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A class of nonlinear dissipative partial differential equations that possess finite
dimensional attractive invariant manifolds is considered. An existence and perturba-
tion theory is developed which unifies the cases of unstable manifolds and inertial
manifolds into a single framework. It is shown that certain approximations of these
equations, such as those arising from spectral or finite element methods in space,
one-step time-discretization or a combination of both, also have attractive invariant
manifolds. Convergence of the approximate manifolds to the true manifolds is
established as the approximation is refined. In this part of the paper applications
to the behavior of inertial manifolds under approximation are considered. From
this analysis deductions about the structure of the attractor and the flow on the
attractor under discretization can be made. ¢ 1995 Academic Press, Inc.

1. INTRODUCTION

Attractive invariant manifolds for evolution equations are fundamental
in understanding long-time dynamics. Important examples of attractive
invariant manifolds that we consider are the unstable manifolds of hyper-
bolic equilibria and inertial manifolds. The purpose of this work is to study
the behavior of such manifolds under perturbations sufficiently general to
include the effect of numerical approximation. The abstract evolution
equation

du

—+ Au= Flu),

T (u)
u(0) =u,.
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is considered. In this paper we describe a general existence and perturba-
tion theory for attractive invariant manifolds which encapsulates both iner-
tial manifolds and unstable manifolds in one framework; the perturbation
results for these manifolds are appropriate for the analysis of attractive
invariant manifolds under discretization. The general approximation theory
is formulated using semigroups; using this theory it is shown that standard
approximations of the equation (1.1), encompassing finite element, spectral
and time discretization, have an approximate attractive invariant manifold
which converges to the true invariant manifold as the approximation is
refined. We also describe a number of applications of the general theory; in
particular, we prove existence and convergence of inertial and unstable
manifolds in a variety of partial differential equations under discretization.
However, the perturbation theory is not restricted to numerical approxima-
tion schemes and applications to a singularly perturbed partial differential
equation are described in [19].

There are several reasons why it is important to understand the behavior
of the attractive invariant manifolds of (1.1) under numerical approxima-
tions. It is well known that standard error estimates for individual trajec-
tories are useless over long-time intervals since they typically contain a con-
stant which grows exponentially with the time interval; thus in recent years
there has been considerable effort to understand the behavior of invariant
objects of a dynamical systems such as (1.1) under discretization-see, for
examples, [ 3, 5, 10, 15, 21, 27, 29, 30, 32, 35, 36, 4348, 56, 57, 61, 62, 64].
In particular, the work of [29] shows that the global attractor for (1.1) 1s
upper semicontinuous under approximation; since the attractor may not
attract exponentially, it is not possible to establish lower semicontinuity
except under very special circumstances—see [ 30, 34, 36, 43, 46]. The first
of these papers assumes that the system is in gradient form and the remain-
der the slightly weaker assumption that the attractor is the union of
unstable manifolds of equilibria. The papers [ 36, 43] both contain simple
counter examples showing why lower semicontinuity does not hold in
general.

A major motivation for studying the inertial manifold under numerical
approximation is that it is an exponentially attracting invariant manifold
(which contains the global attractor) and so there is reason to suspect that
it is both upper and lower semicontinuous under numerical approximation;
such a result is proved in part I of this paper. This then shows that the
inertial form for (1.1), that is, the PDE restricted to its inertial manifold,
and its approximation are close. This is a step towards establishing a
relationship between the dynamics of (1.1) and its approximation. More
precisely if the inertial forms are C' close, then one can apply a result of
{53] to make deductions about the relationships between the true and
approximate flows on the attractor (see [41, 42]).
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A major motivation for studying the unstable manifold under numerical
approximation is the following: the work of [ 30, 34] shows that, when the
global attractor is the closure of the union of unstable manifolds of hyper-
bolic equilibrium points, it is both upper and lower semicontinuous. To
prove this result requires an error bound for the approximation of local
unstable manifolds; in part I of this paper we show how the theory
developed for inertial manifolds can be modified to incorporate the case of
unstable manifolds.

We consider (1.1) as an ordinary differential equation in a separable
Hilbert space X with inner product (e, ¢) and norm |e|>=(s, ). We
assume that A4 is a densely defined sectorial operator with compact inverse,
eigenvalues {4;} and associated eigenfunctions {¢;}. Thus it is possible to
choose { = 0 such that all eigenvalues of

A=A+

have strictly positive real part. Hence we may set X*= D(A*) where
Z’z(ﬂ”‘)" and for 0 <a <1

i = e gy (1.2)

see [52]. For « =0 we define 4” =1 Then X is a Hilbert space with norm
le|2=(A"e, A*«). The operator A generates an analytic semigroup L(1).
We assume that F satisfies sufficient conditions so that (1.1) generates a
semigroup S(¢): X"+ X7, for some y = 0, which is Lipschitz continuous for
each 1= 0. We employ the notation

B0, ry={ue X" |ul,<r}.

Since our aim is to study Eq. (1.1) under approximation and since
standard error estimates for numerical schemes are formulated over finite
time intervals, we find it convenient to write the solutions of Eq. (1.1) as
solutions of the time T map of the flow. The solution of (1.1) at time ¢ can
be written

u{(t)y=L{t) ug+ N(u,. t), (1.3)

where

Lty:=e N(v,t)=J~’ L(t—s) F(S(s) v) ds. (1.4)

(]
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The sequence v, :=u(mT) then satisfies the map
Up, 1 = Glu,,) (1.5)
where
Gu):=Lu+Nw),  L:=LT),  Nu):=NuT). (1.6)

We formulate an existence theory for attractive invariant manifolds of
the mapping (1.5), such as inertial manifolds and unstable manifolds,
which is based on the contraction mapping theorem; the technique is
similar to that used in [2] for the construction of unstable manifolds (see
also [63]) and to that used in [ 50] where singularly perturbed ODEs are
studied. It i1s based on the Hadamard graph transform and as such is
related to the method used in [49] to construct the inertial manifold;
however, our proof differs from the proof of [49] in that explicit use of a
cone condition and squeezing property is not needed. This does not yield
any new results but leads to a simple exposition which, furthermore, is
directly amenable to a perturbation theory exploiting known finite-time
error estimates for approximation schemes. We note that there are already
several results concerning the existence and convergence of inertial
manifolds in approximate schemes (see [25, 26] for Galerkin approxima-
ttion and [ 12] for a specific time discretization) and unstable manifolds n
approximation schemes (see [ I. 4, 48]); however, these methods of proof
are based on the Lyapunov-Perron existence theory and are not amenable
to the direct use of standard finite time error bounds.

Our goal is to provide a single framework in which error bounds for the
approximation of attractive invariant manifolds can be obtained by
application of existing (or easily dertved) finite time error estimates and
spectral approximation theory. Of course, no such framework can be all
encompassing in such a broad setting but we believe that the approach
described here includes many situations and that, furthermore, it provides
a methodology that can be readily adapted to other different situations.
The approach we take is similar to that developed in [5] where the
behavior of center-unstable manifolds of ordinary differential equations
under approximation is studied.

To construct an attractive invariant manifold we decompose the space X
in the usual way: let P denote the spectral projection associated with
{@. .. @,}. the first ¢ eigenfunctions of 4, and Q=7-P. We do not
assume that P is self-adjoint; however, Y= PX and Z= QX do provide a
decomposition of the space X' = Y@ Z. Under the conditions on 4 and F
described above we may define an operator G: X7+ X7 by (1.6). We make
the following Assumptions G on the mapping G. We suppose that, given an
integer ¢ for which the projections P and @ are defined, there exist positive
constants «, b, ¢, B such that:
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|Lz|, <alz], Ve Z, (G1)

Iwe Y Lw=p, VpeY & byl .<|Lyl.<clyl, VyeY,; (G2)
[A(N(u)~ N, <Blu—rvl, Yu,ve X7, [#Nu)|, <B Yue X7,
(G3)

where # equals either /, P or Q.

Assumptions (G 1) and (G2) concern the spectrum of 4 whilst assump-
tions (G 3) are global bounds arising from the nonlinearity of the problem.
Such global bounds are usually obtained by exploiting a suitable cut-off
function for (1.1) in X7 and using a prepared equation as in [6, 25]. See
Section 4.

Our main interest in Eq. (1.5) is the existence of an inertial manifold or
an unstable manifold which, after employing the cut-off function, is
globally represented as a graph @: Y+ Z. We will seek such a manifold
which is invariant under G and hence satisfies:

Qul71:¢(Pulll)¢> Qum+] = ¢(Pur:1+l)- (17)

In the next section we give specific conditions on the constants appearing
in Assumptions G which guarantee the existence of a finite-dimensional
invariant manifold for Eq. (1.5). Moreover, the manifold defined by .# =
Graph(@) will be shown to be attractive in the sense that there exist g e
(0, 1y and ¢, (0, oo ):

distydu,, H)<cepn™, (1.8)

for all u,,e X7. In the inertial manifold case the assumptions made on the
problem are essentially the same as those derived in [8, 9, 23, 25, 26, 49,
54, 557, namely, the spectrum of the operator A4 is required to satisfy a
spectral gap condition.

Notice also in the inertial manifold case that the reduction of the map
G to the inertial manifold yields the finite-dimensional map, called an
inertial form,

1)"1+1=PG(le+¢(p"l))' (1'9)

Moreover, since the global attractor is compact and the inertial manifold
attracts all trajectories, the inertial manifold contains the attractor, and
hence, the long-time dynamics of the inertial form is the same as that of the
original (possibly) infinite-dimensional map G. This property is the main
motivation behind the study of inertial manifolds.
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We will assume that the the approximation of (1.1) yields a sectorial
operator A”, approximating A4, and with eigenvalues {4’} and eigenfunc-
tions {¢!}. As in the continuous case 3 >0 such that all eigenvalues of

mi
A=A+

have positive real part. We denote by u” the approximation to u,, which

lies in some space V" c X7

We let £ X+ V" denote the projection onto the approximating sub-
space and denote by P": X+ Y" the projection onto the first m eigenfunc-
tions of A" and Q" X— Z" by Q" = E* — P" where

Vi—Y'@Z'  Y'=P'X. Z'=Q'Xx.
Note that
Ph — EhPIr — PhEh, Qh — Eth — QhEh.

