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THE GLOBAL ATTRACTOR UNDER DISCRETISATION
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ABSTRACT. The effect of temporal discretisation on dissipative differential equations is
analysed. We discuss the effect of discretisation on the global attractor and survey some
recent results in the area. The advantage of concentrating on w and a limit sets (which
are contained in the global attractor) is described. An analysis of spurious bifurcations
in the w and « limit sets is presented for linear multistep methods, using the time-step
At as the bifurcation parameter. The results arising from application of local bifurcation
theory are shown to hold globally and a necessary and sufficient condition is derived for
the non-existence of a particular class of spurious solutions, for all At > 0. The class of
linear multistep methods satisfying this condition is fairly restricted since the underlying
theory is very general and takes no account of any inherent structure in the underlying
differential equations. Hence a method complementary to the bifurcation analysis is
described, the aim being to construct methods for which spurious solutions do not exist
for At sufficiently small; for infinite dimensional dynamical systems the method relies
on examining steady boundary value problems (which govern the existence of spurious
solutions) in the singular limit correpsonding to At — 04. The analysis we describe is
helpful in the design of schemes for long-time simulations.

1 Introduction

The real world presents a variety of dynamical phenomena of bewildering complexity.
These phenomena can often be modelled by means of differential equations. However,
differential equations can rarely be solved in closed form and so it is often necessary to
replace them by finite dimensional maps. These maps can exhibit a wide range of dynam-
ical behaviour but it is not always clear which, if any, of the numerical observations are
related to the real world. A necessary step in ascertaining the relationship of numerically
generated dynamics to the real world is to study the dynamical properties of differential
equations and their discretisations in conjunction. This is the approach taken here. The
solutions of nonlinear maps are usually far easier to generate than the solutions of non-
linear differential equations and the price we pay is that the behaviour of the maps is
often far more complicated than that of the underlying differential equations. Thus it is
important to design schemes in which the effect of numerical artefacts on the dynamics
is minimised.
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It is well known that a numerical method for an initial value problem which is con-
vergent at a fixed time does not necessarily yield the same asymptotic behaviour as the
underlying initial value problem, for fixed values of the time-step. For linear ordinary dif-
ferential equations whose solutions decay with time it is necessary to operate the numerical
method in the region of absolute stability of the scheme in order to obtain the correct
asymptotic behaviour. This condition is stronger than that of zero stability, which is
required for convergence. The issue of absolute stability and the construction of A-stable
methods has been central to the development of numerical methods for linear initial value
problems.

It is only relatively recently that analogous problems have been studied for the dis-
cretisation of nonlinear evolution equations, particularly those involving partial differen-
tial operators. Early work of interest includes the paper of Burrage and Butcher [2] in
which AN and BN stability are defined for contractive nonlinear ODEs. The essential
difficulty with the nonlinear problem is the dependence on initial conditions. The cur-
rent growth of interest in the dynamics of numerical methods for nonlinear problems has
been fuelled by the input of many ideas from dynamical systems. Here we discuss some
of these recent results in a unified dynamical systems framework. The advantage of a
dynamical systems approach to the numerical analysis of initial value problems is that it
forces consideration of the flow generated by the numerical method. This is in contrast to
classical numerical analysis which focusses on convergence of individual trajectories from
a fixed initial condition.

In this paper we concentrate on dissipative differential equations: for simplicity we
will take this to mean problems for which all trajectories converge into an absorbing set
in the phase space after a finite time. (This definition is suitable in finite dimensions but
sometimes inadequate in infinite dimensions [17].) In section 2 we review some definitions
from continuous dynamical systems. Section 3 contains analogous definitions for discrete
dynamical systems and a discussion of the relevance of these concepts to numerical analy-
sis. It is shown, by means of an example, that the destruction of a global attractor under
discretisation can occur when the unstable manifold of a spurious solution introduced by
discretisation is connected to infinity. In section 4 we analyse spurious bifurcations in
the w and « limit sets for linear multistep methods. The limit sets are contiained in the
global attractor, if it exists. The analysis yields conditions necessary and sufficient for the
non-existence of a particular class of spurious solutions, for all values of the discretisation
parameter At. A complementary analysis, which applies only for At sufficiently small, is
described and applied to examples from discretisation of reaction-diffusion equations.

