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The viscous Cahn-Hilliard equation. Part I: computations 
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t Center for Mathematical Analysis and Its Applications, University of Sussex, Briahton BN1 
9QH, UK 
8 Division of Applied Mechanics,Dumd 252. Stanford University, Stanford CA 94305-4040, 
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' 
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Abstract. The viscous Cahn-Hilliard equation arises as a singular limit of the phase-field 
model of phase transitions. It contains both the Cahn-Hilliard and Allen-Cahn equations as 
particular limits. The equation is in gradient form and possesses a compact global atUactor 4 
comprising heteroclinic orbits between equilibria. 

Two classes of wmputati0n.m described,. First heteroclinic o&its on the global attractor are 
computed; by using the viscous Cahn-Hilliard equation to perform a homotopy. these results 
show that the orbits, md hence the geometry of the atmctors, are remarkably insensitive to 
whether the Allen-Cahn or Cahn-Hilliard equation is studied. Second, initial-value computations 
are described; these computations emphasize three differing mechanisms by which interfaces in 
the equation propagate for the case of very small penalization of interfacial energy Furthermore, 
convergence to an appropriate free boundary problem is demonstrated numerically. 

AMS classification scheme numbers: 35K35, 65N25, 65N35.65M99 

1. Introduction 

In this paper we study the viscous Cahn-Hilliard equation [27] written in the form 

ut = Aw X € Q  t > 0, (1.1) 

cluI = y Au + f(u) +ow X € Q  t > O  (1.2) 

with initial condition 

u ( x ,  0) = U&) x € Q. (1.3) 
We consider either the case of Dirichlet boundary conditions so that 

u = ~ = o  X G ~ Q  t > o  (1.4) 
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or Neumann boundary conditions so that 

where n denotes the unit outward normal on Q. In the latter case we also impose mass 
conservation 

u ( x ,  t)dr = u ( x ,  0)dx V i  0 J, 
so that (1.1) is uniquely solvable for w in terms of ut. Throughout, S2 is a bounded domain 
in E?’ (d = 1,2,3), y E (0, CO), > 0, ,9 2 0 and 

2p-I 

f(s) = bjs’ b+1 < 0. 
j=l 

In the context of this paper, the importance of the parameters or, ,3 is to distinguish 
three cases: (i) a = 0. ,9 # 0, (ii) (Y # 0, ,9 = 0 and (iii) or and ,9 both # 0. In the case 
(i) equations ( l . l ) ,  (1.2) reduce to. the Cahn-Hilliard model for spinodal decomposition- 
a description of the process by which phase separation occurs in a binary alloy after the 
temperature is reduced beneath its critical value, [IO]. In case (ii) we obtain the Allen- 
Cahn model for grain-boundary migration, the precess by which the interface between two 
differently aligned crystal lattices in a solid evolve with time, [Z]. The viscous Cahn- 
Hilliard equation, obtained in case (iii), is derived in [27] to include certain viscous effects 
neglected in [IO]. It is our purpose to study the similarities and differences between the 
two cases (i) and (ii) by use of case (iii) to interpolate between them. 

In section 2 we describe how the viscous Cahn-Hilliard equation can be derived 
from the phase-field equations. The phase-field equations can themselves be derived in 
a thermodynamically consistent manner 1301 so that this gives the physical motivation for 
our investigation of equations (1.1)-(1.3). In sections 3,4 and 5 we find it convenient to set 
p = 1 -  a and consider oc E [0, 11. It is then clear that a acts as a ‘continuation’ parameter 
taking the Cahn-Hilliard equation (or = 0) to the Allen-Cahn equation (or = 1) and we 
interpret the viscous Cahn-Hilliard equation as interpolating between these equations for 
or E (0, 1). The particular choice of parameters ,9 = 1 - or appears somewhat special 
but enables us to consider a one parameter homotopy between the two models which 
encapsulates cases (i), (ii) and (iii). In section 3 we study the properties of equilibria 
of (1.1)-(1.3) under Dirichlet boundary conditions; note that the equilibria themselves are 
independent of or and our study thus concentrates on stability questions. Section 4 is 
concerned with the properties of equations (1.1)-(1.3) on the global attractor A, also for 
Dirichlet boundary conditions. By virtue of thepdient  structure inherent in (l.lh(1.3) this 
reduces to the study of the properties of heteroclinic orbits: these aresolutions of (1.1)-(1.3) 
which are asymptotic to equilibrium solutions as t + fco. Our computations demonstrate 
that these orbits are remarkably insensitive to changes in (Y E [0, 11, thus showing a strong 
connection between the attractors of the Cahn-Hilliard and Allen-Cahn models. In section 
5 the observations of section 4 are extended to the case of Neumann boundary conditions. 

Whilst sections 3-5 are concerned with highlighting the remarkable similarities between 
the Cahn-Hilliard and Allen-Cahn models, by setting ,9 = 1 - (Y in (1.1) and using or as a 
homotopy parameter, section 6 shows that important differences remain. By scaling a, ,6 
and y with respect to a small parameter E it is possible to recover a variety of physically 
meaningful free boundary problems in the limit E --f 0 and the differences between the cases 
(i), (ii) and (iii) are highlighted. Specifically this section is concerned with initial value 
computations designed to show the three very different mechanisms by which interfaces 
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propagate, depending upon values of 01 and p .  Both Dirichlet and Neumann boundary 
conditions are considered. , ,  

2. Relationship to phase-field models 

The phase-field equations are 
1 

2 ~ 0 ,  + -ut = kA0 x E Q t > O  (2.1) 
0 1 u , = y A u + f ( u ) + 6 0  x E Q  t > 0 .  (2.2) 

U = B = O  x ~ a n  r > o  (2.3) 

We consider these equations subject to either the Dirichlet boundary conditions 

or Neumann boundary conditions so that 
au a0 . - = - = o  X E ~ R  t > o  
an an 

where n denotes the unit outward normal on Q. These equations arise in the modelling of 
solidification of supercooled liquids-see Caginalp [6], Penrose and Fife [30] and Caginalp 
and Fife [7]. Here 0 and U are the temperature and phase variables. The positive constants 
c, 1 and k denote, respectively, the specific heat, latent heat and thermal conductivity. The 
positive constants 01, y and S may be chosen to scale with a small parameter E to yield 
physically meaningful free boundaly limits as e + 0; see section 6 and Caginalp and Fife 
[7]. Here f ( u )  is chosen so that F(.)  given by F'(u) = -f(u) is an equal double well 
potential which has two global minima at +l. The simplest example is f ( u )  = U - u3. By 
a suitable choice of parameters one may recover from (2.1), (2.2) a variety of parabolic 
systems arising in the modelling of diffusive phase transformations in alloys. 

