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The existence of solutions of a two-point free-boundary problem arising from the
theory of travelling combustion waves in a porous medium is examined. The
problem comprises a third-order nonlinear ordinary differential equation posed
on an unknown interval of finite length; four boundary conditions are given, two
at either end of the interval. The equations possess a trivial solution for all values
of the bifurcation parameter A. A shooting technique is employed to prove die
existence of a nontrivial solution for 0 < A < Ac and nonexistence theorems are
proved for A $ (0, Ac).

1. Introduction

IN this paper we examine a two-point free-boundary problem (FBP) arising in the
study of travelling combustion waves in a porous medium. The equations are
derived in Section 5 of [2] and discussed further in [3]. They represent the
leading-order nonlinear eigenvalue problem found in a series expansion of the
equations governing the existence of steadily propagating combustion waves for
small driving velocities. We describe the derivation of the equations at the end of
this section.

The equations possess a single trivial solution, and the objective of this paper is
to establish the existence of at least one nontrivial solution of the problem within
a certain parameter regime. We employ a shooting technique and establish the
existence of an odd number (greater than or equal to one) of nontrivial solutions
in the required parameter range. Outside this range we prove that nontrivial
solutions do not exist.

In Section 2 we define the free-boundary problem and in Section 3 we
re-formulate it as a shooting problem. Section 4 contains nonexistence results for
certain ranges of values of the distinguished parameter. In Section 5 we establish
some preliminary results on the behaviour of solutions of the initial-value
problem that defines the shooting problem and finally, in Section 6, we prove the
existence theorem.

We briefly describe the origin of the free-boundary problem and its physical
interpretation. When seeking planar travelling-wave solutions in the model for
porous medium combustion described in [2], the following fourth-order ordinary
differential equation is derived; we denote by P C the space of functions that are
piecewise C on the whole real line, and employ the notation ' = d/dx. The
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2 4 A. M. STUART

problem may be stated as:

find (U, W, Q, c) e PC2 x PC3 x PC1 x R satisfying

ir + QU' + W-U + r = 0, nW' = U-W, Q' = kr,

W h e r e r (l.i)

together with the boundary conditions

lim U(±x) = lim W(-x) = ua < 77, lim Q(x) = c. (1.2)

Here, H(») is the Heaviside unit step function and the function f(W) e
C^t/ajoo). Solutions of the problem form a heteroclinic orbit in the four-
dimensional phase space of the problem.

The variable U(x) represents the temperature of the solid phase while W(x)
represents the temperature of the gaseous phase. The eigenvalue c, which
appears only in the boundary condition (1.2), is the speed of propagation of the
combustion wave. Q(x) represents the product of the wave speed c and the
(variable) heat capacity of the solid medium; the heat capacity is a linear function
of the concentration of combustible solid and so determination of Q(x) and c
determines the profile of the solid reactant. Equation (1.1) defines the reaction
rate r. The function f(W) has been shown experimentally to be of the form
f(W) = W2. The distinguished parameters are \i and A which represent, respec-
tively, the scaled inlet gas velocity (which drives the combustion process) and a
linear function of the specific heat of the reactant.

For r = 0 the governing ordinary differential equations are linear and explicitly
solvable. Thus, by integrating the equations in the regions where r = 0, and by
imposing suitable continuity conditions on the components of the solution, a
free-boundary problem may be derived [2]. The unknown interval on which the
free-boundary problem is posed determines the extent in x-space in which the
exothermic chemical reaction occurs (r # 0).

We examine solutions of the free-boundary problem in the limit as n~*0.
Numerical studies [2] indicate that, for \i < 1, a nontrivial travelling-wave solution
exists for all A e (0, Ac), where Ac = (r\ - uo)~\ In order to go some way towards
verifying this numerical observation, we prove the result for \i «1. We define L
to be the greatest number such that r # 0 for xe(0,L). Then, as /z-*0, a
dimensional analysis shows that

U~Uo, W~W0, Q~ii*Qo, L~n^Lo, (1.3)

where the subscript zero denotes an order-one quantity (with respect to /i). Thus,
the free-boundary problem considered in the remainder of this paper is the
leading-order problem for Uo, Wo, Qo, and LQ. For notational convenience the
subscripts zero are dropped henceforth. Note that Wo= Uo so that Wo does not
appear explicitly.