2 Continuous Evolution Semigroups

Consider an ODE in a Banach space
Ut = G(u)’ (1)

together with an initial condition on u at ¢ = 0. Here G(u) : B — B’ for two Banach
spaces B and B’ where, typically, B C B’. We now define the evolution semigroup S(t)
which maps the solution at a given time to a solution ¢ units of time later. This and
subsequent definitions in sections 2 and 3 can be found in Temam [17].
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Definition 2.1 A strongly continuous evolution semigroup is a mapping S(t) : B — B
for some Banach space B with S(t) satisfying

S(t+38)= S(t)o S(s) Vt,s >0, (2)
5(0) =1, (3)

and
S(t)u continuousint € [0,00) for eachu € B. (4)

The solution u(t) of (1) then satisfies
u(t) = S(t)u(0), ()

where u(0) is the initial condition. The action of S(t) on a set D C B is defined by

S@D= |J S(t)u(0).

u(0)eD

The possible asymptotic states of u(t) are captured in the w and o limit sets which can
be defined in terms of the evolution semigroup S(t) as follows. Note that the a limit set of
a point is not defined in general since infinite dimensional dissipative dynamical systems
are usually not defined backwards in time — consider the heat equation for example.
However, the o limit set may exist for specific choices of u(0).

Definition 2.2 The w limit set and the a limit set (when it exists) of a point u(0) are
defined respectively by

w(u(0) = () U 8(1)u(0) (6)

520t>s

and

a(u(®) = () US(=)"u(0). (Y

3<0t<s

The w and o limit sets of a set D C B are defined analogously with D replacing u(0).

Discussion Consider equation (6): we take the union of segments of trajectories starting
at time t > s; then, taking the intersection over all s > 0, we eliminate the transient
behaviour and we are left with information about the asymptotics of the evolution semi-
group. Typical members of the w and a limit sets include steady solutions, periodic
solutions, quasi-periodic solutions and strange attractors.

We can now define the global attractor. This, if it exists, is a compact attractor which
attracts the bounded sets of B uniformly and whose basin of attraction is the whole space
B. The global attractor is essentially comprised of members of the w and « limit sets
of points, together with the trajectories which connect them. Detailed discussion of the
global attractor can be found in [7,9,17].

Definition 2.3 An attractor for the semigroup S(t) is a set A C B satisfying the following
properties:
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(i) A is a postively and negatively invariant set for the semigroup. (A postively and
negatively invariant set satisfies S(t)A = A,Vt > 0.)

(ii) A possesses an open neighbourhood U such that dist(S(t)u(0),A) — 0 ast — oo, for
all w(0) € U. The distance from a point to a set is found by taking the infimum over the
distances to all points in the set.

The largest open set satisfying (ii) is known as the basin of attraction of A.

Definition 2.4 The global attractor is a compact atiractor A which satisfies
d(S(t)U,A) > 0 as t — o0
uniformly for any bounded set U C B. Here

d(Ay,A2) = sup inf d(z,y).
z€A; YE€EA2

The basin of attraction for A is the whole of B.

Examples 1 We study a very simple example which will become interesting under dis-
cretisation. Consider the ODE

uy =~ (8)
with u(0) € R. The global attractor for this differential equation is the singleton {0} for

which the conditions of Definition 2.4 are easily checked. The dynamics of (8) can be
summarised as follows:

Figure 1. The dynamics of (8)
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A slightly more interesting example is the ODE
up = u — u, 9)

with u(0) € R. Here the global attractor consists of the three equilibria 0,1 and -1
together with the heteroclinic orbits connecting 0 to —1 and to 1. The dynamics of (9)
can be summarised as follows:

Figure 2. The dynamics of (9)
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The first step towards proving the existence of a global attractor is the contruction of
an absorbing set which all trajectories starting in a bounded set enter in a finite time. For



215

a precise definition see [17]. The existence of an absorbing set is a necessary condition for
the existence of a global attractor. Theorem 1.1 in Chapter I of [17] describes additional
conditions required to ensure that the existence of an absorbing set is sufficient for the
existence of a global attractor. Clearly it is important to determine what happens to an
absorbing set under discretisation. We show in the next section that spurious members
of the w and a limit sets can destroy the absorbing set property. Consequently we study
the existence of spurious solutions in section 5.