The operator 4" generates an analytic semigroup L*(¢) on V" and we
can define the Hilbert spaces X™*=%((4")*) with norm |e|, , given by
lul, ,=|(A")* u|. The approximation process then yields a mapping

Uy, 41 =G uy,). (1.10)
where the operator G" is assumed to take the form
G(u") = L"" + N"u") (1.11)
and L' N": X" 7+ X7 We employ the notation

Ay (0, r)= fue X™7: ul, , <r}.

We make the following Assumptions G” concerning the mapping (1.10),
{1.11). Given the same integer ¢ as in Assumptions G, there exist positive
constants «, b, ¢, B, C and C(p) such that:

[L'z|,  <alzly. VzeZ"; (G"1)
Pwre Y L'wh=¢", Vg"eY" and byl , <Lyl <clyla,
Yye ¥, (G"2)

| AN ()~ N" (e, < Blu—rl, . Yu,ve V* BN, , < B

Yue V" (G"3)
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where # equals either I, P" or Q";

|P—P"|.<Ch; (G"4)
|G(u) ~ G"(u")|, < Clplh+ [u—u"].)

Yue 4.0, p), ue A0, p) V" (G"5)
|E" P P < G (G"6)
C Mul,<lul,,<Clul,  VYuelb™ (G"7)

Throughout the paper C, K will denote positive generic constants inde-
pendent of /.

Assumptions (G"1)-(G"3) are simply discrete analogs of (G1)-(G3)
whilst assumptions (G"4)-(G"7) concern the approximation process and
are readily established for a number of standard approximation schemes as
we show in Sections 5, 6 and 7. It follows from these assumptions that an
invariant manifold @": Y"+» Z" exists for the mapping (1.10) under the
same conditions on the constants «, b, C, B that yield such a manifold .#
for (1.5). Furthermore .#" = Graph(®") satisfies the invariance condition

huh — @[l( Ph“h )<:> Qh”h

" 2 nt .

=DM P ). (1.12)
and 1s exponentially attracting: 3¢, >0 and g € (0, 1) such that

dist yn(ul 4"y < el (1.13)
As with the map G, the reduction of the map G” to its inertial manifold
gives the lower dimensional system
Plyoy= PPGHplyt @) (114)
for p” € Y*. Under the conditions we impose, the map {1.14) will have the
same dimension as the map (1.9), the inertial form for the map G.
uniformly as # — 0. Furthermore, the inertial forms (1.9), (1.14) contain all
the information about the long-time dynamics of the maps G, and G"
respectively. Since the inertial forms are finite dimensional, it would be
desirable to use results such as those in [ 20, 53] concerning €' perturba-
tions of finite-dimensional dynamical systems to study the infinite-dimen-
sional problem. In particular, it 1s known that certain compact overflowing,
inflowing, invariant (normally hyperbolic) manifolds persist under such
perturbations (more generalstructures are considered in [53]). Stable
stationary and periodic orbits are examples of such invariants sets. Thus we
expect results like [ 10, 61, 621 (which are proven for the Navier-Stokes
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equations) to be a consequence of the C' closeness of the inertial forms for
the equations under study here. The C' closeness is investigated in [41].

We remark that Eq. (1.14) can be thought of as an approximate inertial
Jform as studied in, for example, [ 14, 24, 26, 38, 40, 59, 60] and references
therein. In general, an approximate inertial form attempts to better
approximate the long-time dynamics of the map G by enslaving the higher
modes Q" u”" through a function such as @”". The difference here is that one
may approximate ®”" exactly by working with the full map G”, whereas in
the above works one approximates either @ or @" directly and studies the
lower dimensional approximate inertial form.

Our main theorem concerning the relationship between the attractive
invariant manifolds of the true and approximate map is as follows:

MaIN THEOREM L. Under Assumptions G, Assumptions G" and Condi-
tions C' (see Section 2) the mappings (1.5), (1.10) both possess attractive
invariant manifolds representable as graphs ®: Y+ Z and ®": Y"+— Z"
respectively and satisfying (1.7), (1.8) and (1.12), (1.13) respectively.
Furthermore if either

c<1 and Ir>0: |Nu)],=0 Vu: |Pul,=r (1.15)
or

h>1, (1.16)

then:

(1) for any pe Y there exists C(p)> 0 such that
l(p+@(p)—(P'p+ D P'p))|, < Clp) ks
(il}  for any p"e Y" there exists C(p") >0 such that
|(Pp" + @(Pp")) = (p" + @"(p" NI, < C(p") b

This shows the upper and lower semicontinuity of the attractive
invariant manifolds with respect to the class of perturbations considered.
The case where (1.15) holds is appropriate for the consideration of inertial
manifolds where, typically, all eigenvalues of 4 are negative yielding ¢ < |
whilst the case (1.16) is appropriate for the consideration of unstable
manifolds where the real parts of the eigenvalues of 4 on Y are strictly
positive yielding b > 1.

The Main Theorem applies to nonlinear mappings in a Banach space
with globally bounded and Lipschitz nonlinear part. To use this result for
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equations arising in applications it will be necessary to localize the
invariant manifolds constructed. To this end we introduce the notation

Mg A0 Y=l A, ), (1.17)
M (v,ri=.//"m.46’,,_),(v, r). (1.18)

loc. y

We will also find it convenient to define the distance between a point and
a set in X7 via

dist y:(x, By = inf |x -y},
ve B

and the semi-distiance between sets

dist y{B, C)=sup dist(x, C}),
xeB
and analogously the quantity dist g ..

In Section 2 we employ the contraction mapping theorem to prove the
existence of an attractive invariant manifold for (1.5) under Assumptions G.
Section 3 is concerned with proving the closeness of the manifolds .# for
(1.5) and the manifold .#” for (1.10}. In Section 4 we show how the theory
of Section 2 may be used to prove the existence of inertial manifolds for
partial differential equations. Section 5 concerns the existence and semicon-
tinuity of inertial manifolds for certain semi and fully discrete approxima-
tions of (1.1) based on spectral approximations of (1.1) based on the
eigenfunctions of A. Section 6 concerns similar questions to Section 5 for
finite element method approximations of a reaction-diffusion equation.

In part II of the paper unstable manifolds are studied. A basic existence
theory is described, highlighting the parallels with the analogous theory for
inertial manifolds in Section 5. Furthermore, the upper and lower semicon-
tinuity of local unstable manifolds is proved. The upper and lower semicon-
tinuity of the global unstable manifolds and of attractors are then studied
using these results.

2. EXiSTENCE THEORY

In this section we prove the existence of an attractive invariant manifold
for the mapping (1.5) (and hence for (1.10)). We will suppose throughout
that Conditions C hold: given the constants «, b and B from Assumptions
G and G”, there exist constants J, e (0, oo) and 1 €(0, 1) such that:

b'B(1+d) < (C)
ac + B<e. (C2)
0:=ad + B(1 +0) <, (C3)
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where ¢ :==b—B(1 +J)>0 by (C1).
a+B(l1+0)<u. (C4)

In the case of inertial manifolds the satisfaction of (C1)-(C2) corresponds
to the operator 4 having sufficiently large eigenvalues whilst (C3)
corresponds to sufficiently large spectral gaps. The condition (C4) follows
under a combination of such conditions. For unstable manifolds
(C1)—(C4) are readily satisfied because « <1 <bh and B < 1.

DermNITION 2.1, Let I'= 110, ¢) denote the closed subset of C(VY, Z)
satisfying

|#),=sup [¥(p)], <e,

pe ¥

|QP(P1)_(P(172)|;'<5|[)1_1’2|;v Vp.p.eY.

Furthermore I'(J, ¢) is defined analogously with the norms taken in X7,

In order for the existence theorem for the attractive invariant manifold
to hold for certain approximating systems, we will need Conditions C to
hold for a range of parameters. That is, we may require:

Conditions C’'. There exist ¢',¢' >0 and pe(0,1) such that given
K> 0, Conditions (C1)(C4) hold for all 6e[d', Ko'], ee[¢', Ke'].

THEOREM 2.2.  Suppose that Assumptions G and Conditions C' hold for
the mapping G given by (1.5), (1.6). Then there exists a unique @ € I'(9. €)
such that .# = Graph(®) satisfies (1.7) and (1.8). The manifold Graph(®) is
independent of 0€[d', Ko'], ee[&, Ke']. Furthermore, if (1.15) holds and
R=cr+ B, then

D(p)=0 VYp: |pl. 2R (2.1)

Throughout the remainder of this section we assume that the conditions
of Theorem 2.2 are satisfied without stating this explicitly in every result.
The proof of the theorem will be given in a series of lemmas. With P, Q
defined as in Section 1 we may write (1.5) as

o
o

pnl + 1 = L[)Hl + PN( p?ll + (I'H) (

o
w

Gm+1= Lqm + ij( P + (/m) (
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foru,,=p,, +q,., withp, €Y, g, €Zand m>20. An invariant manifold @ is
a fixed point of the operator T: C(Y, Z)— C(Y, Z) defined by

p=LE+ PN+ PD(S)) (2.4)
(TD) p)=LD(E) + ONE+ D(E)). (2.5)

We employ the contraction mapping theorem to prove the existence of
a fixed point of 7. Note that, given any starting point ¥e [, the iterates
of T generate a sequence of manifolds at times ¢, =nT which converge to
a limit; thus our method is closely related to the Hadamard graph trans-
form method as employed in [49].

We first show that the map T is well defined.

LEMMA 2.3, For any @ el and pe Y there exists a unique <€ Y satisfy-
ing Eq. (2.4).

Proof. Note that by (G2) L™ exists on Y. Thus we may consider the
iteration

SHI=L [ p— PN(E* + ®(E4))]. (2.6)

If pe Y, then this map takes ¥ € Y into ¢**'e Y. For any two sequences
{EX). {n*} generated by (2.6) we have, by (G2), since ¢ eI,

|EF =g L < b T BER + () -t — D),
<bh 7 'B(1 +9)[EF —ntl...

By Condition (C1) the mapping is a contraction and the existence of &
given any pe Y follows. We also have the estimate

[El,<h "p—PNE+P(E))],
<b Ypl,+8). 1§ (2.7)

Thus, by Lemma 2.3, T®: Y — Z is well-defined. We now show that T
maps [(d, ¢) into itself.

LemMma 2.4.  The mapping T defined by (2.5) satisfies T: I'— I'. Further-
more if (1.15) holds, then if @ satisfies (2.1), it follows that T@® satisfies
(2.1).
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Proof. From Eq.(2.5) and (G1), (G3) we have for all pe Y and de "

(T@) p)l,<al|P)], + B

<aec+ B.

