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The seamless integration of large data
sets into sophisticated computational
models provides one of the central chal-
lenges for the mathematical sciences in
the 21st century. When the compu-
tational model is based on dynamical
systems, and the data set is time or-
dered, the process of combining models
and data is called data assimilation.
The assimilation of data into computa-
tional models serves a wide spectrum
of purposes ranging from model calibra-
tion and model comparison, all the way
to the validation of novel model design
principles.

Historically the rise of numerical
weather prediction (NWP) in the 1950s
played a major role in germinating the
field of data assimilation. The compu-
tational models employed immediately
demanded algorithms for determining
initial model states from available ob-
servations. Such a task falls naturally
within the realm of ill-posed inverse
problems [5] with the important caveat
that Tikhonov-type regularizations have
to be consistent with the underlying
model dynamics [2]; indeed it was dis-
covered that forecast skill could be dra-
matically improved by explicitly includ-

ing the NWP models into the data as-
similation cycle [26]. The data assim-
ilation technique associated with this
viewpoint is still widely used in oper-
ational weather forecasting and, collec-
tively, the methods go under the syn-
onym of 4DVAR (standing for four di-
mensions – three space plus time – and
a cost functional to be minimized). The
4DVAR methodology fits into the frame-
work of Tikhonov regularized inverse
problems where the regularization term
on the initial condition is balanced by a
term reflecting faithful reproduction of
the model dynamics.

A second class of algorithms widely
used by the NWP community are the
Kalman filter type methods coming
out of the control community [12, 13].
This work of Kalman has been enor-
mously influential, constituting an early
systematic development of a methodol-
ogy to combine model and data for dy-
namical systems; it is applicable to lin-
ear problems subject to additive Gaus-
sian noise. An early suggestion to use
the Kalman filter in the solution of lin-
ear PDEs arising in the atmospheric sci-
ences is [7]. Early extensions of the
classic Kalman filter to nonlinear sys-
tems include the extended Kalman fil-
ter [11]. However computational ex-
pense, together with the strong non-
linearity of atmosphere-ocean dynamics,
prevented an operational implementa-
tion of the extended Kalman filter. In-



2 Sebastian Reich and Andrew M Stuart

stead operational weather centers imple-
mented a much simplified version of the
Kalman update equations through cy-
cling the 3DVAR methodology [18, 21]
(here the data is incorporated sequen-
tially at each fixed time, so that the
optimization is over three space dimen-
sions); structurally this cycled 3DVAR
looks like an extended Kalman filter
type update, but with a fixed covariance
structure to weight the model reliabiity
versus that of the data. Steadily increas-
ing computer power eventually allowed
for an extension of this cycling approach
by combining it with ensemble pre-
diction, which became prevalent in the
NWP community in the 1980s [14]. In
this approach, rather than making a sin-
gle best weather forecast, an ensemble
of forecasts is made and their variabil-
ity is used to weight the reliability of
the model in comparison with the reli-
ability of the data. Current ensemble-
based data assimilation methodologies
rely on linear regression in order to com-
bine forecast uncertainties and observa-
tions and are collectively termed en-
semble Kalman filters (EnKFs) [6].
Employing EnKFs in operational data
assimilation systems has led to improved
forecast skill compared to the simpli-
fied 3DVAR approach (see Figure 1).
Whilst EnKFs thus provide an elegant
extension of the classic Kalman filter
to the highly large-scale non-Gaussian
and nonlinear NWP models in use in
the present day, the underlying linear
regression ansatz also places limitations
on their ability to predict, for example,
extreme meteorological events.

Ensemble Kalman Filter (red) versus 3DVAR (blue)

forecast lead time in hours

higher skill

lower skill

quality gain

Figure 1. Improvement of forecast skills

for temperature in the southern

hemisphere through the use of an

ensemble Kalman filter data assimilation

system at the German Meteorological

Service (DWD).

