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Abstract

We describe a simple Markov model for the motion of a tagged
particle within a billiard system of n identical spherical particles. The
model is based on re-sampling all particle position and velocities from
the Maxwell-Boltzmann distribution (except those of the tagged par-
ticle itself) after each collision. This enforces Boltzmann’s molecular
chaos assumption and leads to a discrete time Markov chain for the
velocity of the tagged particle after each collision. For large n the colli-
sion times are proven to be approximately exponential, conditional on
the current tagged particle velocity; making this exponential approx-
imation leads to a continuous time Markov process for the velocity of
the tagged particle.

We perform numerical experiments comparing the properties of
the Markov model with the corresponding parameters obtained by a
hard-sphere simulation. The agreement is remarkably good for low to
moderate densities. We prove that the Markov chain is geometrically
ergodic. This shows that a tagged particle placed in a billiard sys-
tem at equilibrium will itself reach equilibrium, and gives information
about the rate at which and manner in which this occurs.
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1 Introduction

Consider the billiards problem in a cube of side length L in d dimensions: n
identical spheres travel in a vacuum interacting only through elastic collisions,
which occur only when two spheres are in contact.! In this paper we study
the motion of a tagged particle from such a system. This tagged particle
will move along a straight line with constant velocity until it hits one of
the other particles. Then its velocity will change, and a few moments later
it will be travelling along a different straight line with a different constant
velocity. Since the collision is elastic, the velocity after the collision is a
known function of the velocity of the two particles before the collision.

Given the initial positions and velocities of all the particles in the system,
the subsequent motion of the particle is completely deterministic, and can
easily be computed.? But if we examine its trajectory it will appear random:
as if the length of the time intervals between successive collisions, and the
velocities of the impacting particles, are drawn at random from some dis-
tribution. It therefore seems natural to model this trajectory by a random
process. In the case of an infinite system of such particles on a line it has
been proven by Spitzer [24] that, under certain conditions on the (random)
initial distributions of the particle positions and velocities, the appropriately
scaled motion of a single particle is, in distribution, approximately that of
Brownian motion. In Holley [13] this result is extended to the situation where
the particle of interest is massive compared with all others; its motion is then
close in distribution to that of an Ornstein-Uhlenbeck process. In Durr et al
(8] the work of Holley is extended to two and three dimensions. For the case
of hard spheres of equal mass in dimension two or more, there is, to the best
of our knowledge, no proven approximation theorem relating the motion of
a single tagged particle to that of a stochastic process. However, for systems
where the interaction rules amongst particles are stochastic, results in this
direction are proved — see [20] and the references therein.

In this paper we propose modelling the velocity of a tagged hard sphere
from the billiards problem in 2D by a piecewise constant Markov process
V. We do this by assuming the Maxwell-Boltzmann distribution for the un-
tagged particles, refreshing this independently whenever the tagged particle
undergoes a collision. This particular form of mean-field assumption leads
to a Markov process, for the tagged particle velocity, which is amenable to
analysis: we prove that it is geometrically ergodic. Furthermore the deriva-
tion of the process highlights some shortcomings in previous models for the

'We neglect triple collisions.
2Computing it efficiently, when n is large, is of course not straightforward; see [22],
and the references therein, for a discussion concerning efficient algorithms.



motion of a single tagged particle selected from a gas of identical interact-
ing particles; in particular the inter-collision times are often assumed to be
exponentially distributed (see [19], page 463 and [7]) whilst we derive the
fact that the inter-collision times are exponential conditional on the current
tagged particle velocity. Note, however, that this implies that the uncondi-
tional distribution is not exponential if the velocity distribution is Gaussian.
Since important quantities, such as Lyapunov spectra, are highly sensitive to
the precise distribution of collision times, it is important to have a rational
derivation of the collision time distribution.

Figure 1 illustrates the form of Markov process we construct. The process
V takes the value Vj in the time interval [7y, 7411), where Vj is interpreted as
the velocity of the particle in the time interval [, 7411), 70 = 0 and 74,k > 1
is the time of collision number k. Then Xy, = Xy + Vi(7ky1 — 7%) is the
position of the particle at collision time 7y ;.
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Figure 1: The piecewise constant Markov process. V takes the value Vj in
the interval [7y, T41).

In section 2 we describe the model and its derivation. Section 3 contains
a proof that the Markov process is geometrically ergodic. In section 4 we
sketch how to sample from the distributions required to generate paths of
the process. Section 5 contains numerical experiments which compare prop-
erties of the Markov model with simulations of the full hard sphere billiards
problem. The results show the remarkably good predictive capabilities of the
Markov model at low to moderate densities. In section 6 we briefly discuss
issues that arise at higher densities. Section 7 contains our conclusions.

Although our derivation of a Markov model utilizes the ”molecular chaos”
assumption, in the sense that the untagged particles are assumed to be sta-
tistically independent of the tagged one, our goals are different from those
that led Boltzmann to his celebrated equation. Boltzmann’s theory gives



the distribution of a large number of identical particles and describes how
the whole system approaches the Maxwell-Boltzmann distribution (statis-
tical equilibrium) in time. Our objective is simpler: we wish to describe
the statistics of a single particle moving among a large number of particles
which are assumed to have already reached statistical equilibrium. Thus the
untagged particles may be viewed as a heat bath.