Thus we have, by (C2), |[T®|,<e
Let p,, p,€ Y. From Lemma 2.3 there exists {¢&;}7_, such that Eq. (2.5)

i=1

is satisfied with p={ p,} 7_,. Subtracting the two equations, we obtain
HTD) p)) —(TD) p)|, <a|D(E)— PN+ BI(E, — &)+ P(E)) - D(EL),
<[ad+ B(1+0)]I¢, —<al,
=0|§1_éz|y»

where we have used (G1), (G3), (C3) and the properties of @ eI From
(G2), (G3) and (2.4) we have

b & — &L <ILE &,

7

<|py—pal, +B(14+6)[E =&,

Using (C1) we deduce that ¢ >0, and hence

. 1
) _62|;'§$ ip: _Pz|,..
Thus (C3) implies
0 .
I(T‘P)([Jl)—(T¢)(p2)]},<$ Py —p2l. <0 1p—p2l,.

Hence T: I'— I
Now we prove that, under (1.15), if @ satisfies (2.1), then so does T@.
Let R>cr+ B and |p|, = R. The iteration (2.4) shows that by (G2) and
(G3)
R<|pl,<|LE|,+B<c|El,+B.

for |pl.>R Thus [{|.=(R—B)/c>=r, and hence N+ P(&))=0 by
(1.15). Thus it follows that, in fact,

R<|pl, <ILE], <c <),

505,123.2-18
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and since ¢ <1, || = R. Since @ satisfies (2.1), then Eq. (2.5) gives
(T®) p)=LP()=0
for all {p|. > R. This completes the proof. 1|
Now we may show that the map T is a contraction on the space I
LemMa 2.5, For any @, ©,e I we have
TP, —TD |, <p |P, — D, -

Proof. By Lemma 23, for any peY and {®,}7_,elI we can find
{&17_, such that for i=1,2

p=PG({,+ D<)
(TP,)(p)=QGCG(,+D,(<))).
Using (G1), (G3) we have

(2.8)

T@ )N p) — (TP, ) p)l, <(a+ B)P(E)) — DA, + B[S —Ealys

adding and subtracting @,(¢,), using the triangle inequality and (C3), we
majorize the last inequality by

HTD N p)— (TP U pl|, <la+ B)D\(&) = DS, + 01, —&a,. (29)
Now, using (G2) and Eq. (2.8), we have similarly that
b 16— &l S LG =8 S BIE — &G+ (&) — DH(E0)],
< B(1+0)[E, = Sal, + B1D(S,) — DASH -

Thus since ¢ >0, by (C1)

2|;r< |¢1(§|)_¢2(51)|

TN

1<) —

7

S|

)

Returning to (2.9) and using (C3), (C4), we find

re)p) -(T¢z)(l7),;-</‘ [P (E) —DPHEN)],. (2.10)

J

The result follows after taking the supremum over &, e Y and then
peY. 1§

Proof of Theorem 2.2. The existence of the manifold as the Graph(®)
follows from Lemmas 2.3-2.5. That @ satisfies (2.1) under (1.15) follows
from Lemma 24.
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To establish the exponential attraction of solutions to this manifold let
u, =p,+4q, be an arbitrary trajectory of (2.2), (2.3). Set
p:Lpnl+PN(1)nl+¢(pn1))’
¢(p) = L¢(pn1) + QN(pm + ¢(p"l))'
Then using (G1), (G2) we have

|qm+ 1 _¢(p)';+ I(p(p)_ ¢(pm+ l)'y

l(lm+l - ¢(pm+l)|;'<
<(a+B)|qm_¢(pm)';'+6 |p_pm+l ,y'

However, by (2.2), we have

lp_pm+] l)gB lqm_cp(pm)‘}"
Thus by (C4) we obtain

G s 1= PP D <t g, — PP,
and
dist (U, 1y AV KNPt T s 1) = (P i1 PP ),
<u" g — D pol.. (2.11)

Finally, we must show that @ is independent 'of de[d', Ké'],
ee[&, Ke']. Suppose @, ; (we temporally denote the dependence on ¢, J)
is constructed for ¢, d taken in Definition 2.1 to be &', &', respectively. That
is, @, 5 1s a fixed point of 7. Since the Conditions C hold for all ¢ & in
these intervals, there is a @, ;€ I'(g, J) that is a fixed point for 7. However,
@, ; isin the space I'(& ) and is a fixed point of 7. Since the fixed points
are unique, @, , =@, ;. |

3. AN APPROXIMATION THEOREM

In this section we prove the following result concerning the relationship
between the invariant manifolds of (1.5) and (1.10)-—the Main Theorem I
of Section 1.

THEOREM 3.1.  Suppose that the mappings (1.5} and (1.10) satisfy
Assumptions G and G", respectively. If Conditions C' are satisfied with K =
(1+C)C*, then there exist global functions ®el, ®"eTI'" such that
M = Graph(®) and . #" = Graph(®") are attractive incariant manifolds for
G. G" satisfyving (1.7), (1.8) and (1.12), (1.13) respectively. Furthermore if
either (1.15) or (1.16) holds, then:
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(1) for any pe Y there exists C(p)>0 such that
[(p+P(p)) = (P'p+ @"(P'p))|,.< Clp) b
(i) for any p"e Y"
|(Pp" + ®(PP")) — (p" + D" (p")], < C(p") h.

The theorem is proved through a sequence of lemmas. We prove first the
case ¢ <1 where (1.15) holds (inertial manifolds); the case (1.16) where
b> 1 (unstable manifolds) is a minor modification given at the end of the
section. The basic idea of the proof is to use the uniform contraction prin-
ciple. The technical difficulty which needs to be overcome is that @ and @”"
are graphs over different spaces; for this reason we introduce in the course
of the proof the function @: Y+ Z defined by

O(p) = QD" (P'p). (3.1)

This function is a rotation of @" to the space on which @ acts.

We suppose throughout this section that Conditions G, G", C’, hold
without stating this explicitly. The existence of @ € I'(4, ¢) and @" € I'"(J, ¢)
follows from Theorem 2.2.

LeMMA 32, The projections P, Q, P", Q" defined by the eigenfunctions
of A and A" respectively, satisfy

|PQ"|, < Ch, |[P"Ql,< Ch
and
|QP",<Ch,  1Q"P|,<Ch.

Proof. The result follows from applying (G"4), (G"6) to
PQ" = P(E"~ P") = P(P— P") E*,
P"Q=P"I—P)=P"(P"—P),
QP"=(I—P) P"=(P"— P) P",
Q"P=(E"-P")P=E"P—P")P. |

Lemma 330 Let (1.15) hold. Then, for any pe Y there exists C(p)>0
such that

(p+®(p))—(P'p+ " (P"p))|,<Clp)h
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Proof. We have, using (G"4), Lemma 3.2 and (3.1)

[(p+@(p))—(P'p+ D" (PP,
<|p—Pipl,+|D(p)—D"(P'p)|,
<Clpl, h+|®(p)— QD"(P'p)|, + |PQ" D*(P"p)|,
< C(lpl,+ Ce) h+ |D(p) — O(p)|,. (32)

We now show that if " eI™(d', ¢'), then @eI for some e=¢', 6= 6.
Notice that, by (G"6), (G”"7) and since Q=1—P,

10(p)], < (14 C)|@"P"p),
<C(1+ )" P'p), .<C1+C) ¢
similarly
1&(p,) — O(p2)|, <1+ C)|D"(P'p,) — D" (P'p,)l,
<(1+C) C|D"P'p,)—D"(P'py)l,.,
<(14+C)YC' |P'p,— P'psl,,
<(14+C)C |p,—psl,

Thus, @e I’ with §=(1+ C) C?d', e =(1+ C) C¢'. Moreover. from (G"7),
Czland (1+C)C<(1+C)C
We may now apply (2.10) from the proof of Lemma 2.5 to obtain

|TP(p)—TO(p)l, <u|P()— O, (33)
where 7@ is defined by
p=PG(+0(J))
TO(p)=QG(< +O()).

(3.4)
We now use (3.3) to estimate |®(p)—O(p)|, in (3.2). Since @, " are
fixed points for T and T" respectively, we have, by (3.3)
|P(p)—O(p)],=|TP(p)— QT"®"(P"p)|,
<u 1B — O, +1TO(p) — QT ' (Pp)l,.  (35)
Thus we must estimate |7O(p) — QT ®*(P"p)|,. To do this let
n= Pleh(Phé + ¢h( Phq‘*))

h gy heho phx hy ph (3.6)
(T"®")(n)=Q"G"(P"¢ + D"(P*C)).
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We have, using the properties of ®”, the fact that Q=17—- P and that
Th (Dh — ¢h’

ITO(p) — QT" *(Pp)],
<|TO(p) — QT "®"(n)|. + (1 + C)| T" D" () — T"D"(P"p)]|.
<|TO(p)— QT ®*(n)], + (1 + C) C?6 [p— P"p].. (3.7)

Since QT e =T », Op =0, we majorize the first term in (3.7), adding and
subtracting Qn, by

|TO(p) — QT"®" ()|, <|Q(p+ TO(p)) — Oy + T" D" (n))|. + |QP" x|,
(3.8)

Similarly the second term is proportional to a term majorized by
ln—P*pl, <|P*n+T"®"(n))— P(p+TO(p))l, + P QTO(p)|,, (39)

where we have used Py =y, and P"T" =0. We have from (3.4), (3.6) and
(G"5)

l(n+ T*®"(m) —(p+ TO(p)),
S CE[h+ (&= P EY+(QPH P E) — DM P E)), ]

Furthermore, we have by Lemma 3.2,
QP (P"E) — @M (P E)|, = |PR"(P"E)|, = |PQ B (P )|, < CPeh
and from (G"4)
&~ Ph¢|, = |PE— P"¢l, < Ch ¢l
so that
[(n+ T"®"m)) — (p+ TO(p))], < C(&) h. (3.10)

The last terms in (3.8), (3.9) can be bounded by using Lemma 3.2. Thus
we obtain from (3.7), using (3.8), (3.9), (3.10)

ITO(p) — QT" " (P'p)l, < C() b
Returning to (3.5), we have that

|D(p) — O(p)], <t |P(E) — OE)], + C(E) (3.11)
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where p and ¢ are related through (3.4). Recall from Theorem 2.2 that
there is a unique ¢ for every pe Y. Since (1.15) holds and since @ is con-
structed as in (3.1), we have from Lemma 2.4 that @(p) and @(p) are iden-

tically zero for |p|,> 2R, for h sufficiently small. We take the supremum
over all £ which yields p: |p|, <2R to obtain, from (3.11),

1@ —0|,= sup [P(p)—0O(p)|,<plP—0|,+C(R)h

Ipl<2R
Thus it follows that
[®—@|, <(1—u) ' C(R) A (3.12)

This is the estimate needed in (3.2) to prove the Lemma. |

Lemma 34. Let (1.15) hold. Then, for any p" € Y" there exists C(p")>0
such that

[(p" + D"(p")) — (Pp" + D(Pp"))], < C(p") h.
Proof. Set
u'=p"+®"(p"),  u="Pp"+@(Pp")
and
w" = P" Pp" + ®"( P" Pp").

