution
operator. Defining

,(t) :=v:+=(t)&v:(t) (2.36)

yields from (2.29)

B:+=,t+A,=df (u:+=) v:+=&df (u:) v:+=(G&I ) v:
t . (2.37)

For simplicity we consider the case :=0. We obtain, by Lemma 2.2,

&,(t)&�&,(0)&+|
t

0

C
(t&s)3�4 [ |df (u=) v=&df (u0) v0|+= |(G&I ) v0

t | ]

�&,(0)&+|
t

0

C
(t&s)3�4 [ |[df (u=)&df (u0)] v0|+|df (u=)(v=&v0)|]

+= |
t

0

C |(G&I ) v0
t | ds

(t&s)3�4 .

By (2.7), (2.9) and Theorem 2.1 we have

&,(t)&�&,(0)&+|
t

0

C
(t&s)3�4 [&%(s)& &v0(s)&+&,(s)&] ds

+= |
t

0

C &w& ds
(t&s)3�4 s3�4 .

Using the third bound from this theorem with !==!0 and noting that
,(0)=0 we have, from Theorem 2.1,

&,(t)&�|
t

0

=C &w& ds
(t&s)3�4 s1�2+

= &w&

t1�2 +|
t

0

C &,(s)& ds
(t&s)3�4

�
C= &w&

t1�4 +
C= &w&

t1�2 +|
t

0

C &,(s)& ds
(t&s)3�4 (2.38)

The Gronwall lemma of [8] gives the result. The bound for :{0 follows
similarly. K

Lemma 2.4. For all u0 # B(0, R) there exists a constant C=C(R)>0
such that, for all : # [0, 1]

1
2

d
dt

|B:ut |
2�C |ut |

2
B , t>0. (2.39)
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Proof. Using the regularity from [10] and [8] it follows that utt exists
for t>0 so that ut satisfies the equation

B:utt+Aut=f $(u) ut , t>0. (2.40)

Taking inner products with B: ut yields

1
2

d
dt

|B: ut |
2+: &ut&

2+(1&:) |ut |
2

�| f $(u) ut |B |ut |B�
=2

2
| f $(u) ut |

2
B+

1
2=2 |ut |

2
B . (2.41)

Now

| f $(u) ut |
2
B=: | f $(u) ut |

2+(1&:) | f $(u) ut |
2
&1 .

By (2.7) and (2.11) we have

| f $(u) ut |
2
B�C(R)[: &ut&

2+(1&:) |ut |
2]. (2.42)

Thus, by choice of = sufficiently small, the result follows. K

3. Neighbourhood of an Equilibrium Point

Here we prove perturbation results, with respect to :, for phase portraits
of (2.4) near equilibria. Consider Eq. (2.4) in the neighbourhood of a
hyperbolic equilibrium point u� # E. By introducing v=u&u� we obtain

B:vt+Lv=h(v), v(0)=v0 (3.1)

where L=A&df (u� ), h(v)=f (u� +v)&f (u� )&df (u� ) v.
Below we prove that L: :=B&1

: L is sectorial. Hence we may define pro-
jections P: : H 1

0(0) � Y: and Q: : H 1
0(0) � Z: associated with those parts

of the spectrum of L: with negative and positive real parts respectively.
Since u� is hyperbolic we have H 1

0(0)=Y: �Z: . We will drop explicit :
dependence in P, Q, Y and Z except where necessary.

Lemma 3.1. The operator L: is sectorial for every : # [0, 1]. For
: # (0, 1] we have D(L;

:)#H4 2; and, for :=0, D(L;
0)#H4 4;, for all

; # [0, 1].
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Proof. For : # (0, 1], we have

L:&A:=B&1
: L&B&1

: A=&B&1
: df (u� ). (3.2)

But, by (2.7),

|B&1
: df (u� )(A:)&1�2 w|=|B&1

: df (u� ) A&1�2B1�2
: w|

�C: |df (u� ) A&1�2B1�2
: w|�C: &A&1�2B1�2

: w& (3.3)

�C: |B1�2
: w|�C: |w|. (3.4)

Hence by [10], Corollary 1.4.5 and Theorem 1.4.8, we have that L: is
sectorial and also that

D(L;
:)=D(A;

:)=H4 2; \; # [0, 1].