By setting c = 0 and defining 
1 

and O = - w  
61 p = -  
2k 2k 

we recover the viscous Cahn-Billiard equation (l.l), (1.2) from the phase-field equations. 

equation, (see 19. IO, 151) 
By setting c = CY = 0 in (U), (2.2) and ,eliminating 0 we obtain the Cahn-Hilliard 

61 
-U, = -yA2u - Af(u). 
2k 

U = A U = O  X E ~ G  t > O  (2.7) 

(2.6) 

This equation is usually solved subject to the boundary conditions 

(which follow from (2.3) for the phase-field equations) or the homogeneous Neumann 
boundary conditions 

a u  a 
an an 
- = - (Au) = 0 (2.8) 

(which follows from (2.4) for the phase-field equations). 
If we set c = 1 =.O in @.I), (2.2) and impose the boundary qonditions (2.3) we obtain 

(using uniqueness of solutions to the homogeneous Laplacian problem) the Allen-Cahn 
equation (see 121). 

0 1 u , = y A u + f ( u )  x E Q  t > O  

U = O  ' X E ~ Q  t > o .  
(2.9) 
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Equation (2.9) is also known 'as the Chafee-Infante equation, (see [ l l ,  231) when it is 
usually studied in the form obtained by dividing through by y (= A - ' )  and rescaling time. 

If, instead of (2.3), we employ homogeneous Neumann conditions (2.4), impose mass 
conservation and set c = I  = 0 then (2.1), (2.2) becomes the non-local Allen-Cahn equation, 
(Rubenstein and Sternberg [311) 

UU, = Y A U  + f (U) - - f ( u ( ~ ) ) d x  x E Q t > 0 
au I:, s, (2.10) 
-=  o x ~ a ~  t > o .  
an 

Since the viscous Cahn-Hillid equation arises from the phase-field model by setting 
c = 0 it may be viewed as a singular limit. Another way to see this is to derive from (2.1), 
(2.2) a damped wave equation and show how the viscous Cahn-Hilliard equation arises 
from it. Applying - A  to both sides of (2.2), we obtain 

-UAUI = -yA2 U - A f  (U) - 6A0 

and eliminating A0 by using (2.1) yields 

6 1  6 
k k 2  

(2.11) -UAU, + -c0, + --Ut = -yA2u - Af ( U ) .  

Differentiating (2.2) with respect to t and substituting into (2.11) yields a single damped 
wave equation for U, that is 

CUUtl - (kU + cy)AUt + - - cf'(u) Ut = -kyA2u - k A f ( u ) .  (2.12) (:" ) 
Setting c = 0 and using (2.5) to define j3  we obtain 

-uAu, = -yA% - A f  ( U )  .Z E C2 f > 0 (2.13) 

for the phase variable u(x. t ) .  This is the form of the viscous Cahn-Hilliard equation 
originally derived in [27] and can be derived from (l.l), (1.2) by eliminating w. 

Thus the phase-field equations (2.1). (2.2) contain a variety of interesting equations in 
particular parameter limits. Related observations are made in [14]. 

3. Analysis of the steady state 

Here we consider the existence and stability of equilibria for equations (1.1)-(1.4) in the 
case p = 1 -(I and U E [0, 11. In the following we use I 1 to denote the standard LZ(C2) 
norm and 11 11 the standard H'(Q) norm. The usual theory for the solution of second-order 
boundary value problems of the form 

- ~ A u - q g r r =  f X E Q  

U = O  x ~ a ~  
with q E C(fi) involves the introduction of a solution operator G, such that U = Gf, with 
the property that G : L'(S2) + H2(Q) fl Hd(Q). Hence G is compact on both L2(Q) and 
H'(S2). Also G is self-adjoint on both spaces. 

In the case y = I , q ( x )  = 0 in (3.1) we denote the solution operator by GO. Hence 
(1.1) and (1.4) yields 

w = -G&. (3.2) 
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Now let p = ( I  -a). After introducing Ba, a bounded, self-adjoint, positive operator on 
H'(C2) given by 

B, := al + (1 - a)G, (3.3) 

B,u, = y A u  + f (u)  x E Q t > 0 (3.4) 

U = O  x ~ a n  t > O  (3.5) 

u ( x . 0 )  = U&) x E Q. (3.6) 
For a = 0 or 1 the existence theory for (3.4)-(3.6) is well known, [ll. 23, 19, 331. For 
a E (0, I) ,  it is developed in [18] and [U]. In summary these references show that, for all 
a E [O, I], (3.4)-(3.6) generates a semigroup P(u, t )  E C'(H,'(Q) x R+, H,'(S2)) so that 

Note that (1.7) implies the existence of a constant C, and a non-negative function F(.)  

(1.2) becomes 

with boundary condition 

and initial condition 

U ( t )  = Y ( u o ,  t ) .  

such that 

f ' ( s )  ,< c, f ( s )  = -F'(s) vs E R. (3.7) 

W4) = &w + F(4)Ih (3.8) 

d 2 

Given this function F observe that solutions of (3.4H3.6) are in gradient form: defining 

we have 

-{y(u(t))} = - I Ut(1) IB  . dr 
Here 1 I B  is the norm induced by Ba, namely 

2 
lulg (U, U)BI (U. V ) B  := (U. &U). 

Note that I 18 is equivalent to the norm on L2(n)  for 01 E (0.11 and to the H-'(?) norm 
for a = 0. 

Using the gradient structure ox the equations, it is shown in [le] that, provided all 
equilibria are hyperbolic, the equations (3.4) and (3.5) have a global attractor A which 
is formed as the union of heteroclinic orbits between equilibria. Heteroclinic orbits are 
solutions of (3.4) and (3.5) which satisfy boundary conditions in time of the form 

u( t )  --f U* as t + fw (3.9) 
where U* E E ,  the set of equilibria of (3.4H3.6). Thus heteroclinic orbits are solutions 
of (3.4) and (3.5) on the infinite cylinder ( x ,  t )  E Q x R. The equilibrium solution U-, 
observed as f + -CO, is known as an alpha-limit set. Likewise, U+ is known as an omega- 
limit set. (The use of alpha in this context should not be confused with the parameter a 
appearing in the model (1.1)- (1.3).) Thus to study the attractor it is sufficient to compute 
heteroclinic orbits of (3.4) and (3.5). 

In order to implement the numerical method described in section 4 for the computation of 
heteroclinic orbits satisfying (3.4), (3.5) and (3.9) it is necessary to compute the equilibria 
of (3.4), (3.5) and also to determine the linearized stable and unstable manifolds of the 
equilibria. The remainder of this section is devoted to a study of the equilibria of (3.4). 
(3.5) and their stability properties. 