Applying Lemma 3.3 we obtain |w” —u|, < C(Pp") h. Using the properties
of ®" and (G"4), (G"6) we find

" —w"|, < (1+8)|p" — P"Pp"| = (1 +8)|P(P"— P) p"|,

<(149) C*h{p"],.
Hence |u” —u|, < C(p") h as required. ||

Proof of Theorem 3.1, Case (1.15). The proof follows from Lemmas 3.3
and 34. §

The following corollary concerns only the behavior of the functions @,
@’ as opposed to points on the inertial manifold.
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COROLLARY 3.5. For the intertial manifold case (1.15), and for h suf-
ficiently small, 3K >0 such that

sup |[®(p) — "(P"p)|, < Kh

peY

sup |@(Pp")— ®"(p")|, < Kh.

plv eyt

Proof. The first inequality follows from (3.12):

sup |®(p) — @"(P'p)l,

pe Y

<@ — 6", +sup [PO*P'p), <(1—pu) ' C(R)h+ Che.

peY
The second follows from the conclusion of Lemma 3.4:
|@(Pp") — @H(p")], < C(p") h+ (P = P") p"|
<C(p"yh+Ch|p"l,.

7

Also from assumption (G"4) we have for & sufficiently small, |Pp”|, >
|p”|,/2. Thus from (2.1), for |p”|, = 4R, &(Pp") =0, &"(p")=0. The result
follows. |}

We conclude this section with a modification of Theorem 3.1 in the case
(1.16) appropriate to the construction of unstable manifolds.

Proof of Theorem 3.1, Case (1.16). The proof is identical to the proof
in the case (1.15) except that (2.1) no longer holds. Hence (3.11) is still true
but the reasoning thereafter is different.

By (3.4) we have that

b Il <|LEl, < pl, + B, (3.13)

where b>1. We now consider |p|, in two different regimes; let x>
B/(b—1).

(1) if BAb—1)<|p|, <y, then (3.13) gives
bIEL<y+(b—1)y=byr=1|&,<y
Thus, by (3.11)

sup |D(p) —O(p)l, < sup {|P()—O)],+ C(&) A} (3.14)

Bib-1<|pli<y 1§l < x
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(i) if |p|, <B/(b—1), then by {3.13) we have |£|, < B/(h—1). Thus

sup  [D(p)=O(p)|.<u sup  {[D(E) - O], + C(&) hy.

Ipl, < Bith—1) S, < B/ib—1)

(3.15)
Since y = B/(b — 1), combining (3.14) and (3.15) gives

sup |@(p)—O(p)|,<pu sup {|D(E)—O(E)]. + C(&) hy.

Ipl< fSlysx

and hence, it follows that

sup [@(p)—O(p)|,<(1—u) ' sup C(EYR<SC(y)h

Iply<yx ISl <x

Equation (3.2) then gives the desired result to obtain (i) of Theorem 3.1;
part (1i) follows by an argument identical to that in Lemma 3.4 for the case
where (1.15) holds. |

4. EXISTENCE OF INERTIAL MANIFOLDS FOR PDEs

In this section we show that the assumptions and conditions of Section
2 hold for mappings derived from a class of nonlinear dissipative PDEs
which includes the Kuramoto-Sivashinsky equation, the Cahn-Hilliard
equation, the Ginzburg-Landau equation and certain reaction-diffusion
equations. In so doing we will construct inertial manifolds for these equa-
tions. To do this it will be necessary to show that the invariant manifold
constructed in Section 2 for the map (1.5) also yields an invariant manifold
for the partial differential equations whose semigroup define the map (1.5).

All the equations mentioned above can be written as an evolution on a
Hilbert space, denoted by X, as

d

H o Au=Ru). (4.1)
dt

We define the eigenvalues and eigenvectors of A, the spaces X and projec-

tions P, 9, and subspaces Y, Z as in Section 1. Throughout this section

and section 5, we make the following Assumptions £ about this Equation:

(El) the operator 4 is an unbounded self-adjoint linear operator
with compact inverse and eigenvalues {4,} satisfying 0 <4, <A, < ---; thus
we may take A =4 in (1.2);
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(E2) 3y=0, fe€[0,1) and E(g) >0 such that the nonlinear function
R X" - X7 7 satisfies

[R(1)|, ,<E(o) Vue #,0,0)
[R(u)— R(v)|, < E(o)|lu—uvl, Yu,ve 4,0, 0);

(£3) the equation generates a Lipschitz continuous semigroup
So(1): X"+ X7. The resulting dynamical system is dissipative in the sense
that there exists 4,(0, p), so that for every r>0 there exists a T=
T{r, p) =0 such that S,(1) A0, r)c A0, p) forall 1> T.

Thus, due to the absorbing property, we may truncate the nonlinear
term for large |u|. as in [25]. This allows the construction of an attractive
invariant manifold globally representable as a graph. However, the
resulting modified equation is identical to the original equation within the
absorbing set and so the intersection of the graph with the absorbing set
defines an attractive invariant manifold for the original equation.

Specifically, we introduce 0e C"(RR*,[0,1]), a fixed smooth function
satisfying:

Os)=1, 0<s<p?
0(s)=0, s=2p3 (4.2)
|0'(s}]| <2 Vs = 0.
Now define
F(u) =0(1u]}) R(u),
and consider the equation

du
2;+Au=F(u). (4.3)

This equation has the same behavior as (4.1) for all solutions inside the
ball 4,0, p) and thus, to understand the long-time dynamics of (4.1} it is
sufficient to study (4.3).

Using the properties of R(u) and the definition of ¢ it follows that
3K,. K, = 0 such that the nonlinear operator F(u) satisfies the estimates

[Fu)l, 4<K, Yue X7,

(4.4)
|Flu) — F(e)]. s <Ky lu—v] Yu,ve X7

5

Using this it is straightforward to prove global existence of a solution to
(4.3) and to define a Lipschitz continuous semigroup S(7): X"+ X7. Thus
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we may now proceed to construct an inertial manifold for (4.3) by using
the theory from Section 2.

Lemma 4.1.  Suppose that for any K,, K,;>0 there exists an integer
qo> 0 such that

118 _ ]
BBz Ky,  dy —k 2K

for all ¢ =qy. Then for any K, &', ' >0, there exists T >0, integer q,>0
and p € (0, 1) such that, if P is the projection associated with the first q eigen-
functions of A and q = q,, and

L=e"17 N(u) =fTL(T—s) F(S(s) u) ds,
1}

then Assumptions G, Conditions C" and (1.15) hold for the map G(u)=
Lu+ N{u).

Proof. We define A=/, A=2,.,. Then L satisfies (G1), (G2) with
b=e ", a=e ', c¢=¢

We set AT =0 and consider the time 7 map of the flow. In general, it is
not possible to use a time 7 map of the flow with T'— 0. This is because
L=I+0(T) and N(u)=O(T'~*). Thus, to leading order in T, (L—1I)
does not dominate the nonlinear term as 7 — 0. We prove a posteriori that
the manifold we construct is invariant for all r. From the definition of N(u)
we have, using Theorem 2.6.13 of [52], a constant M > 0:

IN(M)]},SjuT }A/fL(T—A) A?'*IfF(S(s) u)‘ ds

0

T MK, T #
£l g ds<-— MK,. 45
Jn (T—S)ﬁ ' l"ﬁ l ( )

Similarly, using (£2), the continuity of the semigroup S(r), and the con-
struction of F,

-4

T
lN(u)—N(v)l(<~1—:v/; CMK2 lu—l‘l;,,

for some C>0. Thus, N(u) satisfies (G3) with
B=T' 'K,

where K =M max{K,, CK,} /(1 —-p).
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We verify Conditions C. Let &, >0, 0e(0, oo), ue{e 7, 1) be given.
Define Ky, K, and T by

7
A
{(’”K50'l A1 4+8) (] +O’)K5}
K;=max — 7 R
H—e &0
K4:K5(1 +5)2‘)ﬂ

da”
If we require A' # > K, >¢"Ksa' (1 + 6)/u, then
el/‘. A1} ’I‘e.rl’I‘KSTl —/I(l +0) <,Ll,

or b= 'B(1 4+ )< as required to establish (C1).
Moreover, if we require A' #2 K,= (1 +0) K5/(c”¢), then

A¥
(1+AT) K; T < AT

x
Jﬁ

Adding ¢ to both sides and dividing by 1 + AT, we obtain

1+4T

+KT' Fge

Since ¢ < 1/(1 4+ x) for all x>0, we have ac + B<e¢ and (C2) is estab-
lished.
To prove (C3) we require

Y
sa*

A=Az K, AP 2 K (1 4+0)% ¢

Since e¥— 1= x for positive x, we may bound (4 —A) T by ¢!~ H7 1.
Multiplying the previous inequality by 7" and using g = AT, we find

0‘(} Al'1'+ Ks(l +(5)'_’ Tl /fgdc,*/.T.

Since (1 +d)?=(1+d6)+d(1+5), this last inequality becomes
da+ (1 +0)B<db—d(1 +0)B which is (C3).
(C4) is obtained by requiring

1y (1+9)

—ag°

H—e

A" P2 K > Ko
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Rearranging this gives Ks 7' #(1 +J) +e "< u. Using the definitions of
a, B, this last expression becomes a + (1 + ) B < u which is (C4).

