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Abstract

These lecture notes highlight the mathematical and computational structure
relating to the formulation of, and development of algorithms for, the Bayesian
approach to inverse problems in differential equations. This approach is fun-
damental in the quantification of uncertainty within applications involving the
blending of mathematical models with data. The finite-dimensional situation is
described first, along with some motivational examples. Then the development of
probability measures on separable Banach space is undertaken, using a random
series over an infinite set of functions to construct draws; these probability
measures are used as priors in the Bayesian approach to inverse problems.
Regularity of draws from the priors is studied in the natural Sobolev or Besov
spaces implied by the choice of functions in the random series construction, and
the Kolmogorov continuity theorem is used to extend regularity considerations
to the space of Holder continuous functions. Bayes’ theorem is derived in
this prior setting, and here interpreted as finding conditions under which the
posterior is absolutely continuous with respect to the prior, and determining
a formula for the Radon-Nikodym derivative in terms of the likelihood of the
data. Having established the form of the posterior, we then describe various
properties common to it in the infinite-dimensional setting. These properties
include well-posedness, approximation theory, and the existence of maximum
a posteriori estimators. We then describe measure-preserving dynamics, again
on the infinite-dimensional space, including Markov chain Monte Carlo and
sequential Monte Carlo methods, and measure-preserving reversible stochastic
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differential equations. By formulating the theory and algorithms on the under-
lying infinite-dimensional space, we obtain a framework suitable for rigorous
analysis of the accuracy of reconstructions, of computational complexity, as well
as naturally constructing algorithms which perform well under mesh refinement,
since they are inherently well defined in infinite dimensions.

Keywords

Inverse problems ¢ Bayesian inversion ¢ Tikhonov regularization and MAP
estimators * Markov chain Monte Carlo ¢ Sequential Monte Carlo * Langevin
stochastic partial differential equations
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1 Introduction

Many uncertainty quantification problems arising in the sciences and engineering
require the incorporation of data into a model; indeed doing so can significantly
reduce the uncertainty in model predictions and is hence a very important step in
many applications. Bayes’ formula provides the natural way to do this. The purpose
of these lecture notes is to develop the Bayesian approach to inverse problems
in order to provide a rigorous framework for the development of uncertainty
quantification in the presence of data. Of course it is possible to simply discretize the
inverse problem and apply Bayes’ formula on a finite-dimensional space. However,
we adopt a different approach: we formulate Bayes’ formula on a separable Banach
space and study its properties in this infinite dimensional setting. This approach, of
course, requires considerably more mathematical sophistication and it is important
to ask whether this is justified. The answer, of course, is “yes.” The formulation of
the Bayesian approach on a separable Banach space has numerous benefits: (i) it
reveals an attractive well-posedness framework for the inverse problem, allowing
for the study of robustness to changes in the observed data, or to numerical
approximation of the forward model; (ii) it allows for direct links to be established
with the classical theory of regularization, which has been developed in a separable
Banach space setting; (iii) and it leads to new algorithmic approaches which build
on the full power of analysis and numerical analysis to leverage the structure of the
infinite-dimensional inference problem.

The remainder of this section contains a discussion of Bayesian inversion in
finite dimensions, for motivational purposes, and two examples of partial differential
equation (PDE) inverse problems. In Sect. 2 we describe the construction of priors
on separable Banach spaces, using random series and employing the random series
to discuss various Sobolev, Besov and Holder regularity results. Section 3 is con-
cerned with the statement and derivation of Bayes’ theorem in this separable Banach
space setting. In Sect. 4, we describe various properties common to the posterior,
including well posedness in the Hellinger metric, a related approximation theory
which leverages well posedness to deliver the required stability estimate, and the
existence of maximum a posteriori (MAP) estimators; these address points (i) and
(ii) above, respectively. Then, in Sect. 5, we discuss various discrete and continuous
time Markov processes which preserve the posterior probability measure, including
Markov chain Monte Carlo methods (MCMC), sequential Monte Carlo methods
(SMC) and reversible stochastic partial differential equations, addressing point
(iii) above. The infinite-dimensional perspective on algorithms is beneficial as it
provides a direct way to construct algorithms which behave well under refinement
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of finite-dimensional approximations of the underlying separable Banach space.
We conclude in Sect. 6 and then an appendix collects together a variety of basic
definitions and results from the theory of differential equations and probability.
Each section is accompanied by bibliographical notes connecting the developments
herein to the wider literature. The notes complement and build on other overviews
of Bayesian inversion, and its relations to uncertainty quantification, which may be
found in [92, 93]. All results (lemmas, theorems, etc.) which are quoted without
proof are given pointers to the literature, where proofs may be found, within the
bibliography of the section containing the result.

1.1 Bayesian Inversion on R"

Consider the problem of finding u € R” from y € R’ where u and y are related by
the equation

y = G(u).

We refer to y as observed data and to u as the unknown. This problem may be
difficult for a number of reasons. We highlight two of these, both particularly
relevant to our future developments.

1. The first difficulty, which may be illustrated in the case where n = J, concerns
the fact that often the equation is perturbed by noise and so we should really
consider the equation

y=G(u)+n, (10.1)

where 1 € R represents the observational noise which enters the observed data.
Assume further that G maps R” into a proper subset of itself, Img, and that G
has a unique inverse as a map from Img into R”. It may then be the case that,
because of the noise, y ¢ Img so that simply inverting G on the data y will not
be possible. Furthermore, the specific instance of 1 which enters the data may
not be known to us; typically, at best, only the statistical properties of a typical
noise 7 are known. Thus we cannot subtract 1 from the observed data y to obtain
something in Img. Even if y € Img, the uncertainty caused by the presence of
noise 7 causes problems for the inversion.

2. The second difficulty is manifest in the case where n > J so that the system
is underdetermined: the number of equations is smaller than the number of
unknowns. How do we attach a sensible meaning to the concept of solution in
this case where, generically, there will be many solutions?

Thinking probabilistically enables us to overcome both of these difficulties.
We will treat u, y and n as random variables and determine the joint probability
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distribution of (u, y). We then define the “solution” of the inverse problem to be
the probability distribution of u given y, denoted u|y. This allows us to model the
noise via its statistical properties, even if we do not know the exact instance of the
noise entering the given data. And it also allows us to specify a priori the form of
solutions that we believe to be more likely, thereby enabling us to attach weights to
multiple solutions which explain the data. This is the Bayesian approach to inverse
problems.

To this end, we define a random variable (1, y) € R" x R’ as follows. We let
u € R" be a random variable with (Lebesgue) density po(u). Assume that y|u (y
given u) is defined via the formula (10.1) where G : R" — R’ is measurable and
n is independent of u (we sometimes write this as n L #) and distributed according
to measure Qy with Lebesgue density p(n). Then y|u is simply found by shifting
Qo by G(u) to measure Q, with Lebesgue density p(y — G(u)). It follows that
(u,y) € R" x R’ is a random variable with Lebesgue density p(y — G (1)) po(u).

The following theorem allows us to calculate the distribution of the random
variable u|y:

Theorem 1 (Bayes’ Theorem). Assume that

Z = / p(y - G(u))po(u)du > 0.
RH

Then u|y is a random variable with Lebesgue density p” (u) given by

P ) = L p(y — G ) pol).
Z

Remarks 1. The following remarks establish the nomenclature of Bayesian statis-
tics and also frame the previous theorem in a manner which generalizes to the
infinite-dimensional setting.

e po(u) is the prior density.

* p(y — G(w)) is the likelihood.

e p”(u) is the posterior density.

¢ It will be useful in what follows to define

D(u;y) = —logp(y — G(w).

We call @ the potential. This is the negative log likelihood.
* Note that Z is the probability of y. Bayes’ formula expresses

Pluly) = mp(y )P ().
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e Let ;¥ be a measure on R” with density p” and po a measure on R” with density
po- Then the conclusion of Theorem 1 may be written as:

d,w‘

(u) = eXp (=2 ).
(10.2)

Z = /” exp ( — D(u; y))uo(du).

Thus the posterior is absolutely continuous with respect to the prior, and the
Radon-Nikodym derivative is proportional to the likelihood. This is rewriting
Bayes’ formula in the form

m”y) W(J’U

e The expression for the Radon-Nikodym derivative is to be interpreted as the
statement that, for all measurable f : R" — R,

y du”
B f ) =B (S5 £ ).
d o
Alternatively we may write this in integral form as

Fow @i = [ (Zexp(=00e) ) ua(dw

_ e &xp(=2(: 7)) f (W) po(du)
Jon exp(=@(w; y)) pro(du)

Rn

1.2 Inverse Heat Equation

This inverse problem illustrates the first difficulty, labeled 1. in the previous subsec-
tion, which motivates the Bayesian approach to inverse problems. Let D C R? be
a bounded open set, with Lipschitz boundary dD. Then define the Hilbert space H
and operator A as follows:

H = (L*(D). (). 11+ 1);
A=-A, D(A) = H*D)N H{(D).

We make the following assumption about the spectrum of A which is easily verified
for simple geometries, but in fact holds quite generally.
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Assumption 1. The eigenvalue problem
Agj = a;9;,

has a countably infinite set of solutions, indexed by j € Z%+. They may be
normalized to satisfy the L*-orthonormality condition

1,j=k

and form a basis for H. Furthermore, the eigenvalues are positive and, if ordered
. ) ) .2
to be increasing, satisfy o; < jd. O

Here and in the remainder of the notes, the notation < denotes the existence of
constants C* > 0 such that

C j¥ <a; <Ctj e (10.3)
forall j € N.
Any w € H can be written as
o
W= (w.0;)e
j=1
and we can define the Hilbert scale of spaces H' = D(A'/?) as explained in

Sect. A.1.3 for any > 0 and with the norm
> 21
Wiz, =3 j % pw; P
j=1

where w; = (w, ;).
Consider the heat conduction equation on D, with Dirichlet boundary conditions,
writing it as an ordinary differential equation in H:

d
d—l;—i—Av —0, v(0)=u (10.4)

We have the following:

Lemma 1. Let Assumption 1 hold. Then for every u € H and every s > 0, there is
a unique solution v of equation (10.4) in the space C ([0, 00); H) N C((0, 00); H?®).
We write v(t) = exp(—At)u.
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To motivate this statement, and in particular the high degree of regularity seen at
each fixed ¢, we argue as follows. Note that, if the initial condition is expanded in
the eigenbasis as

o0
u= Zuj(pj, uj = (u,¢;),
j=l1
then the solution of (10.4) has the form
o0
v(t) = Zujefaftcpj.
i=1
Thus

) 00
”U(Z)”gH‘ — ZjZS/de—Zajt|uj|2 = Za;e—%{jt'u”Z
j=1 j=1

00 00
— Z(Ot_/t)se_zaftluﬂz < Ct™ Z |uj |2
Jj=1 Jj=1

= Ct7"||ull%;.

It follows that v(z) € H* for any s > 0, provided u € H.
We are interested in the inverse problem of finding u from y where

y=v()+n=Gw) +n=eu+n.

Here n € H isnoise and G (u) := v(1) = e~“u. Formally this looks like an infinite-
dimensional linear version of the inverse problem (10.1), extended from finite
dimensions to a Hilbert space setting. However, the infinite-dimensional setting
throws up significant new issues. To see this, assume that there is §, > 0 such
that 7 has regularity H# if and only if 8 < f.. Then y is not in the image space of
G which is, of course, contained in Ny-oH*. Applying the formal inverse of G to y
results in an object which is not in H .

To overcome this problem, we will apply a Bayesian approach and hence will
need to put probability measures on the Hilbert space H; in particular we will want
to study P(u), P(y|u) and P(u|y), all probability measures on H.

1.3 Elliptic Inverse Problem

One motivation for adopting the Bayesian approach to inverse problems is that
prior modeling is a transparent approach to dealing with under-determined inverse
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problems; it forms a rational approach to dealing with the second difficulty, labeled
2 in Sect. 1.1. The elliptic inverse problem we now describe is a concrete example
of an under-determined inverse problem.

As in Sect. 1.2, D C R¢ denotes a bounded open set, with Lipschitz boundary
dD. We define the Gelfand triple of Hilbert spaces V C H C V* by

H = (L2D). ¢ l-1), Vo= (Hy(D) (V- Vol lly = V- ). (10.5)

and V* the dual of V with respect to the pairing induced by H. Note that | - || <
Coll - |lv for some constant Cp: the Poincaré inequality.
Letk € X := L°°(D) satisfy

ess inf x(x) = kmin > 0. (10.6)

x€D
Now consider the equation

~V-(kVp)=f xeD, (10.7a)
p=0, xedD. (10.7b)

Lax-Milgram theory yields the following:

Lemma 2. Assume that f € V* and that « satisfies (10.6). Then (10.7) has a
unique weak solution p € V. This solution satisfies

el < I1f llv=/Kmin
and, if f € H,

Ipllv < Cpll £ II/Kmin-

We will be interested in the inverse problem of finding « from y where

yi=Lp)+n, j=1,-,J. (10.8)

Here [; € V* is a continuous linear functional on V' and n; is a noise.

Notice that the unknown, x € X, is a function (infinite dimensional), whereas
the data from which we wish to determine « is finite dimensional: y € R’. The
problem is severely under-determined, illustrating point 2 from Sect. 1.1. One way
to treat such problems is by adopting the Bayesian framework, using prior modeling
to fill in missing information. We will take the unknown function to be u where
either u = k or u = log k. In either case, we will define G, (1) = /;(p) and, noting
that p is then a nonlinear function of u, (10.8) may be written as

y=Gu)+n (10.9)
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where y,n € R’ and G : XT € X — R’. The set X is introduced because G
may not be defined on the whole of X. In particular, the positivity constraint (10.6)
is only satisfied on

Xt o= {u € X :ess inf u(x) > o} cx (10.10)
xeD

in the case where k = u. On the other hand, if k = exp(u), then the positivity
constraint (10.6) is satisfied for any u € X and we may take X ™ = X.

Notice that we again need probability measures on function space, here the
Banach space X = L°(D). Furthermore, in the case where u = «, these
probability measures should charge only positive functions, in view of the desired
inequality (10.6). Probability on Banach spaces of functions is most naturally
developed in the setting of separable spaces, which L°°(D) is not. This difficulty
can be circumvented in various different ways as we describe in what follows.

1.4 Bibliographic Notes

e Section 1.1. See [11] for a general overview of the Bayesian approach to
statistics in the finite-dimensional setting. The Bayesian approach to linear
inverse problems with Gaussian noise and prior in finite dimensions is discussed
in [92, Chapters 2 and 6] and, with a more algorithmic flavor, in the book [53].

» Section 1.2. For details on the heat equation as an ODE in Hilbert space, and the
regularity estimates of Lemma 1, see [70, 80]. The classical approach to linear
inverse problems is described in numerous books; see, for example, [32,51]. The
case where the spectrum of the forward map G decays exponentially, as arises for
the heat equation, is sometimes termed severely ill posed. The Bayesian approach
to linear inverse problems was developed systematically in [68, 71], following
from the seminal paper [36] in which the approach was first described; for further
reading on ill-posed linear problems, see [92, Chapters 3 and 6]. Recovering
the truth underlying the data from the Bayesian approach, known as Bayesian
posterior consistency, is the topic of [3,55]; generalizations to severely ill-posed
problems, such as the heat equation, may be found in [4, 56].

e Section 1.3. See [33] for the Lax-Milgram theory which gives rise to Lemma 2.
For classical inversion theory for the elliptic inverse problem — determining the
permeability from the pressure in a Darcy model of flow in a porous medium
— see [8, 86]; for Bayesian formulations see [24,25]. For posterior consistency
results see [99].

2 Prior Modeling

In this section we show how to construct probability measures on a function
space, adopting a constructive approach based on random series. As explained
in Sect. A.2.2, the natural setting for probability in a function space is that of a
separable Banach space. A countable infinite sequence in the Banach space X will
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be used for our random series; in the case where X is not separable, the resulting
probability measure will be constructed on a separable subspace X’ of X (see the
discussion in Sect. 2.1).

Section 2.1 describes this general setting, and Sects.2.2, 2.3 and 2.4 consider,
in turn, three classes of priors termed uniform, Besov and Gaussian. In Sect. 2.5
we link the random series construction to the widely used random field perspective
on spatial stochastic processes and we summarize in Sect. 2.6. We denote the prior
measures constructed in this section by 1.

2.1 General Setting

We let {¢; }?°=1 denote an infinite sequence in the Banach space X, with norm || - ||,

of R-valued functions defined on a domain D. We will either take D C R<, a
bounded, open set with Lipschitz boundary or D = T the d-dimensional torus. We
normalize these functions so that ||¢;|| = 1 for j = 1,---, 0co. We also introduce
another element my € X, not necessarily normalized to 1. Define the function u by

o0
w=mo+ Y ujp;. (10.11)
j=1

By randomizing U := {u; ?’;1, we create real-valued random functions on D. (The

extension to R”-valued random functions is straightforward, but omitted for brevity.)

We now define the deterministic sequence y = {y;}72; and the i.i.d. random
sequence § = {§;}52,, and set u; = y;&;. We assume that £ is centred, ie.,
that it has mean zero. Formally we see that the average value of u is then my
so that this element of X should be thought of as the mean function. We assume
that y € £f for some p € [I,00) and some positive weight sequence {w;} (see
Sect. A.1.1). We define £2 = R* and view & as a random element in the probability
space (.Q, B(£2), ]P’) of i.i.d. sequences equipped with the product o -algebra; we let
E denote expectation. This sigma algebra can be generated by cylinder sets if an
appropriate distance d is defined on sequences. However, the distance d captures
nothing of the properties of the random function u itself. For this reason we will be
interested in the pushforward of the measure P on the measure space (.Q, B(.Q))
into a measure y on (X', B(X”)), where X is a separable Banach space and B(X”)
denotes its Borel o-algebra. Sometimes X’ will be the same as X but not always:
the space X may not be separable; and, although we have stated the normalization
of the ¢; in X, they may of course live in smaller spaces X', and u may do so too.
For either of these reasons, X’ may be a proper subspace of X.

In the next three subsections, we demonstrate how this general setting may be
adapted to create a variety of useful prior measures on function space; the fourth
subsection, which follows these three, relates the random series construction, in
the Gaussian case, to the standard construction of Gaussian random fields. We
will express many of our results in terms of the probability measure P on i.i.d
sequences, but all such results will, of course, have direct implications for the
induced pushforward measures on the function spaces where the random functions
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u live. We discuss this perspective in the summary Sect.2.6. In dealing with the
random series construction, we will also find it useful to consider the truncated
random functions

N
W =mo+ Y uid;. uj=vyk;. (10.12)
j=1

2.2 Uniform Priors

To construct the random functions (10.11), we take X = L°(D), choose the
deterministic sequence y = {y; }_‘;’;1 € £' and specify the i.i.d. sequence § =
{6,152, by & ~ U[-1. 1], uniform random variables on [—1, 1]. Assume further
that there are finite, strictly positive constants 17y, Mmax, and & such that

ess inf mo(x) > Mmpin;
xX€D
ess sup mo(x) < Muypax;

xX€D

8
”V”[l - 1+8mminc

The space X is not separable and so, instead, we work with the space X’ found
as the closure of the linear span of the functions (o, {¢; }j";l) with respect to the

norm || - ||oo on X. The Banach space (X’, Il - ||Oo) is separable.

Theorem 2. The following holds P-almost surely: the sequence of functions
{uV}°_, given by (10.12) is Cauchy in X', and the limiting function u given
by (10.11) satisfies

1
1_+8mmin < u(x) < Mmpax + mmm,—n ae. x€D.

Proof. Let N > M. Then, P-as.,

N
N M
I =Moo = | 32 wias]
o0

j=M+1

H ﬁ: Vi§id; HOO

j=M+1

IA

oo

< > WllE el
Jj=M+1
o0

> vl

j=M+1

A

IA
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The right-hand side tends to zero as M — oo by the dominated convergence
theorem and hence the sequence is Cauchy in X'.
We have P-a.s. and fora.e. x € D,

u(x)

A%

mo(x) = Y [l lloo

Jj=1

o0
ess inf mo(x) — Z vl

Jj=1

v

v

Mmin — “V”Zl
1
144

Mmin-
Proof of the upper bound is similar. O

Example 1. Consider the random function (10.11) as specified in this section. By
Theorem 2 we have that, P-a.s.,

1
u(x) > mmmin >0, ae. x¢€D. (10.13)

Set k¥ = u in the elliptic equation (10.6), so that the coefficient x in the equation
and the solution p are random variables on (R‘X’, B(R®°), IE”). Since (10.13) holds
P-a.s., Lemma 2 shows that, again P-a.s.,

Iplly < (X + ) lv+/mmin.

Since the r.h.s. is nonrandom, we have that for all ¥ € Z7T the random variable
pELL(S2;V):

Elplly < oo
In fact Eexp(e| p|};) < oo forallr € Zt anda € (0,00). O

We now consider the situation where the family {¢; }7’;1 has a uniform Holder
exponent o and study the implications for Holder continuity of the random
function u. Specifically we assume that there are C,a > 0 and @ € (0, 1] such
that, for all j > 1,

lgp;(x) —d;(W)| < Cjlx —y|* x,y € D. (10.14)
and

Imo(x) — mo(y)] < Clx — y|*, x.y € D. (10.15)
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Theorem 3. Assume that u is given by (10.11) where the collection of functions
(mo, {¢p; }°°_1) satisfy (10.14) and (10.15). AssumefurtherthatZl_1 lvi1%J 190 < 00

for some 6 € (0,2). Then P-a.s. we have u € C%P(D) forall B < 2

Proof. This is an application of Corollary 5 of the Kolmogorov continuity theorem
and S; and S are as defined there. We use 6 in place of the parameter § appearing in
Corollary 5 in order to avoid confusion with § appearing in Theorem 2 above and in
(10.17) below. Note that, since m( has assumed Holder regularity v, which exceeds
"‘0 since 6 € (0, 2), it suffices to consider the centred case where m, = 0. We let
f] = y;¢; and complete the proof by noting that

Z|)’/|2<52<Z|V 7% <

Example 2. Let {¢;} denote the Fourier basis for L?(D) with D = [0, 1]¢. Then
wemay takea = o = 1.If y; = j=°, thens > 1 ensures y € ', Furthermore

0o
Z|yj|2ja9 — ZjG—ZS < 00
j=1 j=1

for § < 25 — 1. We thus deduce that u € C%#([0, 1]9) for all B < min{s — 1, 1}.

23 Besov Priors

For this construction of random functions, we take X to be the Hilbert space

X = [2(T¢) = {u T s R‘ /Td lu(x)[2dx < oo,/w u(x)dx = 0}

of real valued periodic functions in dimension d < 3 with inner product and norm
denoted by (-,-) and | - ||, respectively. We then set mo = 0 and let {¢; }52, be an

orthonormal basis for X. Consequently, for any u € X, we have for a.e. x € Td ,

[o.¢]

w(x) =Y u;p;(x). u; = (u.¢;). (10.16)

j=1

Given a function u : T — R and the {u ;+ as defined in (10.16), we define the
Banach space X9 by

X = {u T — R‘Hu”w < oo,/ u(x)dx = 0}
Td
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where

Q=

o0
(49
lullxa = (Z]uﬂ 1>|uj|‘1)
j=l

with ¢ € [1,00) and ¢ > 0. If {¢;} form the Fourier basis and ¢ = 2, then X'
is the Sobolev space H' (T“) of mean-zero periodic functions with ¢ (possibly non-
integer) square-integrable derivatives; in particular X°2 = L2(T¢). On the other
hand, if the {¢; } form certain wavelet bases, then X7 is the Besov space B(; g

As described above, we assume that u; = y;§; where § = {§;}2, is an i.i.d.
sequence and y = {y; }7‘;1 is deterministic. Here we assume that &; is drawn from
the centred measure on R with density proportional to exp ( - %|x|q ) for some 1 <
q < oo — we refer to this as a g-exponential distribution, noting that ¢ = 2 gives
a Gaussian and ¢ = 1 a Laplace-distributed random variable. Then for s > 0 and
8 > 0, we define

1
sy (1)4
y = j oty (g)", (10.17)

The parameter § is a key scaling parameter which will appear in the statement of
exponential moment bounds below.
We now prove convergence of the series (found from (10.12) with my = 0)

N
W= "upg uy = vk (10.18)
j=l
to the limit function

u(x) =Y uppi(x), u; =y§j, (10.19)
j=1

in an appropriate space. To understand the sequence of functions {u"'}, it is useful
to introduce the following function space:

L4(2: X"4) = {v Dx2 - R‘]E(||v||§(t_q) < oo}.

1

This is a Banach space, when equipped with the norm (IE(”v I Xr,q)q> * Thus every
Cauchy sequence is convergent in this space.

Theorem 4. Fort < s — % the sequence of functions {u™}3°_,, given by (10.18)
and (10.17) with & drawn from a centred q-exponential distribution, is Cauchy in
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the Banach space L. p(82: X"9). Thus the infinite series (10.19) exists as an L -limit

and takes values in X" almost surely, forall t < s — g.