For :=0 we have

L0&A2=&A df (u� ). (3.5)

By (2.10), recalling that E is bounded in H 3(0) by (2.13),

|(L0&A2) A&3�2w|=|A df (u� ) A&3�2w|

�C |A&3�2w| 3+C |u� | 3 |A&3�2w| 1

�C |w|+CK |A&1w|�C |w|. (3.6)

By [10], Corollary 1.4.5 and Theorem 1.4.8, we deduce that L0 is sectorial
and D(L;

0)#D(A2;)#H4 4; as required. K

Using Lemma 3.1 it follows from [10], Theorems 1.5.3 and 1.5.4, that
_$, K>0 such that for all : # [0, 1]

&e+L:ty&�Ke&$t &y& \y # Y: ,
(3.7)

&e&L:tz&�Ke&$t &z& \z # Z: .

We define

L:(t) :=e&L:t, G:(v, t)=|
t

0
L:(t&s) B&1

: h(S� :(s, v)) ds (3.8)

where

S� :({, v) :=S:({, u� +v)&u� , \{�0. (3.9)
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We also set L: :=L:(T ), G:( } ) :=G:( } , T ). Thus, if Vn=v(nT ) then (3.1)
yields

Vn+1=L: Vn+G:(Vn). (3.10)

By (3.7) it follows that, for any a<1 there exists T*=T*(u� )>0 such that,
for all T �T*, : # [0, 1]

&L&1v&�a &v& \v # Y:
(3.11)

&Lv&�a &v& \v # Z:

It is shown in [14] that there exists a function K : R+ � R+ satisfying
K(\) � 0+ as \ � 0+ such that

|h(v)&h(w)|�K(\) &v&w& \v, w # P(0, \). (3.12)

Thus, for any :>0 there exists K1=K1(:)>0 such that

|B&1
: [h(v)&h(w)]|�K1K(\) |A1�2[v&w]|. (3.13)

Note that K1(:) is unbounded as : � 0. Also, for :=0, we have

|A&1�2
0 B&1

0 [h(v)&h(w)]|�K(\) |A1�4
0 [v&w]|. (3.14)

This shows that Assumption 4.5 of [19] is satisfied with !=0, ;= 1
2 for

:>0 and !=&1
2, ;= 1

4 for :=0 and g( } ) :=B&1
: h( } ).

We now consider the boundary value problem

B:vt+Lv=h(v), P:v({)=!, Q: v(0)='. (3.15)

The following two results have similar proofs. We give only the proof of the
second in detail.

Theorem 3.2. Let :0 # (0, 1]. Then there exist constants C=C(:0)>0,
\*=\*(:0)>0 such that, for all \ # (0, \*), :, ; # (:0 , 1], {>T* and
! # Y: , ' # Z: with &!&, &'&�\�2 there is a solution v:(t) of (3.15), unique
in B(0, C\), and a point w # H 1

0(0) satisfying

sup
T*�t�{

&v:(t)&S� ;(t, w)&�C |:&;|. (3.16)

Theorem 3.3. Let :=0. There exist constants C, \*, =*>0 such that,
for all \ # (0, \*), = # (0, =*), {>T* and ! # Y0 , ' # Z0 with &!&, &'&�\�2
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there is a solution v0(t) of (3.15) unique in B(0, C\), and a point w # H 1
0(0)

satisfying

sup
T*�t�{

&v0(t)&S� =(t, w)&�C=. (3.17)

Proof of Theorems 3.2 and 3.3. We consider Theorem 3.3 first. We
apply Corollary 4.14 of [19] to get existence and uniqueness. The pertur-
bation result follows from Theorem 4.18 of [19]. To apply the theory of
[19], Chap. 4 we need to establish two things: (i) the existence of a C 1

semigroup S:( } , } ) with C 1 dependence on : uniformly on bounded sets of
H 1

0(0) and on bounded time intervals disjoint from the origin; (ii) we need
to show that g( } ) :=B&1

: h( } ) satisfies Assumption 4.5 of [19]. Point (i)
follows from Theorems 2.1 and 2.3 and point (ii) is established prior to this
theorem.

