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Abstract
Operator learning refers to the application of ideas from machine learning to approximate
(typically nonlinear) operators mapping between Banach spaces of functions. Such oper-
ators often arise from physical models expressed in terms of partial differential equations
(PDEs). In this context, such approximate operators hold great potential as efficient sur-
rogate models to complement traditional numerical methods in many-query tasks. Being
data-driven, they also enable model discovery when a mathematical description in terms
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of a PDE is not available. This review focuses primarily on neural operators, built on
the success of deep neural networks in the approximation of functions defined on finite
dimensional Euclidean spaces. Empirically, neural operators have shown success in a va-
riety of applications, but our theoretical understanding remains incomplete. This review
article summarizes recent progress and the current state of our theoretical understanding
of neural operators, focusing on an approximation theoretic point of view.
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1 Introduction

This paper overviews algorithms and analysis related to the subject of oper-
ator learning: finding approximations of maps between Banach spaces, from
data. Our focus is primarily on neural operators, which leverage the success of
neural networks in finite dimensions; but we also cover related literature in the
work specific to learning linear operators, and the use of Gaussian processes and
random features. In Subsection 1.1 we discuss the motivation for our specific
perspective on operator learning. Subsection 1.2 contains a literature review.
Subsection 1.3 overviews the remainder of the paper.

1.1 High dimensional vectors versus functions

Many tasks in machine learning require operations on high dimensional tensors1

arising, for example, from pixellation of images or from discretization of a real-
valued mapping defined over a subset of Rd . The main idea underlying the work
that we overview in this paper is that it can be beneficial, when designing and
analyzing algorithms in this context, to view these high dimensional vectors
as functions u : D → R

c defined on a domain D ⊂ R
d . For example (c, d) =

(3,2) for RGB images and (c, d) = (1,3) for a scalar field such as temperature
in a room. Pixellation, or discretization, of D will lead to a tensor with size
scaling like N , the number of pixels or discretization points; N will be large and
hence the tensor will be of high dimension. Working with data-driven algorithms
designed to act on function u, rather than the high dimensional tensor, captures
intrinsic properties of the problem, and not details related to specific pixellation
or discretization; as a consequence models learned from data can be transfered
from one pixellation or discretization level to another.

Consider the image shown in Fig. 1a, at four levels of resolution. As an
RGB image it may be viewed as a vector in R3N where N is the number of
pixels. However by the time we reach the highest resolution (bottom right) it is

1 “Tensor” here may be a vector, matrix or object with more than two indices.
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FIGURE 1 High-dimensional vectors versus functions.

more instructive to view it as a function mapping D := [0,1]2 ⊂ R
2 into R

3.
This idea is summarized in Fig. 1b. Even if the original machine learning task
presents as acting on high dimensional tensor of dimension proportional to N , it
is worth considering whether it may be formulated in the continuum limit N →
∞, conceiving of algorithms in this setting, and only then approximating to
finite dimension again to obtain practical algorithms. These ideas are illustrated
in Figs. 2a and 2b.

FIGURE 2 Discretize-then-approximate versus approximate-then-discretize.

1.2 Literature review

We give a brief overview of the literature in this field; greater depth, and more
citations, are given in subsequent sections.

1.2.0.1 Algorithms on function space

The idea of conceiving algorithms in the continuum, and only then discretiz-
ing, is prevalent in numerous areas of computational science and engineering.
For example in the field of PDE constrained optimization the relative merits
of optimize-then-discretize, in comparison with discretize-then-optimize, are
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frequently highlighted (Hinze et al., 2008). In the field of Bayesian inverse prob-
lems (Kaipio and Somersalo, 2006) formulation on Banach space (Stuart, 2010)
leads to new perspectives on algorithms, for example in MAP estimation (Kle-
banov and Sullivan, 2023). And sampling probability measures via MCMC can
be formulated on Banach spaces (Cotter et al., 2012), leading to provably di-
mension independent convergence rates (Hairer et al., 2014).

1.2.0.2 Supervised learning on function space

Supervised learning (Goodfellow et al., 2016) rose to prominence in the context
of the use of deep neural network (DNN) methods for classifying digits and then
images. In such contexts the task is formulated as learning a mapping from a Eu-
clidean space (pixellated image) to a set of finite cardinality. Such methods are
readily generalized to regression in which the output space is also a Euclidean
space. However, applications in science and engineering, such as surrogate mod-
eling (Sacks et al., 1989) and scientific discovery (Raghu and Schmidt, 2020),
often suggest supervised learning tasks in which input and/or output spaces are
infinite dimensional; in particular they comprise spaces of functions defined
over subsets of Euclidean space. We refer to the resulting methods, conceived
to solve supervised learning tasks where the inputs and outputs are functions,
as neural operators. Whilst there is earlier work on regression in function space
(Ramsay and Dalzell, 1991), perhaps the earliest paper to conceive of neural
network-based supervised learning between spaces of functions is by Chen and
Chen (1995). This work was generalized in the seminal DeepONet paper (Lu et
al., 2021). Concurrently with the development of DeepONet other methods were
being developed, including methods based on model reduction (Bhattacharya et
al., 2021) (PCA-Net) and on random features (Nelsen and Stuart, 2021). The
random feature approach in Nelsen and Stuart (2021) included the use of ma-
nipulations in the Fourier domain, to learn the solution operator for viscous
Burgers’ equation, whose properties are well-understood in Fourier space. We
also mention a related Fourier-based approach in Patel and Desjardins (2018);
Patel et al. (2021). The idea of using the Fourier transform was exploited more
systematically through development of the Fourier Neural Operator (FNO) (Li
et al., 2021). The framework introduced in this paper has subsequently been
generalized to work with sets of functions other than Fourier, such as wavelets
(Tripura and Chakraborty, 2023), spherical harmonics (Bonev et al., 2023) and
more general sets of functions (Benitez et al., 2023; Lanthaler et al., 2023a). The
FNO architecture is related to convolutional neural networks, which have also
been explored for operator learning, see e.g. Raonic et al. (2023a,b); Franco et
al. (2023); Lippe et al. (2024), and Rahman et al. (2023); Gupta and Brandstetter
(2022) for relevant work. We mention also similar developments in computer
graphics where, in Ovsjanikov et al. (2012), a method is proposed based on
projections onto the eigenfunctions of the Laplace-Beltrami operator and is sub-
sequently extended in Yi et al. (2017); Litany et al. (2017); Sharp et al. (2022).
At a more foundational level, recent work (Bartolucci et al., 2023) develops a
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theoretical framework to study neural operators, aiming to pinpoint theoretical
distinctions between these infinite-dimensional architectures from conventional
finite-dimensional approaches, based on a frame-theoretic notion of representa-
tion equivalence.

1.2.0.3 Approximation theory

The starting point for approximation theory is universal approximation. Such
theory is overviewed in the finite dimensional setting in Pinkus (1999). It is de-
veloped systematically for neural operators in Kovachki (2022), work that also
appeared in Kovachki et al. (2023). However, the first paper to study univer-
sal approximation, in the context of mappings between spaces of scalar-valued
functions, is Chen and Chen (1995). This was followed by work extending their
analysis to DeepONet (Lanthaler et al., 2022), analysis for the FNO (Kovachki
et al., 2021) and analysis for PCA-Net in Bhattacharya et al. (2021), and a num-
ber of more recent contributions, e.g. Zhang et al. (2023); Hua and Lu (2023);
Jin et al. (2022b); Castro (2023); Castro et al. (2022); Huang et al. (2024).

The paper by Lu et al. (2021) first introduced DeepONets and studied their
practical application on a number of prototypical problems involving differen-
tial equations. The empirical paper by De Hoop et al. (2022) studies various
neural operators from the perspective of the cost-accuracy trade-off, studying
how many parameters, or how much data, is needed to achieve a given error.
Such complexity issues are studied theoretically for DeepONet, in the context
of learning the solution operator for the incompressible Navier-Stokes equation
and several other PDEs, in Lanthaler et al. (2022), with analogous analysis for
PCA-Net in Lanthaler (2023). In Marcati and Schwab (2023) the coefficient to
solution map is studied for divergence form elliptic PDEs, and analyticity of
the coefficient and the solution is exploited to study complexity of the resulting
neural operators. The paper by Herrmann et al. (2022) studies complexity for
the same problem, but exploits operator holomorphy. In Lanthaler and Stuart
(2023) complexity is studied for Hamilton-Jacobi equations, using approxima-
tion of the underlying characteristic flow. The work by Furuya et al. (2024)
discusses conditions under which neural operator layers are injective and sur-
jective. The sample complexity of operator learning with DeepONet and related
architectures is discussed in Liu et al. (2024). Out-of-distribution bounds are
discussed in Benitez et al. (2023).

The paper by de Hoop et al. (2023) studies the learning of linear operators
from data. This subject is developed for elliptic and parabolic equations, and
in particular for the learning of Greens functions, in Gin et al. (2020); Boullé
et al. (2022a,b); Boullé and Townsend (2023); Wang and Townsend (2023);
Stepaniants (2023) and, for spectral properties of the Koopman operator, the
solution operator for advection equations, in Kostic et al. (2022); Colbrook and
Townsend (2024).
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1.3 Overview of paper

In Section 2 we introduce operator learning as a supervised learning problem
on Banach space; we formulate testing and training in this context, and provide
an example from porous medium flow. Section 3 is devoted to definitions of
the supervised learning architectures that we focus on in this paper: PCA-Net,
DeepONet, the Fourier Neural Operator (FNO) and random features methods.
Section 4 describes various aspects of universal approximation theories in the
context of operator learning. In Section 5 we study complexity of these ap-
proximations, including discussion of linear operator learning; specifically we
study questions such as how many parameters, or how much data, is required to
achieve an operator approximation with a specified level of accuracy; and what
properties of the operator can be exploited to reduce complexity? We summarize
and conclude in Section 6.

2 Operator learning

In Subsection 2.1 we define supervised learning, followed in subsection 2.2
by discussion of the topic in the specific case of operator learning. Subsec-
tion 2.3 is devoted to explaining how the approximate operator is found from
data (training) and how it is evaluated (testing). Subsection 2.4 describes how
latent structure can be built into operator approximation, and learned from data.
Subsection 2.5 contains an example from parametric partial differential equa-
tions (PDEs) describing flow in a porous medium.

2.1 Supervised learning

The objective of supervised learning is to determine an underlying mapping
�† :U→V from samples2

{un,�
†(un)}Nn=1, un ∼ μ. (2.1)

Here the probability measure μ is supported onU. Often supervised learning is
formulated by use of the data model

{un, vn}Nn=1, (un, vn) ∼ π, (2.2)

where the probability measure π is supported onU ×V. The data model (2.1)
is a special case which is sufficient for the exposition in this article.

In the original applications of supervised learning U = R
dx and V = R

dy

(regression) orV= {1, . . . ,K} (classification). We now go beyond this setting.

2 Note that from now on N denotes the data volume (and not the size of a finite dimensional
problem as in Subsection 1.1).
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2.2 Supervised learning of operators

In many applications arising in science and engineering it is desirable to con-
sider a generalization of the finite-dimensional setting to separable Banach
spacesU,V of vector-valued functions:

U = {u : Dx →R
di }, Dx ⊆R

dx

V= {v : Dy → R
do}, Dy ⊆R

dy .

Given data (2.1) we seek to determine an approximation to �† :U→V from
within a family of parameterized functions

� :U × � �→V.