Proof. For N > M,

N
_ RG]
Ellu” —uM %, =67E Y

Alq
j=M+1
N 0o
Z . (t—d-Y)q < (t ‘)'J
J =< E .
j=M+1 Jj=M+

The sum on the right-hand side tends to 0 as M — oo, provided (t%)q < —1, by
the dominated convergence theorem. This completes the proof. O

The previous theorem gives a sufficient condition, on ¢, for existence of the
limiting random function. The following theorem refines this to an if and only if
statement, in the context of almost sure convergence.

Theorem 5. Assume that u is given by (10.19) and (10.17) with & drawn from a
centred q-exponential distribution. Then the following are equivalent:

(i) llullxra < oo P-a.s.;
(ii) E(exp(e|ul%.,)) < oo forany a € [0, 3);
(i) t <5 — ;i

Proof. We first note that, for the random function in question,

o0
.i q__
g =Y G427y |Q—Zs J”

Jj=1

4.

Now, for o < %
1 1
Eexp («/&]7) = /Rexp ( - (5 —oe)|x|‘1)dx//Rexp(— §|x|‘1)dx
= (1—2a)77.
(Gii) = (i),

o0
!
=E exp(aZS j dq|gj|‘1))

i=1

d =04\ "¢
l_[<1——j En I

For o < % the product converges if % > 1l,ie,t <s— % as required.

E((expalulf.,))

N
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(i) = ().
If (i) does not hold, Z := ||u||§(,<q is positive infinite on a set of positive
measure S. Then, since for ¢ > 0, exp(0Z) = 4oo if Z = o0, and
Eexp(eZ) > E(1s exp(eZ)), we get a contradiction.

(1) = (iii).

To show that (i) implies (iii), note that (i) implies that, almost surely,

o0
(t—s)q/d
Z](t $)q/ €19 < 0.

Jj=1

This implies that < s. To see this assume for contradiction that # > s. Then,
almost surely,

o0
D g1 < oo
j=1

Since there is a constant ¢ > 0 with E|§;|9 = ¢ for any j € N, this contradicts
the law of large numbers.

Now define {; = j(74/d|&;]9. Using the fact that the {; are nonnegative and
independent, we deduce from Lemma 3 (below) that

oo o0
S E@ Al) = ZJE(j<’—S>q/d|gj|q A 1) <0
Jj=1 Jj=1
Since ¢ < s we note that then
Et; —E( ~=0a/d g |q>
IE(J_(3 D E T, |<j<x—r)/d}) +E( I D r)/d})
= E((& A Dy <oy ) + 1

E;)

where

o0
1 j_(s_’)q/d/ xde ™2 dx.
jG 1)/d
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Noting that, since ¢ > 1, the function x +— x%¢=*/2 is bounded, up to a constant

of proportionality, by the function x - e™** for any o < %, we see that there is a
positive constant K such that

o0
I < Kj—(x—t)q/d/ e % dx
j(x—l)/d
| (s
= —Kj (=00/d exp (— @ j6=D/)
= Lj.
Thus we have shown that
o0 o oo
ZE(J'_(S_’)WIS/I") < Z]E(Zj A 1) + ) 1y < oo
j=l1 j=l1

j=1

Since the &; arei.i.d. this implies that

o0
Zj(l—s)q/d < o0,
j=1
from which it follows that (s —t)g/d > 1 and (iii) follows. O

Lemma 3. Let {I;}52, be an independent sequence of Rt -valued random vari-
ables. Then

o o0
le<oo a.s.@ZE(Ij/\l)<oo.
j=1 j=1

As in the previous subsection, we now study the situation where the family {¢; }
has a uniform Holder exponent @ and study the implications for Holder continuity of
the random function u. In this case, however, the basis functions are normalized in
L? and not L°; thus we must make additional assumptions on the possible growth
of the L°° norms of {¢; } with j. We assume that there are C,a,b > Oand a € (0, 1]
such that, for all j > 0,

l¢;(x)| =B; <Cj’ xeD. (10.20a)
19 (x) —;(»)| < Cjlx —y|* x,y € D. (10.20b)
We also assume that @ > b as, since |[¢;]|,2 = 1, it is natural that the pre-

multiplication constant in the Holder estimate on the {¢;} grows in j at least as
fast as the bound on the functions themselves.
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Theorem 6. Assume that u is given by (10.19) and (10.17) with &, drawn from a
centred q-exponential distribution. Suppose also that (10.20) hold and that s >
d(b +g7 '+ %Q(a — b)) for some 6 € (0,2). Then P-a.s. we have u € C*#(T?)
forall B < %.

Proof. We apply Corollary 5 of the Kolmogorov continuity theorem and S; and S,
are as defined there. We use 6 in place of the parameter § appearing in Corollary 5
in order to avoid confusion with § appearing in Theorem 2 and (10.17) above. Let
fj = v,;¢; and note that

(o) o0
Si=Y_lyPBs> i
Jj=1 Jj=1
o0 o0
S= I8 s )i
=1 =1

Short calculation shows that

SR R P S

= — - ==

1 d q b
2 2

= =22 —fa—b).
d q

We require ¢; > 1 and ¢; > 1 and since a > b satisfaction of the second of these
will imply the first. Satisfaction of the second gives the desired lower bound on s.

We note that the result of Theorem 6 holds true when the mean function is
nonzero if it satisfies

|mo(x)| < C, x € D.

[mo(x) —mo(y)| < Clx = y[*, x.y € D.

We have the following sharper result if the family {¢, } is regular enough to be a
basis for B;q instead of satisfying (10.20):

Theorem 7. Assume that u is given by (10.19) and (10.17) with &, drawn from a
centred g-exponential distribution. Suppose also that {¢;} jen form a basis for Bf] q

for somet < s — %. Then u € C%(T¢) P-almost surely.
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Proof. For any m > 1, using the definition of X*?-norm, we can write

7‘1 mq __ +
b, = G Ly § S =Dy

j=1

For every m € N, there exists a constant C,, with E|§;|"¢ = C,,,. Since each term of
the above series is measurable, we can swap the sum and the integration and write

oo
Ellullyf = Ca(p)" Y I < Gy,

j=1

noting that the exponent of j is smaller than —1 (since t < s — d/g). Now for a
given t < s —d /q, one can choose m large enough so that i <s—d/q—t.Then

the embedding Bl C C' for any #; satisfying 1 + -+ < tl < s — d/q implies

mqg.mq mq
that E|ju? 4y < 00. It follows that u € C' P-almost surely.

ClH(T4)

If the mean function my is t-Holder continuous, the result of the above theorem
holds for a random series with nonzero mean function as well.

24 Gaussian Priors

Let X be a Hilbert space 7 of real-valued functions on bounded open D C R¢
with Lipschitz boundary and with inner product and norm denoted by (-,-) and
|| -|I, respectively; for example, # = L?(D;R). Assume that {¢; 52, is an
orthonormal basis for H. We study the Gaussian case where & ~ N (0, 1), and
then equation (10.11) with u; = y;&; generates random draws from the Gaussian
measure N (mg, C) on H where the covariance operator C depends on the sequence
y ={y; 12 721- See the Appendix for background on Gaussian measures in a Hilbert
space. As in Sect. 2.3, we consider the setting in which m( = 0 so that the function
u is given by (10.16) and has mean zero. We thus focus on identifying C from the
random series (10.16) and studying the regularity of random draws from N (0, C).
Define the Hilbert scale of spaces H' as in Sect. A.1.3 with, recall, norm

2 o 2 2
el =" J 7 lu .
Jj=1

We choose £ ~ N (0, 1) and study convergence of the series (10.18) for u" to a
limit function u given by (10.19); the spaces in which this convergence occurs will
depend upon the sequence y. To understand the sequence of functions {u"}, it is
useful to introduce the following function space:

LA(2:H) = {v ‘DxQ—> R)}E(uvnw)2 < oo}.
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This is in fact a Hilbert space, although we will not use the Hilbert space structure.

We will only use the fact that L2 is a Banach space when equipped with the norm
1

(IE(H v ||%{, )) > and that hence every Cauchy sequence is convergent.

Theorem 8. Assume that y; =< j~4. Then the sequence of functions {u™ i

given by (10.18) is Cauchy in the Hilbert space L3(2;H'), t < s — % Thus, the
infinite series (10.19) exists as an L% limit and takes values in H' almost surely, for
d

t<S—§.

Proof. For N > M,

N
Elu’ —u" |2 =E Y j¥u;l?

j=M+1
N 00

L 2t—s) L 2(t—s)

= Y jTo< Y jT.
j=M+1 j=M+1

The sum on the right-hand side tends to 0 as M — oo, provided @ < —1, by
the dominated convergence theorem. This completes the proof. O

Remarks 2. We make the following remarks concerning the Gaussian random
functions constructed in the preceding theorem.

¢ The preceding theorem shows that the sum (10.18) has an L3 limit in H' when
t < s —d /2, as one can also see from the following direct calculation

o0
2
Elul3, = E JTE(yiE))
Jj=1

e.9)
2t
L a2
= d y*
201
Jj=1
oo
L 20—s)
= E ] d < Q.
Jj=1

Thusu € H' as., fort <s — %.

* From the preceding theorem, we see that, provided s > 4 | the random function in
(10.19) generates a mean-zero Gaussian measure on H. The expression (10.19)
is known as the Karhunen-Loéve expansion and the eigenfunctions {¢;}72; as
the Karhunen-Loeve basis.
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* The covariance operator C of a measure y on H may then be viewed as a bounded
linear operator from # into itself defined to satisfy

Cl = / (€, uyu pu(du), (10.24)
H
for all £ € H. Thus
C = / u®@upu(du). (10.25)
H

The following formal calculation, which can be made rigorous if C is trace class
on H, gives an expression for the covariance operator:

C=FEu®u

=E(D D vinkio; ®¢k)
i=1k=1

N
-~

Mg

j)’kE(EjEk)ﬁbj ® ¢k>

J

Il
—~ —~
,Mg

5

Yividjkd; ® ¢k)

j=1lk=1

o0
= Z J/Jz'¢j ® ;.
j=1

From this expression for the covariance, we may find eigenpairs explicitly:

o0

Cor = (vt ® 0 )t
=1

j=

o0
= ZV,Z (@) . Pr)¢ Z)’l kb = Vit
i= =1
* The Gaussian measure is denoted by o := N(0,C), a Gaussian with mean

function 0 and covariance operator C. The elgenfunctlons of C, {¢;}52,, are
known as the Karhunen-Loéve basis for measure j1o. The y?  are the eigenvalues
associated with this eigenbasis, and thus y; is the standard deviation of the
Gaussian measure in the direction ¢; .
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In the case where H = Lz(Td), we are in the setting of Sect.2.3 and we
briefly consider this case. We assume that the {¢; }‘/’0:1 constitute the Fourier basis.
Let A = — A denote the negative Laplacian equipped with periodic boundary
conditions on [0, 1)¢ and restricted to functions which integrate to zero over [0, 1)¢.
This operator is positive self-adjoint and has eigenvalues which grow like /¢,
analogously to Assumption 1 made in the case of Dirichlet boundary conditions. It
then follows that H' = D(A'/?) = H'(T?), the Sobolev space of periodic functions
on [0, 1)¢ with spatial mean equal to zero and ¢ (possibly negative or fractional)
square integrable derivatives. Thus, by the preceding Remarks 2, u defined by
(10.19) is in the space H' a.s.,t < s — . In fact we can say more about regularity,

2
using the Kolmogorov continuity test and Corollary 4; this we now do.

Theorem 9. Consider the Karhunen-Loéve expansion (10.19) so that u is a sample
from the measure N (0,C) in the case where C = A™° with A = —A, D(A) =
HX(T%) and s > di. Then, P-a.s, u € H', t < s — %, and u € C*(T9) a.s.,
t<1n(s—12).

Proof. Because of the stated properties of the eigenvalues of the Laplacian, it
follows that the eigenvalues of C satisfy yf = j ~% and the eigenbasis {¢, } is the
Fourier basis. Thus we may apply the conclusions stated in Remarks 2 to deduce
thatu € H', 1 < o — %. Furthermore we may apply Corollary 5 to obtain Holder
regularity of u. To do this, we note that the {¢;} are bounded in L%®(T?) and are
Lipschitz with constants which grow like j'/¢. We apply that corollary with & = 1
and obtain

oo o0
Si=2 v S=) i
j=1 j=1

The corollary delivers the desired result after noting that any § < 2s — d will make
S,, and hence S;, summable.

The previous example illustrates the fact that, although we have constructed
Gaussian measures in a Hilbert space setting, and that they are naturally defined
on a range of Hilbert (Sobolev-like) spaces defined through fractional powers of the
Laplacian, they may also be defined on Banach spaces, such as the space of Holder
continuous functions. We now return to the setting of the general domain D, rather
than the d-dimensional torus. In this general context, it is important to highlight the
Fernique theorem, here restated from the Appendix because of its importance:

Theorem 10 (Fernique Theorem). Let o be a Gaussian measure on the separa-
ble Banach space X. Then there exists 8. € (0, 00) such that, for all B € (0, B.),

B exp (Bllull}) < o.
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Remarks 3. 'We make two remarks concerning the Fernique theorem.

¢ Theorem 10, when combined with Theorem 9, shows that, with 8 sufficiently
small, E*0 exp (B||ul|3) < oo forboth X = H' and X = C°*(T¢),ift < s—%.

e Let up = N(0, A7) where A is as in Theorem 9. Then Theorem 5 proves the
Fernique theorem 10 for X = X2 = H’, ift <s— %; the proof in the case
of the torus is very different from the general proof of the result in the abstract
setting of Theorem 10.

e Theorem 5(ii) gives, in the Gaussian case, the Fernique theorem in the case that
X is the Hilbert space X’2. Furthermore, the constant B, is specified explicitly
in that setting. More explicit versions of the general Fernique Theorem 10 are
possible, but the characterization of 8. is more involved.

Example 3. Consider the random function (10.11) in the case where # = L2(T%)

and o = N(0,47°), s > % as in the preceding example. Then we know that,

po-a.s,u € C¥ t <1A(s— %). Set k = e* in the elliptic PDE (10.7) so that the
coefficient k and hence the solution p are random variables on the probability space
(£2, F,P). Then Ky, given in (10.6) satisfies
Kmin = €Xp ( - ”u”OO)
By Lemma 2 we obtain
Il < exp (lulloo) I £ 1y
Since C%' C L®(T?), t € (0, 1), we deduce that

lull oo < Killullco..

Furthermore, for any € > 0, there is constant K, = K;(€) such that exp(K;rx) <
K, exp(ex?) for all x > 0. Thus

P15 < exp (Kirflullco) 1L f 117
< Ky exp (ellullgo ) 1/ 17+
Hence, by Theorem 10, we deduce that
E|ply <oo, e pelh(2;V) VreZ'.
This result holds for any > 0. Thus, when the coefficient of the elliptic PDE is log
normal, that is, « is the exponential of a Gaussian function, moments of all orders

exist for the random variable p. However, unlike the case of the uniform prior, we
cannot obtain exponential moments on E exp(«|| p|},) for any (r, @) € Z* x (0, 00).
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This is because the coefficient k, while positive a.s., does not satisfy a uniform
positive lower bound across the probability space. [

25 Random Field Perspective

In this subsection we link the preceding constructions of random functions, through
randomized series, to the notion of random fields. Let (§2, F,P) be a probability
space, with expectation denoted by E, and D < R? an open set. For the
random series constructions developed in the preceding Subsections, £2 = R*
and F = B(£2); however, the development of the general theory of random
fields does not require this specific choice. A random field on D is a measurable
mapping u : D x £ — R". Thus, for any x € D, u(x;-) is an R"-valued
random variable; on the other hand, for any w € £, u(cw) : D — R" is
a vector field. In the construction of random fields, it is commonplace to first
construct the finite-dimensional distributions. These are found by choosing any
integer K > 1, and any set of points {x },le in D, and then considering the random
vector (u(x1;)*, -+, u(xx;-)*)* € R"®. From the finite-dimensional distributions
of this collection of random vectors, we would like to be able to make sense of the
probability measure @ on X, a separable Banach space equipped with the Borel
o-algebra B(X), via the formula

1w(A) = Pu(;0) € 4), A eB(X), (10.26)

where w is taken from a common probability space on which the random element
u € X is defined. It is thus necessary to study the joint distribution of a set of K
R”-valued random variables, all on a common probability space. Such R"X -valued
random variables are, of course, only defined up to a set of zero measure. It is
desirable that all such finite-dimensional distributions are defined on a common
subset 29 C £2 with full measure, so that # may be viewed as a function u :
D x £y — R"; such a choice of random field is termed a modification. When
reinterpreting the previous subsections in terms of random fields, statements about
almost sure (regularity) properties should be viewed as statements concerning the
existence of a modification possessing of the stated almost sure regularity property.
We may define the space of functions

L(Q:X) = {v DX — R”)E(||v||‘§()< oo}.

1
This is a Banach space, when equipped with the norm (E(H v ||‘§()> *. We have used

such spaces in the preceding subsections when demonstrating convergence of the
randomized series. Note that we often simply write u(x), suppressing the explicit
dependence on the probability space.
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A Gaussian random field is one where, for any integer K > 1, and any set
of points {x;}f_, in D, the random vector (u(xy:-)*, -+ u(xg;-)*)* € R*€ isa
Gaussian random vector. The mean function of a Gaussian random field is m(x) =
Eu(x). The covariance function is c(x,y) = E(u(x) - m(x))(u(y) - m(y))*.
For Gaussian random fields, the mean function m : D — R”" and the covariance
function ¢ : D x D — R™" together completely specify the joint probability
distribution for (u(x;-)*,---,u(xg)*)* € R"K. Furthermore, if we view the
Gaussian random field as a Gaussian measure on LZ(D; R™), then the covariance
operator can be constructed from the covariance function as follows. Without loss
of generality, we consider the mean-zero case; the more general case follows by
shift of origin. Since the field has mean zero, we have, from (10.24), that for all
hl, h2 € LZ(D;Rn),

<h1 s Ch2> = E(hl s M) (M, hz)

—E /D /D iy (o) (Y)Y ha(y)dydx

=E [ m ([ @eoutyao)dy)ax

= [ e ([ e pmaay)ax

and we deduce that, for all Y € L*(D;R"M),

Cy)x) = /DC(x, WV (y)dy. (10.27)

Thus the covariance operator of a Gaussian random field is an integral operator with
kernel given by the covariance function. As such we may also view the covariance
function as the Green’s function of the inverse covariance, or precision.

A mean-zero Gaussian random field is termed stationary if c¢(x, y) = s(x — y)
for some matrix-valued function s, so that shifting the field by a fixed random vector
does not change the statistics. It is isotropic if it is stationary and, in addition, s(-) =
t(] - |), for some matrix-valued function ¢.

In the previous subsection, we demonstrated how the regularity of random fields
maybe established from the properties of the sequences y (deterministic, with
decay) and £ (i.i.d. random). Here we show similar results but express them in terms
of properties of the covariance function and covariance operator.

Theorem 11. Consider an R"-valued Gaussian random field u on D C R¢ with
mean zero and with isotropic correlation function ¢ : D x D — R™", Assume
that D is bounded and that Trc(x,y) = k(|x — y|) where k : RT — R is Holder
with any exponent a < 1. Then u is almost surely Holder continuous on D with any
exponent smaller than %a.



10 The Bayesian Approach to Inverse Problems 337

Proof. We have

Elu(x) —u()]* = Elu(x)* + Elu(y)[* — 2E(u(x), u(y))

= Tr(c(x,X) +c(y,y) = 2c(x, J’))

— 2(k(0) —k(lx - y|))

<Clx—y|*
Since u is Gaussian, it follows that, for any integer r > 0,
Elu(x) —u(y)[*" < Clx — y|*.

Let p = 2r and noting that

we deduce from Corollary 4 that u is Holder continuous on D with any exponent
smaller than

. o d o
supmm{l, — — —} = —,
peEN 2 V4 2

which is precisely what we claimed.

It is often convenient both algorithmically and theoretically to define the
covariance operator through fractional inverse powers of a differential operator.
Indeed in the previous subsection, we showed that our assumptions on the random
series construction we used could be interpreted as having a covariance operator
which was an inverse fractional power of the Laplacian on zero spatial average
functions with periodic boundary conditions. We now generalize this perspective
and consider covariance operators which are a fractional power of an operator 4
satisfying the following.

Assumption 2. The operator A, densely defined on the Hilbert space H =
L2(D;R"), satisfies the following properties:

1. A is positive definite, self-adjoint and invertible;
2. the eigenfunctions {¢;} jen of A form an orthonormal basis for H;
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3. the eigenvalues of A satisfy a; < je,
4. there is C > 0 such that

1
sup( [|¢; [l Lo + —77Lip(¢;) ) < C.
jeN( sk jie J)

These properties are satisfied by the Laplacian on a torus, when applied to
functions with spatial mean zero. But they are in fact satisfied for a much wider
range of differential operators which are Laplacian-like. For example, the Dirichlet
Laplacian on a bounded open set D in R¢, together with various Laplacian operators
perturbed by lower order terms, for example, Schrodinger operators. Inspection of
the proof of Theorem 9 reveals that it only uses the properties of Assumption 2.
Thus we have:

Theorem 12. Let u be a sample from the measure N(0,C) in the case where
C = A with A satisfying Assumptions 2 and s > < Then, P-a.s., u € H',

2
fort <s—%, andu € C% (D), fort < lA(s—%).

Example 4. Consider the case d = 2,n = 1 and D = [0, 1]2. Define the
Gaussian random field through the measure . = N (0, (—A)™) where A is the
Laplacian with domain H;] (D) N H*(D). Then Assumption 2 is satisfied by —A.
By Theorem 12 it follows that choosing « > 1 suffices to ensure that draws from
w are almost surely in L?(D). It also follows that, in fact, draws from j are almost
surely in C (D).

2.6 Summary

In the preceding four subsections, we have shown how to create random functions by
randomizing the coefficients of a series of functions. Using these random series, we
have also studied the regularity properties of the resulting functions. Furthermore
we have extended our perspective in the Gaussian case to determine regularity
properties from the properties of the covariance function or the covariance operator.

For the uniform prior, we have shown that the random functions all live in a
subset of X = L characterized by the upper and lower bounds given in Theorem 2
and found as the closure of the linear span of the set of functions (9, {¢; }?‘;1);
denote this subset, which is a separable Banach space, by X’. For the Besov priors,
we have shown in Theorem 5 that the random functions live in the separable Banach
spaces X' for all t < s — d/q; denote any one of these Banach spaces by X'.
And finally for the Gaussian priors, we have shown in Theorem 8§ that the random
function exists as an L2 limit in any of the Hilbert spaces H' for t < s — d /2.
Furthermore, we have indicated that, by use of the Kolmogorov continuity theorem,
we can also show that the Gaussian random functions lie in certain Holder spaces;
these Holder spaces are not separable but, by the discussion in Sect. A.1.2, we



10 The Bayesian Approach to Inverse Problems 339

can embed the spaces C 0¥ in the separable uniform Holder spaces CO0 7 for any
y < y’; since the upper bound on the range of Holder exponents established by
use of Kolmogorov continuity theorem is open, this means we can work in the
same range of Holder exponents, but restricted to uniform Holder spaces, thereby
regaining separability. In this Gaussian case, we denote any of the separable Hilbert
or Banach spaces where the Gaussian random function lives almost surely by X”.

Thus, in all of these examples, we have created a probability measure (o which
is the pushforward of the measure PP on the i.i.d. sequence £ under the map which
takes the sequence into the random function. The resulting measure lives on the
separable Banach space X’, and we will often write po(X’) = 1 to denote this
fact. This is shorthand for saying that functions drawn from g are in X’ almost
surely. Separability of X’ naturally leads to the use of the Borel o-algebra to define
a canonical measurable space and to the development of an integration theory —
Bochner integration — which is natural on this space; see Sect. A.2.2.

2.7 Bibliographic Notes

e Section 2.1. For general discussion of the properties of random functions
constructed via randomization of coefficients in a series expansion, see [49].
The construction of probability measure on infinite sequences of i.i.d. random
variables may be found in [27].

e Section 2.2. These uniform priors have been extensively studied in the context
of the field of uncertainty quantification, and the reader is directed to [18, 19]
for more details. Uncertainty quantification in this context does not concern
inverse problems, but rather studies the effect, on the solution of an equation, of
randomizing the input data. Thus, the interest is in the pushforward of a measure
on input parameter space onto a measure on solution space, for a differential
equation. Recently, however, these priors have been used to study the inverse
problem; see [90].

e Section 2.3. Besov priors were introduced in the paper [69] and Theorem 5 is
taken from that paper. We notice that the theorem constitutes a special case of the
Fernique theorem in the Gaussian case ¢ = 2; it is restricted to a specific class of
Hilbert space norms, however, whereas the Fernique theorem in full generality
applies in all norms on Banach spaces which have full Gaussian measure. See
[35,40] for proof of the Fernique theorem. A more general Fernique-like property
of the Besov measures is proved in [24], but it remains open to determine the
appropriate complete generalization of the Fernique theorem to Besov measures.
For proof of Lemma 3, see [54, Chapter 4]. For properties of families of functions
that can form a basis for a Besov space and examples of such families, see
[31,74].

e Section 2.4. The general theory of Gaussian measures on Banach spaces is
contained in [14, 67]. The text [28], concerning the theory of stochastic PDEs,
also has a useful overview of the subject. The Karhunen-Logve expansion (10.19)
is contained in [1]. The formal calculation concerning the covariance operator
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of the Gaussian measure which follows Theorem 8 leads to the answer which
may be rigorously justified by using characteristic functions; see, for example,
Proposition 2.18 in [28]. All three texts include statement and proof of the
Fernique theorem in the generality given here. The Kolmogorov continuity
theorem is discussed in [28] and [1]. Proof of Holder regularity adapted to the
case of the periodic setting may be found in [40] and [92, Chapter 6]. For further
reading on Gaussian measures, see [27].

e Section 2.5. A key tool in making the random field perspective rigorous is the
Kolmogorov Extension Theorem 29.

