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Mathematics, Statistics and Data Science

The process of extracting information from data has a 
long history (see, for example, [1]) stretching back over 
centuries. Because of the proliferation of data over the 
last few decades, and projections for its continued pro-
liferation over coming decades, the term Data Science 
has emerged to describe the substantial current intellec-
tual effort around research with the same overall goal, 
namely that of extracting information. The type of data 
currently available in all sorts of application domains is 
often massive in size, very heterogeneous and far from 
being collected under designed or controlled experi-
mental conditions. Nonetheless, it contains information, 
often substantial information, and data science requires 
new interdisciplinary approaches to make maximal use 
of this information. Data alone is typically not that in-
formative and (machine) learning from data needs 
conceptual frameworks. Mathematics and statistics are 
crucial for providing such conceptual frameworks. The 
frameworks enhance the understanding of fundamental 
phenomena, highlight limitations and provide a formal-
ism for properly founded data analysis, information ex-
traction and quantification of uncertainty, as well as for 
the analysis and development of algorithms that carry 
out these key tasks.. In this personal commentary on 
data science and its relations to mathematics and statis-
tics, we highlight three important aspects of the emerg-
ing field: Models, High-Dimensionality and Heterogene-
ity, and then conclude with a brief discussion of where 
the field is now and implications for the mathematical 
sciences.

Models
Mathematical models provide a conceptual framework 
within which to interpret data. A well-established con-
nection between models and data is provided by the 
statistical approach in which the primary task is the in-
ductive inference from data to draw conclusions about 
unknown model parameters or structures. This is the pro-
cess of blending models with data. The manner in which 
the model and the data are linked, and the relative belief 
in the accuracy of the model and the data, play important 
roles in this blending process. One class of examples are 
the complex models arising from Newton’s laws, such 
as those governing the Earth’s atmosphere for use in 
weather prediction. This field (at current levels of com-
puter resolution) involves models with billions of state 
variables, which are confronted with datasets of millions 
of measurements at regular intervals several times each 
day – this is the process of data assimilation [2]. These 
problems, although increasingly data rich, are very mod-
el-driven, with a belief in Newton’s laws providing a very 
strong constraint on the task of interpreting the data. 
At the other extreme are problems that are primarily 
data-driven and in which the model arises from the data 
rather than being a constraint – for example deep learn-
ing in image classification [3]. Matrix completion for the 
Netflix problem [4] is another example of a primarily da-
ta-driven application in which the model is not based on 

any fundamental modelling principles. Between these 
two extremes of data-driven and model-driven inference 
are numerous applications in biology and the social sci-
ences in which cartoon models are used, such as the SIR 
models [5] describing the transmission of infectious dis-
eases or continuum flow models for crowds [6]; in these 
disciplines, the models are significant constraints on the 
data but do not have the pivotal position that Newton’s 
laws play in some application areas. In this discussion 
of model-driven versus data-driven procedures, and the 
spectrum in between, it is important to appreciate that 
whilst purely data-driven procedures might be appro-
priate for the task of forecasting or prediction, they do 
not provide the additional “mechanistic” or “causal” in-
sights that arise when incorporating data into Newton’s 
laws, for example. Indeed, in fields that are currently 
data-driven, it can be expected that mechanistic models 
will emerge as the data provides information about the 
fundamental mechanisms at play. In particular, this sug-
gests that whilst the mathematical models of the last few 
centuries are “pencil and paper” models, the next few 
decades may open up new paradigms for mathematical 
modelling based around “machine-learnt” models that 
reside in computer memory and are organised around 
fundamental principles that emerge from the data.

High-Dimensionality
The topic of “high-dimensionality” arises in two impor-
tant ways: through the size of the dataset and through 
the size of the model, as indicated in the examples de-
scribed above. For high dimensional models, important 
questions relate to the ability of algorithms to scale to 
arbitrarily high, even infinite dimensional, formulations 
[7, 8] of the statistical inference problem. Another key 
development in high dimensional statistics is based on 
the concept of sparsity, which has proven to be remarka-
bly successful in many applications, including the highly 
celebrated compressed sensing methodology [9, 10] and 
its noisy version, in which stochastic error terms are su-
perimposed on the observed signal. The mathematical 
underpinning and understanding of high-dimensional 
statistical inference (see [11] and [12]) has evolved al-
most simultaneously with practical applications.

Early examples of high-dimensional problems arose 
in genomics in the late 1990s when relating disease sta-
tus to the genetic profile of a person [13]. When meas-
uring many biomarkers (expressions of many genes in 
the genome), for example around ten thousand in the 
early times of such applications, a model would typi-
cally involve (at least) one unknown parameter for 
every measured variable, encoding an unknown effect 
of the biomarker to the disease status. And thus, there 
is immediately an inference problem with ten thousand 
unknown parameters to be estimated from about one 
hundred people participating in a well-designed study. 
Successful models, classification and even causal infer-
ence techniques have been built in statistics and bio-
informatics at the interface between molecular and 
computational biology. Nowadays, genetic profiles are 
measured with millions of biomarkers and, instead of a 
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well-defined single study, there are huge health databas-
es containing information from very many people. New 
problems that arise include privacy issues and heteroge-
neity; the latter is discussed in the following paragraph.

Heterogeneity
With growing data volume, one might reasonably ex-
pect an increased sample size. But these large datasets 
that are now routinely available are usually not col-
lected from well-designed experiments and they are of-
ten rather heterogeneous. They might exhibit unwanted 
time trends, variation or sub-population structures or 
arise from different sources like satellites, aircraft and 
weather balloons for weather prediction. When parti-
tioning the massive data into fairly homogeneous groups 
(which, without further information, is a difficult task in 
statistical mixture or change point modelling), this of-
ten leads to severe high-dimensional problems in which 
the sample size within a homogeneous group is rather 
small in comparison to the dimensionality of the un-
known model parameters. New avenues of investigation 
are required to tackle fundamental problems relating to 
heterogeneity in large-scale data. This is an area where 
new input is needed from mathematics and statistics be-
cause naive design and use of standard algorithms does 
not lead to accurate information extraction.

Where Are We Now? 
Data science is clearly emerging as an identifiable re-
search area of enormous importance, dealing with large-
scale data problems in many application areas such as 
biology and medicine (epidemics, genetics and genom-
ics, neuroscience), engineering (imaging, signal process-
ing), geophysical sciences (climate, weather, the Earth’s 
subsurface and numerous energy applications), the 
social sciences (economics, ranking and voting, crowd 
sourcing) and commerce (Amazon, Google, Netflix), 
to name just a few. Whether data science will become 
a distinct academic discipline in the way that computer 
science did in the 1950s remains to be seen. But, clear-
ly, the subjects of mathematics and statistics have very 
close relations to data science, whatever form it takes. 
Statistics has a longstanding tradition and an established 
framework for quantifying uncertainties and this in turn 
helps to address substantial problems of replicability in 
data-driven science. Mathematics has a unique position 
to contribute to the foundations in information and data 
science. Whilst avoiding claims that mathematics and/
or statistics should “own large parts” of data science, it 
is clear that we should embrace others who participate 

in the endeavour and the intellectual challenges that 
stem from doing so. Data science is certainly stimulating 
new and exciting mathematics and statistics. As a conse-
quence, education in the mathematical sciences should 
incorporate more in-depth training in computing, math-
ematical modelling and statistical thinking, in the con-
text of data-rich applications and theoretical paradigms.
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