The proof of Theorem 3.2 is similar. The dependence on :0 follows from
the non-uniformity of K1(:) in (3.13) as : � 0. K

In addition to the problem (3.15) we also study the problem: find v(t)
with &Pv&, &Qv&�\, \t�0 satisfying:

B:vt+Lv=h(v), Q: v(0)=' # Z, &'&�\�2, \t�0. (3.18)

This problem corresponds to constructing the stable set for (3.1). Also by
applying Theorem 4.19 in [19] we may prove the following:

Theorem 3.4. Let :0 # (0, 1). Then there exist constants C=C(:0)>0,
\*=\*(:0)>0 such that, for any \ # (0, \*), :, ; # (:0 , 1], {>T* and
' # Z: with &'&�\�2 there is a solution v:(t) of (3.18), unique in B(0, C\),
and a point w # H 1

0(0) satisfying

sup
t>T*

&v:(t)&S; (t, w)&�C |:&; |. (3.19)

Theorem 3.5. Let :=0. There exist constants C, \*, =*>0 such that,
for all \ # (0, \*), = # (0, =*), {>T* and ' # Z0 with &'&�\�2 there is a
solution v0(t) of (3.18), unique in B(0, C\), and a point w # H 1

0(0) satisfying

sup
t>T*

&v0(t)&S= (t, w)&�C=. (3.20)
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4. Uniform in Time, Piecewise Approximation of Trajectories

Here we prove uniform in time, piecewise approximation of trajectories
with respect to perturbations in :. In [1] similar results are proved:
applications of results in [1] gives perturbations which are uniformly of
size O(:q), for some q<1, and for which the approximating trajectories are
finite dimensional. In contrast, our approach gives perturbations which are
uniformly of size O(:), but for which the piecewise approximating trajec-
tories are not necessarily finite dimensional.

Throughout this and the next section we assume that E contains only
hyperbolic equilibria. These are then isolated, finite in number and labelled
[u� i]M

i=1. Recall that the set E is bounded in H3 by (2.13).

Definition 4.1. For any \>0 the open set Q(\)/D(A) is defined by

Q(\)=[' # D(A) : |A'&f (')| 0<\]. (4.1)

Lemma 4.1. There exist K1>0 and \0>0 such that for \<\0

Q(\)= .
M

i=1

Qi (4.2)

where Qi & Qj=< for i{j, Qi/B2(u� i , K1 \) and

K1 \<$I= min
u� {v�

u� , v� # E
[ |u� &v� |, |u� &v� | 2]

Proof. The separation of the equilibria in L2(0) and H 2(0) follows
from the fact that they are hyperbolic and lie in a bounded set in H 3(0)
by (2.13).

Now note that there exists \1 such that for \<\1

Q(\)/ .
M

i=1

B2(u� i ; $I�3).

This follows since, assuming the contrary, it holds that there exists a
sequence [\j ] converging to zero and a sequence [uj ] such that uj # Q(\j)
but uj � �M

i=1 B2(u� i ; $I�3). However it holds that

|uj |
2
1=(Auj&f (uj), uj)+( f (uj), uj) (4.3)

401VISCOUS CAHN�HILLIARD EQUATION, II



File: AAAAAA 309716 . By:CV . Date:26:07:96 . Time:10:27 LOP8M. V8.0. Page 01:01
Codes: 2401 Signs: 1107 . Length: 45 pic 0 pts, 190 mm

and by the Assumption (F) on f ( } ) it follows that the [uj ] lie in a bounded
set in H 1

0(0). Thus [uj ] has a weakly converging subsequence in H 1
0 whose

limit u0 satisfies

Au0&f (u0)=0 in H&1(0) (4.4)

and u0 � B2(u� i ; $I�3) for any u� i # E. This is a contradiction.
We seek a solution v(w), for a fixed u� # E, in the ball B2(u� ; $I�3) of

H(v, w)=0 (4.5)

where H=D(A)_L2(0) � L2(0) is defined by

H(v, w) :=Av&f (v)&w. (4.6)

Let B(0, \) denote the closed ball of radius \ in L2(0). Using the implicit
function theorem we construct a solution v(w) for all w # B(0, \0) which:
(i) satisfies v(0)=u� and (ii) is continuously differentiable with respect to w.