3 Discrete Evolutions Semigroups

Consider now a nonlinear map in a Banach space
Un+l = Q(Un)y (10)

together with an initial condition on Uy. Here @ : B — B for a Banach space B. We are
particularly interested in the case where (10) forms an approximation to (1); we refrain
from making a specific identification between U,, and u(t) because this will depend on the
nature of the discretisation (whether or not it is a one step method, whether or not the
elements of an infinite dimensional Banach space are approximated finite dimensionally
etc.) Definitions analogous to 2.1,2.2,2.3 and 2.4 can be made as in [17]. Througout this
section n and m denote integers.

Definition 3.1 A discrete evolution semigroup is a mapping S, : B — B for some
Banach space B with S,, satisfying

Sn+m = Sn0 S, V integer n,m >0 (11)

and
S0 = I. (12)
The solution U,, of (10) then satisfies

Un = SnUO- (13)
The action of S,, on a set D C B is defined by

S.D= 11 8.5. (14)
UpgeD

Definition 3.2 The w limit set and the a limit set (when it ezists) of a point Uy are
defined repsectively by

w(Uo) = (] U Snlo (15)

m>0n>m

and

a(Uo)= () U SZiUo (16)

m<0n<m

The w and a limit sets of a set D C B are defined analogously with D replacing Uy.
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Definition 3.3 An attractor for the semigroup S, is a set A C B satisfying the following
properties:

(i) A is a positively and negatively invariant set for the semigroup. (A positively and
negatively invariant set satisfies S,A= A Vn > 0.)

(ii) A possesses an open neighbourhood U such that dist(S,Up,A) — 0 ast — oo, for
all Uy € U. The distance from a point to a set is found by taking the infimum over the
distances to all points in the set.

The largest open set satisfying (ii) is known as the basin of atiraction of A.

Definition 3.4 The global attractor is a compact attractor A which satisfies
d(S(t)U,A) > 0 as t — oo
uniformly for any bounded set U C B. Here

d(A1,Az) = sup inf d(z,y).
z€A; YEA2

The basin of attraction for A is the whole of B.

Let us assume now that the discrete evolution semigroup S,, forms an approximation
to the continuous evolution semigroup S(t) and that At is the discretisation parameter.
In the case where the underlying problem is infinite dimensional we shall suppress explicit
reference to spatial discretisation, assume that a mesh refinement path has been chosen
and assume that a suitable prolongation operator has been chosen. There are three
fundamental questions which confront the numerical analyst:

(i) Are the w and o limit sets for S(t) and S, the same, or “close”, in particular as
At — 07

(ii) If S(¢) has a (global) attractor A does S, have a (global) attractor Aa;?

(iii) If the answer to (ii) is “yes”, then does Aa: — A as At — 07

The first question has been studied by a number of workers: in [6] conditions are
derived which ensure that no spurious steady solutions are introduced by Runge-Kutta
discretisation. In [10] the existence of spurious steady solutions is examined for Runge-
Kutta, linear mulitstep and predictor-corrector methods. Spurious periodic solutions
are often introduced by discretisation; in particular, spurious period 2 solutions in n
for the discrete semigroup are important for discretisations of evolution equations whose
linear variational equations have real eigenvalues. Examples of this are given in [16],
the background is surveyed in [14] and a complete theory described in [15,16]. Spurious
invariant curves are also important and an instructive example of this is given in [1]. A
unified approach to the existence of spurious members of the w and a limit sets, using
bifurcation theory, is contained in [11]. Some recent work by Elliott [5] describes a class of
time-discretisation methods which preserve the Liapunov functional structure of certain
evolution equations; this powerful approach prevents the existence of almost all spurious
solutions, except spurious steady solutions introduced by spatial discretisation.
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The second and third questions are more difficult and less work has been done on
them. Kloeden and Lorenz examine the approximation of attracting sets in ODEs by
one-step time-discretisations [12] and by multistep methods [13]. Hale and co-workers [8]
have examined similar problems by different means. For a survey of further results see
[9, p170.]