Here � ⊆ R
p denotes the parameter space from which we seek the optimal

choice of parameter, denoted θ�. Parameter θ� may be chosen in a data-driven
fashion to optimize the approximation of �† by �( · ; θ�); see the next sub-
section. In Section 4 we will discuss the choice of θ� from the perspective of
approximation theory.

2.3 Training and testing

The data (2.1) is used to train the model �; that is, to determine a choice of
θ . To this end we introduce an error, or relative error, measure r :V′ ×V′ →
R

+. Here V′ is another Banach space containing the range of �† and �( · ; θ).
Typical choices for r include the error

r(v1, v2) = ‖v1 − v2‖V′ (2.3)

and, for ε ∈ (0,∞), one of the relative errors

r(v1, v2) = ‖v1 − v2‖V′

ε + ‖v1‖V′
, or r(v1, v2) = ‖v1 − v2‖V′

max{ε,‖v1‖V′ } . (2.4)

Now let μN be the empirical measure

μN = 1

N

N∑
n=1

δun .

Then the parameter θ� is determined from

θ∗ = argminθ RN(θ), RN(θ) := E
u∼μN

[
r
(
�†(u),�(u; θ)

)q]
,

for some positive q, typically q = 1. Function RN(θ) is known as the empirical
risk; also of interest is the expected (or population) risk

R∞(θ) := E
u∼μ

[
r
(
�†(u),�(u; θ)

)q]
.
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Note that R∞(θ) requires knowledge of data in the form of the entire probability
measure μ.

Once trained, models are typically tested by evaluating the error

error := E
u∼μ′ [

r
(
�†(u),�(u; θ)

)q]
.

Here μ′ is defined on the support of μ. For computational purposes the measure
μ′ is often chosen as another empirical approximation of μ, independently of
μN ; other empirical measures may also be used. For theoretical analyses μ′ may
be chosen equal to μ, but other choices may also be of interest in determining
the robustness of the learned model; see, for example, Benitez et al. (2023).

2.4 Finding latent structure

Behind many neural operators is the extraction of latent finite dimensional struc-
ture, as illustrated in Fig. 3. Here we have two encoder/decoder pairs onU and
V, namely

GU ◦ FU ≈ IU, GV ◦ FV ≈ IV

where IU , IV are the identity maps onU andV respectively. Then ϕ is chosen
so that

GV ◦ ϕ ◦ FU ≈ �†.

The map FU extracts a finite dimensional latent space from the input Banach
space while the map GV returns from a second finite dimensional latent space to
the output Banach space. These encoder-decoder pairs can be learned, reducing
the operator approximation to a finite dimensional problem.

FIGURE 3 Latent Structure in Maps Between Banach SpacesU andV.

2.5 Example (fluid flow in a porous medium)

We consider the problem of finding the piezometric head v from permeability
a in a porous medium assumed to be governed by the Darcy Law in domain
D⊂R

2. This results in the need to solve the PDE{
−∇ · (a∇v) = f, z ∈ D

v = 0, z ∈ ∂D.
(2.5)
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Here we consider f ∈ H−1(D) to be given and fixed. The operator of interest3

�† : a �→ v then maps from a subset of the Banach space L∞(D) into H 1
0 (D).

An example of a typical input-output pair is shown in Figs. 4a, 4b. Because the
equation requires strictly positive a, in order to be well-defined mathematically
and to be physically meaningful, the probability measure μ must be chosen
carefully. Furthermore, from the point of view of approximation theory, it is
desirable that the space U is separable; for this reason it is often chosen to be
L2(D) and the measure supported on functions a satisfying a positive lower
bound and a finite upper bound. Draws from such a measure are in L∞(D)

and satisfy the necessary positivity and boundedness inequalities required for a
solution to the Darcy problem to exist (Evans, 2010).

FIGURE 4 Illustrative input-output function pair for the Darcy problem.

3 Specific supervised learning architectures

Having reviewed the general philosophy behind operator learning, we next aim
to illustrate how this methodology is practically implemented. To this end, we
review several representative proposals for neural operator architectures, below.

3.1 PCA-Net

The PCA-Net architecture was proposed as an operator learning framework in
Bhattacharya et al. (2021), anticipated in Hesthaven and Ubbiali (2018); Swis-
chuk et al. (2019). In the setting of PCA-Net, �† : U → V is an operator
mapping between Hilbert spaces U and V, and inputs are drawn from a prob-
ability measure μ on U. Principal component analysis (PCA) is employed to
obtain data-driven encoders and decoders, which are combined with a neural
network mapping to give rise to the PCA-Net architecture.

3 We use the notation a for input functions here, because it is a commonly adopted notation in
applications to porous medium flow.
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The encoder is defined from PCA basis functions on the input spaceU, com-
puted from the covariance under μ: the encoder FU is determined by projection
onto the first dU PCA basis functions {φj }dUj=1. The encoding dimension dU rep-
resents a hyperparameter of the architecture. The resulting encoder is given by
a linear mapping to the PCA coefficients,

FU :U→ R
dU , FU(u) = Lu := {〈φj ,u

〉}dUj=1.

The decoder GV onV is similarly obtained from PCA under the push-forward
measure �

†
#μ. Denoting by {ψj }dVj=1 the first dV basis functions under this push-

forward, the PCA-Net decoder is defined by an expansion in this basis, i.e.

GU : RdV →V, GU(α) =
dV∑
j=1

αjψj .

The PCA dimension dV represents another hyperparameter of the PCA-Net ar-
chitecture.

Finally, the PCA encoding and decoding on U and V are combined with a
finite-dimensional neural network α :RdU × � →R

dV , w �→ α(w; θ) where

α(w; θ) := (α1(w; θ), . . . , αdV(w; θ)),

parametrized by θ ∈ �. This results in an operator �PCA :U→V, of the form

�PCA(u; θ)(y) =
dV∑
j=1

αj (Lu; θ)ψj (y), ∀u ∈U, y ∈Dy

which defines the PCA-Net architecture. Hyperparameters include the dimen-
sions of PCA dU , dV, and additional hyperparameters determining the neural
network architecture of α. In practice we are given samples of input-/output-
function pairs with uj sampled i.i.d. from μ:

{(u1, v1), . . . , (uN , vN)},
where vj := �†(uj ). Then the PCA basis functions are determined from the co-
variance under an empirical approximation μN of μ, and its pushforward under
�†. The same data is then used to train neural network parameter θ ∈ � defining
α(w; θ).

3.2 DeepONet

The DeepONet architecture was first proposed as a practical operator learning
framework in Lu et al. (2021), building on early work by Chen and Chen (1995).
Similar to PCA-Net, the DeepONet architecture is also defined in terms of an
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encoder FU on the input space, a finite-dimensional neural network α between
the latent finite-dimensional spaces, and a decoder GV on the output space.
To simplify notation, we only summarize this architecture for real-valued input
and output functions. Extension to operators mapping between vector-valued
functions is straightforward.

The encoder in the DeepONet architecture is given by a general linear
map L,

FU :U→R
dU , FU(u) = Lu.

Popular choices for the encoding include a mapping to PCA coefficients, or
could comprise pointwise observations {u(x�)}dU�=1 at a predetermined set of so-
called sensor points x�. Another alternative of note is active subspaces (Zahm et
al., 2020), which combine information about the input distribution and forward
mapping through its gradient. This approach has been explored for function
encoding in scientific ML in O’Leary-Roseberry et al. (2024); Luo et al. (2023).

The decoder in the DeepONet architecture is given by expansion with respect
to a neural network basis. Given a neural network ψ : Dy × �ψ →RdV , which
defines a parametrized function from the domain Dy of the output functions to
R

dV , the DeepONet decoder is defined as

GV : RdV →V, GV(α) =
dV∑
j=1

αjψj .

The above encoder and decoders on U and V are combined with a finite-
dimensional neural network α : RdU × �α → R

dV , to define the parametrized
DeepONet,

�DEEP (u; θ)(y) =
dV∑
j=1

αj (Lu; θα)ψj (y; θψ), ∀u ∈U, y ∈ Dy.

This architecture is specified by choice of the linear encoding L, and choice
of neural network architectures for α and ψ . Following Lu et al. (2021) the
network α is conventionally referred to as the “branch-net” (often denoted b or
β), while ψ is referred to as the “trunk-net” (often denoted t or τ ). The combined
parameters θ = {θα, θψ } of these neural networks are learned from data of input-
and output-functions.

3.3 FNO

The Fourier Neural Operator (FNO) architecture was introduced in Li et al.
(2021); Kovachki et al. (2023). In contrast to the PCA-Net and DeepONet
architectures above, FNO is not based on an approach that combines an encod-
ing/decoding to a finite-dimensional latent space with a finite-dimensional neu-
ral network. Instead, neural operators such as the FNO generalize the structure
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of finite-dimensional neural networks to a function space setting, as summa-
rized below. We will assume that the domain of the input and output functions
Dx = [0,2π ]d can be identified with the d-dimensional periodic torus.

FNO is an operator architecture of the form,

�FNO(u; θ) =Q ◦LL ◦ · · ·L2 ◦L1 ◦R(u), ∀u ∈U,

L�(v)(x; θ) = σ
(
W�v(x) + b� +K(v)(x;γ�)

)
.

It comprises of input and output layers Q, R, given by a pointwise composi-
tion with either a shallow neural network or a linear transformation, and several
hidden layers L�.

Upon specification of a “channel width” dc, the �-the hidden layer takes as
input a vector-valued function v : x �→ v(x) ∈ R

dc and outputs another vector-
valued function L�(v) : x �→ L�(v)(x) ∈ R

dc .4 Each hidden layer involves an
affine transformation

v(x) �→ w(x) := W�v(x) + b� +K(v)(x;γ�),

and a pointwise composition with a standard activation function

w(x) �→ σ(w(x)),

where σ could e.g. be the rectified linear unit or a smooth variant thereof.
In the affine transformation, the matrix-vector pair (W�, b�) defines a point-

wise affine transformation of the input v(x), i.e. multiplication by matrix W�

and adding a bias b�. K is a convolutional integral operator, parameterized by
γ�,

K(v)(x;γ�) =
∫
Dx

κ(x − y;γ�)v(y) dy,

with κ( · ;γ�) a matrix-valued integral kernel. The convolutional operator can
be conveniently evaluated via the Fourier transform F , giving rise to a matrix-
valued Fourier multiplier,

K(v)(x;γ�) = F −1(F (κ( · ;γ�))F (v)),

where the Fourier transform is computed componentwise, and given by
F (v)(k) = ∫

Dx
v(x)e−ik·x dx. To be more specific, if we write κ(x) =

(κij (x))
dc

ij=1 in terms of its components, and if κ̂k,ij denotes the k-th Fourier
coefficient of κij (x), then the i-th componentK(v)i of the vector-valued output
function K(v) is given by

[K(v)i](x;γ�) = 1

(2π)d

∑
k∈Zd

⎛⎝ dc∑
j=1

κ̂k,ijF (vj )(k)

⎞⎠ eik·x.

4 Channel width can change from layer to layer; we simplify the exposition by fixing it.
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Here, the inner sum represents the action of κ̂ = F (κ) on F (v), and the outer
sum is the inverse Fourier transform F −1. The Fourier coefficients κ̂k,ij repre-
sent the tunable parameters of the convolutional operator. In a practical imple-
mentation, a Fourier cut-off kmax is introduced and the sum over k is restricted
to Fourier wavenumbers |k|�∞ ≤ kmax, with | · |�∞ the �∞-norm, resulting in a
finite number of tunable parameters γ� = {̂κk,ij : |k|�∞ ≤ kmax, i, j = 1, . . . , dc}.