Let Z=D(A)_L2(0) be equipped with the standard product norm: for
z=[ y, |] # Z

&z&=| y| 2+||| 0 . (4.7)

The Frechet derivative dH( } , } ): Z � L2(0) is given by

dH( y, |) :=\DH( y, |)
H|( y, |) + (4.8)

where

DH( y, |)=A&df ( y) I and H|( y, |)=&I, (4.9)

and I: L2(0) � L2(0) is the identity. Set

&dH( y, |)&= sup
&z&=1

|dH( y, |) z|. (4.10)

It follows that for vi # B2(u� ; $I�3), i=1, 2 by (2.9)

&dH(v1 , |1)&dH(v2 , |2)&= sup
&z&=1

|(dH(v1 , |1)&dH(v2 , |2)) z|

� sup
| y|2�1

|(df (v1)&df (v2)) y|

�C sup
| y|2�1

&v1&v2& } &y&

�C sup
| y|2�1

|v1&v2| 2 . (4.11)
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Hence it follows that

&dH(v1 , \1)&dH(v2 , \2)&�C |v1&v2| 2 , (4.12)

and the continuous differentiability of H follows. The invertibility of
DH(u� , 0) is a consequence of the hyperbolicity of u� . Hence the implicit
function theorem yields a C1 function F: B(0, \0) � D(A) such that
v=F(w) solves (4.5) for w near 0 and satisfies u� =F(0). Since F is C1 we
deduce that

|v&u� | 2�K1 |w| 0

for all w # B(0, \0) and some K1>0. If |w| 0<\�\0 then

|v&u� | 2�K1 \.

But |w| 0<\ if and only if v # Q(\); the required result follows. K

We now prove a `` finite time of arrival'' result for trajectories from a
bounded set in H 1

0 into an H 2 neighbourhood of E.

Lemma 4.2. Let E be bounded in H 1
0(0). For any \>0 there exists

T 0=T 0(\, E )<� such that T 0 is a time of arrival for S:( } , } ) from
E into Q(\). That is, for each u0 # E there exists t # [0, T 0] such that
S:(t, u0) # Q(\).

Proof. We observe that if u(t) � Q(\) for t # [t1 , t2] then

|B:ut(t)| 2
0=|Au(t)&f (u(t))| 2

0�\2. (4.13)

Using the fact that there exists C>0:

|v| 2
B�C |B:v| 2 \v # L2(0), \: # [0, 1]

it follows that

|ut |
2
B�C\2 for t # [t1 , t2]. (4.14)

From (2.15) we obtain

V(u(t2))&V(u(t1))�&(t2&t1) C\2. (4.15)

Hence, by (2.16), (2.17)

(t2&t1)�
1

C\2 (V(u(t1))&V(u(t2))

�C( |u0| 1)�\2�C(E )�\2 (4.16)

Thus any T 0>C(E )�\2 defines a time of arrival. K
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The following inequality is useful:

Lemma 4.3. For any u1 , u2 # D(A) we have a constant Cf >0 such that

V(u1)&V(u2)�(Au1&f (u1), u1&u2)+Cf |u1&u2| 2
0 . (4.17)

Proof. First note that, under Assumption (F), there is a constant Cf

such that

f $(u)�2Cf \u # R.

Thus, for any u1 , u2 # R, there is a ! # R such that

F(u2)&F(u1)= f (u1)(u2&u1)+ 1
2 f $(!)(u2&u1)2

� f (u1)(u2&u1)+Cf (u2&u1)2.

Hence, if u1(x), u2(x) # D(A), since the dimension d�3,we have that

(F(u2)&F(u1), 1)�( f (u1), u2&u1)+Cf |u2&u1| 2
0 .

Now

V(u1)&V(u2)= 1
2 ({u1 , {u1)& 1

2 ({u2 , {u2)&(F(u1)&F(u2), 1)

�({u1 , {u1&{u2)+( f (u1), u2&u1)+Cf |u2&u1| 2
0

=(Au1&f (u1), u1&u2)+Cf |u2&u1| 2
0 .

This completes the proof. K

It is convenient to introduce E=E(V*) defined by

E :=[' # H 1
0 : V(')�V*] (4.18)

for any

V*>Vmin := inf
' # H1

0(0)
V(').

Clearly E is nonempty and bounded in H 1
0(0). Furthermore for each

V*>Vmin there exist exactly N* equilibria u� i # E i # [1, N*] contained in
E and N* # [1, M ].