Current research activities in data as-
similation for NWP focus on expand-
ing the range of observational systems
(see Figure 2) and on merging 4DVAR
with ensemble prediction systems on the
one hand, and sequential Monte Carlo
(SMC, see below) methods with EnKFs
on the other. We will discuss some of
these developments in more detail be-
low. Practical challenges for such exten-
sions arise, for example, from the rel-
atively small affordable ensemble sizes
(on the order of a hundred) and the pres-
ence of spatially and temporally corre-
lated data and model errors which can-
not be easily represented by standard
stochastic processes.
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Figure 2. Range of observational systems

that deliver data to numerical weather

prediction systems.

At the same time, and largely discon-
nected from NWP, the field of petroleum
reservoir simulations has led to the de-
velopment of data assimilation meth-
ods with a stronger focus on combined
model state and parameter estimation
[20]. With reservoir model parameters,
such as permeability, often being hugely
uncertain, data assimilation and uncer-
tainty quantification becomes even more
challenging for petroleum reservoir engi-
neering.

As the preceding discussion demon-
strates, the subject of data assimila-
tion has been driven primarily by prac-
titioners working in the geophysical sci-
ences. However the potential for appli-
cation in all realms of science and engi-
neering cannot be over-stated. For this
reason, the subject is ripe for develop-
ment by the mathematics community
[10]. The primary benefits of mathema-
tizing a discipline of this type are three-
fold: (i) firstly systematic development
leads to clarity about the right ques-
tions to ask, and distinguishes between
generic algorithmic and mathematical
questions, and application-specific ones;
(ii) secondly it leads to the possibility of
importing algorithmic innovation from
the computational mathematics com-
munity; (iii) and finally it allows for the
exchange of ideas between different ap-
plication areas, through a common lan-
guage. Of course, this perspective is not
news to most of our readers, but the
value of mathematics as the language of
science and engineering is always worth
re-emphasizing.

A central transferable idea in this ar-
ticle is that, in many areas of applied
mathematics, the data model and the

mathematical model should be consid-
ered in conjunction. Thinking about a
scientific or engineering problem in this
way, from the very start, is certainly a
non-traditional way of thinking, but we
argue that it is, in many areas, the right
viewpoint. In the context of data as-
similation we thus consider a combined
model for the signal with a model for
the observation process. For expos-
itory purposes we consider a discrete
time signal VJ = {v`}J`=0 given by

vj+1 = Ψ(vj) + ξj .

Here the model noise {ξ`}J−1
`=0 represents

stochastic forcing to a deterministic evo-
lution given by Ψ(·); this stochastic forc-
ing may or may not be included, de-
pending on the setting. The mathe-
matical model for the signal may have
many centuries of intellectual develop-
ment behind it (for example in NWP),
or may be the product of more recent
applications-driven needs (for example
in traffic flow). The level of confidence
in the purely deterministic signal model
will affect whether or not it is appropri-
ate to include model noise in it. The
observations YJ = {y`}J`=1 are assumed
to be given by

yj+1 = h(vj+1) + ηj+1.

This will typically model the use of
data aquisition instruments, which will
of course be application specific (see Fig-
ure 2 for NWP examples), but often
involving very recent, new, technology.
Here the observational noise {η`}J`=1 is
almost always present as very few ob-
serving instruments are perfect.

We can state two formulations of the
data assimilation problem. The first
is to find information about vj given

Yj = {y`}j`=1, and to update this in-
formation sequentially as j 7→ j + 1;
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this is known as filtering. The second
is to find information about VJ given
YJ for some given J ; this is known as
smoothing. Computationally smooth-
ing is more demanding than filtering be-
cause it operates in a state space of di-
mension J + 1 times that of the state
space of filtering. While filtering and
smoothing lead, theoretically in the fully
probabilistic model described below, to
the same result at j = J , current com-
putational implementations of smooth-
ing in the form of 4DVAR and filtering
in the form of EnKFs often demonstrate
that smoothing is more informed by the
data than is filtering. However EnKFs
deliver an estimate for forecast uncer-
tainties and do not require the com-
putation of adjoint operators (and can
thus be seen as derivative-free minimiza-
tion methods). Merging the advantages
of 4DVAR with those of EnKFs is cur-
rently a very active area of research in
NWP.