* Section 2.6. For a discussion of measure theory on general spaces, see [15]. The
notion of Bochner integral is introduced in [13]; we discuss it in Sect. A.2.2.

3 Posterior Distribution

In this section we prove a Bayes’ theorem appropriate for combining a likelihood
with prior measures on separable Banach spaces as constructed in the previous
section. In Sect. 3.1, we start with some general remarks about conditioned random
variables. Section 3.2 contains our statement and proof of a Bayes’ theorem and
specifically its application to Bayesian inversion. We note here that, in our setting,
the posterior p” will always be absolutely continuous with respect to the prior w,
and we use the standard notation u” < o to denote this. It is possible to construct
examples, for instance, in the purely Gaussian setting, where the posterior is not
absolutely continuous with respect to the prior. Thus, it is certainly not necessary to
work in the setting where u” < uo. However, it is quite natural, from a modeling
point of view, to work in this setting: absolute continuity ensures that almost sure
properties built into the prior will be inherited by the posterior. For these almost sure
properties to be changed by the data would require that the data contains an infinite
amount of information, something which is unnatural in most applications.

In Sect. 3.3, we study the example of the heat equation, introduced in Sect. 1.2,
from the perspective of Bayesian inversion, and in Sect. 3.4 we do the same for the
elliptic inverse problem of Sect. 1.3.

3.1 Conditioned Random Variables

Key to the development of Bayes’ Theorem, and the posterior distribution, is the
notion of conditional random variables. In this section we state an important theorem
concerning conditioning.

Let (X, A) and (Y, B) denote a pair of measurable spaces, and let v and 7
be probability measures on X x Y. We assume that v < 7. Thus there exists
m-measurable ¢ : X x ¥ — R with ¢ € L! (see Sect. A.1.4 for definition of L)
and

d
—d” (x,7) = p(x, ). (10.28)
e
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That is, for (x,y) €e X x Y,
E" f(x,y) = E"(¢(x.y) f(x.)).

or, equivalently,

£ y)v(dx.dy) = /X B 5. ).

XxY

Theorem 13. Assume that the conditional random variable x|y exists under
with probability distribution denoted t” (dx). Then the conditional random variable
x|y under v exists, with probability distribution denoted by v’ (dx). Furthermore,
v &t andife(y) = [y ¢(x,y)dn¥(x) > 0, then

dv” 1
m(x) = Ty)Qb(X»J’)-

Example 5. Let X = C([0,1];R), Y = R. Let  denote the measure on X x Y
induced by the random variable (w(-), w(l)), where w is a draw from standard unit
Wiener measure on R, starting from w(0) = z. Let 77 denote measure on X found
by conditioning Brownian motion to satisfy w(1) = y, thus ¥ is a Brownian bridge
measure with w(0) = z, w(1) = y.

Assume that v < 7 with

dv

—(x,y)=c¢ — d(x, .

) xp (— @(x.y))
Assume further that

sup @(x,y) = q§+(y) < 0

x€X

for every y € R. Then

c(y) = [Rexp(— @(x,y))dny(x) > exp(— q§+(y)) > 0.

Thus v” (dx) exists and

1
—(x) = Fexp(—@(x,y)). O

We will use the preceding theorem to go from a construction of the joint
probability distribution on unknown and data to the conditional distribution of the
unknown, given data. In constructing the joint probability distribution, we will need
to establish measurability of the likelihood, for which the following will be useful:

Lemma 4. Let (Z, B) be a Borel measurable topological space and assume that
G € C(Z;R) and that n(Z) = 1 for some probability measure 7w on (Z, B). Then
G is a w-measurable function.
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3.2 Bayes’ Theorem for Inverse Problems

Let X and Y be separable Banach spaces, equipped with the Borel o-algebra, and
G : X — Y ameasurable mapping. We wish to solve the inverse problem of finding
u from y where

y=G) +n (10.29)

and 1 € Y denotes noise. We employ a Bayesian approach to this problem in which
we let (4, y) € X xY be arandom variable and compute u|y. We specify the random
variable (u, y) as follows:

e Prior: u ~ y measure on X.
e Noise:  ~ Qp measure on Y, and (recalling that L denotes independence)
nl u

The random variable y|u is then distributed according to the measure Q,, the
translate of Qy by G (u). We assume throughout the following that Q, < Q for u
Mo- a.s. Thus, for some potential @ : X x Y — R,

dQy
dQo

(y) = exp (— @ y)). (10.30)

Thus, for fixed u, @(u;-) : ¥ — R is measurable and E% exp (— @(u: y)) = 1. For
given instance of the data y, —@(:; y) is termed the log likelihood.
Define vy to be the product measure

vo(du,dy) = po(du)Qo(dy). (10.31)

We assume in what follows that @(-, -) is vy measurable. Then the random variable
(u,y) € X x Y is distributed according to measure v(du, dy) = uo(du)Q,(dy).
Furthermore, it then follows that v < vy with

d
) = exp (= @),
We have the following infinite-dimensional analogue of Theorem 1.

Theorem 14 (Bayes’ Theorem). Assume that @ : X x Y — R is vy measurable
and that, for y Qp-a.s.,

Z = / exp (— @(u; y)) po(du) > 0. (10.32)
X
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Then the conditional distribution of u|y exists under v and is denoted by p”.
Furthermore > <K o and, for y v-a.s.,

du”
d po

1
(u) = Z exp ( — D(u; y)). (10.33)

Proof. First note that the positivity of Z holds for y vy-almost surely, and hence by
absolute continuity of v with respect to vy, for y v-almost surely. The proof is an
application of Theorem 13 with 7 replaced by vy, ¢(x,y) = exp (— @(u, y)) and
(x,y) = (u, y). Since vo(du, dy) has product form, the conditional distribution of
u|y under vy is simply po. The result follows. O

Remarks 4. In order to implement the derivation of Bayes’ formula (10.33), four
essential steps are required:

* Define a suitable prior measure (¢ and noise measure Qy whose independent
product form the reference measure vy.

e Determine the potential @ such that formula (10.30) holds.

¢ Show that @ is vy measurable.

* Show that the normalization constant Z given by (10.32) is positive almost surely
with respect to y ~ Q.

We will show how to carry out this program for two examples in the following
subsections. The following remark will also be used in studying one of the examples.

Remarks 5. The following comments on the setup above may be useful.

e In formula (10.33) we can shift @(u, y) by any constant c(y), independent of
u, provided the constant is finite (Qp-a.s. and hence v-a.s. Such a shift can be
absorbed into a redefinition of the normalization constant Z.

e Our Bayes’ Theorem only asserts that the posterior is absolutely continuous with
respect to the prior 1. In fact equivalence (mutual absolute continuity) will occur
when @(:; y) is finite everywhere in X .

3.3 Heat Equation

We apply Bayesian inversion to the heat equation from Sect. 1.2. Recall that for
G (u) = e~ “u, we have the relationship

y=G@) +n,
which we wish to invert. Let X = H and define

H =D(A?) = {w|w = AWy, wy € H}.
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Under Assumption 1, we have o; < j 7 so that this family of spaces is identical
with the Hilbert scale of spaces H' as defined in Sects. 1.2 and 2.4.

We choose the prior g = N(0,47%), o > % Thus po(X) = po(H) = 1.
Indeed the analysis in Sect. 2.4 shows that uo(H') = 1,¢ < a—%. For the likelihood
we assume that L u with n ~ Qy = N(0,47#), and B € R. This measure
satisfies Qo(H') = 1 fort < B — di and we thus choose ¥ = H' for some
t'< B — %. Notice that our analysis includes the case of white observational noise,
for which B = 0. The Cameron-Martin Theorem 32, together with the fact that
e~*4 commutes with arbitrary fractional powers of A, can be used to show that

ylu ~Q, := N(G(u), A=) where Q, <« Qp with

dQ,
dQo

(y) = exp (= (),
and
1
Ouiy) = 34" el — (aTeEy AT e Hu).

In the following we repeatedly use the fact that AYe™*4 ) > 0, is a bounded linear
operator from ¢ to H”, any a, b, y € R. Recall that vo(du, dy) = juo(du)Qo(dy).
Note that vo(H x 7—[’/) = 1. Using the boundedness of A”e™*4, it may be shown
that

&:HxH —R

is continuous and hence vy-measurable by Lemma 4.
Theorem 14 shows that the posterior is given by u” where

Wy = Lexp (= o y).

2= [ exp (= @) old.
H

provided that Z > 0 for y Qp-a.s. We establish this positivity in the remainder of
the proof. Since y € H' foranyt < 8 — %, Qo-a.s., we have that y = A~""/2w for

somewg € Handt' < f — % Thus we may write

=’ _a B
2

1 A
D y) = E||A§e—f‘u||2—(A et wg, A2e ). (10.34)

Then, using the boundedness of AVe™ ) > 0, together with (10.34), we have

®@u:y) < C(llul® + llwoll*)
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where ||wy|| is finite Qp-a.s. Thus,
= [ ew(=C+ Il
lull><1

and, since po(J|ul|*> < 1) > 0 (by Theorem 33 all balls have positive measure for
Gaussians on a separable Banach space), the required positivity follows.

34 Elliptic Inverse Problem

We consider the elliptic inverse problem from Sect. 1.3 from the Bayesian perspec-
tive. We consider the use of both uniform and Gaussian priors. Before studying the
inverse problem, however, it is important to derive some continuity properties of the

forward problem. Throughout this section, we consider equation (10.7) under the
assumption that ' € V*.

3.4.1 Forward Problem
Recall that in Sect. 1.3, equation (10.10), we defined

X+t = {v c L”(D)’essxiglf) (x) > o}. (10.35)

Then the map R : X — V by R(x) = p. This map is well-defined by Lemma 2
and we have the following result.

Lemma 5. Fori = 1,2, let

V.- &;Vpi)=f xe€D,
pi==0, x € 0D.

Then

1
[p1 = p2llv <= 5—11fllv=llki — k2l Loo
min

where we assume that

Kmin := ess inf k1(x) Aess inf ky(x) > 0.
xeD xeD

Thus the function R : Xt — V is locally Lipschitz.
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Proof. Lete = k1 — ka, r = p; — p2. Then

—V-(1Vr) =V - ((k1 —k2)Vp2), x €D
r=0, xe€dD.

Multiplying by r and integrating by parts on both sides of the identity gives
Kmin/ IVr?dx < ||(k2 = k) Vp:[II V7.
D

Using the fact that ||¢||y = ||Ve¢]||, and applying Lemma 2 to bound p; in V, we
find that

Irllv =< 1t = €)'V pall /kemin

IA

k2 = k1lloe |l p2llv / Kmin

A

2_||f||V*||e”L°°-

min

3.4.2 Uniform Priors

We now study the inverse problem of finding « from a finite set of continuous linear
functionals {/; }]J -, on V, representing measurements of p; thus /; € V*. To match
the notation from Sect.3.2, we take k = u and we define the separable Banach
space X’ as in Sect.2.2. It is straightforward to see that Lemma 5 extends to the
case where X T given by (10.35) is replaced by

Xt = {v c X/‘ess inf v(x) > 0} (10.36)
X€D

since X’ C L*°(D). When considering uniform priors for the elliptic problem, we
work with this definition of X .
We define G : X+ — R’ by

Giw=1(Rw), j=1....J

where, recall, the /; are elements of V*: bounded linear functionals on V. Then
Gu) = (G1 (u),---,Gy (u)) and we are interested in the inverse problem of finding
u € X from y where

y=G@w+n
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and 7 is the noise. We assume 1 ~ N (0, I"), for positive symmetric I" € R’*/.
(Use of other statistical assumptions on 7 is a straightforward extension of what
follows whenever 7 has a smooth density on R’ ")

Let 1o denote the prior measure constructed in Sect. 2.2. Then pp-almost surely
we have, by Theorem 2,

Mmin  a.€. xeD}.
(10.37)

1 8
ue X} = {v €X' T g min = U(x) < Mmax + T+s

Thus po(X;) = 1.
The likelihood is defined as follows. Since n ~ N (0, I'), it follows that Qy =
N(0,T),Q, = N(G(u),I") and

d@u _ .
dT@)(y) =exp (— @(u; y)),

| 2 11 2
D(u;y) = §|F 2(y —Gw)|” — §|F 2y|".
Recall that vo(dy, du) = Qo(dy)jo(du). Since G : X+ — R’ is locally Lipschitz

by Lemma 5, Lemma 4 implies that @ : X+ x ¥ — R is vy-measurable. Thus
Theorem 14 shows that u|y ~ p” where

1
i (u) = Z exp ( — D (u; y)) (10.38)

z= [ exn (=0 m)uidn.

provided Z > 0 for y Qp-almost surely. To see that Z > 0, note that

Z= [, ew (- o y)ualdu).

Xo

since /LO(XO+) = 1. On X(;" we have that R(-) is bounded in V, and hence G is
bounded in R’. Furthermore y is finite Qp-almost surely. Thus Qo-almost surely
with respect to y, @(; ) is bounded on X;"; we denote the resulting bound by
M = M (y) < co. Hence

zZ > /X+ exp(—M ) po(du) = exp(—M) > 0.

0

and the result is proved.
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We may use Remark 5 to shift @ by %|F -2 y|?, since this is almost surely
finite under Qy and hence under v(du, dy) = Q,(dy)uo(du). We then obtain the
equivalent form for the posterior distribution p”:

du” 1 I, 1
d_,uo( ) = gexp(— 5!1“ 2(y - G(u))\z), (10.39a)

1
Z=fxexp(—§|F—f(y—G(u))|2)M0(du). (10.39b)

3.4.3 Gaussian Priors

We conclude this subsection by discussing the same inverse problem, but using
Gaussian priors from Sect.2.4. We now set X = C(D) and Y = R’ and we note
that X embeds continuously into L°°(D). We assume that we can find an operator
A which satisfies Assumption 2. We now take k = exp(u) and define G : X — R’
by

G =1 (R(exp@)), j =1.....J,

We take as prior on u the measure N (0, A=) with s > d /2. Then Theorem 12
shows that (X)) = 1. The likelihood is unchanged by the prior, since it concerns y
given u, and is hence identical to that in the case of the uniform prior, although
the mean shift from Qy to Q, by G(u) now has a different interpretation since
k = exp(u) rather than x = u. Thus we again obtain (10.38) for the posterior
distribution (albeit with a different definition of G (1)) provided that we can establish
that, Qp-a.s.,

1 | 1 |
Z = /Xexp (E}F_§y|2—E{F_f(y—G(u)Hz)uo(du) > 0.

To this end, we use the fact that the unit ball in X, denoted B, has positive measure
by Theorem 33 and that on this ball R(exp(u)) is bounded in V by e™|| f ||y,
by Lemma 2, for some finite positive constant a. This follows from the continuous
embedding of X into L* and since the infimum of x = exp(u) is bounded below
by e~ lulee Thus G is bounded on B and, noting that y is Qp-a.s. finite, we have
for some M = M (y) < oo,

1 1
sup(§|F_%(y — G(u))|2 - §|F_%y|2) <M.

ueB

Hence

Z= /B exp(— M )pto(du) = exp(—M)jio(B) > 0
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since all balls have positive measure for Gaussian measure on a separable Banach
space. Thus we again obtain (10.39) for the posterior measure, now with the new
definition of G, and hence @.

3.5 Bibliographic Notes

e Section 3.1. Theorem 13 is taken from [43] where it is used to compute
expressions for the measure induced by various conditionings applied to SDEs.
The existence of regular conditional probability distributions is discussed in [54],
Theorem 6.3. Example 5, concerning end-point conditioning of measures defined
via a density with respect to Wiener measure, finds application to problems from
molecular dynamics in [82, 83]. Further material concerning the equivalence
of posterior with respect to the prior may be found in [92, Chapters 3 and
6], [3,4]. The equivalence of Gaussian measures is studied via the Feldman-
Hajeki theorem; see [28] and the Appendix. A proof of Lemma 4 can be found
in [88, Chapter 1, Theorem 1.12]. See also [54, Lemma 1.5].

e Section 3.2. General development of Bayes’ Theorem for inverse problems on
function space, along the lines described here, may be found in [17, 92]. The
reader is also directed to the papers [61, 62] for earlier related material and to
[63—65] for recent developments.

e Section 3.3. The inverse problem for the heat equation was one of the first
infinite-dimensional inverse problems to receive Bayesian treatment (see [36]),
leading to further developments in [68, 71]. The problem is worked through in
detail in [92]. To fully understand the details, the reader will need to study the
Cameron-Martin theorem (concerning shifts in the mean of Gaussian measures)
and the Feldman-H4jek theorem (concerning equivalence of Gaussian measures);
both of these may be found in [14,28,67] and are also discussed in [92].

* Section 3.4. The elliptic inverse problem with the uniform prior is studied in [90].
A Gaussian prior is adopted in [25] and a Besov prior in [24].

4 Common Structure

In this section we discuss various common features of the posterior distribution
arising from the Bayesian approach to inverse problems. We start, in Sect. 4.1, by
studying the continuity properties of the posterior with respect to changes in data,
proving a form of well posedness; indeed, we show that the posterior is Lipschitz
in the data with respect to the Hellinger metric. In Sect. 4.2 we use similar ideas to
study the effect of approximation on the posterior distribution, showing that small
changes in the potential @ lead to small changes in the posterior distribution, again
in the Hellinger metric; this work may be used to translate error analysis pertaining
to the forward problem into estimates on errors in the posterior distribution. In
the final Sect.4.3, we study an important link between the Bayesian approach
to inverse problems and classical regularization techniques for inverse problems;
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specifically we link the Bayesian MAP estimator to a Tikhonov-Phillips regularized
least squares problem. The first two subsections work with general priors, while the
final one is concerned with Gaussians only.

4.1 Well Posedness

In many classical inverse problems, small changes in the data can induce arbitrarily
large changes in the solution, and some form of regularization is needed to
counteract this ill posedness. We illustrate this effect with the inverse heat equation
example. We then proceed to show that the Bayesian approach to inversion has
the property that small changes in the data lead to small changes in the posterior
distribution. Thus working with probability measures on the solution space, and
adopting suitable priors, provides a form of regularization.

Example 6. Consider the heat equation introduced in Sect. 1.2 and both perfect data
y = e “u, derived from the forward model with no noise, and noisy data y’ =
e~4u + n. Consider the case where n = €@ ; with € small and ¢; a normalized
eigenfuction of A. Thus ||| = €. Obviously application of the inverse of e~ to
y returns the point # which gave rise to the perfect data. It is natural to apply the
inverse of e~ to both y and to y’ to understand the effect of the noise. Doing so
yields the identity

lle?y —e*y'Il = lle? (v = ¥l = lle*nll = elle?g; || = ee®.
Recall Assumption 1 which gives o; =< 7?4 Now fix any @ > 0 and choose j
large enough to ensure that o; = (a + 1) log(e ™). It then follows that ||y — y'|| =
O(e) while |le?y — e?y’|| = O(e™%). This is a manifestation of ill posedness.
Furthermore, since a > 0 is arbitrary, the ill posedness can be made arbitrarily bad
by consideringa — co. O

Our aim in this section is to show that this ill-posedness effect does not occur
in the Bayesian posterior distribution: small changes in the data y lead to small
changes in the measure u”. Let XandY be separable Banach spaces, equipped
with the Borel o-algebra, and 1ty a measure on X. We will work under assumptions
which enable us to make sense of the following measure u” < o defined, for some
®:XxY —>R,by

M(u) _ 1
dio ~ Z(y)

Z(y) =/X6XP(—‘1§(M;y))/Lo(du). (10.40b)

exp (— @(u; y)), (10.40a)

We make the following assumptions concerning @ :
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Assumptions 1. Let X' C X and assume that ® € C (X' x Y;R). Assume further
that there are functions M; : Rt xRt = R, i = 1,2, monotonic non-decreasing
separately in each argument, and with M, strictly positive, such that for all u € X',

Y, y1.¥2 € By(0,r),

D(u;y) = =My (r, ||lullx),
[P (u; y1) — @(u; y2)| < Mo(r, lullx)||y1 — y2lly. O

In order to measure the effect of changes in y on the measure ©”, we need a
metric on measures. We use the Hellinger metric defined in Sect. A.2.4.

Theorem 15. Let Assumptions I hold. Assume that po(X') = 1 and that po(X’' N
B) > 0 for some bounded set B in X. Assume additionally that, for every fixed
r >0,

exp (Ml(r, ||u||X)) € LLO(X;R).

Then, for every y € Y, Z(y) given by (10.40b) is positive and finite and the
probability measure ' given by (10.40) is well defined.

Proof. The boundedness of Z(y) follows directly from the lower bound on @ in
Assumption 1, together with the assumed integrability condition in the theorem.
Since u ~ o satisfies u € X’ a.s., we have

2 = [ exo (=0 n)otaw.
Note that B’ = X’ N B is bounded in X . Define

Ry := sup |ullx < oo.
u€B’

Since @ : X' x Y — R is continuous, it is finite at every point in B’ x {y}. Thus,
by the continuity of @(-;-) implied by Assumptions 1, we see that

sup P(u;y) = Ry < o0.
(u,y)€B’XBy (0.r)

Hence
Z(y) > / exp(—Ro)pto(du) = exp(—Ry)jio(B') > 0. (10.41)
B/

Since po(B’) is assumed positive and R, is finite, we deduce that Z(y) > 0. O
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Remarks 6. The following remarks apply to the preceding and following theo-
rem.

* In the preceding theorem, we are not explicitly working in a Bayesian setting: we
are showing that, under the stated conditions on @, the measure is well defined
and normalizable. In Theorem 14, we did not need to check normalizability
because p” was defined as a regular conditional probability, via Theorem 13,
and therefore automatically normalizable.

e The lower bound (10.41) is used repeatedly in what follows, without comment.

» Establishing the integrability conditions for both the preceding and following
theorem is often achieved for Gaussian 1 by appealing to the Fernique theorem.

Theorem 16. Let Assumptions 1 hold. Assume that j1o(X") = 1 and that pwo(X' N
B) > 0 for some bounded set B in X. Assume additionally that, for every fixed
r >0,

exp (M (r. ||u||X))(1 + Ma(r, ||u||X)2) €Ll (X;R).
Then there is C = C(r) > 0 such that, forall y,y" € By(0,r)

A, ) = Clly = ¥'lly-
Proof. Throughout this proof, we use C to denote a constant independent of u,
but possibly depending on the fixed value of r; it may change from occurence to

occurence. We use the fact that, since M,(r,-) is monotonic non-decreasing and
strictly positive on [0, 00),

exp (My (7, 1l 0)) Mo lull ) < exp (Mar, 1l ) (14 Moo el x)?)
(10.42a)

exp (M1 (7, lullx)) = exp (My (. Jull)) (1 + Ma(r: Jull )?).
(10.42b)

Let Z = Z(y) and Z’' = Z(y') denote the normalization constants for u” and 1>’
so that, by Theorem 15,

Z = /X/ exp(—q§(u;y))pco(du) > 0,

7 = /X exp(—qb(u;y/))uo(du) > 0.
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Then, using the local Lipschitz property of the exponential and the assumed
Lipschitz continuity of @ (u; -), together with (10.42a), we have

Z=21= [ lexp (= 0) = exp (= @G ") ol
< [ exp (0 0) @0 ) = DG ot
= ([ e (4162 )Mo o ) 1y = 'l

< ([ exo (M lul0) 1+ Mo o Poaa( @)y =y
X/

<Cly—-ylr.

The last line follows because the integrand is in L}m by assumption. From the
definition of Hellinger distance, we have

;N2
(dch(l'Ly»H«y )) <1+ I,
where

1 1 !
I = /X/(eXp(_be(u;y)) —GXP(—§¢(u;y’)))2M0(d”)v

Z
_1 n—112 ’
=27 @) [ expoy ot

Note that, again using similar Lipschitz calculations to those above, using the fact
that Z > 0 and Assumptions I,

I

IA

1
7 /X exp (M (r, [[ul x))|Dw; y) — @ y") [ pro(d u)

= 5 ([ o0 (0l ot o ot 1y = v

<Cly-YIl3.