The answer to the first question is fundamental to the second and third questions
since the w and a limit sets of points are necessarily contained in the global attractor.
Often a global attractor is destroyed by discretisation because there are orbits connecting
a spurious member of the limit sets to infinity and hence the absorbing set property no
longer holds; an example of this is given below.

In this paper we concentrate on question (i). Question (i) is related to both (ii) and
(iii) and sheds light on those problems (see the example below). Furthermore, question (i)
makes sense in those problems for which the dynamical system does not possess a global
attractor, such as Hamiltonian systems and PDEs whose solutions blow-up in finite time.

Example 2 Consider the ODE (8) under discretisation by the Euler method. We obtain
Uns1r = Uy — AtU3. (17)

Note that the steady solution of the differential equation, 0, is preserved under discreti-
sation. However a period 2 solution is introduced:

2 n
is a solution of (17).

The spurious solution plays a very important role since it divides the phase space into
regions in which the correct asymptotic behaviour is observed (U, — 0 as n — c0) and
in which the scheme blows-up and solutions diverge to infinity. This is simple to see.
Let U, = \/g If |Uo| > U, then 1 — AtU? < —1. Hence, by (17) we have |U;| > |Up|.
By induction, noting that there are no fixed points > U, of the map: |U,| — |Up41|, we
deduce that U, — oo as n — oo. Similarly, if |Up| < U, then 1 > 1 — AtUZ > —1 and
so |U;| < |Up|. By induction we deduce that U, — 0 as n — oo, since 0 is the only fixed
point < U, of the map: |Uy,| — |Up41].

We have constructed orbits connecting the spurious solution to 0 and to co. Thus the
absorbing set property, which is necessary for the existence of a global attractor, has been
destroyed by the unstable spurious solution. This spurious solution exists for any finite
At > 0. Hence a global attractor does not exist for the discretisation. The dynamics of

the map (17) are summarised in the following Figure which should be compared with
Figure 1 for the underlying ODE:
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Figure 3. The dynamics of (17)
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It is worth pointing out that, although the period 2 solution is obviously spurious and
is also unstable it is still fundamental to an understanding of the equation (8) under the
discretisation (17). Note also that the spurious solution approaches infinity in norm as
At — 0; this is typical of spurious solutions and is proved under quite general conditions
in [16]. O

Further simple examples of spurious solutions can be found in section 2 of [16]. In
higher dimensions the role of unstable spurious solutions is very similar to that demon-
strated in the example above. A precise characterisation of the destination of all initial
data is generally impossible but it is often the case that unstable spurious solutions have
unstable manifolds which connect with infinity, thereby destroying the absorbing set prop-
erty. See [16, Theorem 5.2] for an example of this in high dimensions. Hence, for the
numerical solution of evolution equations where the long-time dynamics are of interest
and where large classes of initial conditions are considered, it is very important to design
schemes which minimise the effect of spurious members of the limit sets.

There are two approaches to this design criterion which we will consider here. Both rely
conceptually on the idea of treating the approximating dynamical system as a bifurcation
problem, with the discretisation parameter At playing the role of bifurcation parameter.
The first approach is to design schemes for which there are no spurious members (of a
particular type) of the limit sets for all At > 0. This correponds to proving a global
non-existence result for a particular class of branches of solutions. Unfortunately, this
sometimes leads to schemes which are impractical for other reasons — solution of the
nonlinear algebraic equations is prohibitively expensive, a maximum principle is difficult
to enforce etc. A second approach is to establish that branches of a particular class of
spurious solutions cannot extend back to arbitrarily small positive At. We consider both
these approaches in the following section, where linear multistep methods are examined

in detail.

