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Abstract
A semi-discrete spatial finite difference approximation to the complex
Ginzburg-Landau equation with cubic non-linearity is considered. Using
the fractional powers of a sectorial operator, discrete versions of the Sobolev
spaces H°, and Gevrey classes of regularity 7, G-, are introduced. Discrete
versions of some standard Sobolev space norm inequalities are proved.
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1004 LORD AND STUART

The semi-discrete system is shown to form a continuous semi-group in
the discrete L? space and absorbing balls in discrete L2 and H' spaces, with
radii independent of the spatial step size Az, are constructed; the existence
of a discrete global attractor Aa, follows. It is shown that solutions to the
semi-discrete equations lie in a discrete Gevrey regularity class. Using this,
upper-semicontinuity of the semi-discrete global attractor Aa, is proved. In
contrast to existing techniques, non-smooth initial data error estimates are
not required to prove this upper-semicontinuity result; instead the discrete

Gevrey regularity is used to enable the use of smooth initial data estimates.

AMS(MOS) Subject Classification: 65M06, 35B40, 34C35.

1 Introduction

The complex Ginzburg-Landau equation is an important equation in a number
of scientific fields - it models the evolution of the amplitude of perturbations to
steady state solutions at the onset of instability. In fluid dynamics it is found,
for example, in the study of Poiseuille flow, Rayleigh-Bénard convection and
Taylor-Couette flow [44, 34, 41, 42, 9]. The equation is also used to model the
transition to turbulence in chemical mediums [26, 27]. The equation derives the
name used here from the study of super-conductivity where it models the phase
transition of the material from a superconducting phase to a non-superconducting
phase [6, 12]. As a phase transition equation it is closely related to other phase
transition equations such as the Allen-Cahn or the Chafee—Infante equation (see
(2] and [5]) or the Cahn-Hilliard equation [4].

Like these other phase transition equations the Ginzburg-Landau equation is
an example of a dissipative equation whose long time dynamical behaviour is cap-
tured by a global attractor [46]. However, unlike the Allen-Cahn or Cahn-Hilliard
equations, the Ginzburg-Landau equation does not have a gradient structure ex-
cept for certain special parameter combinations. Indeed the existence of periodic
solutions is easily shown; furthermore Taka¢ [45] has proved existence of invariant
tori and there is good numerical evidence for the existence of chaotic solutions [34],
[37]. Another important property that the complex Ginzburg-Landau equation
shares with a number of other dissipative equations is that solutions become ('

smooth after a finite time. This was shown by Bartuccelli et al (3] by proving a




Downloaded by [University of Warwick] at 04:04 15 February 2016

APPROXIMATION TO GINZBURG-LANDAU EQUATION 1005

sequence of estimates in Sobolev spaces: so called “ladder estimates”. A stronger
result has been proved by Doelman and Titi [10] for the Ginzburg-Landau equa-
tion with cubic non-linearity and by Duan et al [13] for higher order non-linear
terms: the solutions lie in a Gevrey class of regularity which implies analyticity.
Further results on Gevrey regularity for a class of parabolic equations may be
found in Ferrari and Titi [16].

We consider in this paper a semi-discrete finite difference approximation to
the Ginzburg-Landau equation, found by a spatial discretization, which reduces
the problem to a system of ordinary differential equations. In [37], fully discrete
approximations and numerical results are treated.

In order to consider the semi-discrete equation we start by defining relevant
norms on the vector space C J and prove discrete versions of standard Sobolev
space inequalities.

We prove that the resulting set of ordinary differential equations forms a dy-
namical system and that there exists absorbing balls in discrete L? and H! spaces
of radii independent of initial data and the spatial mesh size Az. We conclude the
existence of a global attractor bounded independently of Az in the discrete L2 and
H! spaces. It is then shown that solutions to the semi-discrete approximations
lie in a discrete Gevrey class of regularity; the method of proof is adapted to the
discrete case from that of [10]. We use this result to prove upper—semicontinuity of
the semi—discrete global attractor to the global attractor of the Ginzburg-Landau
equation. The Gevrey regularity enables us to avoid the non—smooth initial data
error estimates which are typically required for such problems. Proofs of such
upper-semicontinuity results for numerical methods originate in the work of [21].

The only other work we are aware of proving upper-semicontinuity for fi-
nite difference methods is due to Yan in [49]. Our method differs to that of
Yan who uses a piecewise linear interpolation to set the analysis in the space L2
and then derives non—smooth data error estimates. Upper—semicontinuity of a

Legendre—Galerkin approximation to reaction—diffusion equations was considered
in [43]. For more general systems of ordinary differential equations the existence
of global attractors and the question of upper—semicontinuity is considered for
example by Kloeden and Lorenz [35] and Humphries and Stuart [30] for one-step
methods and by Hill and Siili in [25] for linear multistep methods. Currently

lower—semicontinuity of attractors has only been proved for gradient systems [22]
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or systems whose attractor is the union of unstable manifolds of fixed points
(29, 33]. Hence such techniques are not applicable to the Ginzburg-Landau equa-
tion.

There are other properties of the Ginzburg-Landau equation which could be
examined under discretization. In [11] the dimension of the global attractor was
considered and the existence of an inertial manifold for the continuous equation
was shown. In [37] the existence of an inertial manifold for a semi-discrete ap-
proximation was shown and the dimensionality of the discrete global attractor was
considered. Other work in this area for finite difference approximations is by Yan
(50, 48] who considers the dimension of attractors and by Jones [32] who proves
existence of a discrete inertial manifold for a finite difference approximation to
the Kuramoto-Sviashinsky equation and shows C'! convergence.

The paper is organized as follows. We commence by reviewing some results
for the continuous complex Ginzburg-Landau equation along with describing the
mathematical setting. In section 3 the semi-discrete finite difference approxi-
mation is presented and some discrete Sobolev space results are discussed. We
prove in section 4 that the semi-discrete approximation defines a dynamical sys-
tem and that there exists absorbing balls in the discrete spaces L? and H!. The
section concludes with a proof of the existence of a global attractor. Section 5
is devoted to proving that solutions to the semi-discrete approximations are in

a discrete Gevrey class of regularity. This is applied in section 6 to establish

upper-semicontinuity of the global attractor.

2 The Complex Ginzburg-Landau Equation

Consider the complex Ginzburg-Landau equation with cubic non-linearity and

periodic boundary conditions on the interval Q = [0,1], namely:

Ut = RU - (1 +iv)AoU — (1 +ip)|U|2U,

U(0) = U°. 1)

Here R,v and p are all real parameters and Ay is the linear operator given by

per

Ao := —A with domain D(Ao) := {V € L2 : | AoV 2 < 0o} (2.2)

Then
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U(z,t): @ x Rt -C.

Henceforth we use L? to denote L%,e,, the standard Lebesgue space of periodic

functions on Q with norm given for V € L? by

Wi ={ [ v dz}%.

We make use of the semi-group formulation such as in Henry [24] or Pazy [39).
Since the operator Ao defined by (2.2) is not positive definite we introduce the

linear operator Ag defined by
Ag := I + Ao, (2.3)

with domain, D(Ag) = D(Ao), and reformulate (2.1) as

Us + (1 + i) AU = Fo(U), (2.4)
U° = U(0),
where
Fo(V)(z) := RV(z) - (1 +ip)|V(2)*V(2) (2.5)

and R = R + (1 + iv). The following result is straightforward to prove.

Lemma 2.1 The linear operator Ao defined by (2.3) is a sectorial operator. That
is Ag is closed, densely defined , and 36 € (0,7/2), M >1,anda € R such that
if Lq¢ is the sector given by Y = {r eC\{a}: |arg(A — a)| < 6}, then the
spectrum of Ao, a(ﬁo), satisfies

U(ZO) C 20,,0

and
Ve @\Ea,o.