To summarize, the FNO architecture is defined by

1. an input layer R, given by pointwise composition of the input function with
a shallow neural network or a linear transformation,

2. hidden layers L1, . . . ,LL involving, for each � = 1, . . . ,L, matrix W�, bias
b� and convolutional operator K( · ;γ�) with parameters γ� identified with
the corresponding Fourier multipliers κ̂k,ij ,

3. an output layer Q, given by pointwise composition with a shallow neural
network or a linear transformation.

The composition of these layers defines a parametrized operator u �→ �FNO(u;
θ), where θ collects parameters from (1), (2) and (3). The parameters con-
tained in θ are to be trained from data. The hyperparameters of FNO include
the channel width dc, the Fourier cut-off kmax, the depth L and additional hy-
perparameters specifying the input and output layers R and Q.

In theory, the FNO is formulated directly on function space and does not
involve a reduction to a finite-dimensional latent space. In a practical implemen-
tation, it is usually discretized by identifying the input and output functions with
their point-values on an equidistant grid. In this case, the discrete Fourier trans-
form can be conveniently evaluated using the fast Fourier transform algorithm
(FFT), and straightforward implementation in popular deep learning libraries is
possible.

3.4 Random features method

The operator learning architectures above are usually trained from data using
stochastic gradient descent. Whilst this shows great empirical success, the in-
ability to analyze the optimization algorithms used by practitioners makes it
difficult to make definitive statements about the networks that are trained in
practice. Nelsen and Stuart (2021) have proposed a randomized alternative, by
extending the random features methodology (Rahimi and Recht, 2007) to a
function space setting; this methodology has the advantage of being trainable
through solution of a quadratic optimization problem.

The random feature model (RFM) requires specification of a parametrized
operator ψ :U× � →V with parameter set �, and a probability measure ν on
the parameters �. Each draw γ ∼ ν specifies a random feature ψ( · ;γ ) :U→
V, i.e. a random operator. Given iid samples γ1, . . . , γM ∼ ν, the RFM operator
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is then defined as

�RFM(u; θ)(y) =
M∑

j=1

θjψ(u;γj )(y) ∀u ∈U, y ∈Dy; γj i.i.d. .

Here θ1, . . . , θM are scalar parameters. In contrast to the methodologies out-
lined above, the random feature model keeps the randomly drawn param-
eters γ1, . . . , γM fixed, and only optimizes over the coefficient vector θ =
(θ1, . . . , θM). With conventional loss functions, the resulting optimization over
θ is convex, allowing for efficient and accurate optimization and a unique mini-
mizer to be determined.

A suitable choice of random features is likely problem-dependent. Among
others, DeepONet and FNO with randomly initialized weights are possible op-
tions. In the original work by Nelsen and Stuart (2021), the authors employ
Fourier space random features (RF) for their numerical experiments, resem-
bling a single-layer FNO. These Fourier space RF are specified by ψ(u;γ ) =
σ
(
F −1(χF γF u)

)
, where F denotes Fourier transform, σ an activation func-

tion, and χ is a Fourier space reshuffle, and γ is drawn from a Gaussian random
field.

3.5 Discussion

The architectures above can be roughly divided into two categories, depend-
ing on how the underlying ideas from deep learning are leveraged to define a
parametrized class of mappings on function space.

3.5.0.1 Encoder-decoder network structure

The first approach, which we refer to as encoder-decoder-net and which includes
the PCA-Net and DeepONet architectures, involves three steps: first, the input
function is encoded by a finite-dimensional vector; second, an ordinary neural
network, such as a fully connected or convolutional neural network, is employed
to map the encoded input to a finite-dimensional output; third, a decoder maps
the finite-dimensional output to an output function in the infinite-dimensional
function space.

This approach is very natural from a numerical analysis point of view, shar-
ing the basic structure of many numerical schemes, such as finite element
methods (FEM), finite volume methods (FVM), and finite difference methods
(FDM), as illustrated in Table 1. From this point of view, encoder-decoder-nets
mainly differ from standard numerical schemes by replacing the hand-crafted
algorithm and choice of numerical discretization by a data-driven algorithm
encoded in the weights and biases of a neural network, and the possibility
for a data-driven encoding and reconstruction. While appealing, such structure
yields approximations within a fixed, finite-dimensional, linear subspace of V.
In particular, each output function from the approximate operator belongs to
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this linear subspace independently of the input function. Therefore these meth-
ods fall within the category of linear approximation, while methods for which
outputs lie on a nonlinear manifold in V lead to what is known as nonlinear
approximation. The benefits of nonlinear approximation are well understood in
the context of functions (DeVore, 1998), however, for the case of operators, re-
sults are still sparse but benefits for some specific cases have been observed (Lee
and Carlberg, 2020; Cohen et al., 2022; Lanthaler et al., 2023b; Kramer et al.,
2024). The FNO (Li et al., 2021) and random features (Nelsen and Stuart, 2021)
are concrete examples of operator learning methodologies for which the outputs
lie on a nonlinear manifold inV.

TABLE 1 Numerical schemes vs. Encoder-Decoder-Net.

Method Encoding Finite-dim. Mapping Reconstruction
FEM Galerkin projection Numerical scheme Finite element basis

FVM Cell averages Numerical scheme Piecewise polynomial

FD Point values Numerical scheme Interpolation

PCA-Net PCA projection Neural network PCA basis

DeepONet Linear encoder Neural network Neural network basis

3.5.0.2 Neural operators generalizing neural network structure

A second approach to defining a parametrized class of operators on function
space, distinct from encoder-decoder-nets, is illustrated by FNO. Following this
approach, the structure of neural networks, which consist of an alternating com-
position of affine and nonlinear layers, is retained and generalized to function
space. Nonlinearity is introduced via composition with a standard activation
function, such as rectified linear unit or smooth variants thereof. The affine lay-
ers are obtained by integrating the input function against an integral kernel; this
introduces nonlocality which is clearly needed if the architecture is to benefit
from universal approximation.

3.5.0.3 Optimization and randomization

The random features method (Nelsen and Stuart, 2021) can in principle be com-
bined with any operator learning architecture. The random features approach
opens up a less explored direction of combining optimization with randomiza-
tion in operator learning. In contrast to optimization of all parameters (by gra-
dient descent) within a neural operator approach, the RFM allows for in-depth
analysis resulting in error and convergence guarantees that take into account the
finite number of samples, the finite number of parameters and the optimization
(Lanthaler and Nelsen, 2023). One interesting, and largely unresolved question
is how to design efficient random features for the operator learning setting.

The RFM is closely related to kernel methods which have a long pedigree in
machine learning. In this context, we mention a related kernel-based approach
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proposed in Batlle et al. (2024), which employs kernel methods for operator
learning within the encoder-decoder-net paradigm. This approach has shown to
be competitive on several benchmark operator learning problems, and has been
analyzed in Batlle et al. (2024).

3.5.0.4 Other approaches

This review is mostly focused on methods that fall into one of the neural
network-based approaches above, but it should be emphasized that other ap-
proaches are being actively pursued with success. Without aiming to present
an exhaustive list, we mention nonlinear reduced-order modeling (Qian et al.,
2020, 2022; Swischuk et al., 2019; Ling et al., 2016; Lee and Carlberg, 2020),
approaches based on the theory of Koopman operators (Yeung et al., 2019; Pe-
herstorfer and Willcox, 2016; Li et al., 2017; Morton et al., 2018), work aiming
to augment and speed up numerical solvers (Stanziola et al., 2021), or work
on data-driven closure modeling (Huang et al., 2020; Xu et al., 2021; Liu et
al., 2021; Wang et al., 2017; Wu et al., 2018), to name just a few examples.
For a broader overview of other approaches to machine learning for PDEs, we
refer to the recent review by Brunton and Kutz (2023). While most “opera-
tor learning” is focused on operators mapping between functions with spatial or
spatio-temporal dependence and often arising in connection with PDEs, we note
that problems involving time-series represent another important avenue of ma-
chine learning research, which can also be viewed from, and may benefit from,
the continuous viewpoint by Lanthaler et al. (2023c).

4 Universal approximation

The goal of the methodologies summarized in the last section is to approximate
operators mapping between infinite-dimensional Banach spaces of functions.
The first theoretical question to be addressed is whether these methods can
achieve this task, even in principle? The goal of this line of research is to iden-
tify classes of operators for which operator learning methodologies possess a
universal approximation property, i.e. the ability to approximate a wide class of
operators to any given accuracy in the absence of any constraints on the model
size, the number of data samples and without any constraints on the optimiza-
tion.

Universal approximation theorems are well-known for finite dimensional
neural networks mapping between Euclidean spaces (Hornik et al., 1989; Cy-
benko, 1989), providing a theoretical underpinning for their use in diverse ap-
plications. These results show that neural networks with nonpolynomial activa-
tion can approximate very general classes of continuous (and even measurable)
functions to any degree of accuracy. Universal approximation theorems for oper-
ator learning architectures provide similar guarantees in the infinite-dimensional
context.
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4.1 Encoder-decoder-nets

As pointed out in the last section, a popular type of architecture follows the
encoder-decoder-net paradigm. Examples include PCA-Net and DeepONet. The
theoretical basis for operator learning broadly, and within this paradigm more
specifically, was laid out in a paper by Chen and Chen (1995), only a few years
after the above cited results on the universality of neural networks. In that work,
the authors introduce a generalization of neural networks, called operator net-
works, and prove that the proposed architecture possesses a universal property:
it is shown that (shallow) operator networks can approximate, to arbitrary ac-
curacy, continuous operators mapping between spaces of continuous functions.
This architecture and analysis forms the basis of DeepONet, where the shallow
neural networks of the original architecture of Chen and Chen (1995) are re-
placed by their deep counterparts. We present first a general, abstract version
of an encoder-decoder-net and give a criterion on the spaces U, V for which
such architectures satisfy universal approximation. We then summarize specific
results for DeepONet and PCA-Net architectures.

We call an encoder-decoder-net a mapping �ED :U→V which has the
form

�ED = FU ◦ α ◦ GV

where FU : U → R
dU , GV : RdV → V are bounded, linear maps and α :

R
dU → R

dV is a continuous function. The following theorem (Kovachki et al.,
2023, Lemma 22) asserts that encoder-decoder-nets satisfy universal approxi-
mation over a large class of spacesU andV.

Theorem 4.1. Suppose that U, V are separable Banach spaces with the
approximation property. Let �† : U → V be a continuous operator. Fix a
compact set K ⊂ U. Then for any ε > 0, there exist positive integers dU ,
dV, bounded linear maps FU : U → R

dU , GV : RdV → V, and a function
α ∈ C(RdU ;RdV), such that

sup
u∈K

‖�†(u) − (FU ◦ α ◦ GV)(u)‖V ≤ ε.

♦

A Banach space is said to have the approximation property if, over any com-
pact set, the identity map can be resolved as the limit of finite rank operators
(Lindenstrauss and Tzafriri, 2013). Although it is a fundamental property useful
in many areas in approximation theory, it is not satisfied by all separable Banach
spaces (Enflo, 1973). However, many of the Banach spaces used in PDE theory
and numerical analysis such as Lebesgue spaces, Sobolev spaces, Besov spaces,
and spaces of continuously differentiable functions all posses the approximation
property (Kovachki et al., 2023, Lemma 26). The above therefore covers a large
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range of scenarios in which encoder-decoder-nets can be used. We now give ex-
amples of encoder-decoder-nets where we fix the exact functional form of FU
and GV and show that universal approximation continues to hold.