4 Spurious Bifurcations In The w and a Limit Sets

In this section we consider linear multistep methods for the solution of (1). These can be
written in the general form

M M
Y arUnsi = At Y BrG(Ungk)- (19)
k=0 k=0

Here Uy approximates u(kAt). (Note that, to formulate this method as a one-step map in
the form (10), it is necessary establish the solvability of the nonlinear equation for U,
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(if Bum # 0) and to consider a vector containing M steps as a single unknown; see [11].) In
this paper we consider only the effect of time-discretisation, although (1) may, of course,
be a system of ODEs arising from the spatial discretisation of a PDE. We assume that
(19) forms a consistent approximation of (1). The following polynomials will be useful.

Definition 4.1 We define

M M
p(z) = Z arzF and o(z) = }:ﬂkz". (20)
k=0 k=0

Definition 4.2 below is a generalisation of a definition contained in [6]. Roughly,
regular of degree 1 means no spurious steady solutions in the limit sets and regular of
degree 2 means no period 2 solutions in the limit sets. Note that period 2 solutions are
always spurious and their importance in determining the dynamics of discretisations has
been illustrated by means of example. See [16] for further examples. One could consider
spurious solutions of higher periodicity but period one (steady) and period two solutions
are particularly important since they bifurcate from steady solutions of the map as At
varies and are observed generically in systems with hyperbolic equilibria which are of
saddle or of nodal type. Spurious invariant curves are also of interest since they are
observed in systems with hyperbolic equilibria of spiral type — see [11].

Definition 4.2

The numerical method (19) is regular of degree 1 if every fized point U € B of the map
(19) satisfies G(U) = 0, for all At > 0 and for all equations (1).

The numerical method (19) is regular of degree 2 if (19) does not admit period 2 solutions
in n for all At > 0 and all equations (1).

Theorem 4.3 characterises the regularity of linear multistep methods.
Theorem 4.3
(i) The numerical method (19) is regular of degree 1.
(ii) If p(—1) # O the numerical method (19) is regular of degree 2 if and only if 5(—1) = 0.
(iii) If p(—1) = O the numerical method (19) is not regular of degree 2.

Proof Part (i) is proved in [10]. Parts (ii) and (iii) are proved in [11]. For motivation
we shall sketch the proof of (ii) for the # method only; this simplifies the technicalities
considerably without losing the central ideas of the proof. The # method is

Untr — Un = At[(1 - 6)G(Up) + 0G(Uny ) (21)

Here p(z) = z—1 and o(2) = (1—0) + 6z. Note that p(—1) # 0 and that o(—1) = 1 — 26.
Let Uz, = U and U4y = V. Then period 2 solutions are pairs U,V both in B with
U # V satisfying

V-U = At[(1-6)G(U) + 6G(V)] (22)
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and

U -V = At(1 - 8)G(V) + 6G(V)). (23)

Note that the steady solutions of the differential equation (1) are solutions of (22,23) with
u=V.

To prove the only if part of (ii) we show that period 2 solutions bifurcate from steady
solutions if o(—1) # 0. Assume that (1) has a steady solution U. Without loss of generality
we let U = 0 so that G(0) = 0. Note that U = V = 0 satisfies (22,23). Let dG(0), the
Frechet derivative of G at 0, be non-singular and have a real, non-zero, simple eigenvalue
n. Then a little calculation shows that the Frechet derivative of the system (22,23) is
singular at

A and U=V =0. (24)

_ 8
‘S@om
Futhermore, this eigenvalue At is simple; thus we deduce from Theorem 5.3 in Chapter
5 of [4] that period 2 solutions of (19) bifurcate from the trivial solution for 8 # 1 (i.e.
o(~1) # 0.