136 Bai et a1 

From (3.4), (3.5) it is clear that equilibria U of the viscous Cahn-Hilliard equation satisfy 
the semilinear elliptic equation 

(3.10) 

and hence are independent of a. It is our purpose in this section to prove hat the qualitative 
stability properties of the equilibria E are also independent of a E [O, 11. Specifically we 
show that the dimension of the unstable manifold of E is independent of a E [0, I] (theorem 
3.1) and that the linearized unstable manifold is a smooth function of a (theorem 3.2). From 
the formulation of (3.4), (3.5) using the theory of analytic semigroups (see Elliott and Stuart 
[I81 ) it follows that the principle of linearized stability [23] holds for the equations. Thus 
stability of U is governed by the eigenvalues p and eigenfnnctions @ of the problem 

(3.11) 
(3.12) 

Let q(x )  := f'(i(x)) in (3.11) and let GI denote the corresponding solution operator 
for the problem (3.1). From now on we assume that the equilibria U are hyperbolic so that 
the operator -yA - qI is invertible on L'(S2). Hence we are looking at the case where 
(3.11) and (3.12) has no zero eigenvalues for all a E [O, 11. We see that weak solutions of 
(3.11) and (3.12) satisfy 

pGiB,@+@=O @ E H ' ( S ~ ) .  (3.13) 
Note that for a = 1 there are a finite number of positive eigenvalues of (3.13). 

Now since 81 is compact on H' (0) and Ba is bounded on H' (0) we deduce that GI Be 
is a family of compact operators on H1(Q), and moreover for all a, a + E  E [0,1] we have 
from (3.3) that 

(3.14) 
Using (3.13), (3.14) we develop a theory of the invariance of the number of positive 
eigenvalues of (3.13) as a function of a. For any fixed a E [O, 11, Gl and B, satisfy 
the conditions on L and M (respectively) in theorem A of the appendix. Using this theorem 
we obtain: 

Theorem 3.1. Assume that for a = 1 the eigenvalue problem (3.13) has exactly m positive 
eigenvalues. Then for each a E IO, 11, the eigenvalue problem (3.13) has exactly m positive 
semisimple eigenvalues (counting using multiplicities). 

GI &+e - GI Ba = 4 (I - GO). 

For each a E [0,1], let 7: denote the spectral projection in H'(0) of the eigenspace 
corresponding to the positive eigenvalues of (3.13). Then theorem 3.1 implies 

dim(qH'(S2)) = m Va E [O, 11. . 
Now the perturbation theory results given by theorems 5 and 6 (with ascent=l) in [28] 
applied to GIB,+, show the smoothness with respect to a of the eigenspace corresponding 
to them positive eigenvalues: 

Theorem 3.2. There exists C 7 0 such that, for all a, E: a, a + E E [0, I], 
1lPr;'E - < CE. 

Ipa+c -pal 4 CE. 

Furthermore, if the eigenvalues pa of (3.13) are simple then 
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Theorem 3.1 shows that the dimension of the unstable manifold of an equilibrium 
solution r7 of (3.4); (3.5) is independent of a. Furthermore, theorem 3.2 establishes the 
continuity of the linearized unstable manifold with respect to a. With this knowledge, we 
now proceed to compute heteroclinic connections between equilibria and in particular, study 
how they vary with a. (Before doing this it is worth remmkmg that the above theory does 
not rely on the relation ,9 = ( I  -(U). We could define an operator Be,# by Be,# = aZ+,@& 
and develop a theory of equilibria of (1.1)-(1.3) accordingly. Invariance and continuity 
theorems, with respect to a and ,9, similar to those stated here for the case f i  = 1 -a, may 
be obtained.) 

For computational purposes we shall study (3.4), (3.5) with 

(3.15) 
in the remainder of this paper. Furthermore, in sections 3,4 and 5 we will consider 
S2 = (0, 1) c E. In section 6 we will consider both one- and two-dimensional computations. 

If S2 = (0, 1) and (3.15) holds then the steady-state bifurcation diagram is well-known 
[ I l l  -see Figure 3.1. 

3 f ( u )  = U  - U  

lul 

I I 

0 ..* --.-- 1 ------._ * ._________ * _ _ _ _ _  
BI B? 8 3  B< 8 5  

0 50 1W 150 2w 250 300 'I' 

Figm3.l. The steady state solutions far viscous Cahn-Hilliard equarian (3.4). (3.5); -denotes 
stable branches, and denotes unstable branches. 

Furthermore, for a = 1 in (3.4), (3.5) the stability properties of all the steady state 
solutions have been determined in [ I I ,  23, 241. .Using theorem 3.1, these can be extended 
to all a E 10, I]. Thus we obtain: 

Theorem 3.3. Assume that f (U)  = U - u3, S2 = (0, 1) c E. For each integer k 2.1 and 
y-' E (kzn2;+w), equations (3.4), (3.5) have two nonzero equilibrium points with k - 1 
interior zeros, denoted u:(y). These are the only equilibria with k - 1 interior zeros. Here 
u:(y) = -u;(y) and the argument y denotes the dependence of the equilibria on y. The 
following properties hold for these equilibria: 

(a) For y-' E (0, kzn2) equations (1.1)-(1.2) have no equilibrium points other than 
u=Oandu:(y), j c k .  

(b) Let a E [O, 11. Then, for each y-' E (0, a'), the solution U 0 is asymptotically 
stable and for each y-' E (n2, +CO) U = 0 is unstable. Furthermore, for any 01 E [0,1], 
the dimension of the unstable manifold equals k for y-' E (k'n', (k + 1)2nz). 
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(c) Let a E [O, 11. Then, for each k 2 1 and any y-' E (n", +CO) the equilibrium point 
u* (y )  is asymptotically stable. For any y-l E (k2nz, +CO), k > 1, the equilibrium point 
uk ( y )  zs unstable and the dimension of the unstable manifold is k - 1. A s .  

4. Numerical method and results 

In this section we present numerical computations which indicate that the global attractor for 
the viscous Cahn-Hilliard equation is qualitatively insensitive to changes in the parameter 
a. Since the equation is in gradient form (see section 3), to study the attractor it is sufficient 
to study the behaviour of heteroclinic orbits satisfying (3.4), (3.5) and (3.9)-see [22] and 
[33]; the work of [33] (and the references therein) in particular contains discussion of 
various properties of the attractor for the case a = 0 and Neumann boundary conditions. 
The structure of the attractor is completely understood for a = 1 and Dirichlet boundary 
conditions as a consequence of the work of '[23, 241-that is, the question of whether 
there exists a heteroclinic orbit connecting any given pair of equilibria is answered, and the 
number of parameters required to describe each such connection is known. 

A numerical method appropriate for the calculation of heteroclinic orbits in partial 
differential equations in gradient form was developed in [3]; the numerical method we 
use here is based on [3] and we only briefly describe the computational technique. Other 
computations for connecting orbits are described, for example, in [21]. The infinite cylinder 
is replaced by the truncated domain ( x ,  t )  E C2 x ( -T ,  T), for some large T >> 1 and (3.9) 
is replaced by boundary conditions 

P+[u(T)  - U + ]  = 0 P-[u(-T) -U-] = 0. (4.1) 
Here P+ (respectively P-) is a projection onto the unstable (stable) manifold of U+ (U-). 
This approach is used in Beyn [5]. To eliminate translation invariance it is also necessary 
to impose a phase condition and it may be necessary to supplement (4.1) with further 
conditions to yield a well-posed boundary value problem in time with the correct number 
of boundary conditions; see 131 to see how this may be done. 