4.1.1 Operator network and DeepONet
The specific form of operator networks as introduced and analyzed by Chen and
Chen (1995) focuses on scalar-valued input and output functions. We will state
the main result of Chen and Chen (1995) in this setting for notational simplic-
ity. Extension to vector-valued functions is straightforward. In simplified form,
Chen and Chen (1995, cf. Theorem 5) obtain the following result:

Theorem 4.2. Suppose that σ ∈ C(R) is a nonpolynomial activation function.
Let D ⊂ R

d be a compact domain with Lipschitz boundary. Let �† : C(D) →
C(D) be a continuous operator. Fix a compact set K ⊂ C(D). Then for any
ε > 0, there are positive integers dU , dV, N , sensor points x1, . . . , xdU ∈ D, and
coefficients ck

i , ξk
ij , bi , ωk , ζk with i = 1, . . . ,N , j = 1, . . . , dU , k = 1, . . . , dV,

such that

sup
u∈K

sup
x∈D

∣∣∣∣∣∣�†(u)(x) −
dV∑
k=1

N∑
i=1

ck
i σ

⎛⎝ dU∑
j=1

ξk
ij u(xj ) + bi

⎞⎠σ(ωkx + ζk)

∣∣∣∣∣∣≤ ε.

(4.1)

♦
Here, we can identify the linear encoder Lu = (u(x1), . . . , u(xdU )), the shal-

low branch-net α, with components

αk(Lu) =
N∑

i=1

ck
i σ

⎛⎝ dU∑
j=1

ξk
ij u(xj ) + bi

⎞⎠ ,

and trunk-net ψ , with components

ψk(y) = σ(ωkx + ζk).

With these definitions, (4.1) can be written in the equivalent form,

sup
u∈K

∥∥∥∥∥∥�†(u) −
dV∑
k=1

αk(Lu)ψk

∥∥∥∥∥∥
C(D)

≤ ε.

Remark 4.3. Theorem 4.2 holds in much greater generality. In particular, it is
not necessary to consider operator mapping input functions to output functions
on the same domain D. In fact, the same result can be obtained for operators
�† : C(V ) → C(D), where the input “functions” u ∈ C(V ) can have domain a
compact subset V of a general, potentially infinite-dimensional, Banach space.
♦
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Theorem 4.2 provides the motivation and theoretical underpinning for Deep-
ONet, extended to deep branch- and trunk-nets in Lu et al. (2021). These results
demonstrate the universality of DeepONet for a very wide range of operators,
with approximation error measured in the supremum-norm over a compact set
of input functions.

4.1.1.1 Related work

Several extensions and variants of DeepONets have been proposed after the
initial work by Lu et al. (2021), including extensions of the universal approxi-
mation analysis. We provide a short overview of relevant works that include a
theoretical component below.

4.1.1.2 Input functions drawn from a probability measure

In Lanthaler et al. (2022), Theorem 4.2 has been generalized to input functions
drawn from a general input measure μ, including the case of unbounded sup-
port, such as a Gaussian measure. The error is correspondingly measured in the
Bochner L2(μ)-norm (cp. discussion of PCA-Net universality below), and it is
demonstrated that DeepONet can approximate general Borel measurable opera-
tors in such a setting.

4.1.1.3 Alternative encoders

There is work addressing the discretization-invariance of the encoding in Deep-
ONet, resulting in architectures that allow for encoding of the input function at
arbitrary sensor locations include Bel(Basis enhanced learning)-Net (Zhang et
al., 2023) and VIDON (Variable-input deep operator networks) (Prasthofer et
al., 2022).

Hua and Lu (2023) introduce Basis Operator Network, a variant of Deep-
ONet, where encoding is achieved by projection onto a neural network basis.
Universal approximation results are obtained, including encoding error esti-
mates for this approach.

Jin et al. (2022b) address the issue of multiple input functions, and propose
MIO-Net (Multiple Input/Output Net), based on tensor-product representations.
The authors prove a universal approximation property for the resulting architec-
ture, and demonstrate its viability in numerical experiments.

4.1.1.4 DeepONets on abstract Hilbert spaces

DeepONets mapping between abstract Hilbert spaces have been considered in
Castro (2023); Castro et al. (2022), including a discussion of their universality
in that context.

4.1.2 PCA-Net
At a theoretical level, PCA-Net shares several similarities with DeepONet and
much of the analysis can be carried out along similar lines. In addition to propos-
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ing the PCA-Net architecture and demonstrating its viability on numerical test
problems including the Darcy flow and viscous Burgers equations, Bhattacharya
et al. (2021) also prove that PCA-Net is universal for operators mapping be-
tween infinite-dimensional Hilbert spaces, with approximation error measured
in the Bochner L2(μ)-norm with respect to the input measure μ. This initial
analysis was developed and sharpened considerably in Lanthaler (2023); as an
example of this we quote Lanthaler (2023, Proposition 31).

Theorem 4.4 (PCA-Net universality). Let U and V be separable Hilbert
spaces and let μ ∈ P(U) be a probability measure on U. Let �† : U→ V
be a μ-measurable mapping. Assume the following moment conditions,

Eu∼μ[‖u‖2
U], Eu∼μ[‖�†(u)‖2

V] < ∞.

Then for any ε > 0, there are dimensions dU , dV, a requisite amount of data
N , a neural network ψ depending on this data, such that the PCA-Net, � =
GV ◦ ψ ◦ FU , satisfies

E{uj }∼μ⊗N

[
Eu∼μ

[
‖�†(u) − �(u; {uj }Nj=1)‖2

V

]]
< ε,

where the outer expectation is with respect to the iid data samples u1, . . . , uN ∼
μ, which determine the empirical PCA encoder and reconstruction. ♦

4.2 Neural operators

The Fourier neural operator (FNO) is a specific instance of a more general no-
tion of neural operators (Kovachki et al., 2023). The general structure of such
neural operators is identical to that of the FNO, i.e. a composition

�NO(u; θ) =Q ◦LL ◦ · · · ◦L2 ◦L1 ◦R(u), ∀u ∈U,

L�(v)(x; θ) = σ (W�v(x) + b� +K(v)(x;γ�)) ,
(4.2)

except that the convolutional operator in each layer is replaced by a more general
integral operator,

K(v)(x;γ ) =
∫
D

κ(x, y;γ )v(y) dy.

Here, the integral kernel κ(x, y;γ ) is a matrix-valued function of x and y,
parametrized by γ . Additional nonlinear dependency on the input function
is possible yielding, for example, κ = κ(x, y,u(x),u(y);γ ); this structure is
present in transformer models (Vaswani et al., 2017). Different concrete im-
plementations of such neural operators mostly differ in their choice of the
parametrized integral kernel. For example, Li et al. (2021) use Fourier basis,
Tripura and Chakraborty (2023) use wavelet basis, and Bonev et al. (2023) use
spherical harmonics. Other approaches restrict the support of κ (Li et al., 2020a)
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or assume it decays quickly away from its diagonal (Li et al., 2020b; Lam et al.,
2023). For a more thorough review of this methodology, we refer to Kovachki
et al. (2023).

The universality of the FNO has first been established in Kovachki et al.
(2021), using ideas from Fourier analysis and, in particular, building on the
density of Fourier series to show that FNO can approximate a wide variety
of operators. Given the great variety of possible alternative neural operator ar-
chitectures, which differ from the FNO essentially only in their choice of the
parametrized kernel, a proof of universality that does not explicitly rely on
Fourier analysis, and which applies to a wide range of choice for the integral ker-
nel is desirable. This has been accomplished in Lanthaler et al. (2023a), where
the authors remove from the FNO all nonessential components, from the per-
spective of universal approximation, yielding a minimal architecture termed the
“averaging neural operator” (ANO).

4.2.1 Averaging neural operator
Up to nonessential details, the ANO introduced in Lanthaler et al. (2023a) is a
composition of nonlinear layers of the form,

L(v;γ�)(x) = σ

(
W�v(x) + b�(x) + V�

∫
D

v(y) dy

)
, (� = 1, . . . ,L),

where W�,V� ∈R
dc×dc are matrices, and b�(x) is a bias function. In the present

work, to parametrize the bias functions, we consider bias of the form b�(x) =
A�x + c� for matrix A� ∈ R

dc×d and bias vector c� ∈ R
dc . With this choice, the

nonlinear layer v �→L(v) takes the form,

L(v;γ�)(x) = σ

(
W�v(x) + A�x + c� + V�

∫
D

v(y) dy

)
.

The parameter γ� = {W�,V�,A�, c�} collects the tunable parameters of the �-th
layer. To define an operator � :U(D;Rdi ) →V(D;Rdo), we combine these
nonlinear layers with linear input and output layers R : u(x) �→ Ru(x) and Q :
v(x) �→ Qv(x), obtained by multiplication with matrices R ∈ R

dc×di and Q ∈
R

do×dc , respectively. The resulting ANO is an operator of the form,

�(u; θ) =Q ◦LL ◦ · · · ◦L1 ◦R(u),

with θ collecting the tunable parameters in each hidden layer, and the input and
output layers.

The ANO can be though of as a special case of FNO, where the convolutional
integral kernel is constant, leading to the last term in each hidden layer being
an integral or “average” of the input function. Similarly, the ANO is a special
case of many other parametrizations of the integral kernel in neural operator
architectures. Despite its simplicity, the ANO can nevertheless be shown to have
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a universal approximation property. We here cite a special case for operator
mapping between continuous functions, and refer to Lanthaler et al. (2023a) for
more general results:

Theorem 4.5. Suppose that σ ∈ C(R) is a nonpolynomial activation function.
Let D ⊂ R

d be a compact domain with Lipschitz boundary. Let �† : C(D) →
C(D) be a continuous operator. Fix a compact set K ⊂ C(D). Then for any
ε > 0, there exists an ANO � : C(D) → C(D) such that

sup
u∈K

‖�†(u) − �(u)‖C(D) < ε.

♦

As an immediate consequence, we have the following corollary which im-
plies universality of neural operators for a wide range of choices:

Corollary 4.6. Consider any neural operator architecture of the form (4.2) with
parametrized integral kernel κ(x, y;γ ). If for any channel dimension dc and
matrix V ∈R

dc×dc , there exists a parameter γV such that κ(x, y;γV ) ≡ V , then
the neural operator architecture is universal in the sense of Theorem 4.5. ♦

The last corollary applies in particular to the FNO. Universality of the FNO
was first established in Kovachki et al. (2021), there restricting attention to a
periodic setting but allowing for operators mapping between general Sobolev
spaces. The idea of the averaging neural operator can be found in Lanthaler et
al. (2023a), where it was used to prove universality for a wide range of neural
operator architectures, and for a class of operators mapping between general
Sobolev spaces, or spaces of continuously differentiable functions.

4.2.1.1 Intuition

We would like to provide further intuition for the universality of ANO. A simple
special case of the ANO is the two-layer ANO obtained as follows. We consider
neural operators which can be written as a composition of two shallow neural
networks φ : Rdi × D → R

dc , ψ : Rdc × D → R
do and an additional integral

(average): ⎧⎨⎩α(u) =
∫
D

φ(u(y), y) dy,

�(u)(x) = ψ (α(u), x) ,

where

φ(w,x) = C1σ(A1w + B1x + d1),

and

ψ(z, x) = C2σ(A2z + B2x + d2).
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Note that the above composition, i.e.