Lemma 4.4. Let u(t) # E solve (2.4) in (t1 , t2) and \ # (0, \0). If u(t) �
Q(\) \t # [t1 , t2] and if there exists u� k # E such that ui :=u(ti) # �Qk ,
i=1, 2, then there exists K2�1 such that

u(t) # B2(u� k ; K2 \) \t # [t1 , t2]. (4.19)
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Proof. From (2.15) we have

|
t

t1

|ut(s)| 2
B ds=V(u1)&V(u(t)). (4.20)

Thus, by Lemma 4.3, we have that for t # [t1 , t2],

|
t

t1

|ut(s)| 2
B ds�|

t2

t1

|ut(s)| 2
B ds

�|Au1&f (u1)| 0 |u1&u2| 0+Cf |u1&u2| 2
0 . (4.21)

Note that

|Au1&f (u1)|�K1 \ (4.22)

by Lemma 4.1. Since for \<\0 , by Lemma 4.1, �Qk(\) # B2(u� k ; K\) it
follows that

|u1&u2| 2
0�C\2. (4.23)

Hence for t # [t1 , t2], we have from (4.21), (4.22) and (4.23), the estimate

|
t

t1

|ut(s)| 2
B ds�C\2. (4.24)

Applying Lemma 2.4, we find that for t # [t1 , t2],

|Au(t)&f (u(t))| 2
0=|B:ut(t)| 2

0�|B:ut(t1)| 2
0+C\2

�|Au1&f (u1)| 2
0+C\2 (4.25)

This proves the lemma, by (4.22). K

Lemma 4.5. Let u(t) # E solve (2.4) in (t1 , t2), u(t) � Q(\) for t # [t1 , t2],
ui=u(ti) # �Qi (\) for some u� i # E, i=1, 2 with u� 1{u� 2 and \<\0 . Then
there exists K3>0 such that

V(u� 2)&V(u� 1)�&K3 \$I . (4.26)

Proof. Since u(t) � Q(\) for t # [t1 , t2] we have as in the proof of
Lemma 4.2, that

|ut | B�C |B:ut | 0�C\
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and hence from (2.15)

V(u2)&V(u1)�&|
t2

t1

|ut(s)| 2
B ds

�&C\ |
t1

t2

|ut(s)|B ds

�&C\ } |
t2

t1

ut(s) ds }B
=&C\ |u(t2)&u(t1)|B .

But

|u(t2)&u(t1)|B�|u� 2&u� 1|B&|u(t2) &u� 2|B&|u(t1)&u� 1|B�$I&C\.

Hence, by choice of \ sufficiently small, there exists K>0:

V(u2)&V(u1)�&K\$I . (4.27)

Thus the lemma is proved by noting that

V(u� 2)&V(u� 1)=(V(u� 2)&V(u2))+(V(u1)&V(u� 1))

+(V(u2)&V(u1)) (4.28)

and applying Lemma 4.3. K

Lemma 4.6. Let T 0 be the time of arrival for the set E into Q(\).
There exists \0 such that if \<\0 then for each u0 # E there exist
N0=N0(u0 , \)�N* equilibria enumerated as [u� i ]N0

i=1 and N0 intervals
[Ii ]N0

i=1 satisfying:

(0) The solution u(t), t # [0, �), enters precisely N0 distinct com-
ponents [Qi (\)]N0

i=1 of Q(\);

(i) Ii=[t&
i , t+

i ]�R+ where

t&
i =inf[t: u(t) # Qi (\)], t+

i =sup[t: u(t) # Qi (\)];

(ii) Ii & Ij=< i{j ;
(iii) |t&

i &t+
i&1|�T 0 i=2, ..., N0 ;

(iv) t+
N0

=�.

Furthermore u(t) # B2(u� i , K2 \), u(t) � B2(u� j , K2 \), j{i \t # (t&
i , t+

i ) and
there exists C>0:

V(u� i+1)&V(u� i)�&C\$I , i=1, 2, ..., N0&1.
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Proof. By [9], for any u0 # E, : # [0, 1], we have that there exists u� # E
such that

lim
t � �

S:(t, u0)=u� ,

since (2.4) forms a gradient system by Corollary 2.1. Clearly for any u0 and
\ there exist N0=N0(u0 , \) equilibria and N0 intervals such that (i) and
(iv) hold.