To prove the if part of (ii) subtract (23) from (22). This gives V = U if = 1 (i.e.
o(—1) = 0) and so period 2 solutions do not exist. O

The result of Theorem 4.3 would seem to suggest that the optimal choice of linear
multistep method is one for which o(—1) = 0; in particular, for the # method this requires
0 = 1. (We restrict ourselves to discussion of the § method henceforth.) However, often
considerations other than spurious members of the limit sets come into play. For parabolic
problems the maximum principle is of great importance and the choice § = 1 has many
advantages from this point of view. For semilinear parabolic equations, the convergence
of local attractors is proved in [8; Theorem 4.1] under the condition 6 € (3,1] and the
extra dissipativity afforded by this choice underlies the proof.

Thus the choice 8 = % is often not made and it is important to examine what happens
to branches of spurious solutions in this case. In general we know that branches of
spurious solutions will exist if 8 # % since they bifurcate from genuiune equilibria at
the the critical value of At given by (24). Thus it is important to design schemes for
which the branches of spurious solutions cannot extend back to At arbitrarily small. We
indicate how the analysis of steady boundary value problems can shed light on the design
of schemes appropriate to a particular equation. This is illustrated by means of two
examples from the discretisation of reaction-diffusion equations.

Example 3 Consider the equation
Uy = Ugy — UP, (25)
where p is odd. For simplicity consider the Dirichlet boundary conditions
u(0,t) = u(1,t) = 0. (26)

The solution of this problem is defined for all time and the global attractor is the trivial
solution 0. Let us assume that we apply the # method to (25). Thus period 2 solutions
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satisfy (22,23) where G(u) = uz; — uP. Since p is odd we can examine the existence of
period 2 solutions satisfying the Z; symmetry V = —U; equation (22) yields

At(1 — 20)[U,s — UP] + 2U = 0, (27)

with boundary conditions

U(0) = U(1) = o. (28)

We are interested in choosing schemes for which there are no solutions of (27,28) as
At — 04. Multiplying by U and integrating by parts we obtain

1 1
~ i1 ~ 20)[/ U2 4+ UPtldz] + 2/ Uldz = 0. (29)
0 0

fé> % the left-hand side is positive for At positive and hence no spurious solutions exist
for At > 0. On the other hand, if § < 1 it may be shown that solutions of (27,28) can
exist for At arbitrarily small and positive [3]. Hence 8 > % is a superior choice to 8 < %
Note that this result is in accordance with Theorem 4.1 of [8], alluded to above; it shows
that the convergence of attractors is intimately related to the non-existence of spurious
solutions. O

In practice equation (25) will be discretised in space as well as in time. However,
the semi-discrete argument given sheds light on the appropriate choice of fully discrete
scheme: we now show that any solution sequence satisfying the backward Euler scheme
(6 = 1) coupled with the usual centred differences in space must converge to zero as
n — o0o. That is, the global attractor is preserved under discretisation. This is strongly

related to the fact that the backward Euler scheme does not possses period 2 solutions in
n.

Example 3 Continued Let u} denote our approximation to u(jAz,nAt). Set JAz =1

and r = AA;" The backward Euler scheme coupled with centred differences in space yields,
forj=1,...,J -1

u;-‘H =uj + r62u;~‘+1 - At(u;‘“)p. (30)
The boundary conditions are
ug = uj = 0. (31)
Let
Umas = JOAX, U} (32)
and
Vi = Og;ig.l uj. (33)

Re-arranging equation (30) gives u, for 1 < j < J -1,

L+ 20+ AP < ud +rad 4 rupt] (34)

%
< w4+ 2rultl (35)

mazx*
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If utl is attained for 1 < j < J — 1 we find that
[1+ At(upe)Munke < uls (36)

If untl is attained for j = 0,J then clearly uptl = 0. Similarly, by considering —u? we

can show that, if ¥} is attained for 1 < j< J -1,

[1+ At(upti P upba > upg,.. (37)