�(u)(x) = ψ

(∫
D

φ(u(y), y) dy, x

)
,

indeed defines a special case of ANO that can be written as a composition of a
trivial input layer, two hidden layers and an output layer:

L1(u)(x) = σ (W1u(x) + b1(x)) , b1(x) = B1x + d1,W1 = A1,

L2(v)(x) = σ

(
b2(x) + V2

∫
v(y) dy

)
, b2(x) = B2x + d2,V2 = A2C1

Q(v)(x) = Qv(x), Q = C2.

As depicted in Fig. 5, such shallow ANO can be interpreted as a composition
of an nonlinear encoder α :U→ Rdc , u �→ α(u) defined via spatial averaging
of φ, and mapping the input function to a finite-dimensional latent space, and a
nonlinear decoder ψ : Rdc →V, α �→ ψ(α, · ). This interpretation opens up a
path for analysis, based on which universality can be established for the ANO,
and any neural operator architecture that contains such ANO as a special case,
such as the Fourier neural operator.

FIGURE 5 Special case of an averaging neural operator, illustrated as a nonlinear encoder-decoder
architecture; with encoder u �→ α = ∫D φ(u(y), y) dy, and decoder α �→ ψ(α, · ).

5 Quantitative error and complexity estimates

The theoretical contributions outlined in the previous section are mostly focused
on methodological advances and a discussion of the universality of the result-
ing architectures. Universality of neural operator architectures, i.e. the ability
to approximate a wide class of operators, is arguably a necessary condition for
their success. But since universality is inherently qualitative, it cannot explain
the efficiency of these methods in practice. Improving our understanding of the
efficiency of neural operators in practice requires a quantitative theory of oper-
ator learning, providing explicit error and complexity estimates: given a desired
accuracy ε > 0, what is the model size or the number of samples that is required
to achieve such accuracy?
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5.1 Linear operators

Learning a linear operator can be formulated as solving a linear inverse problem
with a noncompact forward operator (Mollenhauer et al., 2022; de Hoop et al.,
2023). We take this point of view and broadly describe the results from de Hoop
et al. (2023). We consider the problem of learning �† = L†, a linear operator,
whenU =V is a separable Hilbert space. Studying the linear problem enables
a thorough analysis of the complexity of operator learning and hence sheds light
on the problem in the more general setting. The work proceeds by assuming that
L† can be diagonalized in a known Schauder basis ofU denoted {ϕj }∞j=1. Given

input data {un}Nn=1
i.i.d.∼ μ, the noisy observations are assumed to be of the form

vn = L†un + γ ξn

where γ > 0 and the sequence {ξn}Nn=1
i.i.d.∼ N(0, IU) comes from a Gaussian

white noise process that is independent of the input data {un}. In what follows
here, we assume that μ =N(0,�), the measure on the input data, is Gaussian
with a strictly positive covariance � and that this covariance is also diagonaliz-
able by {ϕj }; note, however, that de Hoop et al. (2023) treat the more general
case without assuming simultaneous diagonalizability of L† and �.

Note that {l†
j , ϕj } uniquely determines L†. Thus the problem as formulated

here can be stated as learning the eigenvalue sequence {l†
j }∞j=1 of L† from the

noisy observations

vjn = 〈ϕj ,un〉Ul
†
j + ξjn, j ∈N, n = 1, . . . ,N

where {ξjn} i.i.d.∼ N(0, γ 2). In this problem statement, the noise is crucial for ob-
taining meaningful estimates on the amount of data needed for learning. Indeed,
without noise, the eigenvalues can simply be recovered as

l
†
j = vj1

〈ϕj ,u1〉U
for all j ∈ N from a single data point u1 since the basis {ϕj } is assumed to
be known. While, in practice, the observations might not be noisy, the noise
process can be used to model round-off or discretization errors which occur in
computation.

Assuming a Gaussian prior on the sequence {l†
j } ∼ ⊗∞

j=1N(0, σ 2
j ), one may

obtain a Bayesian estimator of L†, given the data
({vjn}, {un}

)
. The Bayesian

posterior is characterized as an infinite Gaussian product for the sequence of
eigenvalues. We take as an estimator the mean of this Gaussian which is given
as

lj = γ −2σ 2
j

∑N
n=1 vjn〈ϕj ,un〉U

1 + γ −2σ 2
j

∑N
n=1

∣∣〈ϕj ,un〉U
∣∣2 .
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Then our estimator is the operator �, diagonalized in basis {ϕj } with eigen-
values {lj }. To quantify the smoothness of L†, we assume that {l†

j } lives in an

appropriately weighted �2 space, in particular,

∞∑
j=1

j2s |l†
j |2 < ∞

for some s ∈ R. Then the following theorem holds (de Hoop et al., 2023, Theo-
rem 1.3).

Theorem 5.1. Suppose that for some α > 1/2 and p∈R, we have 〈ϕj ,�ϕj 〉U�
j−2α and σ 2

j � j−2p. Let α′ ∈ [0, α + 1/2) and assume that min{α,α′} +
min{p − 1/2, s} > 0. Then, as N → ∞, we have

E

∞∑
j=1

j−2α′ |lj − l
†
j |2 � N

− α′+min{p−1/2,s}
α+p

where the expectation is taken over the product measure defining the input data
and noise. ♦

Theorem 5.1 quantifies the amount of data needed, on average, for the es-
timator {lj } to achieve ε-error in approximating {l†

j } measured in a squared

weighted �2 norm. In particular, we have

N ∼ ε
− α+p

α′+min{p−1/2,s} .

The exact dependence of this rate on the parameters defining the smoothness of
the truth, the input, the prior, and the error metric elucidates the optimal design
choices for the estimator and sheds light on which pieces are most important for
the learning process. We refer to de Hoop et al. (2023) for an in-depth discus-
sion.

Within machine learning and functional data analysis, many works have fo-
cused on learning integral kernel operators (Rosasco et al., 2010; Abernethy et
al., 2009; Crambes and Mas, 2013; Wang et al., 2022; Jin et al., 2022a). The
operator learning problem can then be reduced to approximation of the kernel
function and is typically studied in a Reproducing Kernel Hilbert Space setting.
In numerical PDEs, some recent works have studied the problem of learning
the Green’s function arising from some elliptic, parabolic and hyperbolic prob-
lems (Boullé et al., 2022a,b; Boullé and Townsend, 2023; Wang and Townsend,
2023).

5.2 Holomorphic operators

Going beyond the linear case, holomorphic operators represent a very general
class of operators for which efficient quantitative error and complexity estimates
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can be established. We mention the influential work by Cohen et al. (2010,
2011), as well as further developments (Chkifa et al., 2015, 2013; Schwab
and Zech, 2019; Opschoor et al., 2022; Schwab and Zech, 2023; Herrmann et
al., 2022; Adcock et al., 2022c,a,b; Marcati and Schwab, 2023; Adcock et al.,
2023a,b). A detailed review, from 2015, can be found in Cohen and DeVore
(2015). We will only describe a few main ideas. We mention in passing also
the works by Kutyniok et al. (2022); Lei et al. (2022), which study the neural
network approximation of parametric operators in a related setting.

Holomorphic operators have mostly been studied in a parametrized setting,
where the input functions can be identified with the coefficients in a suitable
basis (frame) expansion. A prototypical example is the elliptic Darcy flow equa-
tion (2.5), where the coefficient field a = a( · ;y) is parametrized by a sequence
y = (y1, y2, . . . ) ∈ [−1,1]N, e.g. in the form of a linear expansion,

a(x;y) = a(x) +
∞∑

j=1

yjϕj (x), x ∈D,

where a ∈U and ϕ1, ϕ2, · · · ∈U are fixed. The operator �† : a �→ u can then
(loosely) be identified with the parametrized mapping,

F : [−1,1]N →V, F(y) := �†(a( · ;y)).

In the above prototypical setting, and assuming that the sequence b with co-
efficients bj = ‖ϕj‖V decays sufficiently fast, it can be shown in Cohen and
DeVore (2015) that F possesses a holomorphic extension to a subset of the in-
finite product CN = ∏∞

j=1 C = C × C × . . . of the complex plane C. More
precisely, there exists a holomorphic extension

F :
∞∏

j=1

Eρj
→VC, z �→ F(z). (5.1)

Here, for ρj > 1, the set Eρj
=
{

1
2

(
z + z−1

) ∣∣∣ z ∈ C, 1 ≤ |z| ≤ ρj

}
⊂C denotes

the Bernstein ellipse with focal points ±1 and major and minor semiaxes lengths
1
2 (ρj ± ρ−1

j ), andVC is the complexification of the Banach spaceV.

In general, given a nonnegative sequence b ∈ [0,∞)N and ε > 0, a
parametrized operator F : [−1,1]N →V is called (b, ε)-holomorphic, if it pos-
sesses a holomorphic extension (5.1) for any ρ = (ρ1, ρ2, . . . ) ∈ [1,∞)N, s.t.

∞∑
j=1

(
ρj + ρ−1

j

2
− 1

)
bj ≤ ε. (5.2)

As reviewed in Adcock et al. (2022c, Chapter 4), a number of parametric differ-
ential equations of practical interest give rise to (b, ε)-holomorphic operators.
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The approximation theory of this class of operators is well-developed (Co-
hen and DeVore, 2015; Adcock et al., 2022c). The underlying reason why
efficient approximation of such operators is possible is that holomorphic op-
erators possess convergent expansions in multivariate polynomial bases, where
each polynomial basis element only depends on a finite number of the compo-
nents of the complex input z = (z1, z2, . . . ).

A standard setting considers b ∈ �p(N), for some 0 < p < 1. For example, if
bj ∼ j−s decays algebraically, then b ∈ �p(N) for s > p−1 > 1. Assuming that
b ∈ �p(N), it can be shown (e.g. Cohen and DeVore, 2015, Corollary 3.11) that
the best n-term polynomial approximation to F converges at rate n1−1/p in a sup-
norm setting, and rate n1/2−1/p in a Bochner L2(μ)-setting, with specific input
measure μ on [−1,1]N. Importantly, these convergence rates are polynomial in
the number of degrees of freedom n, even in this infinite-dimensional parametric
setting. When restricting to a finite-dimensional input space with d input compo-
nents, i.e. considering only inputs of the form z = (z1, . . . , zd ,0,0, . . . ), this fact
implies that convergence rates independent of the dimension d can be obtained,
and thus such approximation of (b, ε)-holomorphic operators can provably over-
come the curse of dimensionality (Cohen and DeVore, 2015).

The above mentioned results in the parametrized setting can also be used
to prove efficient approximation of holomorphic operators by operator learn-
ing frameworks in a nonparametric setting (Lanthaler et al., 2022; Schwab and
Zech, 2019; Opschoor et al., 2022; Schwab and Zech, 2023; Herrmann et al.,
2022). For example, Herrmann et al. (2022) consider the DeepONet approx-
imation of holomorphic operators with general Riesz frame encoders and de-
coders, demonstrating algebraic error and complexity estimates; Under suitable
conditions, the authors prove that ReLU deep operator networks (DeepONet)
approximating holomorphic operators can achieve convergence rates arbitrarily
close to n1−s in a worst-error setting (supremum norm) and at rate n1/2−s in
a Bochner L2(μ)-norm setting. Here n denotes the number of tunable parame-
ters of the considered DeepONet, and the parameter s determines the decay of
the coefficients in the frame expansion of the considered input functions. Under
the (loose) identification s ∼ 1/p, these rates for DeepONet recover the rates
discussed above. These results show that there exist operator surrogates which
essentially achieve the approximation rates afforded by best n-term approxima-
tion schemes mentioned above.