Another important methodological
distinction is between deterministic
and probabilistic methods. Deter-
ministic methods for smoothing can be
formulated through optimization as at-
tempting to find the model and ob-
servational noise sequences which give
the best fit to the overall mathemat-
ical/data model. This leads to the
4DVAR objective function

J(VJ) :=

J−1∑
j=0

(
|C− 1

2

(
vj+1 −Ψ(vj

)
|2

+ |Γ− 1
2

(
yj+1 − h(vj+1)

)
|2
)

which will typically be augmented with
a regularization term for the initial con-
dition, as discussed above. The co-
variance matrices C and Γ weight the
relative confidence in the mathematical
model and in the data. There are many

variants on the above and, in partic-
ular the singular limit C → 0, where
the model is thought to be noise free
(ξj ≡ 0), and hence optimization is
over v0 only, is widely used. Deter-
ministic methods for filtering can also
be expressed in terms of optimization;
3DVAR type methods have the form:

vj+1 = argminvJj(v),

Jj(v) := |C− 1
2

j

(
v −Ψ(vj

)
|2

+ |Γ− 1
2

(
yj+1 − h(v)

)
|2.

As with smoothing the choice of covari-
ances Cj and Γ leads to a variety of
different methods. A key question is
whether such methods can reproduce ac-
curate estimates of the true signal, even
when initialized incorrectly; a dynam-
ical systems perspective on such prob-
lems was established in the paper [8]
in the noise free model and data case.
EnKF methods employ N copies of the
above iterated minimization in parallel,
and the covariance Cj is estimated em-
pirically from an ensemble of forecasts.
Such methods provide a transition from
deterministic to probabilistic data as-
similation techniques in that the ensem-
ble information may be used as a sur-
rogate for model uncertainty. Further-
more, such methods also lead to complex
interaction between the different ensem-
ble members, and hence to interesting
and challenging problems in random dy-
namical systems [15]: there is a great
deal of scope for new research in this
area.

More generally, probabilistic filter-
ing methods concern approximation of
the sequence of probability measures
µj(·) = P(vj ∈ ·|Yj). There are various
approaches to this, but the most preva-
lent for low-dimensional applications are
SMC methods which attempt to approx-
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imate the probability distributions µj

by weighted sums of Dirac measures.
This can be very hard to do in prob-
lems where the state space dimension is
large, or where the data is very informa-
tive [25, 27]. EnKF methods partially
address the need to tackle such problems
by employing linear regression during
each data assimilation step, but rigor-
ous analysis justifying their accuracy in
practical scenarios (fixed, small ensem-
ble size) is very much lacking and very
much required. An interesting connec-
tion between probabilistic filtering and
optimal transportation theory [22, 23]
provides an important conceptual foun-
dation for the analysis of these prob-
lems.

The smoothing distribution requires
study of the probability measure µ(·) =
P(VJ |YJ). This measure is on a space of
dimension J + 1 times that of the space
where each measure µj from filtering
lives. As a consequence it can be very
difficult to study this probability mea-
sure accurately and efficiently. Monte
Carlo-Markov chain (MCMC) methods
can be used in some cases, but these are
primarily for model problems in bench-
marking mode [16]; there remains a sig-
nificant number of challenging questions
in numerical analysis and statistics con-
cerning how to make these methods ac-
curate and efficient for high-dimensional
applications [4].

Data Assimilation is at a very excit-
ing juncture for mathematical scientists.
There are a plethora of applications in
which dynamical models are confronted
with significant data sets. The question
of how to merge the dynamical model
with the data in order to either esti-
mate model states or model parameters,
or to estimate both, is thus very timely.
In addition to the legacy applications

in the geophysical sciences [2, 14, 20],
for which data assimilation remains key,
new areas include traffic flow [28, 9],
neuroscience [1], personalized medicine
[24] and power grids [3]. Furthermore,
the subject has been applications-led to
date. The opportunity for mathemati-
cal scientists to systematize the field, to
develop and import new ideas and algo-
rithms, and to export these into appli-
cation domains old and new, is a great
one. The recent texts [17, 19, 23] pro-
vide introductions to the mathematical
underpinnings of data assimilation. The
field is one which will only grow in im-
portance over the next few decades, and
an ideal one for younger researchers in
the mathematical sciences.
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