— A1 <
I(AI Ao) L2 = |A—d

Furthermore the eigenvalues of Ao are given by {Kk} , k € Z, where
Ap=1+4k%, ke Z, (2.6)
and the corresponding eigenfunctions {U}2,, form a complete orthonormal set

in L? given by
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U =€k ke Z. (2.7)

Since /Io is sectorial, fractional powers of ;fo are defined and these may be
used to define new Banach spaces, see for example [1] or (39]. If welet V € L2,
then by Lemma 2.1, V may be defined by a Fourier series

(e o)

V=3 a¥, where ar = (V,¥y). (2.8)

k=-o00

The Sobolev space { H2*,|| ® || 2.} is then defined as

H* := D(Ag) = {V € L* : |A4V|1» < o}, (2.9)
with
o 3
IVllgzs := [AgV |2 = { > Kzs|ak|2} : (2.10)
k=—00

Definition (2.10) is norm equivalent to the standard norm on H2° defined through
distributional derivatives.

We may also use the linear operator Ao to define a special class of Gevrey
spaces. The definition of Gevrey class and regularity which we give here is the
same as that used in (17, 10] and [13]. First we note that functions of unbounded
operators (and so functions of the operator /I;, s > 0) are defined in the work
Dunford and Taylor [14].

Let V € L? have Fourier expansion given by (2.8). Then we define the Geuvrey
space {Gry 1o [l } by

Grs:=D (X;eon> = {v € L2 |Aerbov2, < oo}, (2.11)

with

- . _ 3
IVllG,, = |Age 4oV, = { > XisezTAzladz} .
k=—o00
In this paper we only consider the case when s = % and 7 > 0. Hence-forward we
use G, to denote G172 With corresponding norm llellc,. Asis standard practice,
we call 7 the order of the Gevrey regularity of G, and we speak of V € G, being
of Gevrey class of regularity 7. (From the definition of the Gevrey spaces it is

clear that if V € G, then the Fourier coefficients of V decay exponentially in &
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and hence V is a smooth analytic function. In fact, for all @ € IR, and for all

7 > 0 the following inclusion is true :

G.C H®. (2.12)

We refer the reader to [40, p12] or [8, p240] for the more general definitions and

to [40, 18, 8] for related results and further references.
We use the following notation to denote balls in the spaces defined above. The
balls of radius p centre 0 in L? (= H®), H' and G are defined respectively by

Bo(p) i= {V € L Vlzz < o}
Bip) = {V € H': [Vlm < o}

Bg.(p) :={V € G- : |Vlie, < p}-

Before stating results for the Ginzburg-Landau equation we recall some defini-

tions useful in the theory of dynamical systems, which may be found, for example,

in Temam [46)].

Let X be a Banach space with norm || e || and identity operator I'X-X.

Definition 2.1 Let A,B C X and let u € X, then the distance of a point to a

and the distance between two sets A, B is defined by

dist x (B, A) := sup distx (u, 4).
uw€B
The Hausdorff distance dyy(A, B) between two sets 4, B C X is defined by
dy(A, B) := max {distx(A, B), distx(B, A)} .
We define the e—neighbourhood of a set A C X by

N(A,€):={u€ X : distx(u, A) < e}. O

Now suppose we are given a semi-group of continuous operators {S(t)};0>

where S(-): X — X, for each t > 0.
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Definition 2.2 A set A C X is positively invariant for the semi-group § @) :
X - Xif

S(H)AC A, Vt>o.

A set A C X is said to be invariant if
St)A= A, Vt>0. O

Definition 2.3 A set A C X is said to attract aset B C X if for any € > 0 there
exists to = to(¢,.A, B) such that

S(t)B CN(A,¢e) Vt>t,.

A set A C X is said to be an attractor if A is a compact, invariant set which

attracts an open neighbourhood of itself.

We say that A C X is a global attractor for the semi-group {S(t)},,, if A is
an attractor that attracts all the bounded sets of X. o

Note that convergence to the attractor may be arbitrarily slow; thus we are also

interested in finding sets into which bounded sets are mapped by the semigroup
after a finite time; these are now defined:

Definition 2.4

A closed bounded subset B of E an open set in X is said to be absorbing in
E if for each bounded set B C E there exists to(B) > 0 such that

SE)BCBYt>t.
A dynamical system possessing an absorbing set is said to be dissipative. ]

Since all solutions of a dissipative system eventually enter the absorbing set,

it is important to understand what happens to the absorbing set under forward
evolution. Recall the following definition:

Definition 2.5 We define the w-limit set of B, w(B), by

w(B):= (U, S®B. O

>0
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Under suitable compactness conditions, a dissipative system has a global at-

tractor which is the w— limit set of any absorbing set. The following theorem

summarizes known results for the Ginzburg-Landau equation:

Theorem 2.1 The following properties hold for the Ginzburg-Landau equation
(2.1):
C1 Given U° € L? there ezists a unique solution
U(t) € C([0,T); L*) () L*((0,T); H') VT < oo,
and so there ezists a semi-group
S(e)e e C (IR+ X L2,L2) ,
defined by S(t)U° = U(t).

C2 There ezists a constant po = po(R) > 0 such that the ball Bo(po) is absorbing

and positively invariant for the semi—group {5() }4>0-

C3 There ezists a constant py = p1(R) > 0 such that By(p1) is absorbing and

positively invariant for the semi-group {S5(t)}+>0-

C4 The dynamical system given by the complez Ginzburg-Landau equation (2.1)

possesses a global attractor A,
A = w(Bi(p1))-
C5 IfU° € H! then there exists T, = T.(||U°|| 1) such that
1, g3
U(t) € Gi = D(Aie'™), te(0,T.).
Furthermore 3 T, o > 0 independent of t such that

U(t)e G,, Vt2>T.

Proof C1: This may be proved using a Faedo-Galerkin approach, details may
be found in Temam [46]. C2,C3,C4: These were first shown for the Ginzburg-
Landau equation in Ghidaglia and Héron [19] but may also be found in (46)
or Doering et al [11]. C5: This was proved by Doelman and Titi [10] for the

Ginzburg-Landau equation with cubic non-linearity. O
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3 Semi-Discrete Approximation and Setting

In the previous section we discussed the complex Ginzburg-Landau equation (2.1)
with periodic boundary conditions. We introduce in this section the semi-discrete
approximation and some discrete Sobolev space results. Similar discrete Sobolev
results may be found in the works of Mokin [38], Yan, [48, 49, 50] or Yulin [51].
Consider the interval [0, 1] divided into J uniformly distributed mesh points
a distance Az := 1/J apart. We let subscripts indicate the spatial mesh point,
so that u;(e) is our approximation to U(jAz,s). Define 6, to be the usual
forward difference approximation to the derivative and 6_ to be the backward

difference approximation. ;From this we find the standard approximation for

second derivatives

Ut = 2u; + ujy

62uj =646_u; = A (3.1)
Let 7 € £2,
5=(--',v—l,vo,vl,---,vJ_l,vJ,vJH,-..)T,
be such that
Uk = Upyy, VK € Z. (3.2)

Then v is said to satisfy periodic boundary conditions.

Hence-forward we let

v = (v, +,v4-1) EC 7,

per

denote v € ¢? satisfying (3.2) and make free use of the periodicity. Thus, for
example,

V-1 =7vj-1, VJ =g, Uj41 = V1.

Let M be the J x J diagonal matrix with entries Az down the diagonal:
M = diag(Az,- -, Az).