A survey of the state of knowledge for the billiards problem in general
may be found in [25]; see [23] for recent progress in the study of hyperbolicity
for the billiards problem for an arbitrary number of spheres.

There is considerable work concerning the derivation of Markov processes
whose law approximates a desired evolution equation. For example, Fournier
and Méléard [9, 10] study a piecewise constant stochastic process whose law
approximates the solution of Boltzmann’s equation, using the ideas of Tanaka
[27].

Burshtein, Temkin, Pasterny, and Kivelson have studied Markov chain
models for the linear and angular velocity of a single particle in a rarified gas
6, 3, 4, 5, 18, 15, 2]. Most of this work is concerned with developing models
valid over a wide range of densities, in particular models valid in situations
where the velocity auto-correlation function (VACF) can be negative. This
is also the subject of Talbot [26] where, with some probability, collisions are
allowed to reverse the sign of some velocity component. Noro, Kivelson, and
Tarjus [17] extend Enskog theory to soft potentials, including the effect of
environmental crowding due to high density, softness of the potential, and
correlations of successive collisions. Our work is primarily concerned with
the low density case, where the VACF is positive. However, in contrast to
existing works, we do not assume that the collision times are unconditionally
exponentially distributed. Rather we derive a distribution for the collision
times which is exponential, conditional on the current velocity.

The derivation of stochastic models for components of large complex de-
terministic systems is a topic of considerable current interest. The work
herein provides a concrete and simple example within which such ideas can
be tested. We will show that relatively simple, and analytically tractable,
stochastic models can be constructed for low density billiards; but we will
also show the limitations of our simplistic model at high densities. A sur-
vey article describing a variety of situations in which components of large
deterministic systems are modelled stochastically is [12].



2 The Markov process

Assume that a tagged particle with velocity Vj collides with other particles
at random times. Given that a collision has occurred, let Uy, denote the
velocity of the impacting particle, and Dy the unit vector in the direction of
contact, see Fig. 2. In an elastic collision, the velocity of the tagged particle
after the collision is

Vit = Ve = [(Vi = Ugga) * Dia] D (1)

If we specify the joint distribution of Uy, and Dy, and pick independently
from it for each k, then this equation defines a Markov chain {V}}5.

Figure 2: Particle collision. The lower particle is the tagged particle and has
velocity Vi, and the upper has velocity U. D is a unit vector in the direction
of contact, and O is the angle it makes with the relative velocity V, — U. For
brevity, we omit the subscript k£ + 1 here, so (U, D, ©) = (Ug41, D1, Okt1).

It is useful to rewrite Equation (1) in terms of the angle of impact O,
which is the angle between the relative movement of the two particles and
the direction of contact, i.e. O, is the angle between Vi — Uy and Di,q,
see Fig. 2. Equation (1) then becomes

Vigr = Vi — Ap1t (Vi — Upr) = (Z — Ap1) Vie + Ap1 U1, (2)
where Ak+1 = A(@k+1),

cos’ © —cosOsin©
), 3)

A(©) = cos© Q(O) = <cos Osin® cos? O

and

cos® —sin®
Q(O) = <sin e cOS @)



is a rotation by ©.

To completely specify a Markov chain for the velocities after impact we
thus need to specify the joint distribution of Uy, and ©y,;. To specify the
(piecewise constant) stochastic process for velocities as a function of time
we need to specify, in addition, the distribution of the inter-collision times
Tiy1 = Thy1 — Tk-

This piecewise constant process V' (t) may be viewed formally as the so-
lution of the random ODE

% =S 6t —m) Ky V(0) = Vi (4)

Here {(Ty, K)}32, is a sequence of random variables with
Ky, = AUy = V(7).

V' (t7) is the left-hand limit of V'(s) as s approaches ¢ from below; similarly we
will use V() to denote the right hand limit. The path V'(¢) is discontinuous
only at t = 73,k € Z™ and then

V(r) = V() = K,

which is equivalent to (2).

In the following three subsections we derive the joint distributions, needed
to define (2) and (4), making only two simple statistical assumptions on the
distribution of the other particles in the system:

A1 the particles are uniformly distributed in space, subject to not over-
lapping;

A2 their velocities are independent of the positions and are independent
and identically distributed amongst different particles, with probability
density function f: R¢ — R.

The two assumptions follow from the work of Boltzmann [1] whose argu-
ments show that, for a system of a large number of hard spheres in statis-
tical equilibrium, the particles are uniformly distributed in space, subject
to not overlapping, and their velocities are i.i.d. Gaussian. Sometimes we
approximate Al, for small radii, with the simpler assumption of uniformly
distributed particles in space.