Now choose \0 sufficiently small so that Lemma 4.1 holds and so that

B2(u� i , K2 \) & Qj=< \i{j ; (4.29)

this can be done by Lemma 4.1. Now note that u(t) # B2(u� i , K2 \) \t # Ii

by Lemma 4.4 as required and that Lemma 4.1 ensures that (ii) holds.
Point (iii) holds by Lemma 4.2 and Lemma 4.5 gives the required estimate
on the decrease in V(u� i). K

It is clear that individual trajectories corresponding to the same initial
condition but slightly different values of : may separate exponentially.
Hence it is not possible to prove uniform continuity of trajectories with
respect to :. We seek such uniform in time perturbation results by weaken-
ing the notion of ``solution'' to allow piecewise continuous solutions in time
with a finite number of discontinuities. With this in mind we make two
definitions:

Definition 4.2. The function u� (t; :) is said to be a piecewise continuous
solution of (2.4) if there exist an integer N, non-negative numbers [Ti]N

i=0

and elements [Ui]N&1
i=0 of H 1

0(0) such that 0=T0<T1<T2< } } } <
TN=� and for i=1, ..., N

u� (t; :)=S:(t&Ti&1, Ui&1), Ti&1�t<Ti .

Recall from Lemma 4.1 the constant \0 .

Definition 4.3. A piecewise continuous solution of (2.4) is said to be a
combined stabilised trajectory (c.s.t) if there exists \<\0 and [u� j ]N&1

j=0 # E
such that Uj # B2(u� j ; \) j=0, ..., N&1 and V(u� j)<V(u� j&1), j=1, ..., N&1.

The following result proves uniform continuity in time, and across a
bounded set of initial data, of piecewise continuous solutions with respect
to variation in :.
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Theorem 4.7. Let :0 # (0, 1], E/H 1
0(0). Then there exists a constant

C=C(:0 , E ), =*==*(:0 , E ) such that, for every u0 # E, :, :+= # [:0 , 1]
there exists a c.s.t. u~ (t; :+=) such that

sup
t�0

&S:(t, u0)&u~ (t; :+=)&�C=.

Proof. For simplicity consider u0 � Q; the case u0 # Q can be handled
similarly. Define t&

0 =t+
0 =0 and t\

i as in Lemma 4.6. Given all [Ii]N0
i=1 we

remove all Ij with |Ij |�T j* where T j* is equal to T*(u� j) from Section 3.
Relabel [Ii]M0

i=1 , M0�N0 .
Define

I i*=[t&
i +T i*, t+

i ], Ji=[t+
i , t&

i+1+T*i+1].

Note that |Ji |�T0+�N*
j=1 (T0+T j*) where N* is the total number of

equilibria.
To define the c.s.t. we set N=M0+1 and

Ti=t&
i +T i*, i=1, ..., N&1,

and Ui=S;(T i*, u� i+w) where u� i is the unique equilibrium point in Qi ,
;=:+= and w are as in Theorem 3.2 for i{M0 and as in Theorem 3.4 if
i=M0 . We take U0=u0 .

On I i* we apply Theorems 3.2 and 3.4 to obtain the required error
bound whilst on Ji we apply Theorem 2.3 since |Ji | depends only on E. K

A similar proof yields the following:

Theorem 4.8. Let E/H 1
0(0). Then there exist constants C=C(E ) and

=*==*(E ) such that, for every u0 # E, = # [0, =*) there exists a c.s.t. u~ (t; =)
such that

sup
t�1

&S0(t, u0)&u~ (t; =)&�C=.

5. Continuity of the Attractor

As a consequence of the existence of a Lyapunov function and the
smoothing properties of Theorem 2.1 and Corollary 2.1 it is straight-
forward to prove the following by application of the theory in [9],
Theorem 3.8.5; recall that we assume throughout this section that all
equilibria of (2.4) are hyperbolic.
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Theorem 5.1. For each : # [0, 1] the semigroup S:(t, } ) has a global
attractor A: . Furthermore

A:= .
v # E

W(v), (5.1)

where W( } ) denotes the unstable set.