' 

We approximate (3.4). (3.5) by a Galerkin spectral method, setting 

Thus 

Substituting into (3.4) and applying Galerkin projection, gives 

(4.2) 

(4.3) 

where A = (a1 , a?, . . . , a, ) and 
I 

&(A) = 2 l  f (u,(x, f))sin(knx)dx. 

Thus we obtain a system of ordinary differential equations for A. This system is 
parametrized by a and is also in gradient form. All computations are performed with 
values of N between 20 and 50 and have been checked for consistency by employing a 
variety of different choices of N .  
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The steady state of the semidiscrete problem (4.3) is independent of a,  as for the 
equations (3.4), (3.5). Furthermore,  in^ the finite dimensional setting, theorems 3.1 and 
3.2 may be modified to cover both positive and negative eigenvalues for the semidiscrete 
problem, and hence we know that the dimension of the stable and unstable manifolds of 
(4.3) are independent of a. Thus provided that N is sufficiently large so that the eigenspaces 
of (3.4), (3.5) are well-approximated, the existence and stability properties of steady states 
implied by theorem 3.3 will be inherited by a semidiscrete approximation provided attention 
is resticted to a compact interval of positive y-' and a compact region of phase space. 
This is confirmed by numerical results. 

We now proceed to compute heteroclinic connections. We show that, in terms of 
the geometry of the connections, the computations show a remarkable insensitivity to the 
parameter a, though the time scales (which are partially govemed by the eigenvalues of 
the linearizations) are very different. Figure 4.1(i), (a) shows how the first eigenvalue, pp 
on U: at y-' = 130, changes as a varies from 0 to 1; (b) shows the same for p;. This 
verifies theorem 3.2 which shows that the eigenvalues change smoothly with respect to a. 
The same is true for the eigenfunctions, although we only give results for the two values 
LY = 0, 1. In figure 4.l(ii) we consider the eigenfunctions arising from'linearization of U:. 
figure 4.l(ii) (a) shows the eigenfnnction, $4:, of the Allenzahn problem corresponding to 
pp with a = 1: @) is that of the Cahn-Hilliard equation corresponding to pp with a = 0. 
Note that for this value of y these eigenfunctions determine the one-dimensional linearized 
unstable manifold of U:. Figures (c) and (a). (e) and (0, and (g) and (h) are similar 
plots for the eigenfunctions @;, @; and @, corresponding to.&, p; and p; respectively, 
again alternating the Allen-Cahn and Cahn-Hilliard cases. Comparison shows that not only 
are the dominant eigenfunctions smooth functions of a but also that they are remarkably 
insensitive to a E 10, I]. Since the heteroclinic orbits are formed as intersections of unstable 
manifolds it perhaps not surprising that they too are insensitive to a. We now show this 
numerically. 

FigureBl.(i). eigenvalues changing with (I at y-l = 130 for U:. (I = 0 is Cahn-Hil1iard;u = L 
is Allen-CaIm. 

Throughout the following we use the notation u:(y) as detailed in theorem 3.3 for 
steady solutions of the problem. In the heading of the subsections, alpha(.) and omega(.) 
denote the alpha and omega limit sets of the computed heteroclinic orbit respectively. (See 
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2 
0 0.5 1 0 0.5 1 

Figure 4.1.(ii). eigenfunctions for U = 0 and I aT y-' = 130 for U:. (a). (e), (e), (9) 
Allen-Cahn, U = 1; (b), (d), (0, (h) Cahn-Hilliard, U = 0. 

section 3 for a definition of these objects and recall that alpha in this context should not be 
confused with the parameter 01 appearing in the equations.) 

4.1. nlphu (u(0)) = 0, omega(u(0)) = u:(y), y-' = 130 

For y-' = 130, we have 9z2 < y-' < 16d. In the case OL = 1, (the Allen-Cahn equation), 
the connections between ug and u:(y) form a manifold of dimension 2 [23, 241. One of 
these parameters is simply time; as the second we take 

1 

P := 1 [adr)12ds (4.4) 

as in [3], to parametrize the manifold. Here r is a linear re-scaling of time employed so 
that all computations of heteroclinic orbits performed on t E [-T, TI by virtue of (4.1). are 
rescaled to the unit interval r E [0, 11. Using the techniques described in [3] we may find a 
heteroclinic connection between U 0 and u:(y) for any value of p,. Note that, since U: 

is unstable, such a connection is unstable as a solution of the initial-value problem so that 
it cannot be computed by standard forward integration in time of the initial-value problem. 
This is why a technique based on solving a boundary-value problem in space and time is 
used. 

For any fixed p, we can compute connecting orbits for the viscous Cahn-Hilliard 
equation, using, 01 as the continuation parameter. The package AUTO [12] is used to 
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perform the continuation. 
Figures 4.2(i) and (ii) show (time rescaled) plots of the heteroclinic orbits for Allen-Cahn 

and Cahn-Hilliard equations respectively. The plot corresponds to an order-preserving time 
reparametrization induced by the choice of collocation points in AUTO [12]. Equal spacing 
in s E [0, 11 is equivalent to a variable mesh in 5 E [0, 11 chosen by AUTO. Thus, since 5 

is a linear re-scaling o f t  we deduce that s = ~ ( t ) ,  for some monotonic increasing x(.). The 
true time scale can be recovered from figures 4.3(i) and (ii), where the ‘0’s demark intervals 
in time equidistributed in figures 4.2(i) and (ii). Comparison of figures 4.2(i) and 4.2(ii) and 
4.3(i) and (ii) shows the insensitivity of the heteroclinic orbits (and hence the attractor) for 
the viscous Cahn-Hilliard equation to the parameter a. Qualitatively the heteroclinic orbits 
are independent of a. In fact after rescaling time the orbits are almost indistinguishable. 
Figure 4.4 plots the difference, denoted e, between two heteroclinic connections for two 
nearby parameters 011 = 0 (Cahn-Hilliard equation) and 012 = 3.13 x this figure shows 
the continuity of the heteroclinic connection with respect to a. 

Figure 4.2.(i). I / y  = 130, p = 0,5000, (I = 1, the Allen-Cahn equation. s = x ( r ) .  

Figure 4.2.Ci). I j y  = 130, i~ = 0.5000, CI = 0, the Cah-Hilliard equation. s = x ( t )  
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Figure 4.3.(i). The Allen-Cahn equation, a = 1. I / y  = 130. p = 0.5000. The argument of U 

denotes the x variable. 
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Figure 43.69. The Cahn-Hilliard equation, e =  0. 1 f y  = 130. p = 0.5000. The argument of 
U denotes the x variable. 