2. The governing equations

As in Section 1, we employ the notation ' «=d/dx. The free-boundary problem
may be stated as follows:
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EXISTENCE OF SOLUTIONS OF A FREE-BOUNDARY PROBLEM 25

find (Q, U, L) e C^O, L) x C^O, L ) x R + , where

Q' = Xf(U), (2.1)

ir + QU'+f(U) = 0, (2.2)

subject to the boundary conditions

0, U'(0) = 0, U(L) = r,, kcU'(L) + Q(L) = 0. (2.3)

In addition, we seek solutions satisfying U(x) — TJSBO for x e [ 0 , L ] . This
condition is a consequence of the form of the reaction rate (1.1) in the original
problem. The parameter Ac may be any real, while r/ e R+. In general, we shall
consider/(i/) to be a strictly positive C^TJ , °o) function with strictly positive first
derivative. In the proof of Lemmas 5.3-5.5, where more specific properties of the
function are required, we will take f(U) = U2, since this case arises in the
practical application of porous medium combustion [2].

3. Formulation as a shooting problem

We may reformulate the free-boundary problem defined by (2.1)-(2.3) as a
shooting problem, namely to locate the zeros of the parameter-dependent
functional G(£), where

Here, U(x; £) and Q(x; If) are the solutions of equations (2.1)-(2.2) subject to
the initial conditions

) = 0. (3.2)

is denned to be the first zero of U(L; £) — T/, SO that

U(L;Z) = r,. (3.3)

Since we are interested in solutions for which U(x) - T) 2= 0 for all x e [0, L], we
require that £ SB T/.

NOTES (i) The shooting problem defined by (3.1) possesses a trivial solution
£ = fj. This corresponds to the trivial solution of equations (2.1)-(2.3), given by

(2 = 0, U**ri, L = 0. (3.4)

(ii) It is proved in [2] that a branch of nontrivial solutions of the free-boundary
problem bifurcates subcritically from the trivial solution at A = Ac. In Theorem
6.1, we extend this result to a global existence theorem for 0 < A < Ac.

(iii) Henceforth, for ease of notation, we will denote the functions U(x; §) and

In order that the functional defined by equation (3.1) is well defined, it is
necessary that equation (3.3) determines a finite value of L for each finite % s* r\.
This result is now proved as a corollary of the following lemma..

LEMMA 3.1 For § > U(x) 2» T], the function U(x) is strictly monotone decreasing.
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26 A. M. STUART

Proof. From (2.2) it is clear that, at any point where U' = 0, we have
U"=-f(U). Since /((/) is strictly positive for U^t], we deduce that U cannot
attain a minimum for U^r), nor can it tend to a limiting value U(°°) 2* rj. Thus,
since i/ ' (0)=0 (by (2.3)), £/ is a strictly monotone decreasing function for

COROLLARY 3.2 For each finite ^>TJ, there exists a value x = L such that the
condition (3.3) is satisfied.

Proof. The result of Lemma 3.1 implies that U(x) must reach rj at a finite value
of x, since U(x) cannot oscillate above rj, blow up, or tend to a finite limit >r/.
Consequently, L is well defined for all § 5* 77. •

4. Nonexistence theorems

In this section, we prove that solutions of the shooting problem defined by (3.1)
cannot exist outside a certain parameter range of A.

THEOREM 4.1 Nontrivial solutions of the shooting problem defined by (3.1) do
not exist for A =s 0 and for A > Ac.