It remains to establish (1.15). Clearly ¢<1 since 2, >0. Let r be a
positive number satisfying br—B;ﬂp. Recall the definitions (1.4) of
L(t) and N(u, t). From the identity

plt)=L(1) pl0) + | PL(t—5) Flu(s)) ds,

0

where again P is the projection onto span{e,, .., ¢,}, and the above
bounds on L and N for 0 <1< T, we obtain

Ip(D)].=b|p0)],— B

for 1[0, T]. Thus if |p(0)|.=r. we have |p(1)],>./2 p for 0<s<T. By
construction of P and Q as orthogonal projections. we have |u(t)|§>
|p(t)|f,>2p3; hence, by the definition of #, and hence F, we have

N(u) := [TL(T—s) F(S(s)u) ds =0

Y0

provided | Pu|. = r. Thus (1.15) holds.

Now to establish Conditions €’ note that ¢, depends on K and K, and
hence ¢, 4. Taking the supremum of ¢, over all ¢e[¢', K&'], de[d', Kd']
yields ¢, such that conditions ¢’ hold. |

By Theorem 2.2, Lemma 4.1 shows that the time 7 flow of the semigroup
for (4.3) has an attractive invariant manifold. We show now that this
manifold is in fact an inertial manifold for the continuous Equation (4.1).

THEOREM 4.2.  Under Assumptions E and the assumptions of Lemma 4.1
on the spectrum of A, Eq. (4.1) has an inertial manifold. an exponentially
attracting, positively invariant, finite dimensional manifold which can be
represented as a graph @: Y Z within 40, p).

Proof. Tt remains to show that the manifold .# constructed as a conse-
quence of Lemma 4.1 is in fact invariant for the underlying partial differen-
tial equation, rather than just the time 7 flow of the semigroup. To do this
set 2 =S(1).# for some r€(0, T). As before, .# = Graph(®). We will show
that, for all r sufficiently small, Q =.# and hence that .4 is invariant for
the Equation (4.3). By the construction of (4.3) from (4.1), the required
result then follows.

Notice that S(T)YQ =S(T) S(z) .# =S(t) S(T).# = S(t).# =2 so that
€2 1s invariant under the time 7 discrete map. In addition, we can show that
Q2 is the graph of a global function. Recall the definitions of L(r) and
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Nu, t) given in (1.4); by applying the method of proof of Lemma 2.3 it
tollows that, for every pe Y there exists a unique ¢ so that

p=L{1) E+ PN(E + D(E), 1),

for any te(0, T). Thus 2 can be expressed as a graph g = ¥(p) where
¥: Y Z is given by

Y(p):=L(t) D) + QN(E + P(E), 7)

Assume that @e'(J',¢'). Asin (4.5) we have

1 =4

T
Y| <e e+ MK
| |) € & l—[} 1
NI #
< ,MT 1) ;/ B = .
¢ ae’ + <T>

Notice that for t=0, 7 =T, |¥]. <& In general, for 0 <t < T there is some
5= 0 such that

|¥]. <& +7.
In a similar manner, one obtains
[P(p1)— P (p)), <0 +n)lp—pal,
for 0 <7< T. Note that, by continuity, # can be made arbitrarily small by
requiring 7 to be small. Thus we see that, for any # >0 there exists a
*(5) >0 such that
Yel(d+n0 +n)
for all € (0, *(#)). Thus we chose M so large that Conditions C, verified
in the previous lemma, hold for all 5e[J', 0" +4], ce[e&, ¢ +n].
For such ¢, ¢, We I'(4, ¢) and we may again apply Lemma 2.3 to obtain

that for every pe Y there exists a p,€ Y such that

p=Lpo+ PN(py+ ¥{(po))

q=LY¥Y(py)+ ON(ip,+ ¥(py))
However, since S(T)R2=0Q, u=p+¢e2 and Q= Graph(¥), we must

have g = ¥(p). Thus ¥ is a fixed point of the map 7 constructed in (2.5),
and by the uniqueness of the fixed point under Conditions C’, it follows
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that ¥=@&. One may now repeat the argument on the intervals 7€
(kt,(k+1)7) for integer k=1. It follows that .# = Graph(®) is an
invariant manifold for Eq. (4.3) for all time.

To see that this manifold exponentially attracts all solutions let 7 >0 and
u, be given. Set ¢, (s)=nT+s, se€[0, T]. Then from (2.11)

dist(u(t,), H) = dist(S(nT) u(s), .#) <p"C(lu(s)].).

Since u(s) depends continuously on u(0) for all se(0, 7), the result
follows. |}

5. THE SPECTRAL METHOD AND INERTIAL MANIFOLDS

Recall Assumptions E2 which we make throughout this section. In this
section we apply a spectral approximation to Eq. (4.1) based on the eigen-
functions of 4. Similar results have been obtained in [25], [26] where the
analysis was based on the Lyapunov-Perron method, but here we also con-
sider the effect of time discretization (a time discretization alone is studied
in [12]).

Let PY: X+ X be defined by the orthogonal projection onto the
span{@,. .., @y}, where {@;} are the eigenfunctions of 4: Ag,=4¢,
where we suppose that A is self-adjoint. We also set QY =71—P" and
W= P¥X We recall that Y=PX, Z= QX. Then the spectral approxima-
tion of {4.1) is to find a solution v in the space W solving

§+Av= PYR(v),
! (5.1)

v(0) = PVuy,

where R(v) satisfies the Assumption E2 of Section 4. We also suppose
throughout this section that 0 < f < 1.

Unless further assumptions are made about R{v) it is not possible in
general to show that (5.1) is dissipative. However, for the PDEs mentioned
at that the beginning of Section 4, this is the case. Indeed, one technique
used to show that these PDEs are dissipative is to first show that their
Galerkin approximation, (5.1), has this property and then pass to the limit
as N— o (for a collection of such results see [ 58] which also contains
references to the original works). We therefore assume that (5.1) is dis-
sipative. We mention here that in general to show that approximating
schemes, such as the ones under consideration in this paper, are dissipative
requires some care. This question is considered n, for example [ 39, 21, 22,
18, 35, 36].
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As with the PDE (4.1) we truncate the nonlinear term outside the ball
B.(0, p). That is, we consider on the space W the equation

ill£+Al=:P“'F(L'),
d (5.2)

v(0) = PVu,,

where F(v)=®|v],) R(v). If (5.1) is dissipative then (5.2) has the same
long-time dynamics as (5.1). Note that (5.2) is the spectral approximation
of equation (4.3), which has an inertial manifold .#, globally representable
as a graph @(e): Y Z.

THEOREM 5.1.  Equation (5.2) generates a Lipschitz semigroup S™(t) on
X7 In addition, there exists k>0, K>0 and Ny>0 such that (5.2) has
an inertial manifold M, representable as the graph of a function
®N: Y QVZ, for all N = N,. Moreover, for any 1> 0 there exists k(1) >0
such that

dist{ SN(1) v(0), . # "V} <k(ye ™  Vi=0,
for any v(0)e B.(0,1), and the functions ®, &~ satisfy for all N = N,

; KA #
sup |®@(p) _‘DA(P”;VST"}—.
AN !

pet
We prove this below, but first we state a corollary. We wish to compare
the manifolds .# " and .# inside the absorbing set (inside the cut-off region
where =1 in (4.2)). Since the construction of both .#" and .# involves
a prepared equation, it is necessary to localize the comparison of .#" and

~# in order to compare them for the original equations. To this end recall
definitions (1.17) and (1.18).

COROLLARY 5.2, Suppose (4.1} hus an absorbing ball B (0, p) for all
pE(p., o) and that the cut-off function @ in (4.2) is chosen with p=p, > p..
Then for all v < py there exist v Zp, and Ny=q,, the dimension of the
inertiul manifold for (4.1), such that

A 1—p
dist(. 4,40, r), A7 (0, 1)) <

loc

—5
N+1

1 -4

dI.Sf(e,r//N 0, r), .,/7'10(‘(0, r'n < W
N+1

loc

Jor all N2 N,,.
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We emphasize that, provided (5.1) is dissipative, the local manifolds
My, H y, are positively invariant attracting manifolds for the unprepared
equations (4.1) and (5.1) respectively.

Proof of Theorem 5.1. The existence of a Lipschitz semigroup and an
inertial manifold follows exactly as in Theorem 4.2. To establish the con-
vergence we set

.
Lh=exp(AT),  N'(v) =j LY(T—s) PYF(SV(s) v) ds,
(4]

where SV is the semigroup for (5.2). We must verify the Assumptions G”
for the map G*(u) = L*u+ N"(u). (G"1)— (G"3) are immediate and follow
as in the proof of Theorem 4.2. The space V" is given by V'=P X =
EYX =W and P = P" Thus (G"4) is trivially satisfied. (G"6), (G"7) follow
with C=1. It remains to verify (G*5).

Let a(t) = PMu(t) — v(t), B(t) = O u(t), where u(t) is the solution of {(5.2)
with ©(0) = PYu(0). The total error is e(t =a(t)+ B(¢). Since the solution
of Eq. (4.3) may be written as

u(t)=e”"u0+£)’e =D AR(y(s)) ds (5.3)
with a similar expression for solutions of (5.2), we have
(1) = e x(0)+ [ 7 ALPY(Fluls)) = Fe(s))] ds. (54)
Thus
1)), < J(0)], +j | Afe 194 47 BPN(F(u(s)) — F(v(s)))| ds. (5.5)

From (4.4) and (E2) we find

* le(s)],
o (1—5)%

where we have used the estimate |47 ~'“| < Ct— " which holds for #=0,
t > 0. Therefore,

le(2)], < la(O)], + | B2)],
s),

—)F

<1QVu(n)], + (0], + K j

505:123:2-19
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To estimate the first term we set u(t)=37_, u;p; and we use Corollary
7.3 in the appendix. We conclude that

QYunli= ¥ Busog Y AN

J=N+1 v+| ,—\+1

1
<——lu(f|

i’” m -+
N+
C
ST AT (5.6)
W d

Using the Henry-Gronwall lemma ([ 31]), we obtain

KAV #
ll—/f »

N+1

[u(T) — o(T)], <K |P¥(p(0) —u(0))], +

for 0 <t < T noting that T was chosen such that T=¢//1 (see Section 4).
(G"5) follows.