If u™t] is attained for j = 0,J then clearly ulst! = 0. Combining (36,37) and the fact
that the maximum (resp. minimum) is non-negative (resp. non-positive) we deduce that
u} — 0 as n — 0o. (We use the fact that p is odd.) Thus the global attractor has been
preserved under discretisation by the backward Euler scheme. Such a result cannot be
proved for the forward Fuler scheme (6 = 0) without introducing a restriction on At in
terms of the initial data — see Theorem 5.2 in [16]. Such a restriction is necessary to avoid

the effect of the spurious period 2 solutions shown to exist for § = 0. O

Example 3 is particularly simple since we could show non-existence of spurious solu-
tions for all At > 0 when 6 > 1 . In general this is not possible since for § > 1 3 Spurious
periodic solutions always blfurca,te from linearly unstable equilibria at pos1t1ve values of
At. (This follows from equation (24) with > 0 which implies that the equilibrium is
unstable; note that in Example 3 the only equilibrium is 0 and it is stable so that bifur-
cation does not occur). However, it is always be possible to write down a boundary value
problem governing the existence of spurious period 2 solutions. Analysing the existence
of solutions for this problem in the limit At — 04 can yield practical guidelines for the
choice of scheme. We illustrate this by means of a more involved example.

Example 4 Consider the equation

Ut = Uz — f(u), (38)
where ;
f(u) = ) aju®h, (39)
i=o
The boundary conditions are
4(0,t) = u(1,t) = 0. (40)

Here a, > 0; under this assumption, it is shown in Chapter III of [17] that the problem
(38-40) possesses a global attractor. We now show that the backward Euler method is an
appropriate discretisation of this equation since branches of spurious period 2 solutions
cannot extend back to At arbitrarily small. The argument is easily extended to cope with
all 6 € (3,1].

The backward Euler discretisation of (38) gives

Urtt —Un = AUzt - fUT), (41)

with boundary conditions
vr(0)=U"(1)=0. (42)
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Seeking period 2 solutions with the Z; symmetry U?"+! = —_U?" = U we obtain
2

— Uz + fF(U)+ poe

U=0, (43)
with boundary conditions
Uu()=U(1)=0. (44)

It is our aim to show that (43,44) has no non-trivial solutions for At sufficiently small
and positive.
Multiplying (43) by U and integrating by parts we obtain

/0 W2+ UsU) + %U"']dx N (45)

The Young inequality gives us

1
5:1,,U2”+2 —-c<Uf(U).

Using this in (45) we obtain

1 1
/ U%dz < £ and / U%t2dz < E (46)
0 2 () a,
Applying the Holder inequality we obtain a further bound
1
/ Udz < (2¢/a,)77. (47)
0

Whilst (46) and (47) are useful in establishing where spurious solutions can be found in
function and parameter space, they are not sufficient to establish non-existence for At
sufficiently small. This we now do.

Equation (45) together with (39) gives

i 2 p .
= 2r_ < T723
0-/0 Ul + Y a0 )de (48)

i=0

Because a, > 0 it follows that the sum is bounded from below independently of At, since
the a}s do not involve At. Hence, by choosing At sufficiently small, the integrand can be
made positive and we deduce that non-trivial solutions of (43,44) cannot exist.

5 Conclusions

We have examined dissipative evolution problems and their discretisations in a unified
fashion. It has been shown that the property of possessing a global attractor can be
destroyed by the introduction of spurious memebers of the w and o limit sets when
discretisation is performed. This destruction of the global attractor occurs when the
unstable manifold of the spurious solution is connected to infinity. The existence of
spurious solutions in linear multistep methods has been examined by two methods both
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of which treat the numerical method as a dynamical system parameterised by the time-
step At. The first corresponds to a global theory on the existence of branches of spurious
solutions for all values of At. It is based around the examination of bifurcation of spurious
solutions from genuiune members of the limit sets. The second method corresponds to
an analysis of the existence of spurious solutions in the singular limit At — 0,4 : it relies
on examining boundary value problems and proving the non-existence of solutions for At
sufficiently small. '
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