In finite element terms M corresponds to a mass matrix constructed through

mass lumping. We denote the J x J matrix arising from the forward difference
approximation to the derivative by
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D= AI—I . ) ) (33)

where the non—zero corner element arises from the periodicity. If we define the

J x J matrix A by
A=Az} e el ’ (3.4)

then the matrix M~'A is the matrix representation of the standard finite dif-

ference approximation to —A for a problem with periodic boundary conditions

arising from (3.1).
As in the continuous case we define a linear operator which allows us to define

the mathematical setting for the problem. This new linear operator corresponds

to shifting the spectrum to make it positive. In this discrete setting define
A=1 + M7'A (3.5)
All that remains is to introduce notation for the non-linear term. For v € C ger
we introduce the diagonal matrix G(v) with entries v; on the diagonal. The
non-linear term is then written using
|1)0|2 0
G(|v|?) := . (3.6)

0 "U_]_1|2

where it is understood that |v|? is the element of C ger given by

T
o2 = (juol?, -+ loa-1 %)

Thus we are in a position to consider the spatial discretization. This reduces the

partial differential equation to a finite system of J ordinary differential equations.
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Semi-Discrete Problem (SD) :

Find u(t) = (uo(t),--,us-1(t))T € C ge, satisfying

sb { U = Ru— (14 iw)M ™ Au— (1 + ip)G(|ul?)u

w(0) =’ €C ], 3.7)
Equivalently we may write SD to look more like (24):
ut + (1+iv)du = F(u), u(0) = «° (3.8)
where
F(v) := Rv — (1 + ip)G(|v|?)v (3.9)

and B = (R + (1 + iv)).
Next we introduce the mathematical setting for our spatially discrete equation

and prove some discrete Sobolev inequalities. For s € IR, we define
s] := smallest integer > s , s] := greatest integer < s.

The first lemma uses the eigenvalues and eigenvectors of the finite difference

approximation to —A from, for example, Conte and de Boor (7].
Lemma 3.1 The linear operator M~1A has etgenvalues
4
A = Fsin?(immc) k=-J/2],---,0,---,J/2] (3.10)
T

and the linear operator A = | + M~'A has eigenvalues

Ae=1+A k=-J/2],---,0,---,J/2]. (3.11)

The corresponding orthonormal eigenvectors v for both M~
by

1A and A are given

Y = (l,eZwikAa:’.“,621rik(J—1)Ar) k=-J/2],---,0, e JY2). (3.12)

The operators A and (1+ iv)A are sectorial operators. This follows immedi-

ately from the finite dimensionality and the eigenvalues being bounded away from
0.
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The following lemma bounds the ratio of the continuous eigenvalues (see Lemma

2.1) to the discrete eigenvalues (Lemma 3.1).

Lemma 3.2 The ratio of discrete to continuous eigenvalues

r(k):-—)i, k:—J/2],-'-,—1,1,"',J/2J
Ag
satisfies
4
F S’I’(k) <1 k:—-J/21,,—1,1,,J/2J (3’13)

and the ratio .

F(k):—lj\i_z’ k=—J/2],,J/2J

L Rk <1 k=—J/2),-,J/2). (3.14)

2
Proof

First note that

2 gin2
%in})r(k) - m J?sin®*(kmAz) ~1

k—0 k%m?

and
. (1) _ J?sin?(n/2) _ 4

2 Jin?/4 72
Note also that
2J2r Az sin(kr Az) cos(krAz) 2J% sin?(krAz)

k22 m2k3
2J%sin?(krAz) { krAz — tan(krAz) }
T2k? ksin(kwAz)(cos(kwAz))~?

r'(k)

< 0.

Thus we have established (3.13). The bound (3.14) follows from (3.13). O

We now define discrete analogues of the complexified Sobolev spaces of section
2, [39] or [46, page 273]. First we define the discrete LP spaces : LR,. Let
u = (U, U1y .- - UJ_l)T eC ger and v = (vg, v1, .- .,’l)J_l)T eC ;er. The discrete

L% space on [0,1] is defined to be the normed linear space { ger, lelre } where

J-1 ) 1/p
_ { (S daloyp} 7 for1<p <o 5.15)

lvngz =
SUPg<j<J-1 |vj] for p = oo.
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The discrete L%, inner product is defined by
(w,v) = uITMv (3.16)

J-1
= E Azu;v;.
rd

The discrete Sobolev spaces, H3:,, are defined in an analogous manner to section
2. Consider the expansion of v = (vo,...,v5_1 )T € Lf}z as a Fourier series based
on the eigenvectors of A given in Lemma 3.1, so that

J/2]
v= > (3.17)

k=-J/2]

For s > 0, we define the discrete Sobolev space H% as the normed linear

space {(II ger, I|'o ”Hf\’z} where

_ T z
||v||HZ,z = IA ’U|L2A: = { E ,\ﬁ’laklz} . (3.18)
k=-J/2]
Note that for s = 0 we recover the L%, norm, and for s = 1 we find the space

H}, which approximates H'. We can also formulate our discrete Sobolev spaces,
HZ%., in terms of discrete approximations to the derivatives.

We define the discrete Dirichlet inner—product by

(wyv), = uTAw (3.19)
_ _JE':IAM,W—QTJ?+W—T
=0 ! Az?
J-1
= =Y Azu;8;, (3.20)
J=0

where j = 0 and j = J — 1 are dealt with by the periodicity.

The inner-product allows us to define the semi-norm ||  ||; by
[oll} = (v,0)4, = o747 >0. (3.21)

An alternative definition for the discrete H}_ space is the normed vector space
€] ||H:“}, where
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1/2
lollay, = {lolfs, +loliF} " (3.22)

The definitions of the space H}, through the operator A in (3.18) and through
discrete derivatives in (3.22) are equivalent: see for example [37]. It is a straight-
forward application of the Cauchy-Schwarz inequality to deduce the following

interpolation inequality
[0l < [ola |M 7" Aoz . (3.23)

The next few results concern the relation between the continuous spaces H 25 and
the discrete spaces H3%,. We relate the discrete space H A, and the conventional

Sobolev space H! in the theorem, following this definition.

Definition 3.1 Let VC H?! be the space of piecewise-linear functions and let

{®,} be the standard basis of “hat” functions given by

(z — zk-1)/Az  for z4—y Sz < Tk
®p(z) = (zkp1—2)/Az forzp<z<zppn k=1, -2

0 otherwise;

with

Bo(z) (z1 —z)/Az forzo <z <1y
)=
° 0 otherwise;

z—zj_9)/Az for zjo LT <2Zy-
Bra(e)) =] )/ o
0 otherwise;

and z; = jAz. Then we define the prolongation of H), into H', P, : Hy, —

VC H‘,forve(Eger by

J-1
Prv = Z v;®;. O
—

Theorem 3.1 Let VC H! be the space of piecewise-linear functions, let v € H),
and define V €V by

V .= Ppv,
where Py, is the prolongation defined in Definition 3.1. Then 3 a constant K > 1

such that
KWVl < oy, <clVi YAz > 0.




Downloaded by [University of Warwick] at 04:04 15 February 2016

1018 LORD AND STUART

Proof Note that this proof is set in dimension p = 1. ;From (2.10) we have that

1
Vg = {|V|i2 + |A(1)/2V|22}2 and let {®;} denote the standard basis for V.
Now by standard finite element analysis,

14V 3 = (43, A*V) =Tk

where K is the so called stiffness matriz given by Ki;= <A(1)/2(I>;,A(1,/2(I>j>. Eval-
uating the inner-products we find in 1 dimension that

K = A.

The proof is completed by noting another standard result (for example Hackbusch

(20, Theorem 8.8.1]) that 3 constant C' > 1 independent of Az such that
CTVIee < Pl < CV|pa.

This is proved by looking at the mass matrix. Estimates for the constant C , and

hence the constant «, may be found in [47]. O

The following definition enables us to relate the discrete spaces H2% and the

conventional Sobolev spaces H?25.

Definition 3.2 Let s > % and define Pp, : H% — H2%_ to be the operator which

evaluates the continuous function V(z) € H?® at the grid points. Thus
PaoV(z) = (V(0),V(Az),...,V((J - 1)Az))T .
Let W C H?® be a bounded set , then

Pa;W= (] Pa;W. O
weW

We now turn our attention to proving some results about the discrete spaces.

Lemma 3.3 The H}, space as defined by (3.18) is norm equivalent to the space

defined by discrete approzimations to the appropriate distributional derivatives.
Specifically we have

1 2 P e -
gUvlzs + ol + M7 Avf}, ) < [Av[Zs < 2(lvlfs_ +loll} + M A, ).