Conditions C' hold by Lemma 4.1. Thus Theorem 3.1 applies. Moreover,
since P=P" in Assumptions G”, the proof of Theorem 3.1 is simplified
greatly and (G”5) gives the rate of convergence of the inertial manifolds.
That is, h=(A4/Ay)' * in (G"S). Since the graphs .# = Graph(®) and
AN = Graph(®”), which are pointwise close are constructed for the
prepared equations, and since the prepared and true equations agree within
the absorbing sets, the localized convergence result, Corollary 5.2, follows.
Moreover, an argument similar to that used to show that .4 is invariant
for S(t) for all +>0 in Theorem 4.2, shows that .#" is invariant for
S 1

As an application of the convergence of the inertial manifolds recall that
the PDE (4.3) restricted to its inertial manifold gives the finite-dimensional
inertial form

d
Tl:+Ap PF(p + ®(p)) (5.7)

which has the same long-time dynamics as the original equation (1.1).
Similarly, the Galerkin scheme restricted to its inertial manifold gives

ip™ . , .
Tt ApY = PF(p™ + % (p¥))
[/
where p™(7)= Pu(t). This system has the same long-time dynamics as the
original Galerkin system (5.1) and has the same dimension M as (5.7) as
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N — oc. Thus Theorem 5.1 shows (as in [25], [26] for this case) that the
two inertial forms are C close. If one show C' closeness of the inertial
manifolds, then since both equations are ODEs, one may apply the results
of [53] (and the references therein) to conclude that certain hyperbolic
structures of the attractor are preserved by the this Galerkin scheme for N
sufficiently large. These possibilities are studied in [41].

Now we consider a semi-implicit time discretization of (5.2). Rather
than proving or assuming that this time discretization of (5.1) is dissipative,
we consider the direct approximation of the prepared equation, (4.3), (5.2)
(the dissipativity of time discretazations is considered in [21] [35]).
Consider

Vpy1 — Uy + A,AUIH- 1= A[PNF(U"),

, (5.8)
vo= P u,.
We will also need to assume that F(u)=0(jul,) R(u) satisfies
|F'(u)v], ,<K]|v|,,
|) # ) (5.9)

[F'(u)) v — Fllus) o], <K uy —us |, |0l

for all u, v, u,,u,e X’ with 0< < 1. These follow from the assumption
that
|R'(u) 1'3;-7/;<E(0')|U|;w (R'(u;)— R'(u5)) U|.)‘,,f<E(O')]M] —Ll3|7, |v|~,‘

for all u, v, u,, u,e #A(0,g) and is satisfied by the PDEs mentioned in the
previous section.

THEOREM 5.3.  Equation (5.8) generates a Lipschitz semigroup S~ '(n)
on X°. In addition, there exists k >0, Ny>0, 14> 0 such that (5.8) has an
inertial manifold .#~, representable as the graph of a function
DNV PXs» OV X for all At<ty, N2 N,. Moreover, for any 1>0 there
exists k(1) >0 such that

dist{ S *(ny (0), .41} <k(p)e ™ Vn =0,

Jor any v(0)e B.(0,1) and for any ¢>0 there exists K, >0 such that the
Sfunctions @, ®V-" satisfy

, A\E A N A
sup |®(p) — &~ M(p)|, < K A <~i> Ar+K< ) .
4 An i

peyY

VAt <14, N2 N,.
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Proof. From (5.8) it follows that for any 47> 0
Vpr=U+A4t4) " [v,+ 4tPYF(v,)]. (5.10)

An iteration of this expression gives

va=([+A14) " oo+ 4t Y (I+414)’~ " PNF; ).

j=1

If {u,} o also satisfies (5.8), then w,, :=u, — v, satisfies

n

w,=(I+414) " wo+ 4t Y, (I+A4t4) "' PY(Flu, ) —F(v;_,)).

J=1

Using (44) and Lemma 7.6, we obtain

n
1
|wn+l |;'< lw()|y+A{K Z F ijfll;'*

j=1tn—j+1

where ¢, ;,,=(n—j+1) 4. Applying the discrete Gronwall lemma, [17],
we conclude

o1, SK(T) wol,.

Thus the semigroup defined by S™ “(n) defined by (5.10) is Lipschitz.
Now we define

L"=(I+4t4)"",  Nu)=dt y, (I+dtdy "' PYF(S™(j)u)
J=1

(5.11)

with mdt =T and G"=L"+ N". We must verify the Assumptions G” for
the map G”. Using the same argument directly above, the assumptions
(4.4) on F(u) and Lemma 7.6 in the appendix, we have that

nr K
Nh At -
it /;( (m—j+1) 40
T dr 7!
<K <K
L) (T—1)# 1-8

A similar calculation shows that

IN"(u) — N"(v)|, < K -
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As above all of the assumptions on G’ are immediate except for (G”5).
We claim that for all u,, voe X
L —p
> . (5.12)

where K, — oo as ¢ — 0. For the proof of this claim we essentially follow the

proof given in [47] for the finite element case. We remark that since we are

measuring the error of the prepared equations, our estimates are not as

sharp as for direct approximation of Eq. (4.1). This is due to the fact that

the only Lipschitz property the prepared nonlinear term satisfies is

|Flu)—F(v)], s<K|u—uv|
We set

lutn 4t) —v,|. <K [P¥(ug—vo)l, + K, A <AA—\> At +K<

Ansi

e

. N N
e,,=v,,—u,,=(t,,~—P Ll”)+(P Ll"—u")
::011_‘(1'1*

where ¢, = Q™u(n A4t) and is estimated in {5.6). Now we estimate €,. Using
(5.8) we see that 6, solves

0,—0, :
A0 = = PY(Fly, ) = Flu)) ~ o,

where

fui—u; du(j At)
—pN[ L J-1 >
“r < At dr

and u,= PYu(j Ar). Summing, we have

O, =1+ A14) " 8y — Y AT+ At4) "~ [ PN(Flv;_ ) — Flu,)) + o;],
=1

{5.13)

where again m At =T. Set

n

R :=|Y MA I+ 4t4) """ o,

j
J=1

and n =[m/2] + 1. Then

"y
RS Y At|AU+AtAY "~ |47~

/
Jj=1

+ Y At|A I+ AtAY A4 )

J=n+1
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Using Lemma 7.5 in the appendix, we have for > —y

lw;|

|
f (t—1t, Y P u, (1) dr

AI S —n
< K J”/ (—1, )di< K At
S P papepa — LAl s 5T
Aet; 777", 20707

In the first term we take y =1 +¢—y and in the second we take n=1—17.
Now we use Lemma 7.6 in the appendix and the bound |4°P"| < A5, |PY|
to bound R, by

noArA, 1 1 AP35
<Ky K Z A ,‘\

j=1 Lo - Jj+1y j=ni+rtmj+1 i

<K, A5 T

For the other term in Eq. (5.13) we have

=Y MtA I+ A4y " PN(F(v,_ ) — F(u,
J=1

<Y KAt|AP(I+ 414Y " v, —u;

l‘)"
j=1

However,
lo; v —ugl <oy = PYuy |+ {PY(uy o —uy) — gy,
te Ay —u,;
SR e R
y—&

Furthermore, by the mean value theorem and Eq. (7.4} in the appendix we
have

A, —u, di K K
P”(ﬁ’-—u’:—') < max au €5—=<5- (514)
At ae U-harsi<jac|dt|, Lot
Using (5.6) we conclude
m Aths 1
<K Z — |V|0j Gl t1_--g+;l/}[1/f}
j=1 m J+1 J "N+15)
| VS TR ¢
<K Z '||)’+—ﬂ+c+ﬁ'

i=1 m -j+1 “N+1
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Combining this with the previous estimate, we have, from (5.13),

A K m 0 }
o1, < (0], 2K e K Yk §
T AN"“ j=1"m-j+1
where we have used ¢, ,<2%¢ 7 . | . Noting that #<1 and that

we may assume T <1 without loss of generality by appropriate choice of
¢, we conclude from the discrete Gronwall lemma, [17] and Eq. (5.6), that

. A% K K
|()m|1': ’l.m_umlng 'vO_P‘N u()l +2KrAt A,,+ Al — + — —fB
i ¥ Tl 3 /\-}V+ﬂ] T] ﬂj’l /)

N+1

Recalling that T4 =0, Eq. (5.12) follows. Conditions €’ hold by Lemma
4.1 and Theorem 3.1 gives the convergence of the inertial manifolds. Again
since P= P" in Assumptions G”, (G"5) controls the rate of convergence of
the inertial manifolds. We remark that .#" <" is an invariant manifold for
the discrete semigroup SV “'(m). An argument similar to that used to show
that .# is invariant for S(¢) for all >0 in Theorem 4.2, shows that .# " <
is invariant for SV ¥(1). ||

6. THE FINITE ELEMENT METHOD AND INERTIAL MANIFOLDS

In this section we consider the equation

ou o*u
5—15}—2=f(u) (x,)e(0, 1)x (0, o0)

u(0, ty=u(l, t)=0 t>0.

We assume that

fe CYR, R), lim supM<0, 3IK>0: f(uy< K (6.2)
Jue| — . u
We define 4: #(A4)+ X by
62
A= —o
Xox?

where &(A4)= H*((0, 1)) n H{((0, 1)), X=L*(0, 1)). We also set V:=X"'"
and define R: Vi— V by

(RO x) 1= f(u(x)).
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Note that X'?=H}((0, 1)) and that [e|,, is equivalent to the standard
H (0, 1}) norm. Thus, Eq. (6.1) takes the form of Eq. (4.1). The spaces
X*, Y, Z and the norms ||, are as defined in Section 1. In the following the
definition of a gradient semigroup is taken from [28]. We can now verify
Conditions G and C' for Eq. (6.1).

LEMMA 6.1.  Equation (6.1) satisfies Assumptions E and generates a C'
gradient semigroup Sy(t) on V. Furthermore there exists k > 0 and p > 0 such
that (6.1) has an inertial manifold .4, locally representable as the graph of
a function @: Y Z within #,,(0, p) for q sufficiently large (to satisfy
Lemma 4.1). Moreover, for any 1> 0 there exists k(1) >0, such that

dist(So(1) ug, M) <k(1)e ™ ¥t30, (6.3)

Jor any uy e #,,(0,1).

Proof. We apply Theorem 4.2. (E1) follows simply from the properties
of —4 on an interval. Straightforward calculation shows that R: V— V is
Lipschitz so that (E2) may be established with y=12 and f=0. Notice
also that the equation has the global Lyapunov functional

x

vigr=[ |59 —at0) as (64)

with g'(¢)=1(¢); specially all solutions of (6.1) satisfy

d >
EV(MU))=—|M,(1)| : (6.5)

The existence and continuity of the semigroup follows from [28] (p. 76)
and [52] (Theorem 6.3.1) with y=1/2, #=0. Theorem 4.3.1 of [ 28] gives
the existence of a global attractor. Hence we deduce the existence of p, >0
so that #, ,(0, p) is an absorbing set in V for any pe(p,, oc); this follows
since any neighborhood in V containing the attractor is an absorbing set.
Thus (E3) holds.