Having made these assumptions we appeal to statistical mechanics to
derive the distributions of Uy, Ok41, and Ty, conditional on Vi. We then
construct a stochastic process by picking a sequence {Uy, Oy, T}, from

6



this joint distribution. Then V}, is given by (2) and V'(¢) solving (4) is given
by
V(t) =V, te€ [TkaTk—H)-

We will show that, for large n, we may take the T to be exponential
random variables, conditional on Vj, and hence that the process V(t) is
Markovian. We will also show that, conditional on V}, the random variables
U1, Ok11, Ti1 are independent of one another.

In the next three subsections we drop the subscript £ + 1 on random
variables required to specify the Markov chain; we use {U,©,T} to denote

{Uk+1,Ok41, Tiy1 }-

2.1 Collision times, T

In statistical mechanics the distribution of the collision times is often assumed
to be exponential [19], or it is assumed that the probability of a collision in
the next (small) time interval is independent of when the last collision oc-
curred, which in turn gives exponential distribution of the collision times.
Our aim, however, is to make no more assumptions than Al and A2. Hence,
in this section, we derive the distribution of the collision times under as-
sumptions Al and A2. We give a full derivation of the appropriate collision
time distribution in one dimension, and then generalize to higher dimension
by heuristic arguments.

One dimension

We first find the next collision time of a stationary particle at the origin in
one dimension; see Fig. 3. In the first instance we assume that the particles
have no size, i.e. their radius is zero, an assumption that we will relax later.
We also assume Al and A2, namely that the other particles are uniformly
distributed on [—L/2, L/2], and their velocities are i.i.d. with pdf f.

[0O00 OO0 0O 00000 O O 0O0]
—L/2 0 L/2

Figure 3: Particles in the interval [—L/2, L/2]. The black particle is station-
ary at the origin.

Let the n other particles have positions and velocities given by the i.i.d.
random vectors {(P;, @;)}" ;. The particle at the origin will of course only
collide with either of its immediate neighbors, on the left or on the right.



We want to find (i) the time of the next collision, and (ii) the velocity of
the impacting particle. To this end note that, in one dimension, when two
particles (of zero radius) collide it is as if they pass through each other. Using
this interpretation of the dynamics shows that particle ¢ will reach the origin
at the time S; given by

. {—PZ-/Ql- it —P/Qi >0

00 otherwise
and that the first collision therefore occurs at time
T =min{S; |i=1,...,n}.

Since the untagged particles are assumed to pass through one another, the
colliding particle has velocity ; where j is the index which minimizes S;
over ¢. We are interested in the distribution of the time 1" when n is large,
for which we use the following lemma whose proof is in the Appendix; see
[11] for more results in a similar vein.

Lemma 2.1 Minimum of positive random variables Let {X;}2, be a
sequence of positive i.i.d. random variables with distribution function F' that
is differentiable at 0 and satisfies F'(0) > 0. Define {Y,}22, by

Y, =min{nX; |i=1,...,n}.

Then, as n — 00, Y, converges weakly to an exponential random wvariable
with parameter A\ = F'(0).

Thus the distribution of the minimum of n positive i.i.d. random variables
is approximately exponential for large n. Using this lemma we get the next
theorem, proved in the Appendix. Stated informally the theorem implies
that the collision time 7" is approximately an exponential random variable
with parameter A\ = ngg where ng = n/L is the number density of particles.
This is what we will use in the following.

Theorem 2.2 Let Assumptions A1, A2 hold and assume that the velocities
in A2 are L' random wvariables. For the one-dimensional system described
above, let Y = nT where T is the collision time. Then Y converges weakly,
as n — 0o, to an exponential random variable with parameter §/L, where

7= / a1/ (q) dg

is the mean speed of the particles.



In the above we made two assumptions that amount to the particles
having no size: (i) the collision time is the time it takes a particle to reach
the origin; (ii) when two particles collide it is as if they pass through each
other. To correct for the first assumption it is natural to let the collision
time be the time a particle takes to get within distance o of the origin; this
turns out to have no effect on the large n asymptotics of the collision time
distribution. Modifying the second assumption to incorporate finite radius
does have an effect, however. Denote the positive particle diameter by o,
and let K; be the number of particles between particle i (with position P;
and velocity @);) and the origin. If particle 4 hits the origin, it has gone K;o
length units of the distance in zero time, so the total time it took to reach
the origin is

_Pi - KZ'O'
Qi
Under assumption A1, that the particles are uniformly distributed excluding
overlap, we can derive the distribution of Kj;, and compute F7.(0) as before.
This gives that the hitting time is approximately exponentially distributed
with rate
q. (5)

See [21, Chapter 5] for details. Note that ong < 1 unless all particles are in
contact with their neighbors.

Si =

A= 0

1 — 0Ny

Higher dimensions

To generalize this result to higher dimensions we argue heuristically® and
write (5) as

A= g(no)q. (6)
where g(ng) is some function of the particle density, such that g(ng) =~ o.ny
for small ny where o, is the collision cross section of two particles. For d = 1,
2, or 3 dimensions we have ny = n/L% and

1 in 1D,
o.=1K20 in2D,.
mo? in 3D,
Equation (6) agrees with the collision rate formula (12.2.7) in [19] in the
low density limit. Note however that we have derived the exponential dis-

tribution, whereas the standard calculation in [19] postulates an exponential
distribution and then finds its rate.