Also, using Assumptions 1, together with (10.42b),

/ exp (— D(u: ")) po(du) < / exp (M (r ull ) o ()
X’/ X’/

< 0.
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Hence
L=C(Z7v@ZY)NZz-Z' =<Cly—Yll;-

The result is complete. O

Remark 1. The Hellinger metric has the very desirable property that it translates
directly into bounds on expectations. For functions f which are in Liy (X;R) and

Liy, (X; R), the closeness of the Hellinger metric implies closeness of expectations

of f. To be precise, for y, y’ € By (0, r), we have

B f ) =B f@)] < Cda(t? . p2*")

where constant C depends on r and on the expectations of | f|*> under ;1 and u” "
It follows that

B £ ) — B £ ) < Clly = '],

for a possibly different constant C which also depends on r and on the expectations
of | f|? under u” and p”’.

4.2 Approximation

In this section we concentrate on continuity properties of the posterior measure with
respect to approximation of the potential @. The methods used are very similar
to those in the previous subsection, and we establish a continuity property of the
posterior distribution, in the Hellinger metric, with respect to small changes in the
potential @.

Because the data y plays no explicit role in this discussion, we drop explicit
reference to it. Let X be a Banach space and o a measure on X. Assume that
and pV are both absolutely continuous with respect to .o and given by

du 1
d_,uo(u) = exp ( - @(u)), (10.43a)
Z = / exp ( — Cb(u))uo(du) (10.43b)
X
and
duN 1
d_/,l,o(u) = ﬁ exp ( — (DN(M)), (10443)

zN :/Xexp(—cﬁN(u))/Lo(du) (10.44b)
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respectively. The measure " might arise, for example, through an approximation
of the forward map G underlying an inverse problem of the form (10.29). It is natural
to ask whether closeness of the forward map and its approximation imply closeness
of the posterior measures. We now address this question.

Assumptions 2. Let X' C X and assume that @ € C(X';R). Assume further that
there are functions M; : RT — RT, i = 1,2, independent of N and monotonic

non-decreasing separately in each argument, and with M, strictly positive, such
that for allu € X',

D) = =M ([|ullx),
&N () > —M,(J|ulx).
|@(u) — DV (u)| < Ma(||ullx)¥(N),

where y(N) > 0as N - oco. O

The following two theorems are very similar to Theorems 15 and 16, and the
proofs are adapted to estimate changes in the posterior caused by changes in the
potential @, rather than the data y.

Theorem 17. Let Assumptions 2 hold. Assume that po(X') = 1 and that po(X’' N
B) > 0 for some bounded set B in X. Assume additionally that, for every fixed
r >0,

exp (M1 (r, ||u||X)) € LLO(X;R).
Then ZandZVN given by (10.43b) and (10.44b) are positive and finite and the
probability measures ju and N given by (10.43) and (10.44) are well defined.
Furthermore, for sufficiently large N, ZN given by (10.44b) is bounded below by a
positive constant independent of N .
Proof. Finiteness of the normalization constants Z and ZV follows from the lower

bounds on @ and @V given in Assumptions 2, together with the integrability
condition in the theorem. Since u ~ i satisfies u € X' a.s., we have

Z = f exp(— CD(LL))/,Lo(du).
X/
Note that B’ = X’ N B is bounded in X. Thus

Ry := sup |u||x < oo.
u€B’
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Since @ : X’ — R is continuous, it is finite at every point in B’. Thus, by the
properties of |®@(-) — @V (-)| implied by Assumptions 2, we see that

sup @(u) = Ry < 0.
u€B’

Hence
z> / exp(—Ro)juo(d i) = exp(—Ra)po(B).
B,

Since po(B’) is assumed positive and R; is finite, we deduce that Z > 0. By
Assumption 2, we may choose N large enough so that

sup |P(u) — @™ ()| < Ry

u€B’
so that
sup @V (1) < 2R, < 0.
u€B’
Hence

ZN > A exp(~2R)po(du) = exp(~2Ro)juo(B').

Since po(B’) is assumed positive and R, is finite, we deduce that ZV¥ > 0.
Furthermore, the lower bound is independent of N, as required. O

Theorem 18. Let Assumptions 2 hold. Assume that j1o(X") = 1 and that pwo(X' N
B) > 0 for some bounded set B in X. Assume additionally that

exp (M (ull ) (1 + Ma(llullx)?) € LL, (X: R).
Then there is C > 0 such that, for all N sufficiently large,
Ay (s ,uN) < Cy/(N).

Proof. Throughout this proof, we use C to denote a constant independent of u and
N; it may change from occurrence to occurrence. We use the fact that, since M, (+)
is monotonic non-decreasing and since it is strictly positive on [0, 00),

exp (My (Jull0) Ma(lullx) < exp (M) (1+ Ma(lull0)?), (10.450)

exp (Mi(lull)) < exp (Mi(ul)) (1+ Ma(lullx)?).  (10.45b)
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Let Z and Z" denote the normalization constants for ;2 and u so that for all N
sufficiently large, by Theorem 17,

Z = /X/ exp(—<1§(u))uo(du) > 0,

zZN = [ exp(—@N(u));Lo(du) >0,
with positive lower bounds independent of N. Then, using the local Lipschitz

property of the exponential and the approximation property of @ (-) from Assump-
tions 2, together with (10.45a), we have

122" = [ lexp (= 000) exp (— @V () ot
= [ e (a1l )10 ~ " @lno(a)
< ([ e (i) Ml o)) ()

=( /X exp (My (el ) (1 + Mol ) ol ) ) (N
< Cy(N).

The last line follows because the integrand is in L LO by assumption. From the
definition of Hellinger distance, we have

N 2
(dHell(/"l’y? My )) = Il + ]2,
where

I

% /X/ (exp(—%cb(u)) - exp(—%fPN(u)))zMO(du),

L=z} - (zN)—%\Z/X/ exp(—®" (1)) o (du).

Note that, again by means of similar Lipschitz calculations to those above, using
the fact that Z, ZV > 0 uniformly for N sufficiently large by Theorem 17, and
Assumptions 2,

é X,exp(Ml(llullx)lqﬁ(u)—qu(u)|2M0(du)

%(/X exp (Ml(||u||X))Mz(||u||X)zuo(du))w(N)z

I

IA

IA

A

Cy(N).
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Also, using Assumptions 2, together with (10.45b),

/ exp (— & (1) o(du) < / exp (M (lull)) o)
X’ X’

< 00,

and the upper bound is independent of N. Hence
L=<C(Z23v@Z") )z -ZV? <Cy(N)~

The result is complete. O

Remarks 7. The following two remarks are relevant to establishing the conditions
of the preceding two theorems and to applying them.

* As mentioned in the previous subsection concerning well posedness, the Fer-
nique theorem can frequently be used to establish integrability conditions, such
as those in the two preceding theorems when p is Gaussian.

* Using the ideas underlying Remark 1, the preceding theorem enables us to
translate errors arising from approximation of the forward problem into errors
in the Bayesian solution of the inverse problem. Furthermore, the errors in
the forward and inverse problems scale the same way with respect to N. For
functions f which are in L,ZL and Li ~» uniformly with respect to N, the closeness

of the Hellinger metric implies closeness of expectations of f:

[EX f (u) —E*" f ()| < CY(N).

4.3 MAP Estimators and Tikhonov Regularization

The aim of this section is to connect the probabilistic approach to inverse problems
with the classical method of Tikhonov regularization. We consider the setting in
which the prior measure (o is a Gaussian measure. We then show that MAP
estimators, points of maximal probability, coincide with minimizers of a Tikhonov-
Phillips regularized least squares function, with regularization being with respect
to the Cameron-Martin norm of the Gaussian prior. The data y plays no explicit
role in our developments here, and so we work in the setting of equation (10.43).
Recall, however, that in the context of inverse problems, a classical methodology is
to simply try and minimize (subject to some regularization) @ (u). Indeed for finite
data and Gaussian observational noise with Gaussian distribution N (0, I"), we have

1,
WW=§V70—GWW-
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Thus @ is simply a covariance weighted model-data misfit least squares function.
In this section we show that maximizing probability under p (in a sense that we
will make precise in what follows) is equivalent to minimizing

@) + 3ul} ifue E, and

+00 else.

() (10.46)

Here (E, || - || ) denotes the Cameron-Martin space associated to the Gaussian prior
Ho. We view o as a Gaussian probability measure on a separable Banach space
(X, ] - llx) so that uo(X) = 1. We make the following assumptions about the
function @ :

Assumption 3. The function @: X — R satisfies the following conditions:
(i) Foreverye > 0, thereisan M = M (¢) € R, such that for allu € X,
D) = M — ellul}.

(ii) @ is locally bounded from above, i.e., for every r > 0 there exists
K = K(r) > 0 such that, for all u € X with |ul|x < r, we have

du) < K.

(iii) @ is locally Lipschitz continuous, i.e., for every r > 0 there exists
L = L(r) > 0 such that for all uj,u, € X with |ui|x, |luallx < r, we
have

|®(uy) — P(uz)| < Lljuy — uz| x.

In finite dimensions, for measures which have a continuous density with respect
to Lebesgue measure, there is an obvious notion of most likely point(s): simply the
point(s) at which the Lebesgue density is maximized. This way of thinking does
not translate into the infinite-dimensional context, but there is a way of restating it
which does. Fix a small radius § > 0 and identify centres of balls of radius § which
have maximal probability. Letting § — 0 then recovers the preceding definition,
when there is a continuous Lebesgue density. We adopt this small ball approach in
the infinite-dimensional setting.

For z € E, let B%(z) C X be the open ball centred at z € X with radius § in X.
Let

J3(2) = u(B%(2))

be the mass of the ball B%(z) under the measure y. Similarly we define

I (@) = pno(B*(2))
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the mass of the ball B%(z) under the Gaussian prior. Recall that all balls in a
separable Banach space have positive Gaussian measure, by Theorem 33; it thus
follows that J(;S (z) is finite and positive for any z € E. By Assumptions 3(i) and (ii)
together with the Fernique Theorem 10, the same is true for J%(z). Our first theorem
encapsulates the idea that probability is maximized where / is minimized. To see
this, fix any point z, in the Cameron-Martin space E and notice that the probability
of the small ball at z; is maximized, asymptotically as the radius of the ball tends to
zero, at minimizers of /.

Theorem 19. Let Assumptions 3 hold and assume that o(X) = 1. Then the
function I defined by (10.46) satisfies, for any z1,z; € E,

im J%(z21)
5—0 J‘s(Zz)

= exp(I(zZ) - I(zl)).

Proof. Since J%(z) is finite and positive for any z € E, the ratio of interest is finite
and positive. The key estimate in the proof is given in Theorem 35:

JE(z1) (1 1
lim =2 =exp( =||lz)> — = |z 2). 10.47
s Jg(Z2) P 2” 2||E 2” 1||E ( )

This estimate transfers questions about probability, naturally asked on the space X
of full measure under j, into statements concerning the Cameron-Martin norm of
Mo; note that under this norm, a random variable distributed as o is almost surely
infinite so the result is nontrivial.

We have

J@) S EXP—P(w)) pro(du)

T5@2) Ty xp(— () o(dv)
s €XD=P (W) + D(z1)) exp(~P(zn)) po(du)
" Ty SP(B(0) + D(22) exp(—B(22)) fo(dv)’

By Assumption 3 (iii), there is L = L(r) such that, for all u,v € X with
max{|lullx, vlx} <r,
—Llu—vlxy = @u)—PW) < L |u—vlx.

If we define Ly = L(||z1]lx + 8) and L, = L(||z2||x + &), then we have

—JS(ZI) < ed(Lit+L2) /‘BS(ZI) exp(—P(21)) po(du)
J0) ~ S ey eXP(=@(22)) pro(dv)

— S(Li1+L2) =P +P(22) fB“'(zl) Mo (du)
st(zz) MO(dv)
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Now, by (10.47), we have

8
JS(ZI) < r,(8) SLHL G+ @)
J%(z2)

with r1(§) — 1 as § — 0. Thus

J5
lim sup S(Zl) < e~ 1@)+(z2) (10.48)
50 J°(22)

Similarly we obtain

8
@) 1 sty 1@ @)
T z2) T ra(6)

with r,(8) — 1 as § — 0 and deduce that

s
limian (z1) > el () (10.49)
§—0 J9(z

Inequalities (10.48) and (10.49) give the desired result.

We have thus linked the Bayesian approach to inverse problems with a classical
regularization technique. We conclude the subsection by showing that, under the
prevailing Assumption 3, the minimization problem for I is well defined. We first
recall a basic definition and lemma from the calculus of variations.

Definition 1. The function I : E — R is weakly lower semicontinuous if
liminf 7 (u,) > I (u)
n—od
whenever u, — uin E. The function I : E — R is weakly continuous if
lim 7 (u,) = I1(u)
n—>oo
whenever u, — uin E. O

Clearly weak continuity implies weak lower semicontinuity.

Lemma 6. If (E, (-,-)g) is a Hilbert space with induced norm || - ||g, then the
quadratic form J (u) := %”””% is weakly lower semicontinuous.
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Proof. The result follows from the fact that

T ) =@ = Sl — 3l
1
= E(un —u, Uy +U)g
= 3l =200+ 5y — il
> l(u,, —u,2u)g.
-2

But the right-hand side tends to zero since u, — u in E. Hence, the result follows.

Theorem 20. Suppose that Assumption 3 hold and let E be a Hilbert space
compactly embedded in X. Then there exists u € E such that

I(@) =1 :=inf{I(u):uec E}.

Furthermore, if {u,} is a minimizing sequence satisfying I (u,) — I (), then there
is a subsequence {u,} that converges strongly tou in E.

Proof. Compactness of E in X implies that, for some universal constant C,
2 2
lully < Cllullz-

Hence, by Assumption 3(i), it follows that, for any € > 0, there is M (¢) € R such
that

(5 - Clull + M@ = 1w,

By choosing € sufficiently small, we deduce that there is M € R such that, for all
uek,

1
Z||u||’i_ + M < I(u). (10.50)

Let u, be an infimizing sequence satisfying I (u,) — I as n — oo. For any
8 > 0 thereis N = N;(3):

T<I(u,)<T+8, Vn=>N. (10.51)

Using (10.50) we deduce that the sequence {u, } is bounded in E and, since E is a
Hilbert space, there exists # € E such that #, — u in E. By the compact embedding
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of E in X we deduce that u, — u, strongly in X. By the Lipschitz continuity of
@ in X (Assumption 3(iii)), we deduce that @ (u,) — @(u). Thus, @ is weakly
continuous on E. The functional J (1) := %||u||fE is weakly lower semicontinuous
on E by Lemma 6. Hence I (1) = J (1) + @(u) is weakly lower semicontinuous on
E. Using this fact in (10.51), it follows that, for any § > 0,

IT<I@<TI1-+35.

Since § is arbitrary, the first result follows.
By passing to a further subsequence, and for n, £ > N;(§),

1 1 1 1
Tl = el = Sl + el = 7l + el
1 1
= 1) + 1) =21 (5 1+ 10)) = Dat) = Pue) + 29 (5w +10))
— — 1
<2(T +8) — 2T — D(u,) — D(ue) + 2@(5(:4” + ug))

<26 — D(uy) — D) + 2<D<%(un + ug)).

But u,,, u; and %(un + uy) all converge strongly to # in X . Thus, by continuity of @,
we deduce that for all n, £ > N3(6),

1
Z”Mn - u(”% < 3é.

Hence the sequence is Cauchy in E and converges strongly and the proof is
complete.

Corollary 1. Suppose that Assumptions 3 hold and the Gaussian measure Ly with
Cameron-Martin space E satisfies j1o(X) = 1. Then there exists u € E such that

I(m) =1 :=inf{I(u):uec E}.

Furthermore, if {u,} is a minimizing sequence satisfying I (u,) — I (u), then there
is a subsequence {u,} that converges strongly tou in E.

Proof. By Theorem 34, E is compactly embedded in X. Hence the result follows
by Theorem 20.
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4.4 Bibliographic Notes

e Section 4.1. The well-posedness theory described here was introduced in the
papers [17] and [92]. Relationships between the Hellinger distance on probability
measures and the total variation distance and Kullback-Leibler divergence
may be found in [38] and Pollard (Distances and affinities between measures.
Unpublished manuscript, http://www.stat.yale.edu/~pollard/Books/Asymptopia/
Metrics.pdf), as well as in [92].

e Section 4.2. Generalization of the well-posedness theory to study the effect of
numerical approximation of the forward model on the inverse problem may be
found in [20]. The relationship between expectations and Hellinger distance, as
used in Remark 7, is demonstrated in [92].

* Section 4.3. The connection between Tikhonov-Phillips regularization and MAP
estimators is widely appreciated in computational Bayesian inverse problems;
see [53]. Making the connection rigorous in the separable Banach space setting
is the subject of the paper [30]; further references to the historical development of
the subject may be found therein. Related to Lemma 6, see also [23, Chapter 3].

5 Measure Preserving Dynamics

The aim of this section is to study Markov processes, in continuous time, and
Markov chains, in discrete time, which preserve the measure p given by (10.43).
The overall setting is described in Sect. 5.1 and introduces the role of detailed bal-
ance and reversibility in constructing measure-preserving Markov chains/processes.
Section 5.2 concerns Markov chain Monte Carlo (MCMC) methods; these are
Markov chains which are invariant with respect to (. Metropolis-Hastings methods
are introduced and the role of detailed balance in their construction is explained. The
benefit of conceiving MCMC methods which are defined on the infinite-dimensional
space is emphasized. In particular, the idea of using proposals which preserve the
prior, more specifically which are prior reversible, is introduced as an example.
In Sect.5.3 we show how sequential Monte Carlo (SMC) methods can be used
to construct approximate samples from the measure @ given by (10.43). Again
our perspective is to construct algorithms which are probably well defined on the
infinite-dimensional space, and in fact we find an upper bound for the approximation
error of the SMC method which proves its convergence on an infinite-dimensional
space. The MCMC methods from the previous section play an important role in
the construction of these SMC methods. Sections 5.4-5.6 concern continuous time
Ju-reversible processes. In particular they concern derivation and study of a Langevin
equation which is invariant with respect to the measure w. (Note that this is called
the overdamped Langevin equation for a physicist and the plain Langevin equation
for a statistician.) In continuous time we work entirely in the case of Gaussian prior
measure o = N (0, C) on Hilbert space H with inner product and norm denoted by
{-,-) and || - ||, respectively; however, in discrete time our analysis is more general,
applying on a separable Banach space (X, || - ||) and for quite general prior measure.
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5.1 General Setting

This section is devoted to Banach space valued Markov chains or processes which
are invariant with respect to the posterior measure p” constructed in Sect.3.2.
Within this section, the data y arising in the inverse problems plays no explicit
role; indeed the theory applies to a wide range of measures y on separable Banach
space X . Thus the discussion in this chapter includes, but is not limited to, Bayesian
inverse problems. All of the Markov chains we construct will exploit structure in a
reference measure [y with respect to which the measure u is absolutely continuous;
thus p has a density with respect to po. In continuous time we will explicitly use
the Gaussianity of j(, but in discrete time we will be more general.

Let uo be a reference measure on the separable Banach space X equipped with
the Borel o-algebra B(X). We assume that u < g is given by

du 1
d_,U«o(u) = exp ( — @(u)), (10.52a)

Z = [ exp(— (D(u))uo(du), (10.52b)
b

where Z € (0, 00). In the following we let P (u, dv) denote a Markov transition
kernel so that P (u,-) is a probability measure on (X ,B(X )) for each u € X. Our
interest is in probability kernels which preserve u.

Definition 2. The Markov chain with transition kernel P is invariant with respect
to p if

/X p(du) P () = ()

as measures on (X, B(X)). The Markov kernel is said to satisfy detailed balance
with respect to u if

w(du)P(u,dv) = u(dv)P(v,du)

as measures on (X x X,B(X) ® B(X )) The resulting Markov chain is then said to
be reversible with respect to . [

It is straightforward to see, by integrating the detailed balance condition with
respect to u and using the fact that P (v, du) is a Markov kernel, the following:

Lemma 7. A Markov chain which is reversible with respect to | is also invariant
with respect to |L.

Reversible Markov chains and processes arise naturally in many physical systems
which are in statistical equilibrium. They are also important, however, as a means of
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constructing Markov chains which are invariant with respect to a given probability
measure. We demonstrate this in Sect.5.2 where we consider the Metropolis-
Hastings variant of MCMC methods. Then, in Sects. 5.4, 5.5 and 5.6, we move to
continuous time Markov processes. In particular we show that the equation

% =—u—CDP) + «/EC;—VI/, u(0) = uo, (10.53)

preserves the measure p, where W is a C-Wiener process, defined below in
Sect. A.4. Precisely we show that if uy ~ p, independently of the driving Wiener
process, then E¢ (u(t)) = Eg@(up) for all + > 0 for continuous bounded ¢ defined
on an appropriately chosen subspaces, under boundedness conditions on @ and its
derivatives.

Example 7. Consider the (measurable) Hilbert space (7-[, B(”H,)) equipped, as usual,
with the Borel o-algebra. Let i denote the Gaussian measure N (0,C) on H and,
for fixed u, let P (u,dv) denote the Gaussian measure N ((1 — B)zu, B*C), also
viewed as a probability measure on H. Thus v ~ P(u,dv) can be expressed as
v =(1- ,32)%14 + B& where ¢ ~ N(0,C) is independent of u. We show that
P is reversible, and hence invariant, with respect to . To see this we note that
u(du)P(u,dv) is a centred Gaussian measure on H x H, equipped with the o-
algebra B(H) ® B(#). The covariance of the jointly varying random variable is
characterized by the identities

FEu@u=C, EBv@v=_C, Eu@v:(l—ﬂz)%c. (10.54)

Indeed, letting v(du,dv) := u(du)P (u,dv), and with (-,-) and | - ||, the inner
product and norm on 7, respectively, we can write, using (10.115),

b(dE.dy) = / e I (du) P (u, dv)

HXH

=/ ei(u,s)/ ei(v,n)P(uydv)M(du)
H H

:/ ei(u.é)ei\/1—/32(%7/)—%”ﬂc%"llz,lt(d”)
H

:e—§||c%nn2/ el /1= 1) | ()

H

2 1 1
— o~ Flern?o=3le (V1=B n+p)l?

1 1 L1 1.1 1
= exp (—zucinuz - lleigr—a —ﬂz)%«:%s,c%n)).
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Hence, by Lemma 19 and equation (10.115), u(du) P (u, dv) is a centred Gaussian
measure with the covariance operator given by (10.54). Since the expression in
the last line of the above equation is symmetric in £ and 1, u(dv)P(v,du) is a
centred Gaussian measure with the same covariance as p(du) P (u, dv) and so the
reversibility is proved. [

Example 8. Consider the equation

du aw
S =ut «/57, u(0) = up, (10.55)

where W is a C-Wiener process (defined in Sect. A.4 below). Then
t
u(t) = e lug + V2 / e TIAW (s).
0

Use of the Itd isometry demonstrates that u(¢) is distributed according to the
Gaussian N (e "uo, (1 —e™*)C). Setting 2 = 1 —e~? and employing the previous
example shows that the Markov process is reversible since, for every ¢ > 0, the
transition kernel of the process is reversible. [

5.2 Metropolis-Hastings Methods

In this section we study Metropolis-Hastings methods designed to sample from the
probability measure p given by (10.52). The perspective that we have described
on inverse problems, specifically the formulation of Bayesian inversion on function
space, leads to new sampling methods which are specifically tailored to the high-
dimensional problems which arise from discretization of the infinite-dimensional
setting. In particular it leads naturally to the philosophy that it is advantageous
to design algorithms which, in principle, make sense in infinite dimensions; it
is these methods which will perform well under refinement of finite-dimensional
approximations. Most Metropolis-Hastings methods which are defined in finite
dimensions will not make sense in the infinite-dimensional limit. This is because the
acceptance probability for Metropolis-Hastings methods is defined as the Radon-
Nikodym derivative between two measures describing the behavior of the Markov
chain in stationarity. Since measures in infinite dimensions have a tendency to
be mutually singular, only carefully designed methods will have interpretations
in infinite dimensions. To simplify the presentation, we work with the following
assumptions throughout:

Assumptions 3. The function ® : X — R is bounded on bounded subsets of X.
|
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We now consider the following prototype Metropolis-Hastings method which
accepts and rejects proposals from a Markov kernel Q to produce a Markov chain
with kernel P which is reversible with respect to u.

Algorithm 1

Givena : X x X — [0, 1] generate {u®};~( as follows:

Set k = 0 and pick u® € X.

Propose v®) ~ O u®, dv).

Set u®* D = y® with probability a(u®, v®), independently of (u®), v*)).

Set u* D = 4® otherwise.

k — k 4+ 1 and return to 2. O

[ O R

Given a proposal kernel Q, a key question in the design of MCMC methods
is the question of how to choose a(u, v) to ensure that P (u, dv) satisfies detailed
balance with respect to p. If the resulting Markov chain is ergodic, this then yields
an algorithm which, asymptotically, samples from p and can be used to estimate
expectations against /.