The complementary question of the sample complexity of operator learning
for holomorphic operators has been studied in Bachmayr and Cohen (2017);
Adcock et al. (2023a,b). Building on the theory of N -widths, Adcock et al.
(2023a,b) show that on the class (b, ε)-holomorphic operators and in a Bochner
L2-setting, data-driven methods relying on N samples cannot achieve conver-
gence rates better than N1/2−1/p. In addition, it is shown that the optimal rate
can be achieved up to logarithmic terms. We refer to Adcock et al. (2023a,b) for
further details.
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To summarize: holomorphic operators represent a class of operators of prac-
tical interest for which approximation theory by neural operator learning frame-
works can be developed. The approximation theory of this class of operators
is well-developed, especially in the parametrized setting. In a parametrized set-
ting, these operators allow for efficient approximation by multivariate (sparse)
polynomials. This fact can be leveraged to show that efficient approximation
by neural network-based methods is possible, and such results can be extended
beyond a parametric setting, e.g. via frame expansions. Optimal approximation
rates, and methods achieving these optimal rates, up to logarithmic terms, are
known under specific assumptions.

5.3 General (Lipschitz) operators

The last two sections provide an overview of theoretical results on the approx-
imation of linear and holomorphic operators. While these classes of operators
include several operators of practical interest and allow for the development of
general approximation theory, not all operators of relevance are holomorphic
(or indeed linear). Examples of nonholomorphic operators include the solution
operator associated with nonlinear hyperbolic conservation laws such as the
compressible Euler equations. Solutions of such equations can develop shocks in
finite time, and it can be shown that the associated solution operators themselves
are not holomorphic. It is therefore of interest to extend the approximation the-
ory of operator learning frameworks beyond the restrictive class of holomorphic
operators.

A general and natural class of nonlinear operators are general Lipschitz con-
tinuous operators, the approximation theory of which has been considered from
an operator learning perspective e.g. in Bhattacharya et al. (2021); Liu et al.
(2024); Franco et al. (2023); Galimberti et al. (2022); Schwab et al. (2023). We
present a brief outline of the general approach and mention relevant work on
model complexity estimates in the following subsections 5.3.1–5.3.3. Relevant
results on the data complexity of operator learning in this setting are summa-
rized in Subsection 5.3.4.

5.3.1 Error decomposition

Encoder-decoder-net architectures arguably follow the basic mathematical in-
tuition of how to approach the operator approximation problem most closely,
and most theoretical work has focused on this approach. We recall that within
this framework, the infinite-dimensional input and output spacesU,V are first
encoded through suitable finite-dimensional latent spaces. This involves an en-
coder/decoder pair (FU,GU) onU,

FU :U→ R
dU , GU :RdU →U,
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and another encoder/decoder pair (FV, gV) onV,

FV :V→ R
dV , GV :RdV →V.

We recall that the composition GU ◦ FU , GV ◦ FV are interpreted as ap-
proximations to the identity on U and V, respectively. These encode/decoder
pairs in turn imply an encoding of the underlying infinite-dimensional operator
�† :U→V, resulting in a finite-dimensional function

ϕ : RdU → R
dV , ϕ(α) = FV ◦ �† ◦ GU(α),

as depicted earlier, in Fig. 3.
While the encoder and decoder of these architectures perform dimension re-

duction, the neural network ψ :RdU → R
dV at the core of encoder-decoder-net

architectures is interpreted as approximating this resulting finite-dimensional
function ϕ : RdU → R

dV . To summarize, an encoder-decoder-net can conceptu-
ally be interpreted as involving three steps:

1. Dimension reduction on the input spaceU ≈R
dU ,

2. Dimension reduction on the output spaceV≈R
dV ,

3. Encoding of the operator �† yielding ϕ : RdU → R
dV , approximated by

neural network ψ : RdU →R
dV .

Each part of this conceptual decomposition, the encoding of U ≈ R
dU , the de-

coding R
dV ≈V and the approximation ψ ≈ ϕ, represents a source of error,

and the total encoder-decoder-net approximation error E is bounded by three
contributions E � EU + Eψ + EV, where

EU = sup
u

‖u − GU ◦ FU(u)‖U,

quantifies the encoding error, with supremum taken over the relevant set of input
functions u,

EV = sup
v

‖v − GV ◦ FV(v)‖V,

quantifies the decoding error, and

Eψ = sup
α

‖FV ◦ �† ◦ GU(α) − ψ(α)‖, (5.3)

is the neural network approximation error.
Given this decomposition, the derivation of error and complexity estimates

for encoder-decoder-net architectures thus boils down to the estimation of en-
coding error EU , neural network approximation error Eψ and reconstruction
error EV, respectively.
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5.3.1.1 Encoding and reconstruction errors

Encoding and reconstruction errors are relatively well understood on classical
function spaces such as Sobolev and Besov spaces, by various linear and non-
linear methods of approximation (DeVore and Lorentz, 1993).

For linear encoder/decoder pairs, the analysis of encoding and reconstruc-
tion errors amounts to principal component analysis (PCA) when measuring the
error in the Bochner norm L2

μ, or to Kolmogorov n-widths when measuring the
error in the sup-norm over a compact set. Relevant discussion of PCA in the
context of operator learning is given in Bhattacharya et al. (2021) (see also Lan-
thaler et al., 2022, and Lanthaler, 2023).

In certain settings, such as for PDEs with discontinuous output functions,
it has been shown by Lanthaler et al. (2023b) that relying on linear recon-
struction imposes fundamental limitations on the approximation accuracy of
operator methodologies, which can be overcome by methods with nonlinear re-
construction; specifically, it was shown both theoretically and experimentally in
Lanthaler et al. (2023b) that FNO and shift-DeepONet, a variant of DeepONet
with nonlinear reconstruction, achieve higher accuracy than vanilla DeepONet
for prototypical PDEs with discontinuous solutions. We also mention closely
related work on the nonlinear manifold decoder architecture of Seidman et al.
(2022).

5.3.1.2 Neural network approximation error

At their core, encoder-decoder-net architectures employ a neural network to
approximate the encoded version FV ◦ �† ◦ GU of the underlying operator
�† (cp. (5.3)). The practical success of these frameworks thus hinges on the
ability of ordinary neural networks to approximate the relevant class of high-
dimensional functions in the latent-dimensional spaces, which are obtained
through the encoding of such operators. While the empirical success of neural
networks in high-dimensional approximation tasks is undeniable, our theoreti-
cal understanding and the mathematical foundation underpinning this empirical
success remains incomplete.

General approximation theoretic results on the neural network approxima-
tion of functions have been obtained, and some available quantitative bounds in
operator learning (Franco et al., 2023; Galimberti et al., 2022) build on these
results to estimate the neural network approximation error Eψ . Notably, the
seminal work by Yarotsky (2017) of D. Yarotsky presents general error and
complexity estimates for functions with Lipschitz continuous derivatives:

Theorem 5.2. A function f ∈ Wk,∞([0,1]d) can be approximated to uniform
accuracy ε > 0,

sup
x∈[0,1]d

|f (x) − ψ(x)| ≤ ε,

by a ReLU neural network ψ with at most O(ε−d/k log(ε−1)) tunable parame-
ters. ♦
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Remark 5.3. Note that the relevant dimension in the operator learning con-
text is the latent dimension d = dU . Neglecting logarithmic terms, we note that
each component of the function G : RdU → R

dV can be approximated individ-
ually by a neural network of size at most O(ε−dU/k), and hence, we expect that
G can be approximated to accuracy ε by a neural network ψ of size at most
O(dVε−dU/k). ♦

Without aiming to provide a comprehensive overview of this very active
research direction on neural network approximation theory, adjacent to opera-
tor learning theory, we mention that similar error and complexity estimates can
also be obtained on more general Sobolev spaces, e.g. Yarotsky and Zhevn-
erchuk (2020); Siegel (2023). Lower bounds illuminating the limitations of
neural networks on model classes are for example discussed in Achour et al.
(2022); Yarotsky (2017); Bolcskei et al. (2019). Approximation rates leveraging
additional structure beyond smoothness have also been considered, e.g. compo-
sitional structure is explored in Mhaskar and Poggio (2020); Shen et al. (2019);
Schmidt-Hieber (2020).

5.3.1.3 Nonstandard architectures and hyperexpressive activations

While the general research area of neural network approximation theory is too
broad to adequately summarize here, we mention relevant work on hyperexpres-
sive activations, which can formally break the curse of dimensionality observed
Theorem 5.2; it has been shown that neural networks employing nonstandard ac-
tivations can formally achieve arbitrary convergence on model function classes
(Pinkus, 1999; Yarotsky, 2021; Shen et al., 2021; Liang et al., 2021), when the
complexity is measured in terms of number of tunable parameters. This is not
true for the ReLU activation (Yarotsky, 2017). Another way to break the curse of
dimensionality is via architectures with nonstandard “three-dimensional” struc-
ture (Zhang et al., 2022).

While nonstandard architectures can overcome the curse of dimensionality
in the sense that the number of parameters does not grow exponentially with d

(or is independent of d), it should be pointed out that this necessarily comes at
the expense of the number of bits that are required to represent each parameter
in a practical implementation. Indeed, from work on quantized neural networks
(Bolcskei et al., 2019) (with arbitrary activation function), it can be inferred that
the total number of bits required to store all parameters in such architectures
is lower bounded by the Kolmogorov ε-entropy of the underlying model class;
For the specific model class Wk,∞([0,1]d), this entropy scales as ε−d/k . Hence,
architectures which achieve error ε with a number of parameters that scales
strictly slower than ε−d/k must do so at the expense of the precision that is
required to represent each individual parameter in a practical implementation,
keeping the total number of bits above the entropy limit. For related discussion,
we e.g. refer to Yarotsky and Zhevnerchuk (2020, section 7) or Siegel (2023,
discussion on page 5). Another implication of this fact is that the constructed
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nonstandard architectures are necessarily very sensitive to minute changes in
the network parameters.

5.3.2 Upper complexity bounds

Quantitative error estimates for operator learning based on the general approach
outlined in the last Subsection 5.3.1 have been derived in a number of recent
works (Liu et al., 2024; Franco et al., 2023; Galimberti et al., 2022; Bhattacharya
et al., 2021; Hua and Lu, 2023; Mhaskar, 2023).

5.3.2.1 Relevant work

The two papers by Bhattacharya et al. (2021); Lanthaler et al. (2022), analyz-
ing PCA-Net and DeepONet respectively, both introduce a splitting of the error
into encoder, neural network approximation and reconstruction errors. A similar
error analysis is employed in Hua and Lu (2023) for so-called “basis operator
network”, a variant of DeepONet. An in-depth analysis of DeepONets with var-
ious encoder/decoder pairs, including generalization error estimates, is given
in Liu et al. (2024). Quantitative approximation error estimates for convolution
neural networks applied to operator learning are derived in Franco et al. (2023).
General error estimates motivated by infinite-dimensional dynamical systems in
stochastic analysis can be found in Galimberti et al. (2022). An alternative ap-
proach to operator learning with explicit algorithms for all weights is proposed
in Mhaskar (2023), including error estimates for this approach.

5.3.2.2 Alternative decompositions

Finally, we point out that while the error decomposition in encoding, neural
network approximation and reconstruction errors is natural, alternative error de-
compositions, potentially more fine-grained, are possible. We mention the work
by Patel et al. (2024) which proposes a mimetic neural operator architecture
inspired by the weak variational form of elliptic PDEs, discretized by the finite-
element method; starting from this idea, the authors arrive at an architecture
that can be viewed as a variant of DeepONet, including a specific mixed non-
linear and linear branch network structure and a nonlinear trunk net. In this
work, an a priori error analysis is conducted resulting in a splitting of the over-
all approximation in numerical approximation, stability, training and quadrature
errors depending on the data-generation with a numerical scheme (no access to
the actual operator), the Lipschitz stability of the underlying operator, the fi-
nite number of training samples and quadrature errors to approximate integrals,
respectively.