Furthermore we have the inequality
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ol + M~ Avf2y < 2{jolZ; + M7 AvlZ, ).
Proof A proof of this Lemma may be found in [37]. O

Lemma 3.4 The following two equalities hold :

) Dol = Il
i) Do} = |M~" Az, .
Proof By equation (3.20)
J-1 —_— —
2 Ujp1 — 205 + 051
v||] = Azv; .
“ “1 ];0 J A$2

Now by summation by parts and the periodic boundary conditions we see that

ID”'%{\ = ||v||> and we have proved i). To prove i) note that by (3.3) we have

that ( )
Vj41 — Uy
(Dv)j = ! Az = 405,
so that by (3.20)
J-1
IDvll} = = Y Az(64v;)6%(8477).
j=0
By summation by parts we find
J-1
[1Dvl2 = 3 Az (84 (541 — v)I*-
Jj=0

Now note
(vi42 = vi41) — (V41 — ¥5) = Vj42 — 2Vj41 ~ Vi
expand 84 (vj+1 — vj), use summation by parts and the boundary conditions to
get
2
(vi+2 = vi+1) = (Vi1 — j)
Az

| Doll?

I

J-1

Z Az

1=0
J-1

= Z Az
1=0

2
Vit2 = 20541 + Y5

Az?

By the periodicity of the boundary conditions:
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J-1
IDvlli = > Az

=0

<M"Av,M-1Av>. a)

2
Vit1 = 205 + 9 .
Az?

We now present some lemmas which are discrete versions of well known continuous

results.

Lemma 3.5 (Bounds on LY,)

The discrete space H), is embedded in the discrete space LY. independently
of Az. Precisely

i) Ioltg, <3llolzy . Voe H,.
Also, for any € > 0, we have
.. 2 1
i) [olip, <1+ )iz + €Ml Yo e H,.
Finally,
i) ol < [0y + 2ol lolh Vo€ A,

Proof
¢) It is easily verified that for any j
(vj+19541 — v;75)
Az
= 00475 + V5416405

o+ (v75) =

Summing over j from ko to k — 1 we get

k-1
|'Uk|2 - Ivk0|2 = Z Az('ujé.,_ﬁj +'17j+16+vj),
J=ko
and taking the real part yields

=

vko |2 + 3 Y Az ((v) + vi41)8475 + (75 + Vj+1)049;)
j=ko

k-1 ,

oo 2+ 3 Az ([v; + vjga| [6405]) - (3.24) |

J=ko

vk |

IN

To get the embedding we use the generalized Cauchy-Schwarz inequality

(2ab < €a?+ %b?), complete the square and use the periodic boundary conditions:



Downloaded by [University of Warwick] at 04:04 15 February 2016

APPROXIMATION TO GINZBURG-LANDAU EQUATION 1021

k-1
1 1
ol < ol g T 8% (o 4ol + el
J=kKo
122 4
< el 42 Y Ax (Sl + ol (3.25)
=0
J-1 1
< |vk°|2 +2 Z Az (-;5|va2 + €2|5+vj|2) . (3.26)
7=0

Taking € = 1 in (3.26) and applying Lemma 3.4 we find
o2 < okl +2 (fol2a+ [10lE) -
Now if we sum over ko we get:
ol < ofs +2 (ol +I0IE)-
Since this is true for any k, by (3.22)
ol < 3lleliyy

and we have proved part i) of the Lemma. Part 4i) follows from (3.25) by summing

over ko. Part 111) is found by applying Cauchy-Schwarz to (3.24) :

J-1 1/2 ¢4 4 1/2
lorl> < Jokel? +{ Y Azl + vl 3 Az |8yl
=0 1=0
< Jorl2+ {23 Az (juil? + |vjaal?) S Az 64l
=0 7=0
J-1 J-1 12 (4 1/2
< JoelP+ V23 Y Az’ + Y Azlvip? 3 Az by
j=0 j=0 j:O

Thus, using the periodic boundary conditions,
jol? = [og|? + 20lzz_llo]h-
Summing over ko and noting that the choice of k was arbitrary yields the final

inequality.O

Lemma 3.6 For1 < g < p < oo we have the following bounds on the L%, norm.
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lolzs, < 1ol7 ; (3.27)
p P—q q .
IvlL‘z‘ < Ivlszlv]LqA,’ (3.28)
lvlgs <3P 2oll3a o]y (3.29)
and finally o
p 2 p—q)/2 q
[olte < {lof2s + 2ol lloll } [olfs . (3.30)

Proof The first inequality (3.27) is found by an application of Holder’s inequality.
To find (3.28) use the definition of the L} . norm (3.15) to get:

J-1 J-1
P :ZA P02 € s -p"’EA 19 = |v|fd |v]?
IvILZz = zlo; [P v;]? < 05;‘28—1 |vj1 por z|vj] I lLfle IL"M"

hence we have (3.28). To get (3.29) we simply apply Lemma 3.5 ¢) to bound the
LZ, norm in (3.28). The final inequality is found by applying Lemma 3.5 ii7) to
bound the LY, norm in (3.28). O

We note that inequality (3.29) is a discrete version of the Gagliardo-Nirenberg

inequality in one spatial dimension.
Lemma 3.7 The L“AI norm of Dv satisfies
IDolgy < 6{lvffs +IM2Avf2; }iof?.

Proof Applying inequality (3.29) to Dv we get:

IN

lelizu 3||Dv||ilgz|D”|ig,

3{IIDol} + Dol }1Dof2, .

Combining this and Lemma 3.4 gives:
Dol < 3{l1oll2 + 1M AvfZ; o2

By Lemma 3.3 the term in brackets is norm equivalent to the natural norm on

H32_, hence
4 2 - 2
|Dolty | <6402, +IM7 Aol Yol O
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In Section 2 the concept of Gevrey class and regularity was introduced for the
continuous Ginzburg-Landau equation. Here we introduce the notion of discrete

Gevrey class and regularity.
Given a function v €C ;e, with Fourier expansion given by (3.17) we

define the discrete Gevrey class of regularity 7, Grsaz, to be the normed

linear space {T |1 llc,...n0 } Where

e J/2] _ - 2
lollg,ar = 1AeA o]y = { > A%e2f*i|ak12} (3:31)
k=—J/2]

and ) is the kt* eigenvalue of A given in Lemma 3.1. As in the continuous case
we consider s = 1/2 only and use || o ||g, 5, to denote the corresponding norm.

Our first lemma is a discrete version of the continuous result that G, C H 2s for

any s > 0.
Lemma 3.8 Letv Edfger and suppose 3 constants K and T > 0 such that
Ivll%, ., < K. (3.32)
Then, for any a > 0, there ezists a constant C = C(a,T, K) > 0 such that
ol = 14002, < C.

Proof By elementary calculus there exists a constant C: = Cy(a,7) > 0 such

that
2 < C'1:1:e2”‘1/2 Vz > 1.