To determine conditions on a which are necessary and sufficient for detailed
balance, we first note that the Markov kernel which arises from accepting/rejecting
proposals from Q is given by

P(u,dv) = Q(u,dv)a(u,v) + SL,(dv)/ (1 —a(u,w))Q(u,dw). (10.56)
X

Notice that

/XP(u,dv) =1

as required. Substituting the expression for P into the detailed balance condition
from Definition 2, we obtain

w(du)Q(u, dv)a(u, v) + u(du)d,(dv) fX(l —a(u, w))Q(u,dW)

p(dv)Q ., duya(v,u) + u(dv)s,(du) [y (1 —a(v, w))Q (v, dw).

We now note that the measure p(du)d,(dv) is in fact symmetric in the pair (u, v)
and that u = v almost surely under it. As a consequence the identity reduces to

w(du)Q(u,dv)a(u,v) = u(dv)Q v, du)a(v, u). (10.57)
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Our aim now is to identify choices of a which ensure that (10.57) is satisfied.
This will then ensure that the prototype algorithm does indeed lead to a Markov
chain for which p is invariant. To this end we define the measures

v(du,dv) = u(du)Q (u,dv)
and
vi(du,dv) = u(dv)Q v, du)

on (X x X,B(X) ® B(X )). The following theorem determines a necessary and
sufficient condition for the choice of a to make the algorithm u reversible and
identifies the canonical Metropolis-Hastings choice.

Theorem 21. Assume that v and v' are equivalent as measures on X x X, equipped
with the o-algebra B(X) ® B(X), and that v(du,dv) = r(u, v)v' (du,dv). Then
the probability kernel (10.56) satisfies detailed balance if and only if

r(u,v)a(u,v) =a(v,u), v-as.. (10.58)
In particular the choice oy (1, v) = min{l, r (v, u)} will imply detailed balance.

Proof. Since v and v are equivalent (10.57) holds if and only if
d
d—v"T(u, v)a(u,v) = av, u).

This is precisely (10.58). Now note that v(du,dv) = r(u,v)v'(du,dv)
and vT(du,dv) = r(,u)v(du,dv) since v and vT are equivalent. Thus
r(u,v)r(v,u) = 1. It follows that
r(u, v)omn (i, v) = min{r (u, v), r(u, v)r(v, u)}
= min{r(u, v), 1}

= mn (V, )

as required.

A good example of the resulting methodology arises in the case where Q (u, dv)
is reversible with respect to p :

Theorem 22. Let Assumption 3 hold. Consider Algorithm 5 applied to (10.52) in
the case where the proposal kernel Q is reversible with respect to the prior L.
Then the resulting Markov kernel P given by (10.56) is reversible with respect to |

if a(u, v) = min{l, exp(@(u) — q§(v))}.
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Proof. Prior reversibility implies that
po(du) Q(u, dv) = po(dv)Q (v, du).
Multiplying both sides by exp(—@(u)) gives
p(duw) Q (u. dv) = exp(~(w)) o(dv) Q (v. du)
and then multiplication by exp (—@(v)) gives
exp(—(b(v))u(du) QO(u,dv) = exp(—@(u)),u(d v)Q (v, du).
This is the statement that
exp(—®(v))v(du, dv) = exp(—=P(w))v (du,dv).

Since @ is bounded on bounded sets by Assumption 3, we deduce that

%(u, v) = r(uv) = exp(S(v) — Du)).

Theorem 21 gives the desired result.

We provide two examples of prior reversible proposals, the first applying in the
general Banach space setting and the second when the prior is a Gaussian measure.

Algorithm 2 Independence Sampler

The independence sampler arises when Q (u, dv) = po(dv) so that proposals are independent
draws from the prior. Clearly prior reversibility is satisfied. The following algorithm results.
Define

a(u,v) = min{1, exp(®(u) — (v))}
and generate {u®}; ¢ as follows:

Set k = 0 and pick u® € X.

Propose v ~ 11y independently of u®.

Set u® D = y® with probability a(u®, v®), independently of (u®), v*)).

Set u® D = 4® otherwise.

k — k 4+ 1 and return to 2. O

Dk

The preceding algorithm works well when the likelihood is not foo informative;
however, when the information in the likelihood is substantial, and ®(-) varies
significantly depending on where it is evaluated, the independence sampler will
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not work well. In such a situation, it is typically the case that local proposals are
needed, with a parameter controlling the degree of locality; this parameter can
then be optimized by choosing it as large as possible, consistent with achieving
a reasonable acceptance probability. The following algorithm is an example of this
concept, with parameter 8 playing the role of the locality parameter. The algorithm
may be viewed as the natural generalization of the random walk Metropolis method,
for targets defined by density with respect to Lebesgue measure, to the situation
where the targets are defined by density with respect to Gaussian measure. The
name pCN is used because of the original derivation of the algorithm via a Crank-
Nicolson discretization of the Hilbert space valued SDE (10.55).

Algorithm 3 pCN Method

Assume that X is a Hilbert space (’H B(H)) and that uy = N (0, C) is a Gaussian prior on H.

Now define Q (i, dv) to be the Gaussian measure N ((1 — £?) Ty, B2C), also on H. Example 7
shows that Q is p reversible. The following algorithm results.
Define

a(u,v) = min{1, exp(®(u) — (v))}
and generate {u®}; > as follows:

Set k = 0 and pick u©® € X.

Propose v® = /(1 — B2)u® + gg®, £® ~ N(0,C).

Set u® D = y® with probability a(u®, v(®), independently of (u®), £®).
Set u® D = 4® otherwise.

k — k 4+ 1 and return to 2.

Dk =

|

Example 9. Example 8 shows that using the proposal from Example 7 within a
Metropolis-Hastings context may be viewed as using a proposal based on the
u-measure-preserving equation (10.53), but with the D @ term dropped. The accept-
reject mechanism of Algorithm 3, which is based on differences of @, then
compensates for the missing D@ term.

5.3 Sequential Monte Carlo Methods

In this section we introduce sequential Monte Carlo methods and show how these
may be viewed as a generic tool for sampling the posterior distribution arising
in Bayesian inverse problems. These methods have their origin in filtering of
dynamical systems but, as we will demonstrate, have the potential as algorithms
for probing a very wide class of probability measures. The key idea is to introduce
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a sequence of measures which evolve the prior distribution into the posterior
distribution. Particle filtering methods are then applied to this sequence of measures
in order to evolve a set of particles that are prior distributed into a set of particles that
are approximately posterior distributed. From a practical perspective, a key step in
the construction of these methods is the use of MCMC methods which preserve the
measure of interest and other measures closely related to it; furthermore, our interest
is in designing SMC methods which, in principle, are well defined on the infinite-
dimensional space; for these two reasons, the MCMC methods from the previous
subsection play a central role in what follows.

Given integer J, let h = J —1 and for nonnegative integer j < J, define the
sequence of measures i ; < Lo by

ZI/Z () Zijexp(— jhd(w)). (10.59a)

Z; = / exp(—th§(u))uo(du). (10.59b)
X

Then p; = p given by (10.52); thus, our interest is in approximating wu;, and
we will achieve this by approximating the sequence of measures {t; }JJ- —g» using
information about 1 ; to inform approximation of ;. To simplify the analysis,
we assume that @ is bounded above and below on X so that there is $* € R such

that
¢~ <Pu) <¢pT VuelX. (10.60)

Without loss of generality, we assume that ¢~ < 0 and that ¢ > 0, which may
be achieved by normalization. Note that then the family of measures {u j}jj‘ — are
mutually absolutely continuous and, furthermore,

dpj+i Z;
(n) = exp(—h®u)). (10.61)
dij Zjt p( )

An important idea here is that, while ©( and p may be quite far apart as measures,
the pair of measures ji;, i ;11 can be quite close, for sufficiently small /4. This fact
can be used to incrementally evolve samples from j( into approximate samples of
K.

Let L denote the operator on probability measures which corresponds to appli-
cation of Bayes’ theorem with likelihood proportional to exp (— h@(u)), and let
P; denote any Markov kernel which preserves the measure ;; such kernels
arise, for example, from the MCMC methods of the previous subsection. These
considerations imply that

Hi+1 = LP//,Lj (1062)



10 The Bayesian Approach to Inverse Problems 373

Sequential Monte Carlo methods proceed by approximating the sequence {i; } by
a set of Dirac measures, as we now describe. It is useful to break up the iteration
(10.62) and write it as

Rj+1= Pju;, (10.63a)
Mj+1 = Lij41. (10.63b)

We approximate each of the two steps in (10.63) separately. To this end it helps to
note that, since P; preserves i,

djtjt1 Zj
~ (u) = exp(—h®u)). (10.64)
diiji Zj1 ( )

To define the method, we write an N -particle Dirac measure approximation of
the form

N
il =3 w8, — o). (10.65)

n=1

The approximate distribution is completely defined by particle positions v and

J
weights w™, respectively. Thus the objective of the method is to find an update rule

J
(m) (1) \N

for {v;”), w;n)}fl\;l — {v; ;. w;i},=- The weights must sum to one. To do this we
proceed as follows. First each particle v}”) is updated by proposing a new candidate

particle ﬁ;"il according to the Markov kernel P;; this corresponds to (10.63a)
and creates an approximation to {i ;1. (See the last two parts of Remark 8 for a
discussion on the role of P; in the algorithm.) We can think of this approximation
as a prior distribution for application of Bayes’ rule in the form (10.63b), or
equivalently (10.64). Secondly, each new particle is re-weighted according to the
desired distribution ;4 given by (10.64). The required calculations are very
straightforward because of the assumed form of the measures as sums of Dirac’s, as
we now explain.
The first step of the algorithm has made the approximation

N
/lj+] A /’,\L;V_,’_l = ZWB‘H)S(Uj‘i‘l — 'l,}yl_,’)_l) (1066)
n=1

We now apply Bayes’ formula in the form (10.64). Using an approximation
proportional to (10.66) for [, we obtain

N
pit & 1= Do 8 — 077, (10.67)

n=1
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where

W = exp(—hd (@) ))w!” (10.68)

and normalization requires

N
Wi =wl /0w (10.69)

n=1

Practical experience shows that some weights become very small, and for this
reason it is desirable to add a resampling step to determine the {vﬁ"ll} by drawing
from (10.67); this has the effect of removing particles with very low weights and
replacing them with multiple copies of the particles with higher weights. Because
the initial measure P(vg) is not in Dirac form, it is convenient to place this
resampling step at the start of each iteration, rather than at the end as we have
presented here, as this naturally introduces a particle approximation of the initial
measure. This reordering makes no difference to the iteration we have described
and results in the following algorithm.

Algorithm 4

. Let ud) = poandset j =0.

. Drawv;-”)fvu?’,nz 1,...,N.

1
2

3. Setw!" =1/N,n=1..... N and define 1’ by (10.65).
4. Draw ﬁyil ~ P; (v;n), ).

o Deine i, 0y (L08) (069 and ] by 1067

]

We define SV to be the mapping between probability measures defined by
sampling N i.i.d. points from a measure and approximating that measure by an
equally weighted sum of Dirac’s at the sample points. Then the preceding algorithm
may be written as

pYy =SV P, (10.70)

Although we have written the sampling step S™ after application of P;, some
reflection shows that this is well justified: applying P; followed by SV can be
shown, by first conditioning on the initial point and sampling with respect to P;
and then sampling over the distribution of the initial point, to be the algorithm as
defined. The sequence of distributions that we wish to approximate simply satisfies
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the iteration (10.62). Thus, analyzing the particle filter requires estimation of the
error induced by application of SV (the resampling error) together with estimation
of the rate of accumulation of this error in time.

The operators L, P; and S” map the space P(X) of probability measures on X
into itself according to the following:

exp(—h@(v))u(dv)

Lu)(dv) = ,
Lwdv) I exp(—h@(v))u(dv)

(P = [ Py dvuian)

N
1
(SN ) (dv) = ~ D s —v"ydv, v ~piid.
n=1

where P; is the kernel associated with the u ;-invariant Markov chain.

Let u = p'® denote, for each w, an element of P(X). If we assume that o
is a random variable and let E“ denote expectation over w, then we may define a
distance d (-, -) between two random probability measures 1 andv(®, as follows:

d(p,v) = sup| 1, <1 VE? I (f) = (NI,

with | |0 1= sup,ey |f (v)|, and where we have used the convention that u(f) =
[y f(v)u(dv) for measurable f : X — R, and similar for v. This distance does
indeed generate a metric and, in particular, satisfies the triangle inequality. In fact it
is simply the total variation distance in the case of measures which are not random.

With respect to this distance between random probability measures, we may
prove that the SMC method generates a good approximation of the true measure
W, in the limit N — oco. We use the fact that, under (10.60), we have

exp(—hqb"') < exp(—h®(v)) < exp(—hd)_).

Since ¢~ < 0 and ¢+ > 0, we deduce that there exists ¥ € (0, 1) such that for all
veEJX,

Kk <exp(—h®(v)) <«
This constant « appears in the following.
Theorem 23. We assume in the following that (10.60) holds. Then

7
i 1
d(py, ) < ;(ZK 2)jﬁ-
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Proof. The desired result is a consequence of the following three facts, whose proof
we postpone to three lemmas at the end of the subsection:

sup d(SVp,p) < f

HeP(X)
d(Pjv, Pip) <d(v,p),
d(Lv,Lp) < 2c2d (v, ).

By the triangle inequality, we have, for v}v =P /L;V ,

d(ﬂy+1’//«j+l) = d(LSNPijéy, LPjuj)
<d(LPjpY LPjpj) +d(LSY PiplY LP )

= 22 (d() ) + d sV o))

2K_2(d(/»b§-v,ﬂj) + ﬁ)

Iterating, after noting that ;L{)V = Lo, gives the desired result.

Remarks 8. This theorem shows that the sequential particle filter actually repro-
duces the true posterior distribution 4 = py, in the limit N — oco. We make some
comments about this.

e The measure © = pu, is well approximated by /L;V in the sense that, as the
number of particles N — oo, the approximating measure converges to the true
measure. The result holds in the infinite-dimensional setting. As a consequence
the algorithm as stated is robust to finite-dimensional approximation.

* Note that k = «(J) and that « — 1 as J — oco. Using this fact shows that
the error constant in Theorem 23 behaves as Z{=1 (2«™%)/ < J 27. Optimizing
this upper bound does not give a useful rule of thumb for choosing J and in fact
suggests choosing J = 1. In any case in applications @ is not bounded from
above, or even below in general, and a more refined analysis is then required.

* In principle the theory applies even if the Markov kernel P; is simply the identity
mapping on probability measures. However, moving the particles according to a
nontrivial p;-invariant measure is absolutely essential for the methodology to
work in practice. This can be seen by noting that if P; is indeed taken to be
the identity map on measures, then the particle positions will be unchanged as
j changes, meaning that the measure & = gy is approximated by weighted
samples from the prior, clearly undesirable in general.

* Infact, if the Markov kernel P; is ergodic, then it is sometimes possible to obtain
bounds which are uniformin J.
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‘We now prove the three lemmas which underlie the convergence proof.

Lemma 8. The sampling operator satisfies

1
sup d(SNpu,p) < —.

weP(X) VN

Proof. Let v be an element of P(X) and {v(l‘)}ﬁ/=1 a set of i.i.d. samples with
v~ v; the randomness entering the probability measures is through these
samples, expectation with respect to which we denote by E® in what follows. Then

N
1
N — (k)
SYo(f) =5 D f ")
k=1
and, defining / = f — v(f), we deduce that

N
SV () = 3 ST,
k=1

It is straightforward to see that
Ef ) f ) = §uE° [ f (™).
Furthermore, for | f |0 < 1,
E°[f )P = E°[f )P~ |E”f (D) < 1.

It follows that, for | f|e < 1,

A

N
B (/) = SV = 13 YOEFO)P < o
k=1

Since the result is independent of v, we may take the supremum over all probability
measures and obtain the desired result.

Lemma 9. Since P; is a Markov kernel, we have

d(Pjv, Pjv') <d(v,v).
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Proof. The result is generic for any Markov kernel P, so we drop the index j on
P; for the duration of the proof. Define

() = /X PO .dv)f ().

that is the expected value of f under one step of the Markov chain started from v’.
Clearly, since

0001 = ([ P.dv)suplf@) = supl©)
it follows that
sup|q(v)] = supf (v)].
Also, since
P = [ s [ Peavpan)

exchanging the order of integration shows that

[Pv(f) = PV'(f)l = |v(g) = V(9.

Thus

[STE

d(Pv, PV) = sup (E’”|Pv(f) . Pv’(f)|2>

[ floo<1

< E® _ 2 %
= s (E°0@ -V @F)
=d,V)

as required.

Lemma 10. Under the Assumptions of Theorem 23, we have

d(Lv,Lp) <2c2d (v, p).



10 The Bayesian Approach to Inverse Problems 379

Proof. Define g(v) = exp(—h@(v)). Notice that for | f|so < 00, We can rewrite

Lv)(f) = (Lp)(f) ZV(fg) _ n(fg)
v(g) (g

_v(fe) _ pnlfe) n n(fg)  n(fg)
vig) () v(g) (g

_k u(fg) «
= ( )[v( kfg) —plk fel + ——= 1(2) v()

[l/«( g) —v(kg)l.

Now notice that v(g)~' < k! and that, for | f|eo < 1, u(fg)/u(g) < 1 since the
expression corresponds to an expectation with respect to measure found from p by
reweighting with likelihood proportional to g. Thus

(Lo)(f) = LW (NI =« 2 [ulk fg) — i f9)] + kT2 v (kg) — 11(keg)]-

Since |k g| < 1, it follows that

E°|(Lv)(f) = (L) (NP < 4 sup E?P(f) = n(f)I?

Sfloo=1

and the desired result follows.

54 Continuous Time Markov Processes

In the remainder of this section, we shift our attention to continuous time processes
which preserve p; these are important in the construction of proposals for MCMC
methods and also as diffusion limits for MCMC. Our main goal is to show that the
equation (10.53) preserves p. Our setting is to work in the separable Hilbert space
‘H with Inner product and norm denoted by (-,-) and || - ||, respectively. We assume
that the prior ¢ is a Gaussian on ‘H and, furthermore, we specify the space X C ‘H
that will play a central role in this continuous time setting. This choice of space X
will link the properties of the reference measure (i and the potential @. We assume
that C has eigendecomposition

Co; =vid, (10.74)
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where {¢; }72 forms an orthonormal basis for 7 and where y; < j . Necessarily

s > % since C must be trace class to be a covariance on H. We define the following

scale of Hilbert subspaces, defined for r > 0, by

X = {u eH| D g < oo}

Jj=1

and then extend to superspaces r < 0 by duality. We use || - ||, to denote the norm
induced by the inner product

oo
(wov)r =D J%uv;

Jj=1

foru; = (u,¢;) and v; = (v,¢;). Application of Theorem 5 with d = 1 and
q = 2 shows that po(X") = 1 forallr € [0,5 — %). In what follows we will take
X = X' for some fixed t € [0,s — %).

Notice that we have not assumed that the underlying Hilbert space is comprised
of L? functions mapping D C R¢ into R, and hence we have not introduced the
dimension d of an underlying physical space R¢ into either the decay assumptions
on the y; or the spaces X”. However, note that the spaces 7{' introduced in Sect. 2.4
are, in the case where H = LZ(D; R), the same as the spaces X’ /4,

We now break our developments into introductory discussion of the finite-
dimensional setting, in Sect. 5.5, and into the Hilbert space setting in Sect.5.6. In
Sect.5.5.1, we introduce a family of Langevin equations which are invariant with
respect to a given measure with smooth Lebesgue density. Using this, in Sect. 5.5.2,
we motivate equation (10.53) showing that, in finite dimensions, it corresponds to
a particular choice of Langevin equation. In Sect. 5.6.1, for the infinite-dimensional
setting, we describe the precise assumptions under which we will prove invariance
of measure w under the dynamics (10.53). Section 5.6.2 describes the elements of
the finite-dimensional approximation of (10.53) which will underlie our proof of
invariance. Finally, Sect.5.6.3 contains statement of the measure invariance result
as Theorem 27, together with its proof; this is preceded by Theorem 26 which
establishes existence and uniqueness of a solution to (10.53), as well as contin-
uous dependence of the solution on the initial condition and Brownian forcing.
Theorems 25 and 24 are the finite-dimensional analogues of Theorems 27 and 26,
respectively, and play a useful role in motivating the infinite-dimensional theory.

5.5 Finite-Dimensional Langevin Equation
5.5.1 Background Theory

Before setting up the (rather involved) technical assumptions required for our proof
of measure invariance, we give some finite-dimensional intuition. Recall that | - |
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denotes the Euclidean norm on R”, and we also use this notation for the induced
matrix norm on R”. We assume that

I € C*(R",R™), / e 1y =1.

n

Thus p(u) = e~/ ® is the Lebesgue density corresponding to a random variable on
R”". Let u be the corresponding measure.

Let W denote standard Wiener measure on R”. Thus B ~ W is a standard
Brownian motion in C ([0, 00); R"). Let u € C ([0, 00); R") satisfy the SDE

d dB
d_l; = —ADI(W + V2A==. u(0) = uy (10.75)

where A € R"™" is symmetric and strictly positive definite and DI € C'(R",R")
is the gradient of /. Assume that IM > 0 : Yu € R”, the Hessian of [ satisfies

D21 ()] < M.

We refer to equations of the form (10.75) as Langevin equations (as mentioned
earlier, they correspond to overdamped Langevin equations in the physics literature
and to Langevin equations in the statistics literature) and the matrix A as a
preconditioner.

Theorem 24. For every uy € R" and W-a.s., equation (10.75) has a unique global
in time solution u € C ([0, c0); R").

Proof. A solution of the SDE is a solution of the integral equation
t
u(t) = uo —/ A DI (u(s))ds + ~2AB(1). (10.76)
0
Define X = C([0, T];R") and 7 : X — X by
t
(Fu)(t) = up —/ ADI (v(s))ds + V2AB(t). (10.77)
0

Thus u € X solving (10.76) is a fixed point of . We show that F has a unique fixed
point, for T sufficiently small. To this end we study a contraction property of F:
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[(Fvi) = (Fva)llx = sup

0=<t<T

/Ot (A DI (v(s)) — A Dl(vz(s)))ds)

IA

fOT ‘A DI (vi(s)) — A Dl(vz(s)))ds

IA

T
/0 |AIM v (s) — va(s)|ds

IA

T|AIM [[vy — va| x.

Choosing T : T|A|M < 1 shows that F is a contraction on X . This argument may
be repeated on successive intervals [T, 2T], [2T,3T], ... to obtain a unique global
solution in C ([0, co); R").

Remark 2. Note that, since A is positive-definite symmetric, its eigenvectors e;
form an orthonormal basis for R". We write Ae; = a?e ;- Thus

B(1) =Y B;()e;

j=1
where the {f;}_, are an i.i.d. collection of standard unit Brownian motions on R.
Thus we obtain

VAB(t) =) a;pje; = W(t).

j=1

We refer to W as an A-Wiener process. Such a process is Gaussian with mean zero
and covariance structure

EW (@) ® W(s) = A(t As).
The equation (10.75) may be written as

du aw
o =—ADI@w) + ﬁ?’ u(0) = up. (10.78)

Theorem 25. Let u(t) solve (10.75). If ug ~ u, then u(t) ~ u for allt > 0. More
precisely, for all ¢ : R" — R bounded and continuous, uy ~ | implies

]E(p(u(t)) = Ep(up), Vt > 0.
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Proof. Consider the additive noise SDE, for additive noise with strictly positive-
definite diffusion matrix X,

du dB
T fu) + VZZ’E, u(0) = ug ~ vy.

If vo has pdf py, then the Fokker-Planck equation for this SDE is

0
a—‘t’ — V.- (—fF+ 5VB), (1) R xR,
Pli=o0 = po.

At time ¢ > 0 the solution of the SDE is distributed according to measure v(¢) with
density p(u, t) solving the Fokker-Planck equation. Thus the initial measure vy is
preserved if
V- (=fpo+ XVpy) =0

and then p(-, 1) = py, Vt > 0.

We apply this Fokker-Planck equation to show that y is invariant for equation
(10.76). We need to show that

V- (ADI(u)p+ AVp) =0
if p = e~/ _ With this choice of p we have
Vp=—-DIue '™ = —DI®u)p.
Thus
ADI(u)p+ AVp=ADI(uwp—ADI(u)p =0,
so that
V-(ADI(wp+ AVp) =V -(0) =0.

Hence the proof is complete.
5.5.2 Motivation for Equation (10.53)

Using the preceding finite-dimensional development, we now motivate the form of
equation (10.53). For (10.52) we have, if H is R",

p(du) = exp (—1(w))du, I(u) = %|C_%u|2 +Pu)+InZ.
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Thus
DI(u) =C 'u+ D®(u)

and equation (10.75), which preserves pu, is

du dB
— = —A(c! D® V24—,
T (Cu+ (w)) + o

Choosing the preconditioner A = C gives

du dB
o =—u—CDP() + @W.