Proof. (A=sO) Since /([ /) is positive for i/s* 77, we deduce from (2.2)-(2.3) that
Q(x)^0 for 0a£x=£L. Also, by Lemma 3.1, we know that U'(x)<0 for
0 < x « L . Thus G(§)<0.

(A=5AC) Combining equations (2.1)-(2.2) to eliminate /(£/) and integrating
with respect to x gives us

Q(L) + W\L) = - \ XQU'dx.
Jo

But, since U'(x)<0 for 0<x<L (by Lemma 3.1), and Q(x)>0 for 0<x<L,
we have

= j2(L) + Act/'(L) 5* G(^) + AC/'(L) > 0.

Thus (3.1) cannot be satisfied and the proof is complete. D

5. Preliminary results

In this section, we prove various results needed to prove the existence theorem
in Section 6. Lemmas 5.1 and 5.2 apply to the general function /((/)• The
remaining lemmas in the section, however, apply to the specific case /(£/) = U2.

LEMMA 5.1
lim G5(?) = sgn (A - Ac)oo.

6

Proof. By differentiating equation (3.1) with respect to | , we obtain

[ACCT(L) + Q'(L)]L,. (5.1)
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EXISTENCE OF SOLUTIONS OF A FREE-BOUNDARY PROBLEM 27

Here U^ and Q5 satisfy the initial-value problem

Q's = Vu(u)Us, irs + Qsu' + QU'S+A,(t/)t/£ = o,

subject to

G{(0) = 0, U£0) = 0, t/6(0) = l. (5.2)

Differentiating the expression (3.3) with respect to £ we obtain the following
expression to determine L£:

US(L) = O. (5.3)

Using (2.2) and (5.3) to eliminate U"(L) and L£, respectively, from (5.1), we
obtain

G£(£) = KU&L) + Qz(L) + kcQ(L)Us(L) - (A - K)f(U(L))Us(L)/U'(L).
(5.4)

However, as %—>ri, the solution of the initial-value problem defining (3.1)
approaches the trivial solution defined by (3.4). Thus (5.4) yields

lim G^) = XcU'i(0) + Qd0) + KQ(0)U,(0)- Urn (A

Applying the initial conditions (3.2) and (5.2) and noting that

lim U\L)= lim [/'(£) = 0_

(since U'(L) is necessarily negative by Lemma 3.1), we obtain

lim Ge(§) = sgn (A - Ac)oo. •
e

LEMMA 5.2 For A >0, there exists at most one point x =s in the interval (0 , L] at
which U"(s) = 0.

Proof. Differentiate equation (2.2) with respect to x and eliminate Q'(x)by using
equation (2.1). This yields

IT + A/(f/)(/' + QIT +fu(U)U' = 0.

Since /((/) and fv{U) are both strictly positive and U'(x) < 0 for r\ =s U =£ °°, we
deduce that at any point where If = 0 we have IT" > 0. Thus £/" can equal zero at
most once in (0, L]. D

LEMMA 5.3 For A>0 and f(U) = U2, the solution of the initial-value problem
defined by equations (2.1)-(2.2) and (3.2) satisfies

(-X/2A*), Q > *A^2[1

for 0 « X « J , where s is as defined in Lemma 5.2. If such an s does not exist then
we replace s by L.
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2 8 A. M. STUART

Proof. Eliminating/(t/) between equations (2.1) and (2.2) and integrating yields

U'(x) + Q{x)IX + £(G£/')O0 d> = 0. (5.5)

Eliminating Q(x) from (2.2) by using (5.5) gives us

IT - kU'2 + U2 = k([(QU')(y) dy)u'.