We apply this to |.Zav|22 as follows
Az

o J/2] J/2| ”
o2, = S AalP< Y G ja? < C,
5 k=-uym k=-J/2]

and the lemma is proved. O

We now prove that given u € Graz, We can find a corresponding V' in a

continuous Gevrey class which equals u on the grid.
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Lemma 3.9 Suppose we are given u € ¢'ger and constants C,7 > 0 so that u

satisfies

lullg, .. < C < oo

Then there exists V € G,, o € (0,2r/r), such that

2
IVIZ, < ”Tc and Pa,V = u.
Furthermore V € H*, Ya > 0.

Proof Consider the Fourier expansion of u € L% :

J/2)

u= Z arYk

k=-J/2]

and define V(z) by
J/2 .
V(z):= E are?™ik, (3.33)
k=-J/2] :

Clearly we have that PA,V(z) = u and

1 J/2] J/2)
|V|%2 — / ( Z ake21rik:c)( Z a—ke——2m'ka:) dz
0 \k=-J/2] k=—J/2]
/2
= E lak* < oo.
k=-J/2]

So certainly V is bounded in L? independently of Az. In order to prove V is

Gevrey of regularity o consider

J/2] ~ L2, ) J/2] <~ X2, 2 Kk _2:\'1/27_4_2(;{1/2)‘7 ~ R, 2
}: Are“®c 7ag|® = Z ke Tlag|® { ==e "M k +Age“?e 7ag|”.
k=—7/2] k==J[2) k#0 Ak

Re-writing the right-hand side so we can apply Lemma 3.2 we find, using Ag = Ao
and the choice of o € (0,27/7), that

Jrer o /2 J/2| - ] . )2
Z AkezAk alak|2 — Z /\ke2)\k Tlaklz {762(_T(k) T+o)A, }
k=-J/2] k=—J/2] k#0 r(k)
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J/2) ~ 2 ~ ~

~ 1/2 T 21 1/2 ~ 1/2
< Z /\ke”‘k T|ak|2{762(—“+a)l\k }-}-/\062'\0 a|‘10|2-

k=—-J/2],k#0

2 J/2] ~

T ~ 1/2
< — ek Tag |2
< 7 > A |lak]|

k=-J/2]

By the hypothesis we have a uniform bound on the right hand side and thus

V € G,. The rest is an easy consequence of the Gevrey regularity and follows
from (2.12).0

We now consider the smoothing action of the linear semi-groups generated by A
in the semi—discrete case. We obtain discrete analogs of the well known smoothing

properties for analytic semigroups [39].
Lemma 3.10 Consider the linear homogeneous problem given by
ue = —(1 4 i) Au.

Then the linear operator —(1 + iv).;f is the infinitesimal generator of an analytic

semigroup Eaz(t) defined by

Epz(t) == e_(l+i”)gt.

Furthermore for any o, B: 0 < a < 3 there exists a constant C = C(a, )
independent of Az such that the discrete smoothing property holds, that is

||EAI(t)”|'|H§I < Ot_(ﬁ_a)ﬂ”v”yg:, Vit>0.

Proof Since (1 + w);f is a sectorial operator, it is the infinitesimal generator of
the analytic semigroup Eaz. For further details see for example [39, 24]. Let v
have Fourier expansion as in (3.17), then

J/2)

||EAr(t)””2 B = ’\fe_“ktlakp-
H
AT k=—J/2)

Elementary calculus shows that there exists C = C(a, B) such that for allt € RT,

zeRY
zﬂe—zz‘t S

th—a’

and the result follows. O
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The next lemma gives a Lipschitz inequality for the non-linear term.

Lemma 3.11

With G(-) defined in (3.6), for all u,v € L%, u € IR, we have that
Re{(1+ i) (Glul")u = G0, u = 0)} < (1462) X (lullp + 1ol ul?, .

Proof The lemma follows by writing the inner—product as a summation, taking
the real part and noting that for any a,b €C

(laf?a - 1b[2) (@ -5) + (laf?a - 16%8) (a ~ b)

= lal* - |al?a — [b[?6 + [b]* + [a|* ~ |a|*ba — 5|2aB + [b]*
lof? (Jal? - ab - b+ 1612) = [o]lof? + [b[? (jal? ~ b2 — ab + 5]2) — [6[2/a]?
(lal? +157) (la-bP). o

IN

4 The Semi-Discrete Problem

We define the ball centre 0, radius p in L3, (= HY_), H}, and G s, respectively
by

Bo(p) := {U €Ciy : lvlpz < P} ;
Bi(p) = {v €€ : Il <o},

B, (p) = {veC ), : Ivlla,a <o}

The immediate aim is to prove that the set of ordinary differential equations (3.7)
which arise from the spatial discretisation of (2.1), satisfies semi-discrete versions
of C1 - C5 stated in Theorem 2.1. These semi-discrete versions will be denoted
SD1 - SD5 and will be made precise in the statement of the Theorems. The
proof of SD2 - SD4 is adapted from the continuous analysis in [46] and the proof
of SD5 the analysis of [10]. Our aim is to ensure that the constants in SD1 -
SD5 are uniformly bounded as Az — 0.
This first lemma forms the backbone of the proof of both SD1 and SD2.

Lemma 4.1 Ifu(t) is a solution of (3.7) defined on t € [0,T) then the L norm
of u(t) satisfies
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1d
53;]’42%1 = Rlulifh = lull} - |U|2217Vt €[0,T) (4.1)

and hence

(s < [u(0)Z;_+2IRl Vte[0,T). (4.2)

Proof Take the L%, inner product of (3.7) with u to get :
du _ . -1 . 2
<-d—t-,u> = R{u,u) — (1 +w) <M Au,u> — (1 +ip) <G(|u| )u,u>.
Taking the real part, using (3.21) and noting that

J-1 J-1
(G(luPyu,u) = 3 Aslu;usw; = 3 Aalusl* = Jully ,
71=0 j=0

yields equation (4.1).

In order to get (4.2) we have three possible cases to consider: R <0, R =0, R >
0.
If R < 0 then J
2 2
Jult; < 2Rlul; .

This we can solve to find
(D)2, < [u(0)[2;_exp(2Re). (4.3)

Since R < 0 the result is trivially true.
If R = 0 then inequality (3.27) applied to (4.1) yields:

1d, , 4
s glvlig, < —lulzg

and integration gives . X

—_——— 4ttt

|u(0)|izm ‘u(t)lizm
from which we find
" |u(0) izA

2, < Bz 4.4)
lu(t)lex =1+ tlu(o)l’iz (

Since t > 0
a2y < (O

and (4.2) is satisfied.
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If R > 0 then we use that Vs € IR

%34 - 2Rs* > —2R? (4.5)

to bound the non-linear term in equation (4.1). This yields

2
2Rlulf; = 2llullf - |ulfy ~4Rlulf; +4R
= -2Rlulf; - 2llull} - |uljy +4R, (4.6)

d,
EWI[}M

and so

d
Eluliiz < _2R|"|2th + 4R%.

Now apply the standard Gronwall inequality (see for example [46, p88]) to get
Iu(t)lizA < |u(0)|23l exp(—2Rt) + 2R(1 — exp(—2Rt)) Vit > 0. (4.7)
Hence the Lemma is proved. O

We now prove SD1.

Theorem 4.1 (SD1) For each u® € L%, there ezists a unique solution u €
CY([0,T); L,) of (3.7) for all T > 0. Hence there ezists a semi-group Saz(e)e €
C (R* x L3,,L%,) defined by Sa.(t)u® = u(t).

Proof

Consider (3.7) as a set of ordinary differential equations in IR?’. Then the
right hand side of (3.7) is locally Lipschitz with constant K1, and local existence
and uniqueness is immediate from the standard theory such as in (23] .

To prove existence for any 7 > 0 we note that Lemma 4.1 gives an a priori
bound on the norm of u(t); since the problem is finite dimensional global existence

follows. Continuity in time also follows from the standard theory in [23]. O

Theorem 4.2 (SD2) There ezists a constant py = po(R) > 0, independent of
Az, such that the ball Bo(po) is absorbing and positively invariant for the semi-

group {SAx(t)}zzo-

Proof Recall (4.1) and consider the three possible cases for R: R < 0, R = 0
and R > 0.
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For R < 0 Lemma 4.1, equation (4.3), immediately yields trivial dynamics.
Thus for any ¢ > 0 we have po = €, and for B C Bo(p),p > 0, we have that
Saz(t)B C Bo(po) Vt > to where

0 p < po

For R = 0 equation (4.4) immediately gives algebraic decay to zero. For any
¢ > 0 we have po = ¢ for any € > 0 and for B C Bo(p),p > 0, we have that
Saz(t)B C Bo(po) Vt > to where

1 _ 1
to = 2T P>Po.
0 P < po

For R > 0 note that (4.7) gives
lim sup [u()] 3 <
t—o00 Az

where p’ := V2R.