This is exactly (10.53) provided W = VCB, where B is a Brownian motion with
covariance Z. Then W is a Brownian motion with covariance C. This is the finite-
dimensional analogue of the construction of a C-Wiener process in the Appendix.
We are now in a position to prove Theorems 26 and 27 which are the infinite-
dimensional analogues of Theorems 24 and 25.

5.6 Infinite-Dimensional Langevin Equation

5.6.1 Assumptions on Change of Measure

Recall that po(X") = 1 forall r € [0,s — %) The functional @(:) is assumed to
be defined on X’ for some ¢ € [0,s — %), and indeed we will assume appropriate
bounds on the first and second derivatives, building on this assumption. (Thus, in
this Sect.5.6.1, ¢ does not denote time; instead we use 7 to denote the generic
time argument.) These regularity assumptions on @(-) ensure that the probability
distribution w is not too different from p, when projected into directions associated
with ¢; for j large.

For each u € X', the derivative D®(u) is an element of the dual (X")* of X’
comprising continuous linear functionals on X’. However, we may identify (X*)*
with X" and view D®(u) as an element of X' for each u € X’. With this
identification, the following identity holds

ID@@W)|zixrry) = DLW~

and the second derivative D?>® (1) can be identified as an element of £(X’, X~). To
avoid technicalities, we assume that @(-) is quadratically bounded, with first deriva-
tive linearly bounded and second derivative globally bounded. Weaker assumptions
could be dealt with by use of stopping time arguments.
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Assumptions 4. There exist constants M; € RY,i < 4andt € [0,s — 1/2) such
that, for all u € X', the functional @ : X' — R satisfies

—My = @) = My (1+ Jul}?);
1Dl < M (14 ul. )
| D*® ()| ciaer -1y < Ma.

O

Example 10. The functional ®(u) = %||u||,2 satisfies Assumptions 4. To see this
note that we may write @(u) = %(u, Ku) where

1 oo
K=3 > iMeier.
j=1

The functional @ : X’ — R7T is clearly well defined by definition. Its derivative
atu € X'is given by Ku = DOw) = Yo, j¥u;p;, where u; = (¢;,u).
Furthermore D®(u) € X' with |D®(u)|—, = |ull,. The second derivative
D*®(u) € L(X', X™") is the linear operator K that is the operator that maps u € X"
to Y5y j¥u,dj)p; € X't its norm satisfies | D>*®@(u)|| cxr x—) = 1 for any
ue X', ]

Since the eigenvalues yf of C decrease as y; =< j°, the operator C has a

smoothing effect: C*/h gains 2as orders of regularity in the sense that the X#-norm
of C*h is controlled by the X#~2*-norm of & € H. Indeed it is straightforward to
show the following:

Lemma 11. Under Assumption 4, the following estimates hold:

1. The operator C satisfies
ICRllg = Ihllg—2as-

2. The function CD® : X' — X' is globally Lipschitz on X': there exists a
constant M5 > 0 such that

ICD®(u) —CDPW)|; < Ms|lu—v|, Yu,v € X', (10.79)
3. The function F : X' — X' defined by

F(u) = —u—CD®(u) (10.80)

is globally Lipschitz on X'.
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4. The functional ®(-) : X' — R satisfies a second-order Taylor formula (for which
we extend (-, -) from an inner product on X to the dual pairing between X" and
X'"). There exists a constant Mg > 0 such that

®(v) — (q)(u) F (DP), v — u)) < Mgllu—v|?> VuveX'. (10.81)

5.6.2 Finite-Dimensional Approximation

Our analysis now proceeds as follows. First we introduce an approximation of the
measure 4, denoted by u”. To this end we let PV denote orthogonal projection
in { onto XV := span{¢;,--- , ¢y} and denote by Q" orthogonal projection in
onto X+ := span{¢y 1, pn+2.---}. Thus OV = I — PN Then define the measure

1N by

duVN 1
m (u) = &P (— o u), (10.82a)
zN =/ exp (— @(PNu))po(du). (10.82b)

X/

This is a specific example of the approximating family in (10.44) if we define
oV = o PV, (10.83)

Indeed if we take X = X" forany t € (¢,5 — %), we see that | PV | zx.x) = 1 and
that, for any u € X,

@) — D" W) = |Dw) — D(PYu)|
< M3(1+ |ull )T = PV)ull,
< CMs(1 + Jlullo) |lull, N0,

Since @ and hence @* are bounded below by —M, and since the function 1+ ||ul|?
is integrable by the Fernique theorem 10, the approximation Theorem 18 applies.
We deduce that the Hellinger distance between p and u” is bounded above by
O(N7") forany r < s—%—t sincet —t € (0,5 — % —1).

We will not use this explicit convergence rate in what follows, but we will use
the idea that u converges to u in order to prove invariance of the measure y under
the SDE (10.53). The measure 1 has a product structure that we will exploit in the
following. We note that any element u € # is uniquely decomposed as u = p + g
where p € XV and ¢ € X*+. Thus we will write u" (du) = u"(dp.dq), and
similar expressions for pt( and so forth, in what follows.

Lemma 12. Define C¥Y = PNCPY and C+ = QNCQN. Then p factors as the
product of measures jiop = N(0,CN) and oo = N0, Cct) on XN and X+,
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respectively. Furthermore WV itself also factors as a product measure on X @ X+
N (dp.dq) = pp(dp)o(dq) with jug = io,o and

dup
d jro.p

(u) x exp (— @(p)).

Proof. Because P and Q" commute with C, and because P¥Y QY = Q¥ PN =0,
the factorization of the reference measure 1y follows automatically. The factoriza-
tion of the measure y follows from the fact that @ (1) = @(p) and hence does not
depend on q.

To facilitate the proof of the desired measure preservation property, we introduce
the equation

N
du” _ —u"¥ —CPV¥DON W) + fzd—W. (10.84)
dt dt

By using well-known properties of finite-dimensional SDEs, we will show that if
ul (0) ~ uV, then uV (t) ~ uV for any ¢ > 0. By passing to the limit N = oo, we
will deduce that for (10.53), if u(0) ~ w, then u(¢) ~ p for any t > 0.

The next lemma gathers various regularity estimates on the functional @ (-) that
are repeatedly used in the sequel; they follow from the analogous properties of @
by using the structure @ = @ o PV,

Lemma 13. Under Assumption 4, the following estimates hold with all constants
uniform in N :

1. The estimates of Assumption 4 hold with @ replaced by @V .

2. The function CD®N : X' — X' is globally Lipschitz on X': there exists a
constant Ms > 0 such that

[CD®N (u) —CDDN (v)|, < Ms ||u— vl Yu,v e X'
3. The function FVN : X' — X' defined by
FN(u)=—-u—CPYDo(u) (10.85)
is globally Lipschitz on X'.
4. The functional ®V () : X' — R satisfies a second-order Taylor formula (for

which we extend (-,-) from an inner product on X to the dual pairing between
X~ and X*'). There exists a constant Mg > 0 such that

oV (v) — (@N(u) + (DY (), v — u)) < Mgllu—v]®> VuveX
(10.86)
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5.6.3 Main Theorem and Proof

Fix a function W € C([0,T]; X"). Recalling F defined by (10.80), we define
a solution of (10.53) to be a function u € C([0, T]; X') satisfying the integral
equation

u(t) = up + for F(u(s)) ds + 2 W (x) vt € [0,T]. (10.87)

The solution is said to be global if T > 0 is arbitrary. For us, W will be a C-Wiener
process and hence random; we look for existence of a global solution, almost surely
with respect to the Wiener measure. Similarly a solution of (10.84) is a function
ul € C ([0, T]; X") satisfying the integral equation

uV (1) = up + /Z FN (M (s)) ds + V2 W (x) Vi e[0,T].  (10.88)
0

Again, the solution is random because W is a C-Wiener process. Note that the
solution to this equation is not confined to X N because both uy and W have
nontrivial components in X +. However, within X, the behavior is purely Gaussian
and within X7, it is finite dimensional. We will exploit these two facts.

The following establishes basic existence, uniqueness, continuity and approxi-
mation properties of the solutions of (10.87) and (10.88).

Theorem 26. For every uy € X' and for almost every C-Wiener process W,
equation (10.87) (respectively, (10.88)) has a unique global solution. For any pair
(ug, W) € X' x C ([0, T]; X"), we define the It6 map

O: X' x C([0,T]; X') — C([0, T]; ")

which maps (ug, W) to the unique solution u (resp. u™ for (10.88)) of the integral
equation (10.87) (resp. OV for (10.88)). The map © (respectively, O ) is globally
Lipschitz continuous. Finally we have that O (ug, W) — O (ug, W) strongly in
C ([0, T]; X") for every pair (ug, W) € X' x C([0,T]; X").

Proof. The existence and uniqueness of local solutions to the integral equation
(10.87) is a simple application of the contraction mapping principle, following
arguments similar to those employed in the proof of Theorem 24. Extension to
a global solution may be achieved by repeating the local argument on successive
intervals.

Now let u) solve

u® =y +[ Fu®)(s)ds + V2WD(7), ©e[0,T],
0
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for i = 1,2. Subtracting and using the Lipschitz property of F shows that
e = uV —u® satisfies

T
le@)llr < lluf” —uPll + L /0 le(s)ll.ds + V2IW D (@) = WO ()|,

<l — e + L / le(s)ll:ds + 2 sup [[WD(s) = WO ()]
0

0<s<T

By application of the Gronwall inequality, we find that

sup_le(@)lls = ()11 —u@, + sup WD (s) = W(s)],)

0<t=< 0<s<T

and the desired continuity is established.

Now we prove pointwise convergence of @V to @. Let e = u — u" where u and
u™ solve (10.87) and (10.88), respectively. The pointwise convergence of @V to ®
is established by proving that e — 0in C ([0, T']; X"). Note that

F@u)— FY™) = (FN@w) — F¥ ")) + (F ) — F" (u)).

Also, by Lemma 13, || FY (u) — F¥ w™)||, < L|le||;. Thus we have

llell: = L/ lles)ll:ds +/ IF (u(s)) = FN (u(s)) || ds.
0 0
Thus, by Gronwall, it suffices to show that

§N = sup ||F(u(s)) — FN(M(S))”z

0<s<T
tends to zero as N — oo. Note that

Fw)— FYu) =CD®u)—CP¥DP(P u)
= (I - P")CD®(u) + PN (CDDu) — CDP(Pu)).

Thus, since CD @ is globally Lipschitz on X, by Lemma 11, and P has norm one
as a mapping from X" into itself,

I1F @) = FY @l < |1 = PM)YCDPw)] + C (T = PV )ull,.
By dominated convergence |(I — Py)all; — 0 for any fixed element a € X",
Thus, because CD @ is globally Lipschitz, by Lemma 11, and as u € C ([0, T]; X*),
we deduce that it suffices to bound supy.,.r ||u(s)|;. But such a bound is a
consequence of the existence theory outlined at the start of the proof, based on the
proof of Theorem 24. O
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The following is a straightforward corollary of the preceding theorem:

Corollary 2. For any pair (ug, W) € X' x C([0, T]; X*), we define the point It6
map

O, X' xC(0,T]; X" — &'
(respectively, O for (10.88)) which maps (ug, W) to the unique solution u(t)
of the integral equation (10.87) (respectively, u™ (v) for (10.88)) at time t. The
map O, (respectively, O ) is globally Lipschitz continuous. Finally we have that
ON (o, W) — O (ug, W) for every pair (uy, W) € X' x C([0, T]; X").
Theorem 27. Let Assumption 4 hold. Then the measure [ given by (10.43) is
invariant for (10.53); for all continuous bounded functions ¢ : X' — R, it

follows that if E denotes expectation with respect to the product measure found
from initial condition uy ~ w and W ~ W, the C-Wiener measure on X', then

Eg (u(x)) = Eguo).

Proof. We have that
Bp(u(0)) = [ (610, W))eld (W), (10.89)
Bptu) = [ o)) (10.90)

If we solve equation (10.84) with ug ~ ", then, using EV with the obvious
notation,

EVo(u" (7)) = / @ (O (uo, W)) N (duo)W(d W), (10.91)
20 (w) = [ pwn® d). (10.92)

Lemma 14 below shows that, in fact,

E¥(u" (v)) = E" p(uo).
Thus it suffices to show that

ENgo(uN (r)) — E@(u(r)) (10.93)
and

EN ¢(uo) — Ep(uo). (10.94)
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Both of these facts follow from the dominated convergence theorem as we now
show. First note that

ENo(uo) = /‘ﬂ(uo)e_¢(PN"°>Mo(duo)-

Since ¢(-)e=?°"" is bounded independently of N, by (sup@)e™!, and since (& o

PN )(u) converges pointwise to ®(u) on X!, we deduce that

EY p(ug) — / (10 o(d o) = Ep(ug)

so that (10.94) holds. The convergence in (10.93) holds by a similar argument. From
(10.91) we have

ENg(u® (1)) = / 0 (O (o, W))e™ P10 1o (dug)W(d W). (10.95)

The integrand is again dominated by (sup ¢)e™!. Using the pointwise convergence
of ®Y to @, on X' xC ([0, T]; X"), as proved in Corollary 2, as well as the pointwise
convergence of (® o PV)(u) to ®(u), the desired result follows from dominated
convergence: we find that

BV () — [ ¢(Outun W)™ ol W W) = Eg(u(o).

The desired result follows. O

Lemma 14. Let Assumptions 4 hold. Then the measure " given by (10.82) is
invariant for (10.84); for all continuous bounded functions ¢ : X' — R, it follows
that if EN denotes expectation with respect to the product measure found from initial
condition ug ~ //,N and W ~ W, the C-Wiener measure on X', then IENgo(uN (r)) =
EN‘P(M())~

Proof. Recall from Lemma 12 that measure u" given by (10.82) factors as the
independent product of two measures on p on XV and Mo on X L. On X+ the
measure is simply the Gaussian o = N(0, C1), while XV the measure wp is
finite dimensional with density proportional to

1 1
exp (= @(p) = 51 EpIP). (10.96)
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The equation (10.84) also decouples on the spaces X ¥ and X+. On X+ it gives the
integral equation

q(x) = —/ q(s) + V20V W (1) (10.97)
0
while on XV it gives the integral equation
p(o) = _/ (p(5) +CYDD(p(5)))ds + V2PV W (). (10.98)
0

Measure po is preserved by (10.97), because (10.97) simply gives an integral
equation formulation of the Ornstein-Uhlenbeck process with desired Gaussian
invariant measure. On the other hand, equation (10.98) is simply an integral equation
formulation of the Langevin equation for measure on R" with density (10.96), and
a calculation with the Fokker-Planck equation, as in Theorem 25, demonstrates the
required invariance of pp. O

5.7 Bibliographic Notes

e Section 5.1 describes general background on Markov processes and invariant
measures. The book [78] is a good starting point in this area. The book [75]
provides a good overview of this subject area, from an applied and computational
statistics perspective. For continuous time Markov chains, see [101].

* Section 5.2 concerns MCMC methods. The standard RWM was introduced in
[73] and led, via the paper [46], to the development of the more general class of
Metropolis-Hastings methods. The paper [94] is a key reference which provides
a framework for the study of Metropolis-Hastings methods on general state
spaces. The subject of MCMC methods which are invariant with respect to
the target measure p on infinite-dimensional spaces is overviewed in the paper
[21]. The specific idea behind the Algorithm 3 is contained in [76, equation
(15)], in the finite-dimensional setting. It is possible to show that, in the limit
B — 0, suitably interpolated output of Algorithm 3 converges to solution of the
equation (10.53): see [82]. Furthermore it is also possible to compute a spectral
gap for the Algorithm 3 in the infinite-dimensional setting [44]. This implies
the existence of a dimension-independent spectral gap when finite-dimensional
approximation is used; in contrast standard Metropolis-Hastings methods, such
as random walk Metropolis, have a dimension-dependent spectral gap which
shrinks with increasing dimension [99].

* Section 5.3 concerns SMC methods and the foundational work in this area is
overviewed in the book [26]. The application of those ideas to the solution
of PDE inverse problems was first demonstrated in [50], where the inverse
problem is to determine the initial condition of the Navier-Stokes equations from
observations. The method is applied to the elliptic inverse problem, with uniform



10 The Bayesian Approach to Inverse Problems 393

priors, in [10]. The proof of Theorem 23 follows the very clear exposition given
in [84] in the context of filtering for hidden Markov models.

e Sections 5.4-5.6 concern measure preserving continuous time dynamics. The
finite-dimensional aspects of this subsection, which we introduce for motivation,
are covered in the texts [79] and [37]; the first of these books is an excellent
introduction to the basic existence and uniqueness theory, outlined in a simple
case in Theorem 24, while the second provides an in-depth treatment of the sub-
ject from the viewpoint of the Fokker-Planck equation, as used in Theorem 25.
This subject has a long history which is overviewed in the paper [41] where
the idea is applied to finding SPDEs which are invariant with respect to the
measure generated by a conditioned diffusion process. This idea is generalized
to certain conditioned hypoelliptic diffusions in [42]. It is also possible to study
deterministic Hamiltonian dynamics which preserves the same measure. This
idea is described in [9] in the same setup as employed here; that paper also
contains references to the wider literature. Lemma 11 is proved in [72] and
Lemma 13 in [82] Lemma 14 requires knowledge of the invariance of Ornstein-
Uhlenbeck processes together with invariance of finite-dimensional first order
Langevin equations with the form of gradient dynamics subject to additive
noise. The invariance of the Ornstein-Uhlenbeck process is covered in [29]
and invariance of finite-dimensional SDEs using the Fokker-Planck equation is
discussed in [37]. The C-Wiener process and its properties are described in [28].

* The primary focus of this section has been on the theory of measure-preserving
dynamics and its relations to algorithms. The SPDEs are of interest in their own
right as a theoretical object, but have particular importance in the construction of
MCMC methods and in understanding the limiting behavior of MCMC methods.
It is also important to appreciate that MCMC and SMC methods are by no
means the only tools available to study the Bayesian inverse problem. In this
context we note that computing the expectation with respect to the posterior
can be reformulated as computing the ratio of two expectations with respect
to the prior, the denominator being the normalization constant. Effectively in
some such high-dimensional integration problems, [59] and [77] are general
references on the QMC methodology. The paper [57] is a survey on the theory
of QMC for bounded integration domains and is relevant for uniform priors.
The paper [60] contains theoretical results for unbounded integration domains
and is relevant to, for example, Gaussian priors. The use of QMC in plain
uncertainty quantification (calculating the pushforward of a measure through a
map) is studied for elliptic PDEs with random coefficients in [58] (uniform)
and [39] (Gaussian). More sophisticated integration tools can be employed,
using polynomial chaos representations of the prior measure, and computing
posterior expectations in a manner which exploits sparsity in the map from
unknown random coefficients to measured data; see [89,90]. Much of this work,
viewing uncertainty quantification from the point of high-dimensional integra-
tion, has its roots in early papers concerning plain uncertainty quantification
in elliptic PDEs with random coefficients; the paper [7] was foundational in
this area.
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6 Conclusions

We have highlighted a theoretical treatment for Bayesian inversion over infinite-
dimensional spaces. The resulting framework is appropriate for the mathematical
analysis of inverse problems, as well as the development of algorithms. For example,
on the analysis side, the idea of MAP estimators, which links the Bayesian approach
with classical regularization, developed for Gaussian priors in [30], has recently
been extended to other prior models in [47]; the study of contraction of the posterior
distribution to a Dirac measure on the truth underlying the data is undertaken in
[3,4,99]. On the algorithmic side, algorithms for Bayesian inversion in geophysical
applications are formulated in [16, 81], and on the computational statistics side,
methods for optimal experimental design are formulated in [5, 6]. All of these cited
papers build on the framework developed in detail here and first outlined in [92]. It
is thus anticipated that the framework herein will form the bedrock of other, related,
developments of both the theory and computational practice of Bayesian inverse
problems.

A Appendix
A.1 Function Spaces

In this subsection we briefly define the Hilbert and Banach spaces that will be
important in our developments of probability and integration in infinite-dimensional
spaces. As a consequence we pay particular attention to the issue of separability
(the existence of a countable dense subset) which we require in that context. We
primarily restrict our discussion to R- or C-valued functions, but the reader will
easily be able to extend to R"-valued or R"*"-valued situations, and we discuss
Banach space-valued functions at the end of the subsection.

A.1.1 {£P and LP Spaces
Consider real-valued sequences u = {u; }‘/’o=1 € R*. Let w € R* denote a positive
sequence so that w; > 0 for each j € N. For every p € [, 00), we define

¢ = (P(N;R) = {u c R‘ iwﬂuﬂp < oo}.

Jj=1

Then ¢% is a Banach space when equipped with the norm

oo 1

P

lulleg = (3 wylus1?) "
j=1
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In the case p = 2, the resulting spaces are Hilbert spaces when equipped with the
inner product

0
(M,U) = ZWJ'MJ'U]‘.
j=1

These £7 spaces, with p € [1, 00), are separable. Throughout we simply write £7
for the spaces 22 with w 7 = 1. In the case w; = 1, we extend the definition of
Banach spaces to the case p = oo by defining

€ = (*(R) = {ue R)supjeNG”f') < oo}
and

llull¢oo = sup;en(lujl).

The space £°° of bounded sequences is not separable. Each element of the sequence
u; is real valued, but the definitions may be readily extended to complex-valued,
R”"-valued, and R"*"-valued sequences, replacing | - | by the complex modulus, the
vector £7 norm, and the operator £” norm on matrices, respectively.

We now extend the idea of p-summability to functions and to p-integrability.
Let D be a bounded open set in R? with Lipschitz boundary and define the space
L? = L?(D;R) of Lebesgue measurable functions f : D — R withnorm ||| »(p)
defined by

1
| flleepy == (fD |17 dx)” for 1 < p < oo
€88 SupD |f| fOl" p = o0.

In the above definition we have used the notation

esssup | f| =inf{C : |f| < C ae.on D}.
D

Here a.e. is with respect to Lebesgue measure and the integral is, of course, the
Lebesgue integral. Sometimes we drop explicit reference to the set D in the norm
and simply write |- || .». For Lebesgue measurable functions f : D — R”, the norm
is readily extended replacing | f| under the integral by the vector p-norm on R”.
Likewise we may consider Lebegue measurable f : D — R™*" using the operator
p-norm on R™”_ In all these cases, we write L?(D) as shorthand for L?(D; X)
where X = R, R" or R"*". Then L”(D) is the vector space of all (equivalence
classes of) measurable functions f : D — R for which || f|.»(py < oo. The
space L?(D) is separable for p € [1, 00), while L°°(D) is not separable. We define
periodic versions of L?(D), denoted by Lije(D), in the case where D is a unit
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cube; these spaces are defined as the completion of C*° periodic functions on the
unit cube, with respect to the L”-norm. If we define T to be the d-dimensional
unit torus, then we write Lpe: ([0, 1]9) = L?(T?). Again these spaces are separable
for 1 < p < oo, but not for p = oo.

A.1.2 Continuous and Holder Continuous Functions

Let D be an open and bounded set in RY with Lipschitz boundary. We will denote
by C (D, R), or simply C (D), the space of continuous functions f : D — R. When
equipped with the supremum norm,

I lle@) = sup [f (x)],

x€D

C (D) is a Banach space. Building on this we define the space C 0.7(D) to be the
space of functions in C (D) which are Holder with any exponent y € (0, 1] with
norm

£ leosim = sup 1£ )] + sup (LS WY (10.99)
X€D x.y€D lx =yl
The case y = 1 corresponds to Lipschitz functions.

We remark that C (D) is separable since D C R? is compact here. The space
of Holder functions C°Y (5; R) is, however, not separable. Separability can be
recovered by working in the subset of C 0*"(5; R) where, in addition to (10.99)
being finite,

o F@ =0 _
S =P

uniformly in x; we denote the resulting separable space by C(? 7(D,R). This
is analogous to the fact that the space of bounded measurable functions is not
separable, while the space of continuous functions on a compact domain is.
Furthermore it may be shown that C%"' C C(? "V for every y' > y. All of the
preceding spaces can be generalized to functions C%?(D,R") and COO 7(D,R");
they may also be extended to periodic functions on the unit torus T¢ found by
identifying opposite faces of the unit cube [0, 1]¢. The same separability issues arise
for these generalizations.

A.1.3 Sobolev Spaces

We define Sobolev spaces of functions with integer number of derivatives, extend
to fractional and negative derivatives, and make the connection with Hilbert scales.
Here D is a bounded open set in RY with Lipschitz boundary. In the context of a
function u € L?(D), we will use the notation f—f to denote the weak derivative with
respect to x; and the notation Vu for the weak g’radient.
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The Sobolev space W"? (D) consists of all L”-integrable functions u : D — R
whose " order weak derivatives exist and are L”-integrable for all || < r:

W"P(D) = {u)D“u e L?(D) for || < r} (10.100)

with norm

1

P
(stf ID%ull s )" for 1% p < 00, (10.101)
Z|Of|§r ||D°‘u||L00(D) for p = OQ.

lullwrr Dy =

We denote W"2(D) by H" (D). We define periodic versions of H*(D), denoted
by H, (D), in the case where D is a unit cube [0, 1]¢; these spaces are defined

T
as the completion of C*° periodic functions on the unit cube, with respect to the

H*-norm. If we define T? to be d-dimensional unit torus, we then write H*(T¢) =
H ([0, 1]%).