4.2. dpha(u(0)) = 0, omegu(rr(0)) = u:(y), y-I = 190 

For y-' = 190, we have 1 6 ~ '  < y-' < 2 5 ~ ' .  The connections between ug and u t ( y )  
form a manifold of dimension 3.  We take the parameters 
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x IO3 

2 

-2 
1 

1 

X S 

Figurr 4.4. l / y  = 130. ~r. = 0.5000, U, = 0 . 0 0 0 0 . ~ ~  = 3.13 x e = U@, s; (11) - 
u ( x , s : u ? ) . s  = x ( t ) .  

together with time f, to parametrize this manifold. As before we can compute a heteroclinic 
orbit for any given value of p1 and ~2 by using the techniques of [3]. After computing a 
given connecting orbit,for the Allen-Cahn problem for a particular ~1 and ~ 2 ,  we compute 
connecting orbits for the viscous Cahn-Hilliard equation using 01 as a continuation parameter. 
Such results are shown in figures 4.5. Further quantitative agreement maybe be observed 
by more detailed comparison of the connecting orbits. 

1 

0.5 

-0.5 

.1 
1 

1 

0 0  s 

Figure 4.W). l / y  = 190,wl = 0.3688, p~2 = 0.1850.a = 1, the Allen-Cahn problem. 
5 = x@). 

In summary we have shown that the global attractor for (3.4), (3.5), (3.6) is insensitive 
to a. Since the physically interesting behaviour of the equation is confined to the attractor, 
this observation implies that, at a qualitative level, the value a E [0, 11 plays no role. 

5. Neumann boundary conditions 

Here we study the viscous Cahn-Hilliard equation (1.1)+1.3) under the (no-flux) Neumann 
boundary conditions (lS), since this gives conservation of mass which is natural in many 
contexts; see [lo] and 115, 191 for details. Note that 01 = 0 again gives the Cahn- 
Hilliard equation (2.6), now with the boundary conditions (2.8), whilst a = 1 gives the 
nonlocal Allen-Cahn equation (2.10). Numerical computations elucidating the structure of 
the attractor for this problem with 01 = 0 appear in [4]. Our objective here is simply to show 
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Figure 4.S.(ii). I / y  = 190, = 0.3688.fi2 = 0.185O.ar = 0, the Cahn-Hilliard problem. 
s = X ( l ) .  

that, as for the Dirichlet case considered in sections 3 and 4, the attractor is insensitive to 
the parameter U ;  we do this by computing heteroclinic orbits as a function of U and showing 
that no qualitative changes occur. 

Note that the equilibria are independent of the parameter cf. It is easy to see that, from 
(1.1), (1.5) 

M = u(x , t )dx  J, 
is independent of t .  It is necessary to specify the total mass M to obtain a well-posed 
equilibrium problem. For any given CY the steady states and connecting orbits vary 
considerably with the choice of the total mass M ;  see 113, 41 for details. In this paper 
we will concentrate on the particular case M = 0.5 and use the choices f (U) = U - u3 and 
R = (0, 1)  c W as in the last section. 

! (A) 

1 

Figure5.1. Steadystalesolutions forM = O S .  [ (A) =ak, where Ink] = max{lajl : 1 < j 6 N] 
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5.1. Steady state for M=0.5 

Figure 5.1 shows the steady-state solutions computed for M = 0.5.Note that the local 
bifurcation points are labelled &;the turning points are labelled L:. The equilibria are 
denoted by ay, U;', ut ' ,  a;'. Here,k is determined by Bt .  the local bifurcation point of 
the branch in question. The index, 'U' or '1' distinguishes solutions above ('upper') or below 
('lower') the solution at the turning point L:. The index + distinguishes solutions which 
bifurcate from U M along the two bifurcating directions at &. Solid lines represent 
stable branches and dashed lines for unstable branches. 'a' are turning points and 'x' are 
bifurcation points. 

5.2. alpha(u(0)) =U:'. omega(u(0)) = u;"(y) ,  y-' = 340, p = 1.2646 X lo-* 

In this case the heteroclinic orbit is a manifold of dimension 2, the first is time and the 
second we parametrize by introducing 

We can obtain such a connecting orbit for the Cahn-Hilliard equation (a = 0) at 
f i  = 1.2646 x IO-' by using the computational method described in 13, 41. By using 
a as continuation parameter, we perform continuation starting at the'viscous Cahn-Hilliard 
equation (a = 0) and finally obtain a connecting orbit for the nonlocal reaction-diffusion 
equation (a = 1). Figures 5.2 (i) and (ii) show the connecting orbits for's'= 1.0 and 
a = 0.0 respectively. 

-0.5 

I M O  

Figure 5.W. y-' = 340, M = 0.5 and fi = 1.2646 x lo-'. a = 1, the nonlocal reaction- 
diffusion problem. 

The numerical results shown in figures 5.2 indicate the continuity of the attractor for 
the viscous Cahn-Hilliard equation as a varies; furthermore, the structure of the attractor 
is again remarkably insensitive to (Y E [0, I]. Hence we conjecture that the dynamics of 
the Cahn-Hilliard equation are closely related to those of the nonlocal reaction-diffusion 
equation. 



Figwe 5.241). y - l  = 340.M = 0.5 and g = 1.2646 x 
problem. 

U = 0, the Clhn-Hilliard 

6. Numerical solution of the initial value problem 

Sections 3 ,4  and 5 have been devoted to showing that, from a qualitative dynamical systems 
viewpoint, the values of the parameters U and p play no role in the viscous Cahn-HiUiard 
equations (1.1)<1.3). However, in this section we consider the very different mechanisms 
by which interfaces propagate for y << 1, depending upon the choices of the parameters 
01 and f l .  To Facilitate comparison with related results concerning the phase-field equations 
we return to the notation of section 2 and consider the viscous Cahn-Hilliard equation in 
the form 

(6.1) 

(6.2) 

I 
-U --AB 
2 I -  

= Y A U  + f ( u )  + 68 

subject to Dirichlet or Neumann boundary conditions (2.3) or (2.4). This form is derived 
from the phase-field model (2.1), (2.2) by setting c = 0. 

Note that (6.1), (6.2) are related to (l.l), (1.2) through (2.5). It is known, Caginalp and 
Fife [7] ,  that in the scaling 

U = U , &  y = &  * 6=uz& 0 < & < < 1  (6.3) 

the phase-field equations (2.1). (2.2) approximate various sharp interface free boundary 
problems. For example, in the case'of the viscous Cahn-Hilliard equation model (6.1)- 
(6.2) the leading order term in the asymptotic expansion of (U', B e )  in powers of E,  which 
we denote by [U, e} ,  satisfies the following problem: 

u ( x ,  f )  = f l  x E sl'(t) (6.4) 

kAB = 0 x E Q'(t) (6.5) 

IV,, = -[kVB]?.n ,, x E r(t) (6.6) 

uze = - U ~ ( K + U ~ V J  x E r(t) (6.7) 

r(r) = an+(t) n an-(t). (6.8) 
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This is a moving boundary for Laplace's equation. The symbols K and V,, denote the mean 
curvature and normal velocity of the~interface r(t) and n is the unit normal pointing into 
CP. The sign of K is chosen to be positive if !X is a ball. The constant or is given by 

Uf = - 

where U ( x )  is a standing-wave solution of 

U " + f ( U ) = O  X € R  

subject to boundary conditions which yield a connection between the zeros of f ( 0 ) .  
Specifically, with f(o) given by (3.15) we solve (6.9) with U ( x )  + as x -+ fco. 
Note that, in the scaling (6.3), the analogues of the three cases (i) 01 = 0 , p  # 0, (ii) 
01 # 0, p = 0, and (iii) o( and f i  both # 0, discussed in section 1 are (i) U, = O , U ~  # 0, (ii) 
ut # 0, uz = 0 and (iii) u1 and u2 both # 0. 