Since Q(x) s» 0, U'(x)« 0, and LT(x) * 0 for 0 *s x =s s, we deduce that

W'^U2 for
Thus

£/'/£/2=-1/A*. (5.6)

Integrating this differential inequality and applying the initial condition (3.2) on
U(0), we obtain

£/(*)»§ exp (-x/A*). (5.7)

Applying this inequality to equation (2.1) gives us

G t o * *A*|2[1 - exp (-2x/A*)]. (5.8)

This completes the proof. D

LEMMA 5.4 For A > 0 and f{U) = f/2, the point s defined in Lemma 5.2 satisfies
1 for £>2A"1. (5.9)

Proof. The point s is defined by CT(s) = 0. Since U{x) =s £ for * SB 0, equations
(2.1) and (5.6) give us Q(x) <s A|2x and U'{x) 3= -^/A1 for 0 =ex «5. Substituting
these inequalities and the bound (5.7) into (2.2) we deduce that, for 0<sx « s ,

= (QU')(x) + V\x) > - k^x + ? exp (-2JC/A*).

This gives s exp (2s/A*) > 1/?A .̂ Hence s z»sl, where

= Sl exp (2j!/Al) - 1/|A* = 0,

since F(«) is a monotonically increasing function of its argument. Also F(0) < 0
and F(1/£A*) >0. Thus, by continuity,

By choosing § > 2A"1 we obtain isJX^ < 1. Thus, by inequality (4.2.31) in [1], we
have

0 = F(st) *SlQ. - I

Solving this inequality yields

since

 at U
niversity of W

arw
ick on February 8, 2016

http://im
am

at.oxfordjournals.org/
D

ow
nloaded from

 

http://imamat.oxfordjournals.org/


EXISTENCE OF SOLUTIONS OF A FREE-BOUNDARY PROBLEM 29

LEMMA 5.5 For A > 0 and/(£/) = U2, we have

lim L(§) = oo.
{-MO

Proof. By virtue of Lemma 5.4 we need only consider the following three cases:
(i) l/2t-tf<s<a, where a is bounded above independently of §;
(ii) s-K»as f->°°or^s<L:I/"(s) = 0;
(iii) s oscillates unboundedly as §-»« but contains neighbourhoods in which it

is bounded.

CASE (i) Consider § > 2A"1. At x = 5 we have lf(s) = 0. Thus, equation (2.2)
implies that

t/'(*) = -U\s)IQ{s) > -2/A*[l - exp (-2s/A*)]

since U(x)^% for x^O and since (5.8) holds for 0«sx^s. By Lemma 5.4 and
inequality (4.2.32) in [1], we have, for § >2A~1,

1 - exp (-2WA*) > 1 - exp (-1/£A) > (|A + I)"1 > ftgA)"1. (5.10)

Substituting this into the inequality for U'(s), we obtain

£/'(*) 3= -3§/A*. (5.11)

Thus, since (by Lemma 5.2) lF(x) ^ 0 for x »5, we have

t /(x)3>(/(5)-3^-5)/Ai for x^s.

By (5.7), since 5 < a, we deduce that

[/(jc)Ss#>-3§(x-.s)/Ai for x3=s, (5.12a)

where
fc=exp(-a/A*) (5.12b)

is uniformly bounded above with respect to §.
We define the point x = s2 by U(s2) = £J. Then, by (5.12),

(5.13)

Substituting expression (5.12a) for U(x) into equation (2.1) and integrating, we
obtain, for O

Q(x) > Q{s) - W¥[b - 3(x -

Applying (5.12a) gives us Q(s2)» ^2b3 + Q(s) - ^ ^ . Inequahties (5.8) and
(5.10) imply that Q(s)>§A^. Thus, for £2=£A2, we deduce that

2. (5.14)

Since Q(x) is an increasing function and U'(x) <0, we have, for x >s2,

From this we obtain [exp (c%2x)U'}' ̂ =—% exp (c£2x). Integrating, and evaluat-
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3 0 A. M. STUART

ing the constant of integration at x = s2, gives us

U' ^ exp [c£2(*2 - *)] • U'(s2) + {exp [c?(s2 - x)] -

Integrating again implies that, for x z*s2,

i exp[c?(s2-x)]U'(s2) U'(s2) exp[cg2fr2-s)] x 1 s2
U'* C? c£2 S? c | c 2 | 3 + c§'