Therefore the ball Bo(po), po > p' is positively invariant and is absorbing for
the semi-group Saz(t). Thus for B C Bo(p),p > 0, we have that Saz(t)B C
Bo(po) Vt > to. For p < po, we have to = 0, whereas for p > po we find that to is

1 p?
to=—1 —_— ).
0 2R Og{pg_pm}

Hence the theorem is proved. O

given by

For to given in Theorem 4.2 we can integrate (4.6) between t and t + 7 for

t > to to get
trd 2 e 2 4 2 2
[ duony < - [ ORI +lulfy, 2 - 4R%) 4
which becomes using the uniform bound on the L%, norm from Theorem 4.2

t+r
/t {2R|u|iz: + 2|jull? + '"'13,} dt < p 4+ 4R%r, Vt > t,. (4.8)

This will be of use when applying the uniform Gronwall lemma to prove the

existence of an absorbing set in H},.
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We recall that since we are in finite dimensions, the existence of the L3
absorbing set immediately yields the existence of a global attractor and, by inverse
inequalities, the existence of absorbing sets in H)_. However since we wish to
prove convergence of the global attractors as Az — 0 we seek bounds in H},
which hold uniformly as Az — 0.

Since for R < 0 both the continuous equation and the semi-discrete system
have trivial dynamics it is assumed for the remainder of this section that R is

strictly positive.

Theorem 4.3 (SD3) There exists a constant p; = p1(R) > 0, independent of
Az, such that the ball By(p1) is absorbing and positively invariant for the semi-
group {Saz(t)}>o.

Proof To show there exists an absorbing set in the discrete H}, norm, we seek
a bound on the H}, semi-norm || - ||; independent of the spatial mesh size Az.
Taking the discrete Dirichlet inner—product (defined in (3.20)) of (3.7) with u and
taking the real part we get

1d _ ) J-1
5 ggllull = Rilull? = 1M~ Aul?, 4 Re{(1+w)2 Az |uj|2uj62m-}-

=0

Now use summation by parts and the boundary conditions to obtain

a2 2 af-1 412
sl = Rl - 1M Aui2,

J-1
Uirl — W
- Re{(l-}-zu Z Az (u1+1|u1+1| = u5{uj )_J-'H*J}

7=0
= Rllull} - (M7 4w,

J-1
Ujy1 u Uj41 — U,
1 A 7+ ) 2 I+ J
{( +in) ) o (B g 4 fu? )

2 2 i1 — Uy
+ (lejea*uy = wjp]uyl )T )}
Rllu|l? - IM-IAUII{L

J-1
- Re{(1+iu)z Aa:(

J=0

—_—— =\ 2
Uy — Uy
+ ui+1“j(J+—Alx2_J) )} : (4.9)

IN

, 2
Uj+1 — U5
Az

|wj1]® + Juy?)
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Completing the square on the last term gives

L

2dt
< R M4 14 p?)t/? Lt
< Rljullf - 1M Auffy + (1445 120 Az |~
- 12
1 1/2 Az l“a+1| +l“1| i1 — U
+(1+47) }: 5 =

7=0

‘ 12
Uj+1 — Uy

IN

- 3 J-1
R|jull} - 1M IA“IZLL + 5(1 + 22y Az
j=0

Now apply Schwarz’s inequality on the last term and use the periodicity to get
2 -1 4,12 241/2y, (2 2
5 dtuunl < Rljul - M7 Aully +3(1+p)Plully 1Dulg, - (410)
At this point we call upon Lemma 3.7 which bounds the L% norm of Du so

that (4.10) becomes
5 dtn o < Rlul} - M7 Aulzy
_ 1/2
+3VB(L+ 22 uly [l {Jully + 1M Auly }41D)
Complete the square on the last term to find that
4l < RI-1M Auly + 52kl Il (i + 17wty s
2dt 1 2, T Grp ity ity UHLE, 7

and hence p
L ull? < (2R +54(1 + )ulfy DIl + luff - (4.12)

All that remains is to apply the uniform Gronwall Lemma (46, p89] with
y=llully o= 2R+540+ w)lully . h=luly ;
and use the integral bound (4.8) to find the constants ay, a2 and a3

9Rr + 54(1 + p?) {pg + 4R2r} ,

ay =
a = p%a
1
as = §(p3+4R2’I‘)
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Therefore

[OI < (2 + a2 ) explan) Ve 2 to 47 (4.13)

where r is an arbitrary positive number and ¢, is as in Theorem 4.2. Thus we

obtain absorbing balls, B1(p;), of radius p; satisfying
a,
P> ph+ (73 + az) exp(az)

and for B C By(p),p > p1, we have that Saz(t)B C Bi(p1) Vt > t;, where
t1 > to + . a

We now state the theorem on the existence of a a global attractor for (3.7).

Theorem 4.4 (SD4) The semi-group Sa,(t) for equation (2.1) possesses a global
attractor Ap, given by

Aaz = w(Bi(p1))

and hence is bounded in H)_, independently of Az.

Proof Theorems 4.1 and 4.3 give us all we require by applying [46, Theorem 1.1,
p.23]. O

Now that we have uniform estimates for the L%, and H . norms of solutions
u(t) for t > ¢y, we can apply Lemma 3.5 to obtain LY, bounds independent of
Az on u(t) inside the H}_ absorbing set (i.e. for all ¢ > t1). Furthermore it
should be noted that we have established in Theorems 4.2-4.4 the existence of
L%, absorbing balls, H _ absorbing balls and a global attractor without imposing
a restriction on the spatial mesh size Az.

The proof presented above of Theorem 4.3 is adapted from the continuous
analysis in [46]. However in one spatial dimension there are alternative methods
for establishing an absorbing ball in H!. In particular the analysis in [11] treats
the non-linear term in a more delicate fashion to obtain bounds dependent on the

parameters. A discrete version of their argument may be found in (37).

5 Discrete Gevrey Class

In Section 2 the concept of Gevrey class and regularity was introduced and we

stated that solutions to the complex Ginzburg-Landau equation were of a Gevrey
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class - see Theorem 2.1. We prove in SD5 below that solutions to the semi-
discrete system (3.7) are in a discrete class of regularity. In addition to being
an interesting result itself, the extra regularity will be exploited to simplify the
proofs concerning attractors in Section 6. To simplify forthcoming expressions we

employ the following notation:

> = > (5.1)

k&m k,t,me[-J[21,7/2])
k—t4+m—nJ=pn€N

Thus Y} ¢, means the sum over all k, £, m in the appropriate interval [-J/2,J/2]
such that kK — £ + m = p + nJ for any integer 7.

We now prove that solutions to the semi-discrete problem SD (namely equa-
tion (3.7)) lie in a discrete Gevrey class. In the following ¢; and p; are given in

Theorem 4.3 and its proof.
Theorem 5.1 (SD5 Gevrey Regularity)

i) Consider equation (3.7) with initial condition u(0) = u® € By(p). Then there
ezists T = T(p) and p’ = \/2(1 + p?) such that

w(t) € B (), ¥t € (0,T]

ii) Consider (3.7) with u(0) = u® € By(p). Then there ezists T = 7(p1) > 0 and
ty = ta(t1,p1) > 0 such that

u(t) € Bg,(p2), Vit2>tg,

where ps = /2(1 + p?).

Proof The method of proof is adapted from the analysis in the continuous case
employed by Doelman and Titi [10] for (2.1) and Duan et al [13] for the generalized
complex Ginzburg-Landau equation.