It is clear by inspection of (6.4)-(6.8) that very different free boundary problems are 
found in these three cases. In case (i) we obtain a MullinsSekerka type problem with the 
interface governed by the solution of Laplace's equation either side of the interface. This is 
sometimes referred to as a Hele-Shaw type model. In case (ii) we obtain the pure geometq 
problem where the interface propagates according to its mean curvature. Case (iii) can be 
considered as an interpolation between these cases and arises when the temperature at the 
interfaces between solid and liquid has both curvature dependence and kinetic undercooIing 
(U, # 0). Rigorous results are known for the Allen-Cahn equation in general (e.g. Evans 
et ul [ZOl) and for the phase-field equations either in one dimension, or in two dimensions 
with radial symmetry (see Stoth [32]). Case (i) has recently been analysed by Alikakos et 
a1 [I]. 

In the remainder of this section we briefly describe a computational technique 
appropriate for the solution of the initial value problem for (6.1),(6.2) and the computation 
of interface propagation. We then describe numerical results based on this technique. 
Discretizing (6.1), (6.2) implicitly in time with time step Af yields the elliptic equations 

(6.10) 

where A represents the operator -A posed on an appropriate space incorporating boundary 
conditions. In this framework it is possible to consider weak solutions of (6.10). Discretizing 
in space by a finite difference method or finite element method with piecewise linear 
elements and mass lumping yields the system 

(6.11) 
4 Z  [ !% (aZ+yAtA*)  ] . [ gm "" ] + [ -Atf(u") 

where -Ah is the approximation of the Laplacian with Dirichlet or Neumann boundary 
conditions as appropriate and {p,g?) are vectors of nodal values at time level mAt. The 
superscript h refers to the spatial mesh size. We use the convention that f (u) is the vector 
with i" component f (ui) if II. = {. . . , ui, . . . I r .  There is an underlying variational structure 
making (6.1 1) a computationally viable approximation. First we present a stability result 
which is only described for the semidiscretization (6.10) but applies also to the fully discrete 
problem (6.11). The lemma may also be proved for Neumann boundary conditions. Recall 
Cf given by (3.7) and the Liapunov functional (3.8). 
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Lemma 6.1. Let At 4 max(or/C,, (4y81)/(zkCf2)) and let A = -A with D(A) = 
HZ(S2)nH,'(S2). For each uo E H'(S2) there is a unique weak solution umvOm E 
H'(S2) x H'(S2) of (6.10) forall m > 1. This solution satisfies 

U(r ,  0) = ' 

(6.12) 

O 4 r c r l  

rl < r < r2 

r3 < r < r4 

' i ( r )  
(U(rz.0) - W ) ( r  - rI)/(rz - r d  + 20) 

(U(r3, 0) - %r))(r - rMr3 - r4) + i ( r )  
tanh((r - $) / (&E))  r2 4 r 4 r3 (6.14) 

. W r 4 < r < L  

Proof. It follows that the first equation of (6.10) becomes 
e m = - - G o (  1 At ) 

2k 
where Go is introduced at the beginning of section 3 (cf (3.2)), and the second equation of 
(6.10) becomes 

(6.13) 

Existence follows by a standard variational argument, similar to that in Elliott [15], since 
(6.13) arises as an Euler-Lagrange equation for the functional 

which is bounded below in HJ(S2) when f is given by (1.7). To prove uniqueness observe 
that the difference e between two solutions of (6.10) satisfies (for some 5 E Hi(S2)) 

(or1 +;GO) e - y A e  - f'(& = 0. 
At 

Taking the inner product of this with e yields 

Thus we obtain uniqueness for At  sufficiently small. Taking the inner product in L2(S2) of 
(6.13) with (U" - um-')/At and using an argument identical to that used in Elliott [15] we 
obtain 
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where RO is the initial position of the interface and 

rl = Ro - 48 r2 = Ro - 38 r3 = RO + 3~ 
The value of i ( r )  is given by 

li - ri3 + aO(r, 0) = o 
with li taken to be the root closest to -1 if r e RO and the root closest to +1 if r > Ro. 

Example 1. In one dimension, taking k = 1 = 1, an exact travelling-wave solution of 
(6.4)-(6.8) is given by 

x 6 S O )  

x > s ( t )  
O(x,  t )  = { uf;v 

q - v  + V(s(t)  - x) 
02 

where s ( t )  = SO + V t  denotes the position of the interface r(t) and of = &/3. Notice 
that this solution breaks down as u2 + 0, the limit analogous to case (ii) in the remainder 
of the paper. 

Our aim is now to show that, with appropriate initial data and under the scaling (6.3), 
solutions of the viscous Cahn-Hilliard equation are close to the exact solution of the limiting 
free boundary problem. 

The following data is taken: Cl = (0,0.5), U, = 1, uz = 100/3, SO = 0.1, V = 1 and 
Af = h2. At the boundary we impose Neumann conditions. Numerical computations were 
performed over the time interval t E [O, 0.11. To illustrate the effect of the initial data Uo 
we also take 

U ( x ,  0) = tanh - (*;3 (6.15) 

in addition to taking (6.14) with Ro = SO = 0.1. The calculated position of the interface 
when (6.15) is used is shown in figure 6.l(i) for E = 0.02,O.Ol and 0.005. Figure 6.l(ii) 
shows the calculated position of the interface when E = 0.02,O.Ol and 0.005 and the initial 
data (6.14) (r = x) is used., In both figures the exact position of the interface is shown by 
the dotted line. Tables 6.1 and 6.2 give resultsfor computations using (6.14) and (6.15) 
respectively. We measure the error in the temperature at a particular time using the discrete 
L2 norm. 