5.3.3 Lower complexity bounds

Operator learning frameworks are based on neural networks and provide highly
nonlinear approximation (DeVore, 1998). Despite their astonishing approxima-
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tion capabilities, even highly nonlinear approximation methods have intrinsic
limitations.

5.3.3.1 Combined error analysis for encoder-decoder-nets

To illustrate some of these intrinsic limitations, we first outline the combined er-
ror analysis that results from the decomposition summarized in the last section.
To this end, we combine the encoding, reconstruction and neural network anal-
ysis to derive quantitative error and complexity estimates within the encoder-
decoder-net paradigm.

Firstly, under reasonable assumptions on the input functions, the encoding
error can often be shown to decay at an algebraic rate in the dU , e.g.

EU � d−α
U . (5.4)

For example, if we assume that the input functions are defined on a bounded do-
main D ⊂ R

d and subject to a smoothness constraint such as a uniform bound
on their k-th derivative, then a decay rate α = k/d can be achieved (depending
on the precise setting); For dimension reduction by principal component anal-
ysis, the exponent α instead relates to the decay rate of the eigenvalues of the
covariance operator of the input distribution.

Under similar assumptions on the set of output functions, depending on the
properties of the underlying operator �†, the reconstruction error on the output
space often also decays algebraically,

EV � d
−β

V , (5.5)

where the decay rate β can e.g. be estimated in terms of the smoothness of
the output functions under �†, or could be related to the decay of the PCA
eigenvalues of the output distribution (push-forward under �†).

Finally, given latent dimensions dU and dV, the size of the neural network ψ

that is required to approximate the encoded operator mapping G : RdU → R
dV ,

with NN approximation error bound,

Eψ ≤ ε,

roughly scales as (cp. Remark 5.3),

size(ψ) ∼ dVε−dU/k, (5.6)

when the only information on the underlying operator is captured by its degree
of smoothness k (k = 1 corresponding to Lipschitz continuity). Note that this is
the scaling consistent with Kolmogorov entropy bounds.

Given the error decomposition E � EU + Eψ + EV, we require each error
contribution individually to be bounded by ε. In view of (5.4) and (5.5), this can
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be achieved provided that dU ∼ ε−1/α , dV ∼ ε−1/β . Inserting such choice of
dU , dV in (5.6), we arrive at a neural network size of roughly the form,

size(ψ) ∼ ε−1/βε−cε−1/α/k.

In particular, we note the exponential dependence on ε−1, resulting in a size
estimate,

size(ψ) � exp

(
cε−1/α

k

)
. (5.7)

As pointed out after (5.4), when the set of input functions consists of functions
defined on a d-dimensional domain with uniformly bounded s-th derivatives (in
a suitable norm), then we expect a rate α = s/d , in which case we obtain,

size(ψ) � exp

(
cε−d/s

k

)
. (5.8)

For operator learning frameworks, this superalgebraic (even exponential)
dependence of the complexity on ε−1 has been termed the “curse of dimension-
ality” in Kovachki et al. (2021); Lanthaler et al. (2022) or more recently “curse
of parametric complexity” in Lanthaler (2023). The latter term was introduced to
avoid confusion, which may arise because in these operator learning problems,
there is no fixed dimension to speak of. The curse of parametric complexity can
be viewed as an infinite-dimensional scaling limit of the finite-dimensional curse
of dimensionality, represented by the dU-dependency of the bound ε−dU/k , and
arises from the finite-dimensional CoD by observing that the required latent di-
mension dU itself depends on ε, with scaling dU ∼ ε−1/α . We note in passing
that even if dU ∼ log(ε−1) were to scale only logarithmically in ε−1, the com-
plexity bound implied by (5.6) would still be superalgebraic, consistent with the
main result of Lanthaler (2023).

5.3.3.2 Nonlinear n-width estimates

The rather pessimistic complexity bound outlined in (5.7) is based on an upper
bound on the operator approximation error E , and is not necessarily tight. One
may therefore wonder if more careful estimates could yield complexity bounds
that do not scale exponentially in ε−1.

In this context, we would like to highlight the early work on operator ap-
proximation by Mhaskar and Hahm (1997) which presents first quantitative
bounds for the approximation of nonlinear functionals; most notably, this work
identifies the continuous nonlinear n-widths of spaces of Hölder continuous
functionals defined on L2-spaces; it is shown that the relevant n-widths decay
only (poly-)logarithmically in n, including both upper and lower bounds.

We will presently state a simplified version of the main result of Mhaskar
and Hahm (1997), and refer to the original work for the general version. To this
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end, we recall that the continuous nonlinear n-width dN (K; ‖ · ‖X) (DeVore et
al., 1989) of a subset K ⊂X, with (X,‖ · ‖X) Banach, is defined as the optimal
reconstruction error,

dN (K; ‖ · ‖X) = inf
(a,M)

sup
f ∈K

‖f − M(a(f ))‖X,

where the infimum is over all encoder/decoder pairs (a,M), consisting of a
continuous map a :K→R

n and general map M : Rn →X.
To derive lower n-width bounds, we consider spaces of nonlinear Lipschitz

functionals �† ∈ Fd , where d denotes the spatial dimension of the input func-
tions. More, precisely define

Fd =
{
�† : L2([−1,1]d) → R

∣∣∣‖�†(u)‖Lip ≤ 1
}
,

with

‖�†‖Lip := sup
u∈L2

|�†(u)| + sup
u,v∈L2

|�†(u) − �†(v)|
‖u − v‖L2

.

Given a smoothness parameter s > 0, we consider approximation of �† ∈ Fd ,
uniformly over a compact set of input functions Ks ⊂ L2([−1,1]d), obtained as
follows: we expand input functions f ∈ L2([−1,1]d) in a Legendre expansion,
f (x) =∑k∈Nd f̂kPk(x), and consider functionals defined on the “Sobolev” ball,

Ks :=
⎧⎨⎩f ∈ L2([−1,1]d)

∣∣∣∣∣∣
∑
k∈Nd

|k|2s f̂k|2 ≤ 1

⎫⎬⎭.

We measure the approximation error between �†,� : Ks ⊂ L2 → R with re-
spect to the supremum norm over Ks ,

‖�† − �‖C(Ks) = sup
u∈Ks

|�†(u) − �(u)|.

It follows from the main results of Mhaskar and Hahm (1997) that the continu-
ous nonlinear n-widths of the set of functionals Fd decay only (poly-)logarith-
mically, as

dn(Fd)C(Ks) ∼ log(n)−s/d .

In particular, to achieve uniform approximation accuracy ε > 0 with a continu-
ous encoder/decoder pair (a,M), requires at least

n� exp
(
cε−d/s

)
, (5.9)

parameters. This last lower bound should be compared with (5.8) (for k = 1);
the lower n-width bound (5.9) would imply (5.8) under the assumption that the
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architecture of ψ = ψ( · ; θ) was fixed and assuming that the weight assignment
�† �→ θ�† from the functional �† and the optimal tuning of neural network
parameters θ�† was continuous. The latter assumption may not be satisfied if
parameters are optimized using gradient descent.

5.3.3.3 Curse of parametric complexity

Given the result outlined in the previous paragraph, one may wonder if the pes-
simistic bound (5.9) and (5.7), i.e. the “curse of parametric complexity”, can be
broken by (a) a dis-continuous weight assignment, and (b) an adaptive choice
of architecture optimized for specific �†. This question has been raised in Lan-
thaler (2023); Lanthaler and Stuart (2023).

It turns out that, with operator learning frameworks such as DeepONet, FNO
or PCA-Net, and relying on standard neural network architectures, it is not
possible to overcome the curse of parametric complexity when considering ap-
proximation on the full class of Lipschitz continuous or Fréchet differentiable
operators. We mention the following illustrative result for DeepONet, which
follows from Lanthaler and Stuart (2023, Example 2.17):

Proposition 5.4 (Curse of Parametric Complexity). Let D ⊂ R
d be a domain.

Let k ∈N be given, and consider the compact set of input functions,

K =
{
u ∈ Ck(D)

∣∣∣‖u‖Ck ≤ 1
}

⊂U := C(D).

Fix α > 2 + k
d

. Then for any r ∈ N, there exists a r-times Fréchet differentiable
functional �† :U→ R and constant c, ε > 0, such that approximation to accu-
racy ε ≤ ε by a DeepONet � :U→ R with ReLU activation,

sup
u∈K

|�†(u) − �(u)| ≤ ε, (5.10)

with linear encoder E and neural network ψ , implies complexity bound

size(ψ) ≥ exp(cε−1/αr ). (5.11)

Here c, ε > 0 are constants depending only on k, α and r . ♦

As mentioned above, analogous lower complexity bounds can be obtained
for PCA-Net, Fourier neural operator and many other architectures, and the
more general version of this lower complexity bound applies to Sobolev in-
put functions and beyond. We refer to Lanthaler and Stuart (2023) for a detailed
discussion.

Remark 5.5. In Lanthaler and Stuart (2023), no attempt was made to optimize
the exponent of ε−1 in (5.11). It would be interesting to know whether the ap-
pearance of the degree of operator Féchet differentiability, i.e. the parameter r ,
in the lower bound is merely an artifact of the proof in Lanthaler and Stuart
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(2023). The back-of-the-envelope calculation leading to (5.7) indicates that r

should not appear in the exponent, and that the factor α = k/d + 2 + δ could be
replaced by k/d + δ. ♦

5.3.3.4 Breaking the curse of parametric complexity with nonstandard
architectures

As mentioned in a previous section, there exist nonstandard neural network
architectures which either employ nonstandard activations (Pinkus, 1999; Yarot-
sky, 2021; Shen et al., 2021), or impose a nonstandard “three-dimensional” con-
nectivity (Zhang et al., 2022) which can overcome the curse of dimensionality
in finite dimensions. In particular, encoder-decoder-nets based on such nonstan-
dard architectures can achieve neural network approximation error Eψ ≤ ε with
a complexity (as measured by the number of tunable degrees of freedom) that
grows much slower than the rough scaling we considered in (5.6). Based on
such architectures, it has recently been shown by Schwab et al. (2023) that
DeepONets can achieve approximation rates for general Lipschitz and Hölder
continuous operators which break the curse of parametric complexity implied
by (5.11). In fact, such architectures achieve algebraic expression rate bounds
for general Lipschitz and Hölder continuous operators.

5.3.4 Sample complexity results
There is a rapidly growing body of work on the approximation theory of operator
learning with focus on parametric complexity. The complementary question of
the sample complexity of operator learning, i.e. how many samples are needed
to achieve a given approximation accuracy, has not received as much attention.
The work described in Subsection 5.1 addresses this question in the setting of
learning linear operators, and the question is also addressed in Subsection 5.2
for holomorphic operators. We now develop this subject further. Of particular
note in the general Lipschitz setting of this subsection is the paper by Liu et
al. (2024), as well as related recent work in Chen et al. (2023), which studies
the nonparametric error estimation of Lipschitz operators for general encoder-
decoder-net architectures. In Liu et al. (2024), nonasymptotic upper bounds for
the generalization error of empirical risk minimizers on suitable classes of op-
erator networks are derived. The results are stated in a Bochner L2(μ) setting
with input functions drawn from a probability measure μ, and variants are de-
rived for general (Lipschitz) encoder/decoder pairs, for fixed basis encoder/de-
coder pairs, and for PCA encoder/decoder pairs. The analysis underlying the
approximation error estimates in Liu et al. (2024) is based on a combination
of best-approximation error estimates (parametric complexity) which are com-
bined with statistical learning theory to derive sample complexity bounds.