Thus, in particular, since U(L) = rj from (3.3), we have

L 4 exP[cg2(j2-L)]C/'(*2) , l/'fo) exp[c£2(s2-L)] , 1 s2

7 f * " ^ F +T+^lT1

Since L > s2 > 0 and C/'(*2) < 0, we obtain

Finally, since £/">0 for x>s (by Lemma 5.2), we deduce from (5.11) that
U'(s2) > U'(s) 5= -3§M*. Thus

ij (5.15)

for | > m a x {2A"1, U2}- This implies that L->°o as | - » » , since, by (5.12b) and
(5.14), we have

c = JA^3 = JAJ exp (-3o/Al), (5.16)

where a is bounded above independently of £.

CASE (ii) If L > s for § sufficiently large, then, since s—• °° as §-»•», we deduce
that L-»°o as ^->oo.

If L < 5 for £ sufficiently large (noting that s may be infinite), then Lemma 5.3
gives us T) s= § exp (-L/2A*) and hence that

Thus L—>oo as £—•<».
Finally, if L oscillates about s for I? sufficiently large, we obtain

L 5* Lx = min {2A* In ( | / I J ) , 5} (5.17)

and thus we have the desired result.

CASE (iii) We subdivide this case:

Part (a) The unbounded oscillations of s satisfy

5 < U J l n | as ! - * « . (5.18)

In this part we modify the proof of case (i) to allow a = Â* In £. Substituting this
into the expression (5.15) for L, where c is defined by (5.16), we obtain, for £
sufficiently large, that

L 2* Lj = 4A3£* - 3/A* - £r/A*. (5.19)

Thus L —» °° as £ —* °°.
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EXISTENCE OF SOLUTIONS OF A FREE-BOUNDARY PROBLEM 31

Part (b) The unbounded oscillations do not satisfy (5.18). In this case, we
subdivide the problem into ranges of £ for which the bound (5.18) is alternately
satisfied and not satisfied. Thus, for £ sufficiently large, we have

L^min {Llt

Here, Lx is denned by (5.17) and represents the behaviour of L in those intervals
of § (sufficiently large) in which (5.18) is not satisfied. La is defined by (5.19) and
represents the behaviour of L in those intervals of £ in which (5.18) is satisfied.
Since both Lx and L2—»°° as §—*°° the desired result follows. D

6. Existence theorem

In this section, we prove the central existence theorem for nontrivial solutions
of the free-boundary problem.

THEOREM 6.1 For 0 < A < Ac and f(U) = U2, there exist an odd number, greater
than or equal to one, of solutions of the free-boundary problem defined by
equations (2.1)-(2.3).

Proof. We proved in Section 3 that the free-boundary problem is equivalent to a
shooting problem defined by the zeros of the parameter-dependent functional
(3.1). Further, we proved in Corollary (3.2) that G(£) is well defined for each
value of § 3= t]. Now, G{q) = 0 and, by Lemma 5.1,

lim G£(§) = -°°

for A < Ac. Thus, if we can establish that

l imG(£)>0, (6.1)

then, by continuity, we will have demonstrated the existence of an odd number
(5=1) of zeros of G(§) and hence solutions of the free-boundary problem. Thus,
we now establish that (6.1) holds for A > 0.

We define P{x) by

By using equation (2.1), this may be written as

fdr). (6.2)

Using this definition of P(x), equation (2.2) becomes

Integrating once gives us
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3 2 A. M. STUART

Thus, formally integrating (2.1), we obtain

XcU'{x) + Q(x) = £ (A - K^)f(U(y)) dy.