For later reference we define, for ¢ given by (4.2),

F(u)=0(|ul],) R(u),

. (6.6)

L=e 4T, Nu) :j L(T —s) F(S(s) u) ds
(4]

where S(s) is the semigroup for the prepared Eq. (4.3). Applying Theorem
4.2 gives the existence and attraction result for .# since the eigenvalues of
A are A, =an’n? so that the conditions of Lemma 4.1 hold with #=0. }
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We now approximate (6.1) by the finite element method. Let { V"}, _,
denote a family of finite dimensional subspaces of V comprised of piecewise
linear functions with respect to the domain (0, 1) with maximum partition
size h. We assume that the partition of (0, 1) is such that

|E"|,2<C, (6.7)
where E": X+ V" is defined by
(E'u, )= (u, ) VyeV" ueX;

That this can be achieved is proved in [11]. The approximation u"(t)e V*
for the solution u(r)e V of (6.1) solves

(wh oy +a(uh, x )= (f(u"), x)  VyeV"

(6.8)
u"(0)=upe V"

Moreover, we define 4” by
(AW, 0 =aly., 1) Y reV,
and R": V- V" by
(RMy))(x) = E"f((x)).

Since A" is self-adjoint, we may define the spaces X**, Y", Z" and the
norms |-|, , as described in Section 1. It i1s well-known (see [37]) that
there exists a C > 1 such that

C el <ol 12 S Clofys Voe V. (6.9)
In summary, Eq. (6.8) takes the form

d h
—:T+ Ay = RO, (6.10)

We now show that the approximation (6.10) of (6.1) satisfies Assump-
tion G” and Conditions C’, and hence show the existence of the manifold
" close to ..

LEMMA 6.2.  Eguation (6.10) satisfies Assumptions E and generates a C'
gradient semigroup St(t) on V*. Furthermore there exists p >0, k >0, )i, >0
and an inertial manifold .#", locally representable as the graph of a function
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&' Yi ZM within 4,00, p), for h sufficiently small. Moreover, for any
1> 0 there exists k(1) > 0 such that

dist(SH1) uy, M"Y <k(t)e * Yi=0,

Jor all uye 4, ) (0,1).

Proof. We aim to put (6.10) in the framework of Section 4 and apply
Theorem 4.2. Since A is self-adjoint, A" is also so that (EI) follows.
Furthermore, from (6.9) and (6.7)

|Rh(u) - Rh(l’)lh, 12 c: | fluy —f(v)] 1,2
SCEpNu—vl, 0 Yu,ved, (1,0, p).

Hence R": V" V" is locally Lipschitz, { £2) holds and the existence of a
local solution follows. Setting y = u” in Eq. (6.8) shows that all solutions of
(6.8) satisfy

iwwm=—wmﬁ (6.11)
dt

where V' is the Lyapunov functional (64); the existence of a solution
defined for all time follows as in [28] (p. 76). Following the method of
proof in Lemma 6.1 an absorbing set #,,(0, p) may be constructed and
( E3) is obtained; note that, without loss of generahty, we may assume that
pelp., o) as for the absorbing sets for S(¢). Note, furthermore, that we
have taken the absorbing set in X' rather than X”'? for convenience;
norm equivalence (6.9) of these spaces for elements in ¥* allows us to do
this.
Again, for later reference, we define

F'u)=0(|ul],) R"(u),
o (6.12)
Lh =" AI"I“ Nl:(u) =J Lh( T——S) Fh(Sh(s) Ll) dS

0

where # is given by (4.2) and S’{s) is the semigroup for the prepared
equation

du®
W'*_ Ahuh — Fh( uh)

constructed from (6.10), using the function f to define F”.
To show the existence of .#" we apply Theorem 4.2 and it is required
simply to establish the requisite spectral properties. Using the fact that 4"



INERTIAL MANIFOLDS 625

is self-adjoint and that the eigenvalues of A" converge to those of 4 [37],
we deduce that the spectral conditions can be satisfied for any K,, K,>0.
The existence of .#" follows. |

We are now in a position to apply Theorem 3.1. The next theorem
describes the behavior of the functions @, @”.

THEOREM 6.3. Let @, D" be as given in Lemimas 6.1 and 6.2. There exists
a h, >0 such that for all h<h_:

(1) for any pe Y there exists C(p)>0 such that
p+@(p))—(Pip+ dMP p).<C(p)h:
(ii) for any p"e Y"
|(Pp" +@(Pp")) —(p" + ®"(p")N, < C(p") h.
Furthermore, 3K > 0:
sup |®(p)— D"(P'p)|, < Kh,

pel

sup |@(Pp")— M p")|, < Kh.

pheyh

As in the spectral case above we wish to compare the invariant manifolds
/" and .4 in side the absorbing balls. It will again be necessary to localize
the comparison of .#" and .# in order to compare them for the original
equations. To this end recall definitions (1.17) and (1.18).

COROLLARY 6.4. Suppose Eq. (6.1) and (6.8) have absorbing balls
#,4(0, p), for pe(p,, o), and that (6.1) and (6.8} are prepared with radius
p=po>p.. Then for all r < p, there exist ¥ 2 p,, hy>0 and ¢ > 0 such that

dist( My 1200, 1), 7,120, F)) < ch Yh<h,,
dist(M 7, 120, 1), 4,0, )< ch Yh<h,.

Proof of Theorem 6.3. We apply Theorem 3.1 to G(u) = Lu+ N(u) and
G"(u) = L"(u) + N*(u) defined by (6.6) and (6.12) respectively. We denote

the eigenvalues of A4 by {4}} ~ , and those of 4" by {i}}_,. We set

0_ 10 2h __ 1h 0__ 10 h__ h
A=Ay, At=4g, AP=2., AM=77.

We have that A% — A? as 4 — 0. Thus we define

1h

A= inf A% L= sup A, A= inf 2%

O<h<hy o<h<hy O<h<hy
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Further, we let AT =« and define

b=€ AT’ (l=(’7"”—. c=¢ /.IT.

By construction (G}, (G"1), (G2) and (G"2) are satisfied for 1 <#h,. The
bounds (G3), (G"3) follow as in the proof of Lemmas 6.1 and 6.2. Further-
more, following Lemma 4.1 we deduce that Conditions C’ hold provided
that for any K-, K, > 0 there exists an integer ¢ > 0 such that 4> K, and
A—2=K,. Since A, A can be made arbitrarily close to A°, 1% by the choice
of hy, this is clearly true.

It remains to establish (G"4)-(G"7). (G"4) can be proved by a modifica-
tion of Lemma 3.5 in [48]. Condition (G"7) is a standard properties of the
finite element method [37]-see (6.9); (G5} and the bounds on [Pl |P"|;,
in (G"6) are proved in [48]. Though in [47] (G"5) is proven for the
unprepared equation, the only Lipschitz property of the nonlinear term f
used is | f(u) —f(v)] < K |u—v},,, which is satisfied by the prepared equa-
tion. Indeed, once the equations are prepared this is the only Lipschitz
property satisfied by F(u)=60R(u). The bound on |E”|;. in (G"6) follows
from the assumptions on the mesh partition described above-see (6.7).

Thus Theorem 3.1 applies. Since the graphs .# = Graph(®) and . #" =
Graph(®") which are pointwise close are constructed for the prepared
equations and since the prepared and true equations agree within the
absorbing sets, the localized convergence result, Corollary 6.4 follows. |

We now consider the effects of temporal discretization. Specifically, we
apply the backward Euler approximation to (6.10). We obtain
(' —uly+ At4"u"

n+1

=AtR"(u! , ). (6.13)

For simplicity we will consider (6.131) under the limit process A, 41— 0
with

ﬂ:a’. (6.14)
h

For the discrete semigroup generated by (6.13) we will define an
absorbing set to be a ball 4, (0, r) which all solutions of (6.13) starting
within a bounded set 4, | .(0, 6) = V" enter and remain inside after a finite
number of steps N = N(a, r). Using the methods in [16], [ 18] it may be
shown that for KA7 < 1, where K is given by (6.2),

n+1 n+1

At ) A1’

V(u" )~V(uf:)<“l|u" —u'|? (6.15)
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Here V: X'2+- R is given by (6.4). This is the discrete analog of Eq. (6.5)
and enables us to prove the existence of an absorbing set for the scheme
(6.13).

THEOREM 6.5. Egquation (6.13) generates a Lipschiiz continuous semii-
group, Sy "(n), on V" with absorbing set #,,(0, p) for any pe(p,, x).
Furthermore there exists k >0, 1,> 0, h.> 0 and an inertial manifold .#" ',
locally representable as the graph of rhe Sfunction @™ within A8,5(0, p), for
all At<zy, h<h,. Moreover, for any 1>0 there exists k(1) >0 such that

dist{ S™ " (n)yul, a" ) < k(1) e Yn=0,

for all uye B, ,(0,1). Finally,

Jor any pe Y there exists C(p) >0 such that
[(p+@(p)) = (P'p+ @™ “(P'p))], < C(p) by
(it) for any p"e Y"
[(Pp" + ®(Pp")) —(p" + " "(p")). < C(p") b
Furthermore, 1K > 0:

sup |P(p)—@" (P'p)l, < Kh

pet

sup I¢( Pph) _ (Dh. Jl(ph)lr < K/l

phe vh

Suppose Eq. (6.1) and (6.13) have absorbing balls #,,(0,p), for
pelp.. ), and inertial manifolds .4 and .#"* < respectively. In addition,
suppose that {6.1) and (6.13) are prepared with radius p =py> p.. Then for
all r < pg there exist v’ =z p_ and hy> 0 such that

dist{ Myge, (10,0, 1), A5 (0, P )< ch Vh< hy,
dist(. #7327 5,0, 1), K0, F)) < ch Vh<h,.