3However, we have verified numerically that our heuristics give a better fit to hard
sphere data than do other assumptions of the form (5).



In the following we assume that the distribution of the inter-collision
times {7} }, conditional on V}, = v, is exponential in the limit as n — oo with
parameter A given by (6) where now

q= / F(@)llg — vlldg

is the mean relative speed of the tagged particle with velocity v and the
particle with which it collides.

2.2 Velocity of the impacting particle, U

To find the distribution of U, the velocity of the impacting particle, we work
in a frame of reference where the tagged particle is at rest, so the velocity
of the impacting particle is U — V. From the previous subsection we see
that the collision rate (the number of collisions per time unit) of the tagged
particle with untagged particles at velocity w is g(no)f(u)|lu — v||. Here f
is the pdf for the velocities of the particles. The fraction of {collisions with
particles with velocity u} to {collisions with all other particles} is therefore

@l
fom(u10) = 5 Fw) o —ojdw — /)

[lu— o]

v

2.3 Angle of impact, ©

Consider a flux of particles with velocity U impacting on the tagged particle
with velocity Vi, as shown in Fig. 4; see Reif [19], pages 467-468. From the
Figure it is clear that sin ©, given U and V%, should be uniformly distributed
in [—1,1]. Since this does not involve the value of U, © and U are in fact
independent, so © ~ arcsin(U[—1,1]) and hence the pdf is

1

fo(0) = 5 s 6.

2.4 Summary

To summarize, the model is a piecewise constant Markov process taking the
value Vj in the interval |7y, 7%,1) with

Vi = (T — A)Vi1 + AU, (7)
[ CE —CyS,
Ay = <cksk c? )

10
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Figure 4: Angle of impact. The incident lines represent a "flux” of particles
with velocity U impacting on the tagged particle with velocity Vj.

where {S;}/° are an i.i.d. sequence uniform in [—1,1], Cy = /1 — SZ, and
the {Ux},/25 are an i.i.d. sequence independent of the {S).} with conditional
pdf
|u — vl
ka\ka1(u|U) = Tf(u)
Here f is the equilibrium velocity distribution. The inter-collision times
{T::}{25 are independent exponential variables with parameter

Ak = g(no)Vk—L

Recall that we have predicted the analytic form of g at small number density,
but that we will fit it to numerical data for higher densities. Here we use
bar to denote mean speed, in the equilibrium distribution, relative to the
quantity under the bar,

o= [ sl vldu

Then V is a continuous time Markov process because the inter-collision times
are conditionally exponential. Note that 7T, and V;, are independent con-
ditional on V4, because V1 is determined by Uy, ©11 which are indepen-
dent of Ty .

11



3 Ergodicity

A natural question to ask is whether the Markov chain for {V}},55 is ergodic.
We assume that f is nowhere zero, that it is continuous in R? and gives rise to
bounded third moments; note that these assumptions hold for the Maxwell-
Boltzmann distribution which is the main case of interest. Let E denote
expectation under application of the Markov chain (7). Then Theorem 2.4
in [16] gives geometric ergodicity for the chain in the following sense:

Theorem 3.1 The Markov chain {V;}}25, given by (7), has a unique in-
variant measure w. Furthermore, there exist ¥ < 1 and k > 0 such that

Bh(Vi) = w(h)] < sr®(1+[[Vo]?)
for all measurable h : RY — R with |h(z)| < 1+ [|z]|?, v € R%.

We let Fj, be the filtration generated by Vj and denote the conditional expec-
tation E[X | Fy] by ExX. Let Py(z, A) denote the k-step transition kernel
for the Markov chain {V}}. To prove Theorem 3.1 it suffices to show that the
Markov chain {V}};° has the following three properties [16]:

Lyapunov function returns to a compact set

3R > 0 and A € (0,1) such that By || Vit ||* < A|Vall* + R

Uniformly reachable point from within the compact set
Let

C:{UGRd

R
||U||2 < m + 6} .

For some § > 0, ¢ > 0, and v* € C there exists | € N with the property
that B
P, (v,Bs(v*)) >0, YveC.

Smoothness of probability densities
The transition kernel has a density which is jointly continuous. That
is,

Pata, ) = [ pule)dy
A
and pg(z,y) is jointly continuous in x and y.

In the remainder of this section we show that the Markov chain {V}}}2 has
these three properties, thereby establishing Theorem 3.1.