Table 6.1. One dimensional experiments with initial data (6.15). 

relative error error in 
in interface temeramre 

E h may f = 0.1 a t t = 0 . 1  

0.02 1/200 1.33 x 9.61 x lo-’ 6.44 x 
0.01 U400 6.86 x 4.49 x IO-) 2.83 x lo-) 
0.005 ~ 1/800 3.40 x IO-’ 2.16 x 1.29 x 

The results given in tables 6.1 and 6.2 show the numerical solution converging to the 
exact solution as E + 0, with the reduction in the error being ~ O ( E ) .  
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Table 6 2 .  One dimensional experiments with initial data (6.14) 
relative error error in 
in interface tempahwe 

E h max t=o.1 at t = 0.1 

0.02 in00 7.29 x, 10-3 7.29 x 10-3 9.67 x io-> 
0.01 1/4M) 3.03 10-3 3.03 10-3 4.22 10-3 
0.00s i/soo 1.40 x 10-3 1.40 10-3 1.7s 10-3 

Figure 6.1.(i). Position of interface in one dimensional experiments using initial data(6.15) 

Figure 6.lSii). Position of interFact in one dimensional experiments using initial data (6.14) 

Example 2. We now turn to two dimensional computations. In the radially symmetric case, 
we denote by R ( t )  = Ro + Vt the radial position of the interface I'(t). Then (6.4)-(6.8) 
become 
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where iR(z )  = V, and K = I/R(t). An exact solution in this case is given by 

[ -1 (-- 1 1  + '.) r < R(t) e(r, z) = 3 u2 R(t) ai 

where 

Again we show numerically that the true solution converges to the free-boundary limit 
under (6.3) as E -+ 0. The following data is taken: R = (0,0.5)', UI = 1, U' = 201/2, 
Ro = 0.2,V = 1, At = h2 and initial data (6.14). We present results when E = 0.01 and 
h = lj200 for a uniform mesh. The numerical simulation was run over the time interval 
t E [0,0.2]. In figure 6.2 the position of the interface is shown at f = 0.025(0.025)0.2. The 
radial symmetry is clearly seen to be preserved by the numerical computation. In figure 
6.3(i) the radial position of the interface is shown while figure 6.3(ii) shows the temperature 
at the interface. The dotted lines in both figures 6.3 (i) and (ii) correspond to the solution 
of the free-boundary problem and the solid lines to the computation. Figure 6.3(ii) shows 
how the temperature at the interface rapidly adjusts to the value corresponding to the free- 
boundary problem. Note that no initial data is required for the temperature because c = 0. 

Figure 6.2. Position of interface in radially symmetric case 

Finally we perform a series of two-dimensional computations with the scaling (6.3) and 
using homogeneous Neumann boundary conditions. The initial data in each calculation is 
a random peaurbation of the state U = 0 with values distributed uniformly between +0.05 
and -0.05. In all simulations we took R = (0,OS)'. The equation parameters were taken 
to be I = k = 1 along with E = 0.01 and 

(i) u1 = 0 u2 = 50 (Cahn-Hilliard) 
(ii) UI = 1 uz = 0 (Allen-Cahn) 
(iii) u1 = 1 u2 = 50 ~ (Viscous Cahn-Hilliard) 

Each simulation was continued until a stationary solution was computed, that is where only 
one iteration was required to solve the discrete system at each time step and the stationary 
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Figure 63.(0. Position of interface in radially symmetric case ( - ) compared to exact value 
(. ' .) 

solution persisted, unchanging to machine precision, for a large number of time steps. As 
an additional check in cases (i) and (iii), we also required that the temperature 0" was 
constant in space, up to the prescribed tolerance. From equation (6.1) this ensures that 
the time-derivative of the phase is negligible. Note that care must be exercised in finding 
equilibria of these partial differential equations numerically since spatial discretization can 
introduce spurious equilibria. The ratio of E to h is crucial in this regard-see [17] and the 
discussion at the end of the section. 

In figure 6.4 the results are illustrated when h = OS/@ and the same initial perturbation 
is used. The white areas denote U > 0 and the black U < 0. In all three simulations a 
lamella structure rapidly forms, with the domains where U" < 0 and U" > 0 being thin. In 
time these domains shrink and grow as the interfaces migrate. As can be seen a stationary 
solution consisting of two strips is reached in the Allen-Cahn and Cahn-Hilliard cases, 
with the temperature in the Cahn-Hilliard problem being 4.7309 x IO-'. For the viscous 
Cahn-Hilliard case a quarter-circle is obtained. 

The sharp interface problem (6.4H6.8) with Neumann boundary conditions has many 
equilibria consisting of 6 being the constant -u,=K/u~, K being the mean curvature of the 
interfaces and the measure of the sets Q+ and Q- being their initial volumes, which for our 
choice gives 1 Q 2 + 1  = 10-1 = IQl/2. It follows that the interfaces for a particular equilibrium 
are either all straight lines or pieces of circles with fixed radius. Thus it is clear that the 
equilibrium with minimal interface divides Q into two strips of equal area with 0 = 0 
and there are two such equilibria. Furthermore it is known from r-convergence theory, 
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Figure 6.3.(ii). Temperature at interface in radially symmetric case ( -) compared to exact 
value (. . .) 

Modica [26], Luckhaus and Modica [25], that the equilibria of (6.1)<6.2) with minimal 
energy converges as 6 + 0 to this minimal interface solution. The set of sharp interface 
equilibria with pieces of circles as interfaces has four minimal interface solutions; each of 
which consists of a single quarter circle interface located at one of the comers of the square. 
These exact solutions satisfy 

(6.16) 

where R, is the critical radius of a circle and for our data R, = 0.3989 and 0 = -0.023 632. 
Our computational steady states in figure 6.4 correspond to these sharp interface steady 
states. In particular the quarter-circle steady state has the constant equilibrium temperature 
0 = -0.02351 1 and radius Rc = 0.3984 showing close agreement with the exact values. 

In order to rule out the possibility that the computed equilibria are spurious, these 
three simulations were repeated using h = 0.5/128,, so doubling the number of mesh 
points appearing in the interfacial region; identical results~were obtained in all cases. For 
the parameters given above the problem was repeated for a number of different initial 
random perturbations. In all simulations for the Cahn-Hilliard and Cahn-Allen scalings the 
stationary solution of two strips was obtained, while for the viscous Cahn-Hilliard scaling 
either a two strips solution or a solution of a~quarter circle with critical radius R, was 
obtained. Figure 6.5 shows one case where the two strip solution occurs in the viscous 
Cahn-Hilliard equation, case (ii). A large number of simulations were also performed 
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using E e 0.01 with the values of h already described. Such computations are likely 
to be spurious for sufficiently small E since the ratio h/& eventually becomes too large 
for sufficient resolution of interfaces. Indeed, while the initial stages of the computations 
resemble those illustrated in figures 6.4 and 6.5, the stationary solutions described above 
were not always obtained. In general the computed stationary solutions when h/E is too 
large had interfaces with small but differing amounts of curvature. Computational experience 
suggests that, for the nonlinearity f ( u )  = U - u3, h % E/A ensures a sufficient number 
of mesh points to resolve the interfacial region and exclude spurious solutions. This is 
consistent with observations made by Caginalp and Socolovsky [SI for the full phase-field 
model. 