Setting z =y/x yields

KU\x) + Q(x) =x jT (A - Xc^)f(U(xz)) dz. (6.3)

Since, for A>0 and f{U) = U2, Lemma 5.5 demonstrates that L-»°° as %-*°°,
we may choose £ > £* such that

For £ > £*, we prove that the function

changes sign once and only once for 0 «s z as 1. From (6.2) we have

Thus, since f(U(t)) is strictly positive for 0«£f « L , we deduce that i?(z) is a
monotonically decreasing function of z. Also

=ex {£ [ ) ( f f*dt)s <*" (-f f«») * 4
since /(§) >/({/(/)) > / ( I J ) for 0 < r < L. Thus

By (6.4), we obtain

/?(0) = A - ACP(O)/P(L) > A - Ac exp HA/fa)!.2] > 0

for ^ sufficientiy large. Also, /?(1) = A — Ac < 0. Thus R(z) changes sign once and
only once for 0 « z « 1 . We define z* by rt(z*) = 0 and denote U(Lz*) by U*. By
(6.3), we have

= L \ R(z)f(U(Lz)) dz.

Since f(U) (= f/2) is a monotonically increasing function of its argument and
since, by Lemma 3.1, U(Lz) is monotonically decreasing for 0 =e z =s 1, we obtain
the inequality

KU'{L) + Q(L) ** L ilR(z)f(U*)dz. (6.5)
Jo
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EXISTENCE OF SOLUTIONS OF A FREE-BOUNDARY PROBLEM 33

Now

R(z) = A - Ac exp (- \ \ A/(C/(O) d/ dtr).

Since/(t/(0) ^ /OO for 0 =£ f =£ L, we obtain, for 0 =£ z =£ 1,

R(z) 3* A - Ac exp [}A/(T,)L2(Z2 - 1)] =* A - Ac exp [*A/(r,)L2(z - 1)].

Thus,

j\(z) dz > jf A - Ac exp ( ^ L2(z - 1)) dz

2

By (6.4) we deduce that, for £ sufficiently large,

JoJo

Substituting this into (6.5), we obtain

G(§) = AC(/'(L) + (2(L)

for ^ sufficiently large. Thus, for A > 0 and /(£/) = U2, Lemma 5.5 gives

lim

Hence (6.1) holds and the theorem is complete.

7. Conclusions

In conclusion, we have proved the nonexistence of nontrivial solutions of the
free-boundary problem defined by equations (2.1)-(2.3) for all A $ (0 , Ac). In the
case /(£/) = U2 (which arises in practice), we have proved the existence of a
global branch of nontrivial solutions for all Ae(0,Ac). As with many global
existence results, the method of proof is nonconstructive; the result is important,
however, since it validates the numerical predictions contained in [2]. A local
constructive approach to the existence theory for A ~ Ac is developed in [2].

We note here that numerical evidence [2] strongly suggests that the nontrivial
solutions found for A e (0, Ac) are unique. The proof of this conjecture would,
however, be a nontrivial matter.

The extension of the existence proof to more general nonlinearities/(L/) relies
on proving Lemma 5.5 for different functions/((/); it has been pointed out to the
author by Dr. J. Norbury that a dynamical-systems approach to this lemma might
be fruitful. However, since it is the case /((/) = U2 which is of practical
importance, this possibility has not been explored further.

From the scalings described in Section 1 and the two Theorems 4.1 and 6.1, we
deduce the following results about the behaviour and form of combustion waves
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3 4 A. M. STUART

for small driving velocities. The combustion will be typified by large zones of
chemical reaction (since L~/*~*L0) which propagate slowly (since Q~n^Qo)-
The temperature variations within the combustion zone will be of 0(1) with
respect to the inlet gas velocity. Further, since the parameter A is linearly related
to the specific heat of the combustible solid, the nonexistence Theorem 4.1
indicates that there are upper and lower limits on the range of solid reactant
specific heats above and below which combustion cannot be sustained. Since this
nonexistence theorem requires only that /(£/) be a positive function, we deduce
that the upper and lower bounds are independent of the relationship between the
reaction rate (1.1) and the gas temperature W. This relationship can only be
determined experimentally, and so the result is of some importance.
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