12



3.1 Return to a compact set

Let © = ©f,1 and U = Ugyq. Recall that Agiq is given by (3) and the
angle of impact, O, is such that sin © is uniformly distributed in [—1,1]. We
therefore have

1 2
;. [cos® O] = 1 — [ [sin* O] = 1 — 53

and
Ex[cos O sin O] =0

and hence Ey Ay = %I, and By [Z — Apq] = %I.
Now we compute Ey ||V 1]|?. Since Q(©) is unitary and Ay = cos © Q(O),
we have A/, | A1 = cos? © Z, and hence

2
By [Al Api] = ST
It follows that

Ei[(Z = Aks1) (T — Aeya)] =
Er[(Z — Apy1) " Apsa] =

so using again that U and © are independent we immediately get

Ex ||Vt I = B [[(Z — A1) Vi + Ae U
= V' B [(T — Ap) (T — Apn)] Vi
+ 2V, By [(T = A1) " Apa| B U
e [UTEy [ALsAvn] U]

1 2
A gIVk + Ey, [UTgIU]
1 2
= C|[Vil1? + ZE U2
3H kll” + 3 k|| U]l
Now we need only to bound E||U]|? independently of V;. Note that
g 1 2 1 2
E:|UII" = = [ lull*fow, (u | Vi) du = — [ [[ulI"[[Vi = u]l f(u)du.  (8)
Vi Vi
Using the triangle inequality we get
1
Bl < o (Wl [ ulPrdu+ [l )
k

13



= H‘_/—knsz —+ ;/{3
Vi Vi

where s? and k® denote the second and third moment of the particle veloc-
ity distribution respectively. Using the positivity and continuity of f, it is
straightforward to show that V; and V/||Vi|| are bounded away from zero
and hence

Ek||U||2 S 0182 + CQKJs,

uniformly in k.

3.2 Uniformly reachable point

We now show that there is a uniformly reachable point within the set C'. In
fact a much stronger statement is true, namely that since f is nowhere zero,
any point can be reached from any other point in one step,

P (v,Bs(v*)) >0 for all v,v* € R and § > 0.
To see this, note first that
P (v, Bs(v*)) =P{v — A(O)(v = U) € Bs(v*) | Vx = v}
=P{K,(U,0) € Bs(v*) | V, = v}
= P{(U, @) S Kv_l(Bg(U*)) ‘ Vk = U}
where
Ky(u,0) =v— A(0) (v — u).

K, is a continuous mapping, so the preimage of Bs(v*) under K,,
K (Bs(07) = {(w,0) | lv— A(0) (v — u) — 07| < 6}

is an open set. Since K,(v*,0) = v* this set contains the point (v*,0).* It is
thus a nonempty open set and so has nonzero Lebesgue measure.
The joint distribution of U and © given V; = v is

[[u— o

f(u).

This is continuous in (u,#) and is zero only when v = v or when = +7,
and therefore absolutely continuous with respect to Lebesgue measure on
R? x (—%,%). We conclude that the transition probability from v to Bs(v*)
is non-zero.

frewi(u,0 | v) = fo, (0| v) fo, (ulv) = %COSH

4(v*,0) corresponds to the particle being hit by a particle moving with velocity v* at
an angle such that the two particles exchange velocities in the collision.

14



3.3 Smoothness of probability densities

The transition probabilities can be written

P(v, A) = P{K,(u,0) € A} = / From (u, 0]0) du df = /p(v,w) dw

Ki'(A)
where
plo,w) =Y fuep(u,0v)J(u,0) (9)
K, (u,0)=w
and where
0Ky 1 0Ky 2
J(u,0) = | 2R, of",
90 20

is the Jacobian determinant of K,. Now fy ey, is continuous and K, contin-
uously differentiable so (9) gives that p, the density of the transition kernel,
is continuous.

4 Simulation

There are various quantities that can be used to assess the validity of the
proposed Markov model by comparing it to the results of a hard sphere bil-
liards simulation. For this and the next section, we assume that the velocity
distribution is given by the Maxwell-Boltzmann distribution A/ (0, s*I), that

) i ol
flv) = ﬁexp <—g> .

To simulate the Markov process (7) it suffices to draw repeatedly from the
distributions of U, ©, and T". The last two are straightforward since sin © is
uniformly distributed and 7" is exponential with parameter depending only on
the current particle velocity.® Drawing from U is thus the only non-obvious
step.

The procedure by which this is achieved is described in detail in [21]. To
summarize, we first get an explicit expression for the pdf of U by finding the
joint pdf for the random variables R = [|[U — V|| and ® = Z(U — V, V), the
angle U — V makes with V. To sample from this joint distribution we find
the marginal distribution of R (with & integrated out) and the conditional
distribution of ® given R; we then first draw from the distribution of R, using

5In [21] V} is evaluated analytically in the Gaussian case, yielding a closed form ex-
pression for this parameter.

15



the marginal, and then, given the value of R, draw from the distribution of
®, using the conditional. We use the well known rejection method to sample
from a distribution with a known pdf.

5 Validation

We test the validity of the model in subsection 2.4 by comparing sample path
properties calculated from it with the corresponding properties of a single
particle imbedded in a full hard sphere interacting billiards calculation. By
considering a sequence of experiments at increasing densities we show how
the model is good for small densities, and demonstrate how it deteriorates
as the density increases.

The Markov model is simulated by the methods described in the previ-
ous section. The full hard sphere billiards calculation is performed by the
methods overviewed in [22].

5.1 Density ¢ =0.2

We run a billiards simulation of 504 particles at a density ¢ = 0.2 for about
half a million collisions per particle, for a total of about 125 million collisions.
We start with the particles positioned on a regular grid and with initial
velocities such that the velocity components are i.i.d. Gaussian with mean 0
and variance 1.