Let u(t) be given by the Fourier series

J/2)

u(t)= Y. a(t)dr

k=-—J/2]

and define v(t) by
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t/Iln i o3
v(t) = u(t) = Z ek ap(t)y . (5.2)

k=-J/2]’

The eigenvectors 1, and eigenvalues A used here are defined in Lemma, 3.1. We

wish to find a bound for I.Zfl/zvl 13- Now differentiate v(t) with respect to t and
substitute in for u, from (3.8) to get

J/2| J/2]
v = Z /\1/2 ’\k tak(t)¢k + Z ak(t)e’\ t¢k
k=~J/2] k=-J/2]
~1/2
= A2 v(t) + etA

~1/2
e A’v(t) +et4 {Ru -(1+4iw)Au—(1+ z,u,)G(|u| )u}

= Aro(t)+ Bo— (14 iv)dv— (1+ m)efA G(|u/)u. (5.3)

Take the L%, inner-product of (5.3) with Av and then take the real part :
Az
~1 ~ 1 ~
2dt|A2vlL2 < Re{<A2v,Av>} IR o, -~ 1Avf2,
~1/2
—Re{(1+w)< AT G(luP), Av>}

Apply the generalised Ca.uchy—Schwa.rz inequality to get for all € > 0,

1d €, ~ ~
aa v, < OB+ DI, + SIEf, — 1,

~1/2
—-Re{(l +i,u)< AT G (luf?yu, Av>} (5.4)

Now consider the non-linear term separately, and start by noting that

J/2) o J/2] o J/2| .
{G(|u|2)u}. — { Z akekaJAx}{ Z a—te—21rt£JA:c}{ Z ame’.’mmJA:c}
’ k==J/2] t=-J/2] m=—J/2]
J/2] ' o
p=-J/2] kdm r
Thus,
~1/2 J/2] ’ 1/
tA G(lu | Z Z akalame Ap Py,

p=-J/2] ktm

~1/2 |
We let b, denote the p** Fourier coefficient for et4 G(|ul*)u, so that ‘
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A e e
by = (e G(luPu,p) = D axrame’? (5.5)

k,l,m

Recall from (3.11) that the eigenvalue X,, =14 A,, where

Ap

\—52; sin(prAz)

2
Az sin((k — £+ m — nJ)rAz)|, n€N.

Thus, by the trigonometric identity for sin(a + b), we have

2 2 2
l 2. 2 . 2
b¥ Az |sin(kwAz)| + Az |sin(¢r Az)| + Az |sin(mmAz)|

IN

1 1 1
= AN HA+ A
Therefore, for every k, ¢, m such that k —{+m =p+ nJ, we have

~1
+ Al

Dol
-
[ INIT

22 <X+
and from (5.5)
«— il 3 i
lbpl < D € Jak| € |ar] €™ |am].

k,tm
Now define v by
Jnrp L
=y e |ak| ¥k, (5.6)
k=—J/2]
then
~1 ~1 -~ ~
WILL = |U|L§\‘z §|sz|L§h = |A® ”lL?M ; |A”|L§u = |A'U|L"’AI' (5.7)

Furthermore, the Fourier coefficient of G(|3|?)3, ¢p, (P = -J/2],---J/2]),is given
by
Lol 53 v
&= 2 e faxl e acl e fan].
k,£,m

Hence
|bp] < cp. (5.8)

Recalling that (vp, ¥g) = 6pq and using (5.8) we find that

~1/2 _
—Re {(1 + 1) <e‘A G(|u|2)u,Av>}
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J/2) J/2) ~4
= -Re {(1+ip)< Yoo by, > Age qaq1,b>}
p==J/2] q=-J/2]
J/2] i
= {(1+z,u) Z bpap peP }
p=-J/2]
/L) = g
< (1+u?)2 Z [bp|lap| Apetre
p=-J/2]
1 772 ~ ,T1/2
< (L4422 Z cplap|Apete
p=-J/2]
J/2) J/2) <4
= (1+;ﬂ>%< Do Gr, D e qlaq|¢>
p=-J/2] g=-J/2]
= (1417 (G(1o1)3, 4b) (5.9)

If we expand the inner-product in (5.9) and then apply Cauchy-Schwarz we find

~1/2
—Re {(1+2’u)< tA G(|u)?)u, Av>}

J-1
(1+4%)2 Y Acfsf? [7; + 67|
7=0

J-1 V2 (54 12
{ZAz‘[f)ﬂG} {Z Az‘vj-f-é vjl }
7=0

1=0

IN

(S0

< (1+4%

PPN TA
< 1+l |40l (5.10)

By the discrete Gagliardo-Nirenberg inequality (3.29) with p = 6, qg=2,

IN

B, < 3RS Bl

~1/2
3|5 14 / o7 (5.11)

since (5.7) holds. So, after applying the generalized Cauchy—-Schwarz inequality
we may re-write (5.10) as

—Re {(1 +ip) <e“ﬁ G(|u|2)u,zv>}

1/2 € ~
< (1+u2)‘/2{ lvl72 IA/v|4LzAz+9§|Av|iiz}. (5.12)
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Finally we return to the full equation (5.4), and substitute in (5.12) to get :

sl € ORI+ IR, + (G - DIl
b ity 1Al + 0510l |
< (|E|+2—1€-)Ig%vlizx+(1+#)l/2 1A 1/'2 L2
+ (%(1 +9(1+ p?)V?) - 1) 'Z"'?Lz,; -

. . ~1/2
where for the final inequality we have used that MLZ\ <A / v|LzA . We now

make our choice of € to dispose of the |/Iv|22 term :
Az

«—2
14 9(1 + p2)3

Thus, there exist K, K; depending only on R,v and g such that

i,
(IRI+ )IA2v|L2 +(1+#)”2 -4 L:

IN

R 2
2dtl ‘L’

I(1LA2 U‘foz + I{2|A2’UIL2A:. (514)

Let Y(t) =1+ \A2v(t)|L2 and let Y° = Y(0). Then we can re-write (5.14)

as J
—Y < KY3 5.15
~Y < KY (5.15)
with
= K(R,v,pu) = —K1 + 2K,.
Thus o ‘ .
Y(t) < —m/————=, f 0<t< =" 5.16
O F=mop 7 =T 2K(Y0) (5-16)
Defining T'(p) by 3
—_— 5.17
T(0) = SR T 7P (5.17)

and noting that T'(p) < W(_IWT‘” we find from (5.16) that

O, € e
Geas =\ /T-3[4

= 2(1+p%). (5.18)

Hence part i) is proved with p' := \/2(1 + p?), since YO =1+p2%
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To prove (ii), let ¢; and p; be as in Theorem 4.3 so that for ug € Bi(p), u(t) €
Bi(p1), Vt > t;. We let T = T(p;) be defined by (5.17). Then application of (i)
on the overlapping intervals [ty + kT, t1+ (k+1)T), [t + (k+ 3)T, t1+ (k+ 3)T] for

each non-negative integer k gives the required result with 7 = T/2, t, =, + %T
and p2 = 1/2(1 + p}). O

The previous theorem states that given any initial data u® € B;(p) we have
a Gevrey ball Bg, (p;) which is absorbing. Since the global attractor of a finite
dimensional system is the w-limit set of any absorbing set this leads us to the

following corollary.

Corollary 5.1 Let T and p; be as in Theorem 5.1 part i) so that py is indepen-
dent of Az. Then the global attractor Aa, of Theorem 4.4 is given by

Aaz = w(Bg,(p2))- (5.19)

6 Upper-semicontinuity of Attractors

In this section we prove upper-semicontinuity of the approximate global attractor
Aaz (Whose existence and properties are established in Theorem 4.4 and Corollary
5.1) to the continuous global attractor .A. We examine upper-semicontinuity using
the notion of semi-distance defined in Definition 2.1.

In the proof there are two different limiting processes to consider: the limit
as Az — 0 and the limit as ¢ — oo. Standard error estimates alone are not

enough to prove a convergence result because they are of the form
”utrue - unumerical” < ClepeczT Vie (OvT]’ (6~1)

and give no time asymptotic information. In essence we prove the result over any
finite time interval by applying the standard type of estimate and use induction
to extend to the infinite time interval. It is the attracting property which allows
us to perform the induction step. This basic method of proof was introduced by
Hale, Lin and Raugel [21].