Proof. Note that, under (6.2), the methods of [35] may be used to

show that, for any u"e V" At>0 there is a u”, e V" satisfying (6.13).
n+1

Moreover, for any two sequences {u’}, {v#} satisfying (6.13), we have

h

(un+l_l’.ﬁ+l*}f) (Ll _L;;’X)+A[1(( eS| l::+l).\-~l\')
—AI(R"( r;+l} ( u+l) X)
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h

n*

for all ye V" If we suppose that at some n, u”=uv”, then setting

y=u"_,—v" | and noting that from (6.2) we have

-

)Q%)gKluh L.h 2

n+1" Yasd

( Rh( uh

h+

)R
it follows from the previous equation that for KA:<1/2 the solution
sequence {u’} is unique. In addition, a similar calculation yields the
Lipschitz continuity result
o~ P < =240K) 7 ul — ot )2
Thus the existence of a Lipschitz semigroup S™ ¥ (n): V"1 V" is estab-
lished, where u” = S" “(n) u}. We may now apply Proposition 2.5 of [ 18]
to deduce from (6.15) the existence of a compact connected global attractor
/"< V" for S"(n). Using the same argument as in Lemma 6.1 we
construct the absorbing set 4, .(p), for any J¢ > 0, where, without loss of
generality, pe(p,, o).
As before we now consider the prepared equation
(u” u"y+ AtA"u’

n+1" w+ |

— MF"u! ), (6.16)

where F(u) is given by (6.12). Now define

L/l=(1+AtAh)"”, N/l(u):A[ Z (1_+_AtAh)jf—m ]Fh(Sh,;lr(j)u)‘
j=1

(6.17)

where $*¥(j} is the semigroup for the prepared equation.
Using Lemma 7.6 in the Appendix we have from (6.7), (6.9), the
boundedness of F in V and the choice y=1/2, f=0

INY) ]y a At Y 1T+ LA™Y 7 FHS" ) il o)
i=1

< C4dt Z IFI'(SI'“”U)U)|h.m2>

J=1
< Cm At
A similar argument shows the estimate
IN"(u) = N"(0) ), 1,0 S Cm At [u—vl, 12,
Now we estimate L”. From the spectral properties of L* we have

IL"x|, <(1+ 414"y " |x|, ~ VxeZ",



INERTIAL MANIFOLDS 629

and
(1+ 402"~ x|, < |LAx|, < (1 + 427) ™ |x], Yxe Y"

Without loss of generality we may choose T such that T/4¢ is an integer.
If we fix m such that mAt=T, we have

IL'x| <e TIx|,  VxeZ”
and

e TIx), < |L'|, <e 7|x] Vxe Y,

where
In(1 + A1A4")

n( 1+ Ata") - In(1 4 412"
At ’ )

~ ~ 1
A: N /‘L:
At At

Hence, A — A% - 2% 1, — A as h, 4t — 0 under (6.14).

Thus by following the proof of Lemma 4.1 it follows that (G"1) — (G"3)
are satisfied for G” defined by G’(u) = L"(u) + N"(u), m=T/4t. With the
exception of (G"5), (G"4) — (G"7) all follow as in the proof of Theorem 6.4
(G"5) requires an error estimate for the prepared equations where as the
proof in [47] is for the unprepared equations. The difference is that the
only Lipschitz property available for the prepared nonlinear term F(u) is
[F(u)— F{r)| <K |u—v],, while [47] also uses |f(u)—flv)] <K |u—v|
This problem also occurred in Section 5 for the spectral method and can
be overcome in the same way. Indeed, the proof follows the proof of (G"5)
in Theorem 5.3 (which follows [47]) only here we use the estimate
[A*u"| <h*K |u"] for all u" € V" (as opposed to |4°PVu| < A%, |P"u| in the
spectral case).

The Conditions C’ also follow as in Theorem 6.4, where now we set

A= inf A, A= sup A, Jy= inf A,.
O<h<h O0<h<h
At =dh Oj ’;ﬁ/;“ At =dh

Hence an invariant manifold .#" < has been constructed. Finally we
remark that .#™ < is an invariant manifold for the discrete semigroup
S 4(m). An argument similar to that used to show that .# is invariant for
S(1), for all £>0, in Theorem 4.2, shows that the .#* " is also invariant
for $™-"(1). |

7. APPENDIX

In this section we supply the missing estimates needed in the proofs of
Section 5. We suppose throughout this section that u(¢) is the solution of
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(4.3} and that Assumptions £ of Section 4 hold along with (5.9). We also
require 0 < f<1. Let us begin with a lemma whose utility will become
clear in the subsequent lemmas.

LEmMAa 7.1.  Let u(t) solve (4.3) with uge X. Then for 0 <t <s<t<T we
have
K. (t—s)* K(t—s)
(s—1)*

|u(t) — u(s), <

Sor all 0 << 1.

Proof. We have from (5.3)

M(I)*ll(S):((’r(’ '”A—I)(’W“ r)Au(t)_’_jAef(r»r)A

x (Flu(r +t —5)) — Flu(r))) dr+J‘THﬂe D ARGKE)) dr

T

Using the estimates |e “u—u| <b, 1" |u|,, 0<a<1 (see [52] p. 74),
|A%e =" < Kt * and assumption (E2), we obtain

‘ b(t—s)* K(t—s)
|u(t) -um];,<-—(s_ e lu(T), + Goof

AX

K ) i
+], G =)

The result follows after an application of the Henry-Gronwall lemma
[31]. 1

We may now obtain a bound on |du/dt|, . This in turn will allow us
to estimate |u(f)|, , , on the interval (0, T]. To accomplish this we
modify Lemma 3.5.1 of Henry [ 31] (see also [52] p-114) which essentially
says that if g: (0, T)+— X is such that |g(¢) s)|<K )t —s|" for 0 <
n<l, 0<s<t<Tand K(s)eL'((0, T)), thenG yi={pe """ g(s) ds is
continuously differentiable on (0, T).

LEMMA 7.2. There exists a constant K= K(T) such that

Yire(0, T],

provided u,e & (A”).
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Proof.  Since u(t) is Holder continuous, so is F(u(t}). Thus by Lemma
3.5.1 of Henry, [31] (5.3) is differentiable and

du

—(ty=—Ade “uity+e U TF(u(1))
dt

+Jﬂr Ae VY Eu() — Fluls))) ds.

We then have

@(f)
dt

K r K
Srl,/; IU(T)l./.—I»K] + ( : !H([)‘L{(SH.,,(I'S.

YT

oo

The result follows after using the previous lemma and the fact that since
uye 7 (A"), lu(t)|.. remains bounded as 71— 0. |

Since Au = —du/dt — F(u(r)), we have

CoroOLLARY 7.3. Under the above assumptions there exists a constant
K=K(T) such that

K
(), . p<——5.  Vte(0.T]
r .1

Now that we have |u(t)|, . 4 is bounded uniformly on 0 <7<t < T we
may improve Lemma 7.1.

CoroLLARY 74. Let u(t) solve (4.3) with uye #(0,p). Then for
O0<s<t<Tand given any £¢>0 such that f+e<1 and 0 <a <1, we have

du du {t—s)" (t—y3)
—(t)—— (s <K, .
df(” dt (3)’}‘”,‘. 1'< sxre * s’””)

Proof. Since uye #(A"), we may set t=0 in Lemma 7.1. The proof
follows Lemma 7.1. We have

b (t—5)" K(r—s
) — s, 2o <22 o, +

A

PRy

+J m |u(r+r—s)—u(r)|,/‘dr,
o (5 —

505,123,2-20
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Now we use Lemma 7.1 and our assumptions on f, ¢ to conclude

(t—s)* (1—3)
lu(t) —u(s)], . <K, < et (";;;“;T)
The result follows since

i
A."71+€ %;;: _A;'+1;u(t)v_A‘,‘ —1 +5F(u(t))

and y—l1+e<y—4 1|

Now we turn to the estimates on u,. Set o(¢)=r"u,r). Formally v
satisfies

lﬁ
(d—L+Au=2thu—F’(u(t)) v,
t dt (7.1)
v(0)=0.
A mild solution of this equation is of the form
! —(r—s1 A du '
v(t)=J e 4 [ 25 o Futs)) els) ) ds. (7.2)
0 dS

One can show that the map H defined on the complete metric space
C([0, 7], X) by

Hw= r Ave -4 <2s£:;—4 ($)—F'(u(s)) A ’?‘w(s)> ds
0 AY

has a fixed point for 7 sufficiently small. Hence A7v(¢) = w(t) 1s bounded in
X for 0 <1<t where v(¢) solves (7.2) (see [31] for example).
Moreover, we have from (7.2) and Lemma 7.2

rgh * o(s)l,

ju(z)l,,sKjO“_S),,+Kf0(t_s;ﬂ
o luls)],
<Kr+KJ()(t—_~;)l,;.

After an application of the Henry-Gronwall lemma, [31], we obtain

()], <Kt  0<i<T (7.3)
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This shows that the maximal interval of existence of the solution of (7.2)
is 0 <7< 7. More generally one can show

o)), < Kt'*e (7.4)

LemMa 7.5.  Let u(t) solve (4.3) with u, € #(0, p). There exists a positive
constant K= K(n, T) such that

K
bl S s VIe(0.T] (7.5)

holds for all n > -y.

Proof. As in Lemma 7.2 v is continuously differentiable provided we
can show t(7) is Holder continuous in (A7) for 0 <t < T. To accomplish
this we proceed as in Lemma 7.1. With the help of Corollary 7.4 and
considerable computations we find

lo(6) — v < K[s Pt —s)' P+ (1415 )1 —s)
+(1+ts' =27y (1 —5)*]. (7.6)
Thus ©(¢) is continuously differentiable, and we have

dv

ar'l )

' du du
—,—{r—s) A )
-f—L A e (21‘ 7 (t)—2s-—dt (s)> ds

= ‘A e — Al <2td—-t;~—F’(u(t)) U(I)>

-n

—Jﬂ A e U AE (1)) v(t) — F'(u(s)) v(s)) ds
0

Using Corollary 74, (7.6) , (7.3), Lemma 7.2, and the estimate
|47 | < Kt ", we arrive at

< K"t
~n

« 0
dt

Repeating the analysis of Lemma 7.2 under the same assumptions on f,
» #, we find

du
— (1)

< K[}.+']7 l'
dt

—y

The result follows after noticing v, = 2tu, + t°u,,. |
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We conclude with the following lemma which is the discrete analog of
the estimate |A% Y| < ¢ ™™

LemMMa 7.6. Let a <1 be given. There exists a constant ¢, which remains
bounded as « — 1 provided n # 1 such that

¢
AN+ AtA) 7" € 2
A% 1 (Atn)*

Sfor all n> 1.

Proof. The bound follows from noticing that the maximum of the
function f{x)=x*(1 + Atx) " occurs at x =o/(At{n—a)). |
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