We compare the following statistics:

1. Distribution of V%, the velocity at a collision, Fig. 5.

2. Distribution of V', the velocity at fixed increments in time, Fig. 6.
3. Distribution of T}, the inter-collision times, Fig. 7.

4. The velocity autocorrelation function, Fig. 8.

First we test the validity of the Markov chain {V;}/% by comparing
the distribution of Vj to the velocity at collision from hard sphere billiards
simulation. This is shown in Fig. 5, and we see that the two curves are
virtually indistinguishable; this distribution is not Gaussian.

The distribution of the particle velocity at fixed increments in time, how-
ever, should be Gaussian. We choose a small time interval At, and sample
the velocity of a particle every At time units, and make a histogram of the
resulting numbers. In Fig. 6 we compare the distribution obtained from

16



Frequency
n
o
o
o

Figure 5: Distribution of V, particle velocity at collision, obtained from the
Markov chain (dashed) and hard sphere billiards simulation (solid) at density
¢ = 0.2. This distribution is not Gaussian.

simulating the Markov chain with the distribution obtained from the hard
sphere billiards simulation and they are indistinguishable.

In Fig. 7, we compare the collision times Ty to the collision time dis-
tribution from a hard sphere billiards simulation. The function g(ng) sets
the time-scale of the Markov model; here, and in subsequent experiments at
higher density, we estimate its value for ¢ = 0.2 from the billiards simulation,
and set the time unit to one mean collision time. Having made this choice
of units, we see that the distribution for the Markov process and the one
obtained from hard sphere billiards simulations are almost identical.

The velocity autocorrelation function, VACF, is shown in Fig. 8. As in
Fig. 7 the time unit is the mean collision time. Again, the one obtained from
the Markov chain is virtually indistinguishable from the true autocorrelation
function. This is not be the case at higher densities, though, as it is well
known that the true autocorrelation has a negative dip at high densities (see
Section 5.3). In contrast, the shape of the autocorrelation function obtained
from the Markov chain is independent of the density; the density correction
only changes the scale but not the shape. In the Boltzmann theory [1] the
VACF decays exponentially in time.

We now return to a more detailed examination of the close agreement
seen in Figures 5-7. Each figure can be thought of as showing an expected
frequency F; assuming the Markov model, together with a corresponding
observed frequency O; from the hard sphere billiards simulation, for each
‘bin’ ¢ used in Figures 5-7. If the observed frequencies O; were actually
drawn independently from the Markov chain model then it is reasonable to
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Figure 6: Distribution of V', particle velocity, from the Markov chain (dashed)
and hard sphere billiard simulation (solid) at density ¢ = 0.2. This distribu-
tion is Gaussian.
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Figure 7: Distribution of T}, inter-collision times, from the Markov chain
(dashed) and hard sphere billiards simulation (solid) at density ¢ = 0.2.
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Figure 8: Velocity autocorrelation from the Markov chain (dashed) and from
hard sphere billiards simulation (solid) at density ¢ = 0.2.

expect them to follow independent Poisson distributions with means E;, and
therefore standard deviations v/ F;. Hence the standardised residuals

_0i—E
- VE

should resemble independent samples from a standard normal A(0,1) dis-
tribution if the fit between the hard sphere data and the Markov model is
a good one. Thus we can examine the residuals and check for independence
and Gaussianity as a measure of how good the Markov chain fit is.

Plots of these residuals are shown in Figures 9-11. The left figure shows
r;, binned in the same manner as the data in Figures 5-7, enabling the
independence hypothesis to be probed. The right hand figures show a coarse
histogram of the data stream r; (with 25 bins) in comparison with a unit
normal, allowing the Gaussian hypothesis to be probed. These graphs are
useful indicators of goodness-of-fit, although the following points should be
borne in mind when intepreting them:

Ty

1. There is some slight dependence between the r; because of the con-
straint >, O; = Y. E;. This dependence is negligible as each E; is a
small proportion (< 0.5%) of the total number of simulations.

2. The r; will be overdispersed compared to the Poisson, because of the
autocorrelation. This effect should be negligible as the bins are very
narrow.

3. The normality approximation is crude if F; is small, for example if
|Vk‘ > 4.
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Figure 9: Comparison of the distribution of Vj from the Markov chain and
the hard sphere billiards simulation, at density ¢ = 0.2.

Figure 9 shows excellent agreement between the O; and E; for Vj; the r;
look like white noise, although the histogram shows that, because of discreti-
sation, the distribution of r; is less peaked than A/(0,1).

Figure 10 shows reasonable agreement between O; and F; for V; the r;
have a mean of roughly 0 throughout, but are underdispersed for large |V/|
compared to AN(0,1), and overdispersed for V' around 0. Consequently the
histogram of r; has slightly heavier tails than A/(0,1). A possible explanation
for this is that it is caused by the autocorrelation in the data, but a more
detailed data analysis would be required to ascertain whether this is so.
Figure 11 shows some systematic bias for T; the r; are scattered around a
mean of roughly -2 at T' = 0, rising to 1 at 7" = 1 and then falling to a mean
close to 0 for T' > 3. This represents about a 3% discrepancy between the
estimated density of T} at 0 from the Markov model and from the simulation.