It is of interest to study the relationships between the sets A: as : varies
in [0, 1]. To this end we let d(A, B) denote the Haussdorf distance between
two sets A and B in H1. Thus d(A, B)=0 if and only if the closures of A
and B are identical sets.

Theorem 5.2. Let :0 # (0, 1). There is a constant C=C(:0)>0 such
that, for all :, :+= # [:0 , 1]

d(A: , A:+=)�C |=|.

Furthermore, there is a constant K>0 such that for all = # [0, 1]

d(A0 , A=)�K=.

Proof. We apply Theorem 4.10.8 in [9]. The required gradient struc-
ture and smoothing properties for (H1) follow from Corollary 2.1;
(H2)�(H5) are straightforward; the C0 closeness of solutions from
Theorem 2.3 implies (H7) whilst the C1 closeness from the same theorem,
together with the theory of [21], gives the closeness of unstable manifolds
required in (H6). K

We remark that in one space dimension continuity of the attractor with
respect to : # [0, 1] in the presence of a non-hyperbolic equilibrium point
has recently been shown in [7].

In the remainder of this section we consider only the case of dimension
d=1 and 0=(0, 1). In this case we can say something detailed about the
flow on the attractor and (in Section 6) also study existence and smooth-
ness of inertial manifolds.

Theorem 5.2 is concerned only with the continuity of the attractor A:

considered as a set of points in H 1
0(0). We now discuss the dynamics on

the attractor and show, roughly speaking, that there is a subset of A: on
which the dynamics are independent of : # [0, 1] in the case where f ( } ) is
given by (1.4). Let

D p=[z # R p : &z&�1]

and

�D p=[z # R p : &z&=1].
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Then any z # D p may be written as z=r! where ! # �D p and r # [0, 1].
Consider the flow on D p generated by the equations

!t=Q!&(Q!, !) !, !(0) # �D p

and

rt=r(1&r), r(0) # [0, 1]

where Q is the diagonal matrix diag[1, 1�2, 1�3, ..., 1�p]. We let e\
j =

(0, ..., \1, 0, ...) be unit vectors in the j th direction. We denote the flow on
D p by 3(t): D p � D p. In one dimension with f given by (1.4) and in the
case :=1 the work of Henry [10, 11] shows that the flow on the attractor
for (2.4) is equivalent to the flow on D p generated by 3(t). We now apply
a general result, due to Mischaikow [16], to relate the flows 3(t) on D p

and S:( } , } ) on A: for : # [0, 1).
Under the conditions of the following theorem the equilibria are all

hyperbolic if # # (1�( p+1)2 ?2, 1�p2?2). They then number 2p+1 and are
labelled [u� \

j ] p
j=1 and 0. See [5] for details.

Theorem 5.3. Consider Eq. (2.4) in dimension n=1, with 0=(0, 1),
f (u) given by (1.4) and # # (1�( p+1)2 ?2, 1�p2?2). For every : # [0, 1] there
exists an order preserving time reparameterisation of S:(t, } ), denoted S� :(t, } )
and a continuous surjective map �:: A: � Dp, such that

S� :(t, (�:)&1 z0)=(�:)&1 3(t) z0

for every z0 # R p. Furthermore

(�:)&1 e\
j =u� \

j , j=1, ..., p,

for each : # [0, 1] and (�:)&1 0=0.

Proof. We apply Theorems 1.2 and 2.1 of [16]. Hypothesis (H1)
follows from our Theorem 5.2. Hypothesis (H2) follows from [5], together
with Theorem 3.1 in [3] which show that the dimension of the unstable
manifold of an equilibrium u� is independent of :. Hypothesis (H3)(i)
follows from our Corollary 2.1 and (H3)(ii) follows in a straightforward
fashsion from (2.14), (2.15). K

6. Continuity of Inertial Manifolds

We now proceed to study the existence and perturbation theory for iner-
tial manifolds. We consider the case d=1 and 0=(0, 1) only. Since the
singular limit : � 0 is the primary non-standard part of the analysis we
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shall give full details for the case : near 0 only. The difficulty here is that
the operator A: degenerates from being of second order type to being of
fourth order type as : � 0. To overcome this problem use of the Lemma
2.2 is fundamental.