The spaces H*(D) with D a bounded open set in R?, and H},([0,1]¢), are

separable Hilbert spaces. In particular if we define the inner-product (-, -).2(p) on
L*(D) by

(u,v)12(p) = / u(x)v(x)dx
D
and define the resulting norm || - [ .2(p) by the identity
||M||iz(D) = (u, M)LZ(D)
then the space H'(D) is a separable Hilbert space with inner product

(U, v) grpy = W, V) 2(py + (Vu, V) 12y

and norm (10.101) with p = 2. Likewise the space H, (D) is a separable Hilbert
space with inner product

(u, U)HOI(D) = (Vu,Vv)Lz(D)
and norm
el g oy = 1Vull 20y (10.102)
As defined above, Sobolev spaces concern integer numbers of derivatives.

However the concept can be extended to fractional derivatives, and there is then
a natural connection to Hilbert scales of functions. To explain this we start our
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development in the periodic setting. Recall that, given an element u in L?(T¢), we
can decompose it as a Fourier series:

M(X) — Z uke2m'(k.x)’

kezd

where the identity holds for (Lebesgue) almost every x € T¢. Furthermore, the >
norm of u is given by Parseval’s identity ||u||i2 = Y |ux|?. The fractional Sobolev

space H*(T?) for s > 0 is given by the subspace of functions u € L*(T¢) such that

e == (1 + 4|k ?) e ]* < oo (10.103)
kezd

Note that this is a separable Hilbert space by virtue of {2, being separable. Note
also that H%(T?) = L*(T¢) and that, for positive integer s, the definition agrees
with the definition H*(T?) = W*2(T¢) obtained from (10.100) with the obvious
generalization from D to T¢. For s < 0, we define H*(T?) as the closure of L>
under the norm (10.103). The spaces H*(T¢) for s < 0 may also be defined via
duality. The resulting spaces H* are separable for all s € R.

We now link the spaces H*(T¢) to a specific Hilbert scale of spaces. Hilbert
scales are families of spaces defined by D(A*/?) for A a positive, unbounded,
self-adjoint operator on a Hilbert space. To view the fractional Sobolev spaces from
this perspective, let A = I — A with domain H?(T¢), noting that the eigenvalues of
A are simply 1+472|k|? for k € Z?. We thus see that, by the spectral decomposition
theorem, H® = D(A*/?), and we have |ju|zs = || A*/ul;2. Note that we may
work in the space of real-valued functions where the eigenfunctions of 4, {¢; }7‘;1
comprise sine and cosine functions; the eigenvalues of A, when ordered on a one-
dimensional lattice, then satisfy «; < 7?4 This is relevant to the more general
perpsective of Hilbert scales that we now introduce.

We can now generalize the previous construction of fractional Sobolev spaces
to more general domains than the torus. The resulting spaces do not, in general,
coincide with Sobolev spaces, because of the effect of the boundary conditions
of the operator A used in the construction. On an arbitrary bounded open set
D C R? with Lipschitz boundary, we consider a positive self-adjoint operator A
satisfying Assumption 1 so that its eigenvalues satisfy o; < j 2/4: then we define
the spaces H* = D(A4*/?) for s > 0. Given a Hilbert space (H, (-,-), | - ||) of real-
valued functions on a bounded open set D in R, we recall from Assumption 1 the
orthonormal basis for H denoted by {¢;}72,. Any u € H can be written as

(o)
w=y (u.9;)¢;.
j=1

Thus

Ho={u:D— R(nwui{s < oo} (10.104)
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where, for u; = (u, ¢;),
o 2
.25
Il = J 7 uj .
j=1

In fact H* is a Hilbert space: for v; = (v, ¢;) we may define the inner product
o0 2
(u, U)’HS = Zj7ujvj.
j=1

For any s > 0, the Hilbert space (H*, (-,-)3¢, || - |l2¢) is a subset of the original
Hilbert space H; for s < 0 the spaces are defined by duality and are supersets
of H. Note also that we have Parseval-like identities showing that the H* norm on
a function u is equivalent to the va norm on the sequence {u; }‘/’°=1 with the choice

w; =j 25/d The spaces H* are separable Hilbert spaces for any s € R.

A.1.4 Other Useful Function Spaces

As mentioned in passing, all of the preceding function spaces can be extended to
functions taking values in R", R"*"; thus, we may then write C (D;R"), L?(D;R"),
and H°(D;R"), for example. More generally we may wish to consider functions
taking values in a separable Banach space E. For example, when we are interested
in solutions of time-dependent PDEs, then these may be formulated as ordinary
differential equations taking values in a separable Banach space E, with norm ||| g.
It is then natural to consider Banach spaces such as L%((0, T); E) and C ([0, T]; E)
with norms

T
lull L20.7):6) = \/(/ ||M(',f)||%5dl), lullcqor;ey = sup |lu,)|g.
0 1€[0,7]

These norms can be generalized in a variety of ways, by generalizing the norm on
the time variable.

The preceding idea of defining Banach space-valued L? spaces defined on an
interval (0, T') can be taken further to define Banach space-valued L? spaces defined
on a measure space. Let (M, v) any countably generated measure space, like, for
example, any Polish space (a separable completely metrizable topological space)
equipped with a positive Radon measure v. Again let E denote a separable Banach
space. Then LY (M; E) is the space of functions u : M — E with norm (in this
defintion of norm we use Bochner integration, defined in the next subsection)

”u”Lf(M;E) = (//\/1 ||u(x)||’,;v(a’x)>%
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For p € (1, 00) these spaces are separable. However, separability fails to hold for
p = oo. We will use these Banach spaces in the case where v is a probability
measure P, with corresponding expectation [E, and we then have

1

el ey = (E(Il))"

A.1.5 Interpolation Inequalities and Sobolev Embeddings
Here we state some useful interpolation inequalities and use them to prove a Sobolev
embedding result, all in the context of fractional Sobolev spaces, in the generalized
sense defined through a Hilbert scale of functions.

Let p,q € [1, o0] be a pair of conjugate exponents so that p~! 4+ ¢~ = 1. Then
for any positive real a, b, we have the Young inequality

a? b1
ab < — + —.
p q
As a corollary of this elementary bound, we obtain the following Holder inequality.

Let (M, ) be a measure space and denote the norm || - || .2 rq;r) bY || - [| - For
p.q € [1, 0] as above and u, v: M — R a pair of measurable functions, we have

/M Gy ()] ) < lull, vl (10.105)

From this Holder-like inequality, the following interpolation bound results: let o €
[0,1] and let L denote a (possibly unbounded) self-adjoint operator on the Hilbert
space (H, {-,-), | - |I)- Then, the bound

IL%ull < [ Ll = (10.106)

holds for every u € D(L) C H.

Now assume that 4 is a self-adjoint unbounded operator on L2(D) with D C R?
a bounded open set with Lipschitz boundary. Assume further that A has eigenvalues
aj < j 7 and define the Hilbert scale of spaces H' = D(A%). An immediate
corollary of the bound (10.106), obtained by choosing H = H*, L = A7 and
a=(r—s)/(t—s),is:

Lemma 15. Let Assumption 1 hold. Then for any t > s, any r € [s,t] and any
u € H', it follows that

lulls < luellyg llullos -
It is of interest to bound the L?” norm of a function in terms of one of the

fractional Sobolev norms, or more generally in terms of norms from a Hilbert scale.
To do this we need to not only make assumptions on the eigenvalues of the operator
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A which defines the Hilbert scale, but also on the behavior of the corresponding
orthonormal basis of eigenfunctions in L°°. To this end we let Assumption 2 hold.
It then turns out that bounding the L°° norm is rather straightforward and we start
with this case.

Lemma 16. Let Assumption 2 hold and define the resulting Hilbert scale of spaces
H* by (10.104). Then for every s > %, the space H® is contained in the space
L°°(D) and there exists a constant K such that ||u||pco < Ki||u|l3s.

Proof. 1t follows from Cauchy-Schwarz that

é”M”LOO < Z lug | < (Z(l n |k|2)s|”k|2>1/2<2(1 . |k|2)_3)1/2.

kezd kezd kezd

4

5 the claim follows.

Since the sum in the second factor converges if and only if s >

As a consequence of Lemma 16, we are able to obtain a more general Sobolev
embedding for all L? spaces:

Theorem 28 (Sobolev Embeddings). Let Assumption 2 hold, define the resulting
Hilbert scale of spaces H* by (10.104) and assume that p € [2, c0]. Then, for every
s > %—%, the space H* is contained in the space L? (D), and there exists a constant

K; such that ||u|Lr < Ko ||u||#s.

Proof. The case p = 2 is obvious and the case p = oo has already been shown,
so0 it remains to show the claim for p € (2, 00). The idea is to divide the space of
eigenfunctions into “blocks” and to estimate separately the L” norm of every block.
More precisely, we define a sequence of functions u™ by

-1
u =ugpo, u = Y ujg;.
2n5j<2n+l

where the ¢; are an orthonormal basis of eigenfunctions for A, so that
u= Y ,._u™. Forn > 0 the Holder inequality gives

”u(n)nip < ”M(n) ”iznu(")“i;}_ (10.107)

Now set s’ = % + € for some € > 0 and note that the construction of u™, together
with Lemma 16, gives the bounds

a2 < K27 s, (u® oo < Kol [l < K267V gy,
(10.108)
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Inserting this into (10.107), we obtain (possibly for an enlarged K)

e = K1l 25V < e gy 20545

< Kl 2 (H455)0d

It follows that [lullr < |uo| + Y=o 4™ llLr < Kollulls. provided that the
exponent appearing in this expression is negative which, since € can be chosen

arbitrarily small, is precisely the case whenever s > % — %

A.2  Probability and Integration In Infinite Dimensions

A.2.1 Product Measure for i.i.d. Sequences
Perhaps the most straightforward setting in which probability measures in infinite
dimensions are encountered is when studying i.i.d. sequences of real-valued random
variables. Furthermore, this is our basic building block for the construction of
random functions — see Sect.2.1 — so we briefly overview the subject. Let Py be
a probability measure on R so that (R, B(R), IPy) is a probability space and consider
the i.i.d. sequence & := {§; }j?°=l with & ~ P.

The construction of such a sequence can be formalised as follows. We consider
& as a random variable taking values in the space R* endowed with the product
topology, i.e. the smallest topology for which the projection maps €,,: £ +— £, are
continuous for every n. This is a complete metric space; an example of a distance
generating the product topology is given by

o

— |xn_yn|
A =2 T

n=1
Since we are considering a countable product, the resulting o-algebra B(R*°)
coincides with the product o-algebra, which is the smallest o-algebra for which
all £,,’s are measurable.

In what follows we need the notion of the pushforward of a probability measure
under a measurable map. If f : By — B, is a measurable map between two
measurable spaces (B,-, B(B,-)) i = 1,2 and p, is a probability measure on By,
then o = f%u, denotes the pushforward probability measure on B, defined by
pa(A) = pi(f'(A)) for all A € B(B,). (The notation f*u is sometimes used
in place of f*u, but we reserve this notation for adjoints.) Recall that in Sect. 2,
we construct random functions via the random series (10.11) whose coefficients
are constructed from an i.i.d sequence. Our interest is in studying the pushforward
measure F'P, where F : R® — X’ is defined by

FE=mo+ ) v (10.109)

Jj=1



10 The Bayesian Approach to Inverse Problems 403

In particular Sect. 2 is devoted to determing suitable separable Banach spaces X’ on
which to define the pushforward measure.

With the pushforward notation at hand, we may also describe Kolmogorov’s
extension theorem which can be stated as follows.

Theorem 29 ((Kolmogorov Extension)). Let X be a Polish space and let I be an
arbitrary set. Assume that, for any finite subset A C I, we are given a probability
measure P4 on the finite product space X4. Assume furthermore that the family
of measures {P4} is consistent in the sense that if B C A and Ty p: X4 — X5
denotes the natural projection map, then Hﬁ_ glPa = Pp. Then, there exists a unique
probability measure P on X! endowed with the product o-algebra with the property
that H}TAIP’ = P4 for every finite subset A C 1.

Loosely speaking, one can interpret this theorem as stating that if one knows
the law of any finite number of components of a random vector or function, then
this determines the law of the whole random vector or function; in particular, in the
case of the random function, this comprises uncountably many components. This
statement is thus highly nontrivial as soon as the set / is infinite since we have a
priori defined P4 only for finite subsets A C I, and the theorem allows us to extend
this uniquely also to infinite subsets.

As a simple application, we can use this theorem to define the infinite product
measure P = @, Py as the measure given byKolmogorov’s Extension Theo-
rem 29 if we take as our family of specifications P4 = &), ¢ 4 Po. Ouri.i.d. sequence
& is then naturally defined as a random sample taken from the probability space
(R, B(R*),P). A more complicated example follows from making sense of the
random field perspective on random functions as explained in Sect. 2.5.

A.2.2 Probability and Integration on Separable Banach Spaces

We now study probability and integration on separable Banach spaces B; we let
B* denote the dual space of bounded linear functionals on B. The assumption of
separability rules out some important function spaces like L (D; R), but is required
in order for the basic results of integration theory to hold. This is because, when
considering a non-separable Banach space B, it is not clear what the “natural”
o-algebra on B is. One natural candidate is the Borel o-algebra, denoted B(B),
namely, the smallest o-algebra containing all open sets; another is the cylindrical
o-algebra, namely, the smallest o-algebra for which all bounded linear functionals
on B are measurable. For i.i.d. sequences, the analogues of these two o-algebras
can be identified, whereas, in the general setting, the cylindrical o-algebra can be
strictly smaller than the Borel o-algebra. In the case of separable Banach spaces,
however, both o-algebras agree:

Lemma 17. Let B be a separable Banach space and let u and v be two Borel
probability measures on B. If (%11 = £*v for every £ € B*, then 1 = v.
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Thus, as for i.i.d. sequences, there is therefore a canonical notion of measurabil-
ity. Whenever we refer to (probability) measures on a separable Banach space B in
the sequel, we really mean (probability) measures on (B, B(B)).

‘We now turn to the definition of integration with respect to probability measures
on B. Given a (Borel) measurable function f:§2 — B where (2, F,P) is a
standard probability space, we say that f is integrable with respect to P if the
map @ — | f(w)| belongs to L}(§2;R). (Note that this map is certainly Borel
measurable since the norm || - ||: B — R is a continuous, and therefore also Borel
measurable, function.) Given such an integrable function f, we define its Bochner
integral by

[ 1@ rae) = im [ s Eao).

where f, is a sequence of simple functions, for which the integral on the right-hand
side may be defined in the usual way, chosen such that

fin [ 1£,@) - f @] @) =o.

With this definition the value of the integral does not depend on the approximating
sequence, it is linear in f', and

/E(f(w))l?’(dw) - e(/ f(a))IP’(dw)), (10.110)

for every element £ in the dual space B*.

Given a probability measure p on a separable Banach space B, we now say that
W has finite expectation if the identity function x +— Xx is integrable with respect
to . If this is the case, we define the expectation of p as

/B * p(d),

where the integral is interpreted as a Bochner integral.

Similarly, it is natural to say that x4 has finite variance if the map x > |x||? is
integrable with respect to 1. Regarding the covariance C, of  itself, it is natural to
define it as a bounded linear operator C,,: B* — B with the property that

Cﬂz/x@(x)u(dx), (10.111)
B

for every £ € B*. At this stage, however, it is not clear whether such an operator C,,
always exists solely under the assumption that p has finite variance. For any x € B,
we define the projection operator P,: B* — B by

Pl =x{l(x), (10.112)

suggesting that we define

C, :=/ P, u(dx). (10.113)
B
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The problem with this definition is that if we view the map x +— P, as a map
taking values in the space £(B*, B) of bounded linear operators from B* — B,
then, since this space is not separable in general, it is not clear a priori whether
(10.113) makes sense as a Bochner integral. This suggests to define the subspace
B.(B) C L(B*, B) given by the closure (in the usual operator norm) of the linear
span of operators of the type P, given in (10.112) for x € B. We then have:

Lemma 18. If B is separable, then B, (B) is also separable. Furthermore, B, (B)
consists of compact operators.

This leads to the following corollary:

Corollary 3. Assume that u has finite variance so that the map x + ||x|? is
integrable with respect to . Then the covariance operator C,, defined by (10.113)
exists as a Bochner integral in B, (B).

Remark 3. Once the covariance is defined, the fact that (10.111) holds is then an
immediate consequence of (10.110). In general, not every element C € B,(B)
can be realised as the covariance of some probability measure. This is the case
even if we impose the positivity condition £(C¥£) > 0, which by (10.111) is a
condition satisfied by every covariance operator. For further insight into this issue,
see Lemma 23 which characteritzes precisely the covariance operators of a Gaussian
measure in separable Hilbert space. [

Given any probability measure p on B, we can define its Fourier transform
j: B* — Cby

A = / "™ 1 (dx). (10.114)
B

For a Gaussian measure (1o on B with mean a and covariance operator C, it may be
shown that, for any £ € B*, the characteristic function is given by

flo(£) = elt@=3UCh (10.115)

As a consequence of Lemma 17, it is almost immediate that a measure is uniquely
determined by its Fourier transform, and this is the content of the following result.

Lemma 19. Let y and v be any two probability measures on a separable Banach
space B. If i(£) = (L) for every £ € B*, then |1 = v.



406 M. Dashti and A.M. Stuart

A.2.3 Probability and Integration on Separable Hilbert Spaces

We will frequently be interested in the case where B = H for (7, (-,-), || - ||) some
separable Hilbert space. Bochner integration can then, of course, be defined as a
special case of the preceding development on separable Banach spaces. We make
use of the Riesz representation theorem to identify H with its dual and H ® H
with a subspace of the space of linear operators on H. The covariance operator of
a measure i on H may then be viewed as a bounded linear operator from H into
itself. The definition (10.111) of C,, becomes

Cﬂﬂzf(ﬁ,x)xu(dx), (10.116)
H

for all £ € H and (10.113) becomes

C. =/ x ® x pu(dx). (10.117)
H

Corollary 3 shows that we can indeed make sense of the second formulation as a
Bochner integral, provided that p has finite variance in H.

A.2.4 Metrics on Probability Measures

When discussing well posedness and approximation theory for the posterior distri-
bution, it is of interest to estimate the distance between two probability measures,
and thus we will be interested in metrics between probability measures. In this
subsection we introduce two useful metrics on measures: the total variation distance
and the Hellinger distance. We discuss the relationships between the metrics and
indicate how they may be used to estimate differences between expectations of
random variables under two different measures. We also discuss the Kullback-
Leibler divergence, a useful distance measure which does not satisfy the axioms of
a metric, but which may be used to bound both the Hellinger and total variation
distances, and which is also useful in defining algorithms for finding the best
approximation to a given measure from within some restricted class of measures,
such as Gaussians.

Assume that we have two probability measures u and p’ on a separable Banach
space denoted by B (actually the considerations here apply on a Polish space but
we do not need this level of generality). Assume that ¢ and ' are both absolutely
continuous with respect to a common reference measure v, also defined on the
same measure space. Such a measure always exists — take v = %(u + u'), for
example. In the following, all integrals of real-valued functions over B are simply
denoted by /. The following define two concepts of distance between w and p'.
The resulting metrics that we define are independent of the choice of this common
reference measure.
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Definition 3. The total variation distance between p and ' is

dr(p, ') = > /‘

In particular, if i’ is absolutely continuous with respect to u, then

1 du
! f— p—
dry(p, ') = 2/‘1 du

Definition 4. The Hellinger distance between p and @’ is

dualit: 1) = \/%[(\/%— \/?)zdv

In particular, if 1’ is absolutely continuous with respect to u, then

|

d. (10.118)

1 dp'\?2
/ —_— —_— -
dyar (s ') = 2/(1 7 ) du. (10.119)

Note that the numerical constant % appearing in both definitions is chosen in such
a way as to ensure the bounds

0= dTv(/L//»/) <1, 0=< dHe]l(/"‘?/\‘L/) <L

In the case of the total variation inequality, this is an immediate consequence of
the triangle inequality, combined with the fact that both p and w’ are probability
measures, so that [ ‘;—’;‘ dv = 1 and similarly for ’. In the case of the Hellinger
distance, it follows by expanding the square and applying similar considerations.

The Hellinger and total variation distances are related as follows, which shows
in particular that they both generate the same topology:

Lemma 20. The total variation and Hellinger metrics are related by the inequali-
ties

1
Edrv(ﬂa ,u/) < dpa(t, /vL/) <dn(u, M/)%
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Proof. We have

du du

du d,u’d
dv dv Y

G S o [ (2 + oy
N5 ([ 5

= \/EdHell (/’Ls ,bL/)

dTv(PLv/’L/) = 5

as required for the first bound.
For the second bound note that, for any positive a and b, one has the bound
|/a — /b < /a + v/b. As a consequence, we have the bound

1 du du dup dp
dH] ) /2<_ 5 = T d
(ks 1) -2 dv dv dv dv Y
= Tv(lL,//«/)’

as required.

Example 11. Consider two Gaussian densities on R: N (my,0?) and N (my,03
The Hellinger distance between them is given by

—my)?\ 2010
di(p /) =1— _(ml my) 192
i 1t) \/""‘P( 267+ 0D) o 4 oD

To see this note that

1
dl—lcll(ﬂ7ﬂ/)2 =1- —/ eXP( Q)dx
R

(2mo107)2

where

1 2 1 2
=—((x-m ——(x —my)>.
0 4012( 1) +4022( 2)
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Define o2 by

We change variable under the integral to y given by

yox_mtm
2

and note that then, by completing the square,

0=

1 1
T‘z(y—m)z 40?2 )(mz—m1)2

where m does not appear in what follows and so we do not detail it. Noting that
the integral is then a multiple of a standard Gaussian N (m,o?) gives the desired
result. In particular this calculation shows that the Hellinger distance between two
Gaussians on R tends to zero if and only if the means and variances of the two
Gaussians approach one another. Furthermore, by the previous lemma, the same is
true for the total variation distance. O

The preceding example generalizes to higher dimension and shows that, for
example, the total variation and Hellinger metrics cannot metrize weak convergence
of probability measures (as one can also show that convergence in total variation
metric implies strong convergence). They are nonetheless useful distance measures,
for example, between families of measures which are mutually absolutely con-
tinuous. Furthermore, the Hellinger distance is particularly useful for estimating
the difference between expectation values of functions of random variables under
different measures. This is encapsulated in the following lemma:

Lemma 21. Let p and u' be two probability measures on a separable Banach
space X. Assume also that f : X — E, where (E,|| - ||) is a separable Banach
space, is measurable and has second moments with respect to both . and | Then

1
I f =B £l < 2(BE0 L2+ B 1P s 1)

Furthermore, if E is a separable Hilbert space and f : X — E as before has
fourth moments, then

1B (f ® /) =E*(f ® NIl = 2(B“ 11 + B IF1) dalias 1)
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Proof. Let v be a reference probability measure as above. We then have the bound

(V=
GG a) o f (2 2
GG ) (o furv(e - )

1
= 2(BA /1P + B 1 1P) dha (1)

du duw
dv+ dv

as required.
The proof for f ® f follows from the bound

IB*(f @ f)=E¥(f @ f)ll = Sup IE*(f.h) f —BF(foh) £

du du
< [ 11| 2 - L fav.

and then arguing similarly to the first case but with || f || replaced by || f||?.

Remark 4. Note, in particular, that choosing X = E, and with f chosen to be the
identity mapping, we deduce that the differences between the mean (respectively,
covariance operator) of two measures are bounded above by their Hellinger distance,
provided that one has some a priori control on the second (respectively, fourth)
moments. [

We now define a third widely used distance concept for comparing two probabil-
ity measures. Note, however, that it does not give rise to a metric in the strict sense,
because it violates both symmetry and the triangle inequality.

Definition 5. The Kullback-Leibler divergence between two measures u’ and p,
with p absolutely continuous with respect to u, is

du’ du
D ('ll10) = / etop( Y
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If 1 is also absolutely continuous with respect to i/, so that the two measures are
equivalent, then

du
D (W) = — / log(d ,)dﬂ/
n
and the two definitions coincide.

Example 12. Consider two Gaussian densities on R: N (my,0?) and N (m2,03).
The Kullback-Leibler divergence between them is given by

2
03

lof 10} (my —my)?
D =1 —) = 1) —_—
a (i) =1n(22) + 5 ( s

To see this note that

2
o 1 1
Dy, _—]E’“<1n 2Z 4 x—m)f—-—|x—-m 2)
(| p2) \/012 2022| 2| 26]2| il

(o)) 1 1
=1n—+IE*“(—— X —m )
o (2022 2 12)| !
1
+]E’“"—(|x—m2|2—|x—m1|2>
205
1
:]nﬁ—l——(alz— )+—2]E"1<m§—m%+2x(m1—m2))
01 > 0'2
o 10} 1 5
zln—+—(——1)+—m —m
ol 2 22 20_22( 2 1)
as required. O

As for Hellinger distance, this example shows that two Gaussians on R approach
one another in the Kullback-Leibler divergence if and only if their means and vari-
ances approach one another. This generalizes to higher dimensions. The Kullback-
Leibler divergence provides an upper bound for the square of the Hellinger distance
and for the square of the total variation distance.