The overall conclusion of these data analyses is that the fit of the hard
sphere data to the Markov model is excellent at this density.

5.2 Density ¢ =0.5

The previous subsection shows that, at low densities, the Markov model is
remarkably effective at capturing the effective stochastic dynamics of a single
particle embedded in a gas of hard spheres. Here we extend this to higher
densities, conducting experiments identical (in choice of initial data, and
number of collisions) to those in the previous subsection, but with ¢ = 0.5.

Figures 12-14 show that the velocity and collision time distributions for
the hard sphere data and the Markov chain data are in close agreement.
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Figure 10: Comparison of the distribution of V' from the Markov chain and
the hard spheres billiards simulation, at density ¢ = 0.2.
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Figure 11: Comparison of the distribution of 7T}, from the Markov chain and
the hard sphere billiards simulation, at density ¢ = 0.2.
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Figure 12: Distribution of Vj, particle velocity at collision, obtained from
the Markov chain (dashed) and hard sphere billiards simulation (solid) at
density ¢ = 0.5
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Figure 13: Distribution of V, particle velocity, from the Markov chain
(dashed) and hard sphere billiards simulation (solid) at density ¢ = 0.5
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Figure 14: Distribution of T}, inter-collision times from the Markov chain
(dashed) and hard sphere billiards simulation (solid) at density ¢ = 0.5.

Figures 15-17 clarify this point further: As for ¢ = 0.2 the agreement for Vj
(Figure 15) is excellent apart from the effect on r; of discretisation for |V| > 4.
The agreement for V' is reasonable but again shows some overdispersion for V'
near 0, and there are small systematic differences between the two estimates
for the distribution of T', with a very similar pattern to that for ¢ = 0.2.

The VACF at density ¢ = 0.5 is starting to show deviations between the
hard sphere data and the Markov model; certainly the fit in Figure 18 is not
as good as the fit in Figure 8. This deterioration continues as the density
increases.

The overall conclusion of these data analyses is that the fit of the hard
sphere data to the Markov model is very good at this density, but is notably
slightly less good than at density ¢ = 0.2.

5.3 Density ¢ =0.75

Figure 19 shows the VACF, calculated using the same number of collisions as
in the previous two subsections and same initial data, for the higher density
of @ = 0.75. The VACF of the hard sphere model shows a negative dip,
something which is impossible for a Markov model. Since our approximate
model is Markovian we obtain a poor fit to the VACF of the hard sphere
data.

It would be of interest to extend our model to incorporate memory effects
at higher densities. We do not do this here, but we do give a survey of what
has been done in this area in the next section.
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Figure 15: Comparison of the distribution of V}, from the Markov chain and
the hard sphere billiards simulation, at density ¢ = 0.5.
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Figure 16: Comparison of the distribution of V' from the Markov chain and
the hard spheres billiards simulation, at density ¢ = 0.5.
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Figure 17: Comparison of the distribution of 7} from the Markov chain and
the hard spheres billiards simulation, at density ¢ = 0.5.

Figure 18: Velocity autocorrelation from the Markov chain (dashed) and
from hard sphere billiards simulation (solid) at density ¢ = 0.5.
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Figure 19: Velocity auto-correlation at density ¢ = 0.75 for the Markov
model (dashed) and hard spheres (solid).

6 Memory Effects

The previous section shows that, whilst our model is excellent at low to
moderate densities, it fails to predict the hard sphere behavior well as density
increase. Amongst other failures of the model, it is unable to predict the
memory effect manifest in negative VACF functions at high densities. Here
we briefly survey what has been done in the modelling of memory effects.

6.1 Markov chain models for a single particle

Burshtein, Temkin, Pasterny, and Kivelson have studied Markov chain mod-
els for the linear and angular velocity of a single particle in a rarified gas
6, 3, 4, 5, 18, 15, 2]. They are mostly concerned with reproducing the ve-
locity autocorrelation function across a wide range of densities, in particular
the negative dip observed at medium to high densities. The main difference
between their approach and the approach in this paper is that the collision
times are taken to be unconditionally exponential, and thus not dependent
on the current particle velocity. They do not consider the ergodic properties
of the chain.

They use the Keilson-Storer kernel [14], in which the probability of a
post-collision velocity v given that the pre-collision velocity is v’ is

~

f,0') = f(v— ")

The one dimensional Maxwell distribution is conserved if

b ) = 1 oy [~ (0 =)
flo =) 2m0%(1 — ~?) p( 202(172)>
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where 0? = (v?). This amounts to letting

v=9v++1—-~2U

where U ~ N(0,0?). As v — 1 collisions are weak, as v — 0 collisions are
strong, and as v — —1 the velocities are anti-correlated.

Burshtein and Krongauz [3] state that the velocity autocorrelation func-
tion is known to be exponential if the distribution of the collision times is
exponential and the successive values of the velocity form a Markov chain,
and therefore go on to consider two different models for hard spheres fluid:

1. Non-exponential distribution of collision times.

2. Model the angle between the velocities before and after a collision, what
they call the wvelocity turns, as a highly correlated Markov process.