For detailed results applicable to more general settings, we refer the reader
to Liu et al. (2024). Here, we restrict attention to a representative result for fixed
basis encoder/decoder pair (Liu et al., 2024, Corollary 3), obtained by projection
onto a trigonometric basis.
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To state this simplified result, consider a Lipschitz operator �† :U→V,
mapping between spaces U,V = L2([−1,1]d). We assume that there exists
a constant C > 0, such that the probability measure μ ∈ P(U) and its push-
forward �

†
#μ ∈ P(V) are supported on periodic, continuously differentiable

functions belonging to the set,

K :=
{
u ∈ L2([−1,1]d)

∣∣∣u is periodic, ‖u‖Ck,α ≤ C
}
.

Then the squared approximation error

E 2 := EdataEu∼μ‖DY ◦ ψ ◦ EX(u) − �†(u)‖2
L2

satisfies the upper bound,

E 2 � dV
4+dU
2+dU N

− 2
2+dU log6(n) + dU

− 2s
d + dV

− 2s
d , (5.12)

where N is the number of samples and s = k + α is the smoothness on the input
and output spaces. The neural network ψ is a ReLU network of depth L and
width p, satisfying (up to logarithmic terms),

Lp ∼ dV
dU

4+2dU N
dU

4+2dU .

Comparing with (5.4) and (5.5), we can identify the last two terms in (5.12) as
the encoding and reconstruction errors. The first term corresponds to a combi-
nation of neural network approximation and generalization errors.

To ensure that the total error E ≤ ε is below accuracy threshold ε, we first
choose dU, dV ∼ ε−d/s , consistent with our discussion in Subsection 5.3.3. And
according to the above estimate, we choose a number of samples of roughly the
size N ∼ ε−(2+dU)/2. Note that, once more, the additional ε-dependency of dU
implies that

N � exp
(
cε−d/s

)
,

exhibits an exponential curse of complexity. This time, the curse is reflected by
an exponential number of samples N that are required to achieve accuracy ε,
rather than the parametric complexity. In turn, this implies that the size of the
product Lp of the depth L and width p of the neural network ψ satisfies the
lower bound,

Lp � exp
(
cε−d/s

)
,

consistent with the expected curse of parametric complexity, (5.7). It is likely
that the results of Liu et al. (2024) cannot be substantially improved in the
considered setting of Lipschitz operators. Extending their work to a slightly
different setting, Liu et al. (2024) also raise the question of low dimensional
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structure in operator learning, and derive error bounds decaying with a fast rate
under suitable conditions, relying on low-dimensional latent structure of the in-
put space.

In a related direction, Kim and Kang (2022) provide estimates on the
Rademacher complexity of FNO. Generalization error estimates are derived
based on these Rademacher complexity estimates, and the theoretical insights
are compared with the empirical generalization error and the proposed capacity
of FNO, in numerical experiments. Out-of-distribution risk bounds for neural
operators with focus on the Helmholtz equation are discussed in depth in Ben-
itez et al. (2023).

We finally mention the recent work by Mukherjee and Roy (2023), where a
connection is made between the number of available samples n and the required
size of the DeepONet reconstruction dimension dV. It is shown that when only
noisy measurements are available, a scaling of the number of trunk basis func-
tions dV � √

n is required to achieve accurate approximation.

5.4 Structure beyond smoothness

The results summarized in the previous sections indicate that, when relying
on standard neural network architectures, efficient operator learning on gen-
eral spaces of Lipschitz continuous, or Fréchet differentiable, operators may
not be possible: the class of all such operators on infinite-dimensional Banach
spaces is arguably too rich, and operator learning on this class suffers from a
curse of parametric complexity, requiring exponential model sizes of the form
� exp(cε−γ ).

This is in contrast to operator learning for (b, ε)-holomorphic operators, for
which approximation to accuracy ε is possible with a parametric complexity
O(ε−γ ) scaling only algebraically in ε−1. In this case, the curse of parametric
complexity is broken by the extraordinary amount of smoothness of the underly-
ing operators, going far beyond Lipschitz continuity or Fréchet differentiability.

These contrasting results rely only on the smoothness of the approximated
operator: Is such smoothness the deciding factor for the practical success of op-
erator learning methodologies? While we currently cannot provide a theoretical
answer to this important question, we finally would like to mention several ap-
proximation theoretic results addressing how operator learning frameworks can
break the curse of parametric complexity by leveraging structure beyond holo-
morphy.

5.4.0.1 Operator Barron spaces

A celebrated result in the study of shallow neural networks on finite-dimensional
spaces is Barron’s discovery (Barron, 1993) of a function space on which
dimension-independent Monte-Carlo approximation rates O(1/

√
n) can be ob-

tained. In particular, the approximation, by shallow neural networks, of func-
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tions belonging to this Barron class does not suffer from the well-known curse
of dimensionality.

In the recent paper by Korolev (2022), a suitable generalization of the Bar-
ron spaces is introduced, and it is shown that Monte-Carlo approximation rates
O(1/

√
n) can be obtained even in this infinite-dimensional setting, under pre-

cisely specified conditions. Quantitative error estimates (convergence rates) for
the approximation of nonlinear operators are obtained by extending earlier re-
sults (Bach, 2017; E et al., 2022; E and Wojtowytsch, 2022) from the finite-
dimensional setting f : Rd → R to the vector-valued and infinite-dimensional
case f :U→V, whereU andV are Banach spaces.

The operator Barron spaces identified in Korolev (2022) represent a gen-
eral class of operators, distinct from the holomorphic operators discussed in a
previous section, which allow for efficient approximation by a class of “shallow
neural operators”. Unfortunately, a priori, it is unclear which operators of practi-
cal interest belong to this class, leaving the connection between these theoretical
results and the practically observed efficiency of neural operator somewhat tenu-
ous. In passing, we also mention the operator reproducing kernel Hilbert spaces
(RKHS) considered in the context of the random feature model in Nelsen and
Stuart (2021), for which similar Monte-Carlo convergence rates have been de-
rived in Lanthaler and Nelsen (2023).

5.4.0.2 Representation formulae and emulation of numerical methods

To conclude our discussion of complexity and error bounds, we mention work
focused on additional structure, separate from smoothness and the above-
mentioned idea of Barron spaces, which can be leveraged by operator learning
frameworks to achieve efficient approximation: these include operators with ex-
plicit representation formulae, and operators for which efficient approximation
by traditional numerical schemes is possible. Such representations by classical
methods can often be efficiently emulated by operator learning methodologies,
resulting in error and complexity estimates that beat the curse of parametric
complexity.

The complexity estimates for DeepONets in Deng et al. (2021) are mostly
based on explicit representation of the solution; most prominently, this is
achieved via the Cole-Hopf transformation for the viscous Burgers equation.

Results employing emulation of numerical methods to prove that operator
learning frameworks such as DeepONet, FNO and PCA-Net can overcome the
curse of parametric complexity for specific operators of interest can be found in
Kovachki et al. (2021); Lanthaler et al. (2022); Lanthaler (2023); Marcati and
Schwab (2023); specifically, such results have e.g. been obtained for the Darcy
flow equation, the Navier-Stokes equations, reaction-diffusion equations and
the inviscid Burgers equation. For the solution operators associated with these
PDEs, it has been shown that operator learning frameworks can achieve approx-
imation accuracy ε with a total number of tunable degrees of freedom which
either only scales algebraically in ε, i.e. with size(ψ) = O(ε−γ ), or scales only
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logarithmically, size(ψ) = O(| log ε|γ ) in certain settings (Marcati and Schwab,
2023). This should be contrasted with the general curse of dimensionality (5.7).
It is expected that the underlying ideas apply to many other PDEs.

Results in this direction are currently only available for very specific op-
erators, and an abstract characterization of the relevant structure that can be
exploited by operator learning frameworks is not available. First steps towards
a more general theory have been proposed in Ryck and Mishra (2022), where
generic bounds for operator learning are derived, relating the approximation
error for physics-informed neural networks (PINNs) and operator learning ar-
chitectures such as DeepONets and FNOs.

5.4.1 Discussion
Ultimately, the overarching theme behind many of the above cited results is
that neural operators, or neural networks more generally, can efficiently emulate
numerical algorithms, which either result from bespoke numerical methods or
are a consequence of explicit representation formulae. The total complexity of
a neural network emulator, and reflected by its size, is composed of the com-
plexity of the emulated numerical algorithm and an additional overhead cost
of emulating this algorithm by a neural network (translation to neural network
weights). From an approximation-theoretic point of view, it could be conjec-
tured that, for a suitable definition of “numerical algorithm”, neural networks
can efficiently approximate all numerical algorithms, hence implying efficient
approximation of a great variety of operators, excluding only those operators for
which no efficient numerical algorithms exist. Formalizing a suitable notion of
numerical algorithm and proving that neural networks can efficiently emulate
any such algorithm would be of interest and could provide a general way for
proving algebraic expression rate bound for a general class of operators that can
be approximated by a numerical method with algebraic memory and run-time
complexity (i.e. any “reasonable” approximation method).

6 Conclusions

Neural operator architectures employ neural networks to approximate nonlinear
operators mapping between Banach spaces of functions. Such operators often
arise from physical models which are expressed as partial differential equations
(PDEs). Despite their empirical success in a variety of applications, our theoret-
ical understanding of neural operators remains incomplete. This review article
summarizes recent progress and the current state of our theoretical understand-
ing of neural operators, focusing on an approximation theoretic point of view.

The starting point of the theoretical analysis is universal approximation.
Very general universal approximation results are now available for many of the
proposed neural operator architectures. These results demonstrate that, given a
sufficient number of parameters, neural operators can approximate a very wide
variety of infinite-dimensional operators, providing a theoretical underpinning
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for diverse applications. Such universal approximation is arguably a necessary
but not sufficient condition for the success of these architectures. In particular,
universal approximation is inherently qualitative and does not guarantee that
approximation to a desired accuracy is feasible at a practically realistic model
size.

A number of more recent works thus aim to provide quantitative bounds on
the required model size and the required number of input-/output-samples to
achieve a desired accuracy ε. Most such results consider one of three settings:
general Lipschitz (or Fréchet differentiable) operators, holomorphic operators,
or specific PDE operators. While Lipschitz operators are a natural and general
class to consider, it turns out that approximation to error ε with standard archi-
tectures requires an exponential (in ε−1) number of tunable parameters, bringing
into question whether operator learning at this level of generality is possible. In
contrast, the class of holomorphic operators allows for complexity bounds that
scale only algebraically in ε−1, both in terms of models size as well as sam-
ple complexity. Holomorphic operators represent a general class of operators of
practical interest, for which rigorous approximation theory has been developed
building on convergent (generalized) polynomial expansions.

Going beyond notions of operator smoothness, it has been shown that oper-
ator learning frameworks can leverage intrinsic structure of (PDE-) operators to
achieve algebraic convergence rates in theory; this intrinsic structure is distinct
from holomorphy. Available results in this direction currently rely on a case-
by-case analysis and often leverage emulation of traditional numerical methods.
The authors of the present article view the development of a general approxi-
mation theory, including a characterization of the relevant structure that can be
leveraged by neural operators, as one of the great challenges of this field.
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