We assume that f satisfies Assumption (F). Using the existence of an
attractor, and hence an absorbing set in H 1

0(0), together with the fact that
the problem is posed in one dimension with f a polynomial, it follows by
use of cut-off functions that the long time dynamics of (2.4) are completely
equivalent to the dynamics of the equation

B:ut+Au=r(u), u(0)=u0 (6.1)

where

&r(u)&r(v)&�L &u&v& \u, v # H 1
0(0). (6.2)

Thus it is sufficient to study the existence of an exponentially attracting,
positively invariant, finite dimensional manifold M for (6.1) in order to
understand inertial manifolds for (2.4). The inertial manifold for (6.1) or
(2.4) is defined to be the intersection of M with a positively invariant set
inside which f( } ) and r( } ) are equivalent. We introduce the projections P
and Q defined by

u= :
�

j=1

uj ,j � Pu= :
q

j=1

uj ,j , Qu= :
�

j=q+1

uj ,j , (6.3)

where the [,i] are defined in (2.20).
We let Y=PH 1

0(0), Z=QH 1
0(0) and seek the inertial manifold M as

the graph of a function 8 # C(Y, Z). Recall that on the inertial manifold
equation (6.1) reduces to the ordinary differential equations in Rq given by

B: pt+Ap=Pr( p+8( p)), p(0)=p0 # Y. (6.4)

Theorem 6.1. There is an integer q such that, for each : # [0, 1],
Eq. (6.1) has an inertial manifold M: . Furthermore there is a constant K>0
such that, for every :, :+= # [0, 1],

d(M: , M:+=)�K |=|.

Proof. To construct the inertial manifold and analyze perturbations to
it we employ the Hadamard graph transform approach in [12]. Let

L: :=e&A: T, N:(v)=|
T

0
L:(T&s) B&1

: r(S:(s, v)) ds. (6.5)
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From these we define the map G( } )=L: }+N:( } ). We show that this map-
ping has an attractive invariant manifold which perturbs smoothly in : by
use of the Main Theorem in [12]. That these manifolds are also invariant
and exponentially attracting for the underlying continuous flow follows as
in the proof of Theorem 4.2 in [12]. The notation from that paper, with
h=: being the perturbation parameter, is used throughout this proof.

Thus it remains to verify Assumptions G, Gh and Conditions C$ from
[12]. Given :0>0 define

b= sup
: # [0, :0]

e&*(:)T, a= inf
: # [0, :0]

e&4(:)T, c= inf
: # [0, :0]

e&+(:)T (6.6)

where *(:), 4(:) and +(:) are the qth, (q+1)st and first eigenvalues of A:

respectively. Straightforward calculation using (6.2), the continuity of the
semigroup S:(t, } ) and Lemma 2.2 with #=;=1 gives the existence of a
constant C, independent of :, such that

&N:(u)&N:(v)&�CT 1�2 &u&v&, \u, v # H 1
0(0), \: # [0, 1],

(6.7)
&N:(u)&�CT 1�2, \u # H 1

0(0), \: # [0, 1].

Proceeding as in the proof of Lemma 4.1 in [12] it follows that, for
:=0, Conditions C$ and Assumptions G hold for sufficiently large q (=q0

say) since A0=A2 has eigenvalues *j=j 4?4 and here ;= 1
2 by virtue of

(6.7). For :{0 the eigenvalues of A: are

* (:)
j =

j 4?4

:j 2?2+(1&:)
.

It follows that, for any _>0, there exists :0>0 such that

|*(0)&*(:)|+|4(0)&4 (:)|�_ \: # [0, :0].

By continuity we deduce that there exists :0>0 such that Conditions C$
and Assumptions G hold for : # [0, :0]. The existence of an inertial
manifold, representable as the graph of a function 8: # C(Y, Z ), follows
from Main Theorem in [12]. It also follows that there exists K( p)>0 such
that, for all :, :+= # [0, :0),

&8:( p)&8:+=( p)&�K( p) = \p # Y.

This is since Assumptions Gh hold trivially since Assumptions G hold,
since P=Ph and since the error estimates of Theorem 2.3 hold. The set
convergence of the inertial manifolds for nearby : follows.
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The case : # [:0 �2, 1] may be handled similarly to the case : # [0, :0]
except that now ;=0 when following Lemma 4.1 in [12] and the spectrum
of A: grows quadratically. Putting the two overlapping intervals together
gives the desired result. K
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