For the first model they explore two distributions of the collision times: an
interpolation of an experimentally obtained distribution of collision times,
and negative y; and using

exp(—t/m) — exp(—t/12)

b(t) =

(10)

for the collision time distribution. By using v close enough to —1 with (10)
they can get a negative dip in the velocity autocorrelation function. They
give some justification for using negative v for a heavy particle moving among
a collection of light particles, but say it is not justified for particles of equal
masses.

For equal masses they resort to the second model, correlated velocity
turns, that is model the successive velocity turns as a Markov chain. They
work in terms of the scattering angle a(t), with

v(t) - v(0) = [lo(®)][[lv(0)]] cos a(?).

A collision will result in an angle jump of Oy = a(ty+) — a(tx—), with
probability that depends only on the last jump, f(O, Ox_;1). They assume

that f(0©,0") = f(© — ©'). They find that this model describes well the
extent of the negative velocity correlation and location of its minimum.

6.2 Velocity reversing

Talbot [26] models collisions, which may or may not reverse the sign of some
velocity component, and studies two simple models for fluids composed of
hard particles:
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1. Each particle has a constant probability ¢ of reversing direction on each
collision.

2. A particle has a probability v of reversing direction if it reversed direc-
tion on the last collision, p otherwise.

Neither model represents the velocity autocorrelation function very accu-
rately. The second model is able to produce negative VACF for particular
values of 1 and v, but the values suggested by hard sphere billiards simulation
for ;4 and v do not give negative VACF.

6.3 Enskog theory for soft potentials

Noro, Kivelson, and Tarjus [17] try to extend Enskog theory to soft potentials
by a simple model for p,(¢), the probability for a collision to occur at a time ¢
after the last collision. They claim it includes the ”environmental crowding”,
softness of the potential, and correlations of successive collisions. They do not
view the model above as a part of kinetic theory, and believe that correlated
collision times are essential.

A collision of soft particles is defined as a velocity reversal. The time ¢,
between collisions is the shortest time for which v, (0)v,(f) becomes negative.

They claim their model captures much of the physics over the entire gas-
liquid density range. For example, it fits p,(¢) from hard sphere billiards
simulations reasonably well for any temperature, density, and softness. How-
ever, their model performs poorly in describing the velocity autocorrelation
function.

7 Conclusions

We have described a Markovian model for the motion of a single particle
embedded in a hard-sphere billiard system at equilibrium. During the process
of deriving and validating the model we have:

e given a rational argument for choosing inter-collision times as exponen-
tial random variables, conditional on current particle velocity;

e shown excellent agreement between the Markov model and hard sphere
data, at low to moderate particle densities;

e proven that the Markov model is ergodic, with expectations converging
at an exponential rate;
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e surveyed existing literature on the incorporation of memory effects that
arise at higher particle densities.

A natural direction in which to take this work would be to seek non-
Markovian generalizations of the model used here in order to allow for mem-
ory effects at higher densities.

A Some proofs
Proof of Lemma 2.1 Let F}, be the distribution of Y,,. Then
F,(y) =Pr(Y, <y)=1-Pr(Y, >vy)

=1-[[Pr(nXi>y) =1— (1 - F(y/n)".

=1

Since X; is a positive random variable we have F'(0) = 0 so, by I’'Hopital,

. . —yF(ey)
dim log(1 = Fa(y)) = lim =52 5
= —yF"'(0).

We have shown that, for fixed vy,

lim F,(y) =1 = exp(=yF"(0)) = G(y).

In other words that F;, converges pointwise to the function G, which is the
distribution function of an exponential distribution with parameter F'(0),
and hence Y, converges weakly to an exponential with parameter A = F’(0).
O

Proof of Theorem 2.2 From Lemma 2.1 we get that nT" converges weakly
to an exponential random variable with parameter A = F.(0), where Fr is the
distribution function of S;. To express A in terms of the velocity distribution
we compute F7.(0). Denote by Fp the distribution of the particle positions;
by assumption it is uniform in [-L/2, L/2] so F}, = 1/L. Then

Fr(t)=Pr{T <t} =Pr{0 < —P/Q < t}
=Pr{P>0,Q<0,P<—-tQ}+Pr{P<0,Q >0,P > —tQ}

= / fla)Pr{0 < P < —tq} dq + / f(q) Pr{0 > P > —tq} dq

q<0 q>0
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- / £(0) (Fp(—tg) — Fp(0)) dg + / £(0)(Fp(0) — Fr(—tq)) dg

q<0 q>0
SO
/f q)Fp(—tq) dq+/f (9)aFp(—tq) dg
q<0 q>0
- / L F (@) Fb(~tq) dg
and
, 1 _
= [ ldlf(@)Fp(0)dg = 7 [ lalf(a)da=
where
7= [ lalf @) dg
is the mean speed of the particles. Therefore
/ 1_ _
A=nk/0) = nTa =g (11)

where ng = n/L is the number density of the particles. O
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