However, for many evolution problems which are second order in space, A and
Aaz are constructed as the w-limit set of balls in H'(9); hence error estimate are

required for initial data in that space — see Larsson (36] and Elliott and Larsson



Downloaded by [University of Warwick] at 04:04 15 February 2016

APPROXIMATION TO GINZBURG-LANDAU EQUATION 1039

[15) for examples in the context of finite element methods and [21] for other
applications. However such error estimates can be complicated to derive for finite
difference schemes. In this section we employ the discrete regularity established
in section 5 to prove convergence of the attractor only using error estimates for
smooth initial data.

Yin Yan [49] proves upper-semicontinuity of the global attractors for finite
difference approximations to the Navier-Stokes equations. As far as we are aware
this is the only other upper—semicontinuity result for finite difference approxima-
tions to partial differential equations. The result in [49] is proved by a piecewise
linear interpolation at the grid points to set the analysis in the continuous space
L?; non—smooth data error estimates are then derived.

The following theorem bounds the error in the H}, norm between continuous

and discrete trajectories starting inside a Gevrey ball.

Theorem 6.1 Assume that 3 7,p > 0 such that v’ € Bg,(p) C Graz and that
VO ¢ Bg, (np[2) C Gyy0 € (0,27/7), is given by Lemma 3.9 so that PaVO0 = u.
Then, for any T >0, 3C = C(T,7)>0 such that

1Saz(8)e® — PasSAVO||gy, < CAz* ¥V te[0,T] (6.2)

where Sag is the semi-group of Theorem 4.1 for the semi—discrete problem (3.7)

and §(t) is the semi-group of C1 Theorem 2.1 for the continuous problem (2.1).

Proof Using the Gevrey class of our initial data, we follow a standard smooth
error analysis proof. The evolution Sag(t)u® = u(t) satisfies the semi-discrete
equation (3.8) and v(t) := PazS(t)Vo satisfies :

dv

5:-u+wﬂmo+num+mﬂ (6.3)

where 7(t) is the truncation error.

Since V(0) = V° is in a Gevrey class G, by (2.12) we have that V(t) €
H* VY t>0andV a > 0. For any interval I in one space dimension (p = 1),
C4(I) D H5(I) (see for example [31] or (39]) and hence we have the required

regularity to apply Taylor’s theorem and the mean value theorem to estimate the

truncation error 7(t) by
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Az? [8%V 0tV 0tV
n(t) =

12 oz4 '90 ] 94 |91+AI [ W ’01_1+(J—1)Az:)
where 6; € (0,Az), Az < 1 and for any g € C([0,1],R), g|o = f(6). Therefore,
n(®)zs < Co(T)AZ? Vi€ (0,T). (6.4)

Now let the error e(t) := v(t) — u(t). Then e(t) satisfies :-
de N
i =(1+iv)Ae+ F(v) — F(u) + n(t). (6.5)

Let Eag(t) denote the linear semi-group generated by (1 + w)A. Then, by
Duhamel’s principle, equation (6.5) becomes

e(t) = EAr(t)e(0)+/0t Eax(t— s) (F(v(s)) - F(u(s)))ds+/0t Eas(t = s)n(t) ds.

(6.6)
Taking the H}, norm of (6.6), using the smoothing property of the linear semi—
group E(t) (see Lemma 3.10) and that e(0) = 0 we get

t _1 t -1
le®lly, < [ C(t =) FIP(0(s) = Flu(o))lys_ds + JAEDRITCE
(6.7)
By the regularity of the initial data, both u(t) and v(t) liein H}, forallt > 0

and hence, by Lemma 3.5, we have uniform bounds on the LY. norms of these
quantities. Thus, by Lemma 3.11 we find

) = Folzg, < (1BI+0+u2u)lg, + lo(lEg) lu(t) = v(8) 25
< CDllu=vllzy , Yte(o,T), (6.8)

Therefore (6.7) becomes

IN

t t
le®liy, < Cr [ (¢ o) Hle(s)lly ds + Conra? [t 9)tas

IN

t
Cl/ (t = 5) Hle(s)l1_ds + CoAz?el/2, (6.9)
0 x

By an application of the version of Gronwall’s lemma in (24, Lemmas 6.3 and 7.1]
we obtain

le@llay, < C(T)AL? Vte(0,T]. o (6.10)
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We are now in a position to prove our main theorem of this section on the upper-

semicontinuity of the attractors.

Theorem 6.2 (Upper—Semicontinuity) Let A denote the global attractor for
the semi—group S(t) and Aa, denote the global attractor for the semi-group S az(t)
with 0 < Az < 1. Then

diStHlAz(AAz‘v PpzA) —0as Az — 0. (6.11)

Proof Recall the result of Corollary 5.1, namely there exists p; independent of
Az and 7 > 0 such that

Aaz = w(Ba,(p2)) = [ Uiss Saz(t)Ba. (p2)- (6.12)

520

Thus it is sufficient to prove that Ve > 0, 3 Azg, T™ such that V Az < Az,
SAz(t)BG,(pz) € N(PA;,;.A,C) Vit>T". (6.13)
If we can prove that (6.13) holds, then by (6.12) we have that

Aaz € N(PAI.A,G) (6.14)

and the theorem is proved.

We now proceed to prove (6.13) by induction. Let € > 0 be given.
Note that by Lemma 3.9 for every u® € Bg,(p2) C Grac there exists o >
0 and V° € Bg, C G, such that Pa,V° = «°. By the attracting property of A,

Theorem 4.4, 3 T = T(¢,p2) > 0 such that

disty: (S(£)V(0),4) < 5—; Vi>T

where & is the constant from Theorem 3.1 on norm equivalence. Then by Theorem

3.1 we have that

distyy_(PazS(H)V(0), PazA) < % Vi>T. (6.15)
Furthermore, by the error estimate of Theorem 6.1, for all u° € Bg,(p2) C Graz

€

1Sax(t)u(0) = PasS(OVO)lluy, < 50 Yt €(0,2T]  (6.16)

provided Az? < Azd = W%TS
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Combining the two properties (6.15) and (6.16) we get that Yu® € Bg, (p2),

disty1 (Saz(t)u, PagA)
HA:
. 0
Jnf 15a:(t)w” ~ PasUlly,

< inf [[PazS()VO = PacUllgn + [|Saz(t)u® — PazS(t)VO||
UEA Az Az

= distyy (PasS(t)V°, PazA) + [|Saz(t)u’ — PagsS(t)VO HY,

< €/2+¢/2 vVt € [T, 2T).

and so
u(t) € N (A,e) VitelT,2T).

To complete the inductive step note that

SAx(t)BGf(pQ) C BGr(ﬂ?)’ Vi >0 (617)

and so in particular Sa,(T)Bg, (p2) C Ba, (p2)-
Thus the above argument may be repeated for ¢t € (2T, 3T, yielding Yu® €
B, (p2)
u(t) € N(A,¢€) Vt € [T, 3T).

By property (6.17) we may repeat the argument again for the intervals (3T, 4T]
[4T,5T]--- . Hence (6.13) holds by induction and the theorem is proved.O

’

7 Conclusion

In summary we have shown the existence of a semi-discrete global attractor Aa,
(Theorem 4.3) and proved convergence in the sense of upper—semicontinuity to
the true global attractor A (Theorem 6.2). This result is obtained by using the
Gevrey regularity of the true solution and proving a discrete Gevrey regularity
result for the semi-discrete approximation (Theorem 5.1). The approaches used
in this paper should be applicable to other dissipative partial differential equations
with solutions of Gevery class.

Note that a further discretization in time is required to obtain a numerical
scheme which can be implemented on a computer. The existence of a global
attractor in these cases is considered in [37] for the complex Ginzburg-Landau

equation. The results here and the results in [37], combined with the results of
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either [28] or [25] to incorporate the effect of time-discretization, yield under-
standing about the manner in which long-time finite difference simulations of the

complex Ginzburg-Landau equation should be interpreted.
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