We are confident that the computed steady states shown in figure 6.4 are good 
approximations of steady states of (6.1X6.2) and believe that the stability of the two 
strip steady state is computed correctly. However it is an open question whether the quarter 
circle steady state is stable. 

t=O t=0.0015 

t=0.01 t=0.0875 

Figure 6.4.(i). Time evolution of Allen-Cahn problem with homogeneous Neumann boundary 
conditions and B = 0.01, 01 = 1. 02 = 0. 
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t=0.005 t=0.02 

t=0.5 t=2 

Figure BA.(ii). l?m evolution of Caku-Hilliard problem with homogeneous Neumann boundary 
conditions and 6 = 0.01. UI = 0. a2 = 50. 

7. Conclusions 

In summary this paper shows by computation and a certain amount of analysis that: (a) 
from a qualitative dynamical systems viewpoint, the model (1.1)-(1.3) with p = 1 - 0 1  is 
independent of 01 E [0, 11 for both Neumann and Dirichlet boundary conditions; (b) from the 
point of view of the detailed physics driving interface propagation in (1.3)-(1.2), the values 
of a, ,3 and y are crucial. In a companion paper, 1181, we provide theoretical results from a 
qualitative dynamical systems viewpoint, some of which partially support the computations 
described here. 
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1=0.0025 t=0.05 

t=0.45 bl.5 

Figure 6.4.(iii). Time evolution of viscous Cahn-Hilliard problem with homogeneous Neumann 
boundary conditions and c = 0.01, 01 = 1, 02 = 50. 

Appendix 

The results given in this appendix are due to J F Toland. They are elementary but we were 
unable to find them in the literature. The basic result applied in the paper is theorem A, 
which is proved through the lemmas AI, A2 and A3. Lemma A1 is slightly more general 
than necessary since it allows L and M L  to have zero eigenvalues whilst theorem A refers 
only to nonzero eigenvalues. 

Theorem A. Suppose L and M are bounded self-adjoint linear operators on a Hilbert space 
H ,  L is compact and (Mx ,  x )  > 0,  Vx E H \ {O}. Then ML, LM, and L have the same 
number of positive eigenvalues and the same number of negative eigenvalues. The counting 
of eigenvalues is done wing multiplicily. All eigenvalues are real and have equal algebraic 
and geometric multipliciry (i.e. they are semi-simple). 
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Figure 65. Time evolution of viscous Cahn-Hilliard problem with homogeneous Neumann 
bounday conditions and E = 0.01, U, '= 1. 02 = 50. 

Proof. It suffices to prove the result for ML and L since (ML)* = LM, and for any 
compact operator P, P and P' have the same nonzero eigenvalues with the same algebraic 
and geomekic multiplicities. The proof now follows from the following three lemmas. 0 

Suppose throughout that the remainder of the appendix that H is a Hilbert space and 
L, M : H + H are bounded self adjoint operators with ( M x ,  x )  z 0 for all x E H \ (0). 
Further assumptions are added as needed. 

Lemma A.l. All the eigenvalues of ML are real and semi-simple and 

ker(ML) = ker(L) ker(ML)2 = ker(L). 

bf Proof. 
Then, if A # 0. Lx # 0 and 

Suppose that A is an eigenvalue of ML. Let x # 0 be such that MLx = Ax. 

0 < (MLX. Lx) = h ( x ,  L x )  

Since L and M are self-adjoint, (MLx, Lx) and ( x ,  Lx) E R. Hence A E R. Thus all the 
eigenvalues of ML are real. Since M is injective, ker(ML) = ker(L). 

Now suppose that MLMLx = 0, x # 0. Then LMLx = 0 since M is injective. Hence 

( M L x ,  Lx) = (LMLx. x )  = 0 
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which implies that Lx = 0. Thus ker(ML)’ = ker(L). Since ker(ML)’ = ker(ML) this 
shows that if 0 is an eigenvalue of ML, it is semi-simple. Now suppose that A # 0 is an 
eigenvalue of ML. Say MLx = Ax and, seeking a contradiction, that MLy -Ay  = x .  
Then 

0 < (MLx,  Lx) = (MLx,  LMLy - ALy) 
= ( M L x ,  LMLy) - (AMLx,  Ly) 
= (AX. LMLy) ,- (AX, LMLy) = 0 

Hence no such a y exists and h is semi-simple. This completes the proof. 0 

Lemma A.2. Suppose that L or M is compact and L h m negative eigenvalues (at 
least) and n positive eigenvalues (at least). Then ML has at least m negative and n positive 
eigenvalues. (In all cases eigenvalues are counted using multiplicities. The algebraic and 
geometric multiplicity are equal.) 

Proof. Let (e l , .  . . , e , )  be an orthonormal family of eigenfunctions corresponding to 
negative eigenvalues of L. Denote the negative eigenvalue of least absolute value by 
A, so that 

Since M is injective its range, and that of its square mot, is dense. Let E z 0 and let 
f,, 1 < j < m be such that 

A i  < Az < . . ~ < Am < 0. . 
l l ~ f f i - e j l l  < E .  

Then {fi, . . , f,) is a linearly independent set if E > 0 is sufficiently small. 
x = cy=, aifi .  Then 

Let 

(Mf L M L ,  x )  = (LMtX, M i x )  

m 

ai M f fi) 
i=l 

i=l i=I 

< O  
if E 

is negative on a space of dimension m and so has at least m negative eigenvalues. Say, 
Mi L M ~ x  = Ax. Then 

0 is sufficiently small. Hence the compact, self-adjoint, linear operator M I L M !  

M L ( M ~ X )  = A ( M ~ ) .  
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Hence, since Mi is injective, A is an eigenvalue of ML. Since Mi is injective we conclude 
that M L  also has at least m negative eigenvalues. 

0 

Suppose L is compact and M L  has m negative eigenvalues and n positive 

The argument for positive eigenvalues is obtained hy replacing L with -L. 

Lemma A.3. 
eigenvalues. Then so does L. 

Proof. Let { f l  , . . . , f,) be a linearly independent set of eigenvectors of M L  corresponding 
to the negative eigenvalues A1 < . . . < A, < 0 of L. Then 

Hence f j  = M i  yj for some yj E H ,  and the yj 's  form a linearly independent set. Hence 

~ i ( ~ i ~ ~ i y ~ )  = i j ~ i Y j  
whence 

I ,  
MiLMiyj  = hjyj 1 < j < m. 

Since Mi L M i  is a self adjoint operator, the yj's corresponding to distinct A, are orthogonal. 
Hence 

( M ~ L M ~ Y ,  Y ~ < A , I I Y I I  , ~ y ~ ~ : = s p a n ( y l , . . . . y , ~  

{LZ, z) <-CIIZII ~ z € ~ : = ~ f ~ = s p a n ( f , , . . . , f , }  
for some c > 0. 'Hence the compact self-adjoint operator L has m negative eigenvalues. 

0 
Note that since lemma A3 may hold for any integer m, the integer m can be interpreted 

Hence 

The positiveeigenvalue problem is done by replacing L with -L. 

as taking the value infinity. 
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