Lemma 22. Assume that two measures |1 and |' are equivalent. Then the bounds

1
dHe[l(l’Lvl’l’/)z =< EDKL(I’LHM/)S dTV(/'L’ /’L/)Z =< DKL(/’LHI’L,)y

hold.
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Proof. The second bound follows from the first by using Lemma 20, thus it suffices
to proof the first. In the following we use the fact that

x — 1> log(x) Vx >0,
so that
1
Jx =1 Zzlog(x) Vx > 0.

This yields the bound

dua(pt, ')* = l/( a l)zdu = 1/(‘1—“/ +1-2 d“/)du

2 dup 2 du du
_ du 1 du
_/(1_ du)dﬂSE/(_IOg du)d'u
=~ Dyl
) ke \|L[ L),

as required.

A.2.5 Kolmogorov Continuity Test

The setting of Kolmogorov’s continuity test is the following. We assume that we
are given a compact domain D C R?, a complete separable metric space X, as
well as a collection of X -valued random variables u : x € D +— X. At this stage
we assume no regularity whatsoever on the parameter x: the distribution of this
collection of random variables is a measure yt( on the space X © of all functions from
D to X endowed with the product o-algebra. Any consistent family of marginal
distributions does yield such a measure by Kolmogorov’s extension Theorem 29 .
With these notations at hand, Kolmogorov’s continuity test can be formulated as
follows and enables the extraction of regularity with respect to variation of u(x)
with respect to x.

Theorem 30 (Kolmogorov Continuity Test). Let D and u be as above and
assume that there exist p > 1, « > 0 and K > 0 such that

Ed(u(x), u(y))” < K|x — y[retd, Vx,y € D, (10.120)

where d denotes the distance function on X and d the dimension of the compact
domain D. Then, for every B < a, there exists a unique measure j1 on C*#(D, X)
such that the canonical process under | has the same law as u.
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We have here generalized the notion of Holder spaces from Sect. A.1.2 to
functions taking values in a Polish space; such generalizations are discussed in
Sect. A.1.4. The notion of canonical process is defined in Sect. A.4.

We will frequently use Kolmogorov’s continuity test in the following setting:
we again assume that we are given a compact domain D C R?, and now a
collection u(x) of R”-valued random variables indexed by x € D. We have the
following:

Corollary 4. Assume that there exist p > 1, o > 0 and K > 0 such that
Elu(x) —u(y)|” < K|x —y|"**?,  Vx,y e D.

Then, for every B < a, there exists a unique measure j1 on C%P (D) such that the
canonical process under | has the same law as u.

Remark 5. Recall that C%"' (D) C CO0 V(D) forall y’ > y so that, since the interval
B < « for this theorem is open, we may interpret the result as giving an equivalent
measure defined on a separable Banach space.

A very useful consequence of Kolmogorov’s continuity criterion is the following
result. The setting is to consider a random function f given by the random series

u=>y &V (10.121)

k>0

where {£ }x>0 is an i.i.d. sequence and the v are real- or complex-valued Holder
functions on bounded open D C R? satisfying, for some a € (0, 1],

Vi (x) = ¥ieW)| < h(e, Yi)lx —y[* x,y € D: (10.122)

of course if « = 1 the functions are Lipschitz.

Corollary 5. Let {& }k>0 be countably many centred i.i.d. random variables (real
or complex) with bounded moments of all orders. Moreover let { }r>0 satisfy
(10.122). Suppose there is some § € (0,2) such that

Sii= Y Wkl <00 and Sy:= Y [Ylidh(e. yi)’ <oco.  (10.123)

k=0 k=0

Then u defined by (10.121) is almost surely finite for every x € D, and u is Holder
continuous for every Holder exponent smaller than o§/2.

Proof. Let us denote by k,(X) the nth cumulant of a random variable X . The odd
cumulants of centred random variables are zero. Furthermore, using the fact that the
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cumulants of independent random variables simply add up and that the cumulants
of & are all finite by assumption, we obtain for p > 1 the bound

ko () = ()| = [ 32 kap (@) () = 92 ()|

k=0
i 2
N Cp Zmln{?pnwk ”LPOC’ (e, 1//k)zp|x _ y|2”"‘}
k>0
(1-%)2p 5 s
S Cp Y Wkl (e Y2 |x — [P
k=0

5 Cp|x - y|pa87

with C, denoting positive constants depending on p which can change from
occurrence to occurrence and where we used that min{a, bx?} < a'=%/2p%/2|x | for
any a,b > 0 and the finiteness of S,. In a similar way, we obtain |K2 pu(x)\ < 00
for every p > 1. Since the random variables u(x) are centred, all moments of even
order 2p, p > 1, can be expressed in terms of homogeneous polynomials of the
even cumulants of order upto 2 p, so that

Elu(x) —u()? < Cplx —y”*, Elu(x)* < oo,

uniformly over x, y € D. The almost sure boundedness on L follows from the
second bound. The Holder continuity claim follows from Kolmogorov’s continuity
test in the form of Corollary 4, after noting that pa§ = 2 p(%(x(? - %) + d and
choosing p arbitrarily large.

Remark 6. Note that (10.121) is simply a rewrite of (10.11), with ¥y = my,
& = 1 and ¥ = yrdi. In the case where the & are standard normal, then
the vy ’s in Corollary 5 form an orthonormal basis of the Cameron-Martin space
(see Definition 7) of a Gaussian measure. The criterion (10.123) then provides an
effective way of showing that the measure in question can be realised on a space of
Holder continuous functions. [

A3 Gaussian Measures

A.3.1 Separable Banach Space Setting

We start with the definition of a Gaussian measure on a separable Banach space B.
There is no equivalent to Lebesgue measure in infinite dimensions (as it could not
be o-additive), and so we cannot define a Gaussian measure by prescribing the form
of its density. However, note that Gaussian measures on R” can be characterised by
prescribing that the projections of the measure onto any one-dimensional subspace
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of R” are all Gaussian. This is a property that can readily be generalised to infinite-
dimensional spaces:

Definition 6. A Gaussian probability measure ( on a separable Banach space B
is a Borel measure such that £% 1 is a Gaussian probability measure on R for every
continuous linear functional £: B — R. (Here, Dirac measures are considered to be
Gaussian measures with zero variance.) The measure is said to be centred if £¥ ;1 has
mean zero for every £. O

This is a reasonable definition since, provided that B is separable, the one-
dimensional projections of any probability measure carry sufficient information to
characterise it — see Lemma 17. We now state an important result which controls the
tails of Gaussian distributions:

Theorem 31 (Fernique). Let i be a Gaussian probability measure on a separable
Banach space B. Then, there exists « > 0 such that [, exp(a||x]|?) u(dx) < oo.

As a consequence of the Fernique theorem and the Corollary 3, every Gaussian
measure (1 admits a compact covariance operator C,, given by (10.113), because
the second moment is bounded. In fact the techniques used to prove the Fernique
theorem show that, if M = [, |x|| u(dx), then there is a global constant K > 0
such that

/ |x)1** u(dx) < n!Ka™M?". (10.124)
B

Since the covariance operator, and hence the mean, exist for a Gaussian measure,
and since they may be shown to characterize the measure completely, we write
N (m, C,,) for a Gaussian with mean m and covariance operator C,,.

Measures in infinite-dimensional spaces are typically mutually singular. Further-
more, two Gaussian measures are either mutually singular or equivalent (mutually
absolutely continuous). The Cameron-Martin space plays a key role in characteriz-
ing whether or not two Gaussians are equivalent.

Definition 7. The Cameron-Martin space H,, of measure 1 on a separable Banach

space B is the completion of the linear subspace ”;flu C B defined by
??lu ={he B :3h* € B* withh = C,h*}, (10.125)

under the norm ||h||i = (h,h),, = h*(C,h*). It is a Hilbert space when endowed
with the scalar product (h, k), = h*(C.k™) = h*(k) = k*(h).

The Cameron-Martin space is actually independent of the space B in the sense
that, although we may view the measure as living on a range of separable Hilbert or
Banach spaces, the Cameron-Martin space will be the same in all cases. The space
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characterizes exactly the directions in which a centred Gaussian measure may be
shifted to obtain an equivalent Gaussian measure:

Theorem 32 (Cameron-Martin). For h € B, define the map T,: B — B by
Ty (x) = x + h. Then, the measure Thnu is absolutely continuous with respect to | if
and only if h € H,,. Furthermore, in the latter case, its Radon-Nikodym derivative
is given by

de,u
du

(u) = exp(h™ () — 31I211})

where h = C, h*.

Thus, this theorem characterizes the Radon-Nikodym derivative of the measure
N (h, C,,) with respect to the measure N (0, C,,). Below, in the Hilbert space setting,
we also consider changes in the covariance operator which lead to equivalent
Gaussian measures. However, before moving to the Hilbert space setting, we
conclude this subsection with several useful observations concerning Gaussians on
separable Banach spaces. The topological support of measure p on the separable
Banach space B is the set of all u € B such that any neighborhood of u has a
positive measure.

Theorem 33. The topological support of a centred Gaussian measure (L on B is
the closure of the Cameron-Martin space in B. Furthermore the Cameron-Martin
space is dense in X. Therefore all balls in B have positive |L-measure.

Since the Cameron-Martin space of Gaussian measure p is independent of the
space on which we view the measure as living, this following useful theorem shows
that the unit ball in the Cameron-Martin space is compact in any separable Banach
space X for which u(X) =1:

Theorem 34. The closed unit ball in the Cameron-Martin space H,, is compactly
embedded into the separable Banach space B.

In the setting of Gaussian measures on a separable Banach space, all balls have
positive probability. The Cameron-Martin norm is useful in the characterization of
small-ball properties of Gaussians. Let B(z) denote a ball of radius § in B centred
atapoint z € H,.

Theorem 35. The ratio of small ball probabilities under Gaussian measure L

satisfy

. /L(BS(ZI)) 1 2 1 2
lim 92— = - - — .
5]I'[‘(l) u( 3(22)) exXp 2 ||12”p, 2 ”Zl ||M
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Example 13. Let u denote the Gaussian measure N (0, K) on R” with K positive
definite. Then Theorem 35 is the statement that

(B (z1))

lim exp (LK S — Ljk—g P
1 —_—— =X — 2 —_— 2
5—0 11 (B%(z2)) P{3 2 5 21

which follows directly from the fact that the Gaussian measure at point z € R” has
Lebesgue density proportional to exp (—% |K _%z|2> and the fact that the Lebesgue
density is a continuous function. [

A.3.2 Separable Hilbert Space Setting

In these notes our approach is primarily based on defining Gaussian measures on
Hilbert space; the Banach spaces which are of full measure under the Gaussian
are then determined via the Kolmogorov continuity theorem. In this subsection we
develop the theory of Gaussian measures in greater detail within the Hilbert space
setting. Throughout (7—[, ICONI ||) denotes the separable Hilbert space on which
the Gaussian is constructed. Actually, in this Hilbert space setting, the covariance
operator C,, has considerably more structure than just the boundedness implied by
(10.124): it is trace class and hence necessarily compact on H:

Lemma 23. A Gaussian measure |4 on a separable Hilbert space H has covariance
operator Cy,: H — H which is trace class and satisfies

/ [[x]I* u(dx) = Tr C,,. (10.126)
H

Conversely, for every positive trace class symmetric operator K: H — H, there
exists a Gaussian measure |1 on H such that C;, = K.

Since the covariance operator C,, : H — H of a Gaussian on H is a compact
operator, it follows that if operator C;, : H — H has an inverse, then it will be a
densely defined unbounded operator on H; we call this the precision operator. Both
the covariance and the precision operators are self-adjoint on appropriate domains,
and fractional powers of them may be defined via the spectral theorem.

Theorem 36 (Cameron-Martin Space on Hilbert Space). Ler 1 be a Gaussian
measure on a Hilbert space H with strictly positive covariance operator K. Then the
Cameron-Martin space H,, consists of the image of H under K 172 and the Cameron-

Martin norm is given by ||h||i = ||K_%h||2.

Example 14. Consider two Gaussian measures p; on H = L?(J),J = (0, 1) both
with precision operator L = —%2 where D(L) = Hj(J) N H?*(J). (Informally
—L is the Laplacian on J with homogeneous Dirichlet boundary conditions.) Let
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C denote the inverse of L on H. Assume that u; ~ N(m,C) and u, ~ N(0,C).
Then H,, is the image of H under C? which is the space = H, (J). It follows that
the measures are equivalent if and only if m € H(J). If this condition is satisfied
then, from Theorem 36, the Radon-Nikodym derivative between the two measures
is given by

d,ul 1
e =ep(tmox)yy = 5lmly). O

We now turn to the Feldman-H4jek theorem in the Hilbert Space setting. Let
{¢;}7=, denote an orthonormal basis for H. Then the Hilbert-Schmidt norm of a
l1near operator L : H — H is defined by

o0
LIl == D ILes 1.
j=1
The value of the norm is, in fact, independent of the choice of orthonormal basis. In

the finite-dimensional setting, the norm is known as the Frobenius norm.

Theorem 37 (Feldman-Hajek on Hilbert Space). Let u; withi = 1,2 be two
centred Gaussian measures on some fixed Hilbert space H with means m; and
strictly positive covariance operators C;. Then the following hold:

1. py and p, are either singular or equivalent.
2. The measures () and |1y are equivalent Gaussian measures if and only if:
1

a) The images of H under Cf coincide fori = 1,2, and we denote this common
image space by E;

b) nm; — E

c) ||(C‘”Zc”z)(c”/zc”z)* I s < oo.

Remark 7. The final condition may be replaced by the condition that
ley2ey )€ — s < o0

and the theorem remains true; this formulation is sometimes useful. [

Example 15. Consider two mean-zero Gaussian measures y; on H = L2(J),J =
(0, 1) with precision operators L; = —% +land L, = dd,, respectively, both
with domain H,, (J) N H?(J). The operators L1, L, share the same eigenfunctions

¢ (x) = V/2sin (k7 x)
and have eigenvalues

(D) =@ +1, Q) =K'=’
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respectively. Thus u; ~ N(0,C;) and pu, ~ N(0,Cp) where, in the basis of
eigenfunctions, C, and C, are diagonal with eigenvalues

1 1
Krn2+1 k2x?

respectively. We have, for by = (h, ¢ ),

n? < (h,Cih) Y yez+ (1 +k*?) " hy

<
72+ 1~ (h.Coh) Ypept k)22 =

From this it follows that the Cameron-Martin spaces of the two measures coincide
and are equal to H, (J). Notice that

-1 1
T=C"CC">—1
is diagonalized in the same basis as the C; and has eigenvalues

1
k2m?’

These are square summable and so by Theorem 37 the two measures are absolutely
continuous with respect to one another. [

A.4 Wiener Processes in Infinite-Dimensional Spaces

Central to the theory of stochastic PDEs is the notion of a cylindrical Wiener
process, which can be thought of as an infinite-dimensional generalization of a
standard n-dimensional Wiener process. This leads to the notion of the A-Wiener
process (A-) for certain classes of operators A. Before we proceed to the definition
and construction of such Wiener processes in separable Hilbert spaces, let us recall
a few basic facts about stochastic processes in general.

In general, a stochastic process u over a probability space (£2, F,P) and taking
values in a separable Hilbert space H is nothing but a collection {u(¢)} of H-valued
random variables indexed by time ¢ € R (or taking values in some subset of R). By
Kolmogorov’s Extension Theorem 29, we can also view this as a map u: 2 — HE,
where H¥ is endowed with the product sigma-algebra. A notable special case which
will be of interest here is the case where the probability space is taken to be 2 =
C ([0, T], H) (or some other space of H-valued continuous functions) endowed with
some Gaussian measure I’ and where the process X is given by

u(t)(w) = w(t), w € £2.

In this case, u is called the canonical process on §2.
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The usual (one-dimensional) Wiener process is a real-valued centred Gaussian
process B(t) such that B(0) = 0 and E|B(t) — B(s)|*> = |t — s| for any pair of
times s, f. From our point of view, the Wiener process on any finite time interval /
can always be realised as the canonical process for the Gaussian measure on C (/, R)
with covariance function ¢(s, ) = s At = min{s, ¢}. Note that such a measure exists
by the Kolmogorov continuity test, and Corollary 4 in particular.

The standard n-dimensional Wiener process B(¢) is simply given by n inde-
pendent copies of a standard one-dimensional Wiener process {8 }'j’:l, so that its
covariance is given by

EBi(s)B;(1) = (s A1)d; ;.
In other words, if u and v are any two elements in R”, we have
E(u, B(s))(B(1),v) = (s A1)(u,v).

This is the characterization that we will now extend to an arbitrary separable
Hilbert space /. One natural way of constructing such an extension is to fix an
orthonormal basis {e, },>1 of 7 and a countable collection {8, }72, of independent

one-dimensional Wiener processes, and to set

B(t) =) Bu(t)en. (10.127)

n=1

If we define

N
BY(t):= ) But) e

n=1

then clearly E|BY (t)||%_l = tN and so the series will not converge in H for fixed
t > 0. However the expression (10.127) is nonetheless the right way to think of
a cylindrical Wiener process on H; indeed for fixed ¢ > 0 the truncated series for
BY will converge in a larger space containing . We define the following scale of
Hilbert subspaces, for r > 0, by

X =tue Y 7w ¢ < oo}

Jj=1

and then extend to superspaces r < 0 by duality. We use || - ||, to denote the norm
induced by the inner-product

oo
(w.v)r =3 % ujv,
j=1
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foru; = (u,¢;) and v; = (v, ¢;). A simple argument, similar to that used to prove
Theorem 8, shows that { BV (¢)} is, for fixed t > 0, Cauchy in X" for any r < —%. In
fact it is possible to construct a stochastic process as the limit of the truncated series,
living on the space C ([0, 00), X") for any r < —3 by the Kolmogorov Continuity
Theorem 30 in the setting where D = [0, T'] and X = X7. We give details in the
more general setting that follows.

Building on the preceding we now discuss construction of a C-Wiener process
W, using the finite-dimensional case described in Remark 2 to guide us. Here C :
‘H — H is assumed to be trace-class with eigenvalues yjz. Consider the cylindrical
Wiener process given by

B(1) =) _Bje;.
ji=l1

where {f; j5=; is an iid. family of unit Brownian motions on R with B;
C ([0, 00); ]R) We note that

ElB;(t) = B (s)* = |t —s|. (10.128)

Since \/(_Ze_/ = y,e;, the C-Wiener process W = V/CB is then

o0
W)= yiBj(t)e;. (10.129)
j=1
The following formal calculation gives insight into the properties of W':

=E(3 Y vimBi (0Bi(s)e; @)

j=lk=

EW () @ W (s)

AN

—_

Il
Yoy Yo

> Y vnE(B OBen)e; ® e )

j=1k=I

o0 o0
ZZy]yk(?]k(t AS)ej @ ek)

j=lk=

i()’f% ® ¢j>l nS

J=1

C(tAs).

—_

Thus the process has the covariance structure of Brownian motion in time, and
covariance operator C in space. Hence the name C-Wiener process.
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Assume now that the sequence y = {y;}%2, issuchthat 3277, j*y? = M < o0
for some r € R. For fixed ¢ it is then possible to construct a stochastic process as

the limit of the truncated series

N
WN@) = "y;Bi()e;.

j=1

by means of a Cauchy sequence argument in L3(£2; X"). Similarly W (1) — W (s)
may be defined for any 7, s. We may then also discuss the regularity of this process
in time. Together equations (10.128),(10.129) give E|W (1) — W (s)||? = M?|t —s]|.
It follows that E||W (t) — W (s)||, < M|t — sl%. Furthermore, since W (t) — W (s)
is Gaussian, we have by (10.124) that E|W (1) — W (s) || < K,|t —s|9. Applying
the Kolmogorov continuity test of Theorem 30 then demonstrates that the process
given by (10.129) may be viewed as an element of the space C**([0, T]; X") for
any o < % Similar arguments may be used to study the cylindrical Wiener process,

showing that it lives in C®*([0, T]; X") fora < § and r < —1.

A.5 Bibliographical Notes

e Section A.l introduces various Banach and Hilbert spaces, as well as the
notion of separability; see [100]. In the context of PDEs, see [33] and [87],
for all of the function spaces defined in Sects. A.1.1-A.1.3; Sobolev spaces are
developed in detail in [2]. The nonseparability of the Holder spaces C%f and
the separability of Coo'ﬂ is discussed in [40]. For asymptotics of the eigenvalues
of the Laplacian operator see [91, Chapter 11]. For discussion of the more
general spaces of E-valued functions over a measure space (M, v) we refer the
reader to [100]. Section A.1.5 concerns Sobolev embedding theorems, building
rather explicitly on the case of periodic functions. The corresponding embedding
results in domains with more general boundary conditions or even on more
general manifolds or unbounded domains, we refer to the comprehensive series
of monographs [95-97]. The interpolation inequality of (10.106) and Lemma 15
may be found in [87]; see also Proposition 6.10 and Corollary 6.11 of [40]. The
proof of Theorem 28 closely follows that given in [40, Theorem 6.16], and is a
slight generalization to the Hilbert scale setting used here.

* Section A.2 briefly introduces the theory of probability measures on infinite-
dimensional spaces. We refer to the extensive treatise by Bogachev [15], and
to the much shorter but more readily accessible book by Billingsley [12], for
more details. The subject of independent sequences of random variables, as
overviewed in Sect. A.2.1 in the i.i.d. case, is discussed in detail in [27, section
1.5.1]. The Kolmogorov Extension Theorem 29 is proved in numerous texts
in the setting where X = R [79]; since any Polish space is isomorphic to R
it may be stated as it is here. Proofs of Lemmas 17 and 19 may be found in
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[40], where they appear as Proposition 3.6 and Proposition 3.9 respectively. For
(10.115) see [28, Chapter 2]. In Sect. A.2.2 we introduce the Bochner integral;
see [13,48] for further details. Lemma 18 and the resulting Corollary 3 are stated
and proved in [14]. The topic of metrics on probability measures, introduced
in Sect. A.2.4 is overviewed in [38], where detailed references to the literature
on the subject may also be found; the second inequality in Lemma 22 is often
termed the Pinsker inequality and can be found in [22]. Note that the choice
of normalization constants in the definitions of the total variation and Hellinger
metrics differs in the literature. For a more detailed account of material on weak
convergence of probability measures we refer, for example, to [12, 15,98]. A
proof of the Kolmogorov continuity test as stated in Theorem 30 can be found
in [85, p. 26] for simple case of D an interval and X a separable Banach space;
the generalization given here may be found in a forthcoming uptodate version
of [40].

* The subject of Gaussian measures, as introduced in Sect. A.3, is comprehensively
studied in [14] in the setting of locally convex topological spaces, including
separable Banach spaces as a special case. See also [67] which is concerned
with Gaussian random functions. The Fernique theorem 31 is proved in [35]
and the reader is directed to [40] for a very clear exposition. In Theorem 31
it is possible to take for o any value smaller than 1/(2||C,||) and this value
is sharp: see [66, Thm 4.1]. See [14, 67] for more details on the Cameron-
Martin space, and proof of Theorem 32. Theorem 33 follows from Theorem
3.6.1 and Corollary 3.5.8 of [14]: Theorem 3.6.1 shows that the topological
support is the closure of the Cameron-Martin space in B and Corollary 3.5.8
shows that the Cameron-Martin space is dense in B. The reproducing kernel
Hilbert space for pu (or just reproducing kernel for short) appears widely in
the literature and is isomorphic to the Cameron-Martin space in a natural way.
There is considerable confusion between the two as a result. We retain in these
notes the terminology from [14], but the reader should keep in mind that there
are authors who use a slightly different terminology. Theorem 35 as stated
is a consequence of Proposition 3 in section 18 in [67]. Turning now to the
Hilbert space setting we note that Lemma 23 is proved as Proposition 3.15, and
Theorem 36 appears as Exercise 3.34, in [40]. See [14, 28, 52] for alternative
developments of the Cameron-Martin and Feldman-Ha4jek theorems. The original
statement of the Feldman-H4jek Theorem 37 can be found in [34, 45]. Our
statement of Theorem 37 mirrors Theorem 2.23 of [28] and Remark 7 is Lemma
6.3.1(ii) of [14]. Note that we have not stated a result analogous to Theorem 32 in
the case where of two equivalent Gaussian measures with differing covariances.
Such a result can be stated, but is technically complicated in general because the
ratio of normalization constants of approximating finite-dimensional measures
can blow up as the limiting infinite-dimensional Radon-Nikodym derivative is
attained; see Corollary 6.4.11 in [14].

» Section A.4 contains a discussion of cylindrical and C-Wiener processes. The
development is given in more detail in section 3.4 of [40], and in section 4.3
of [28].
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