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Abstract
The article presents a systematic study of the problem of conditioning a Gaussian random variable ξ on nonlinear observations
of the form F ◦ φ(ξ) where φ : X → R

N is a bounded linear operator and F is nonlinear. Such problems arise in the context
of Bayesian inference and recent machine learning-inspired PDE solvers. We give a representer theorem for the conditioned
random variable ξ | F ◦ φ(ξ), stating that it decomposes as the sum of an infinite-dimensional Gaussian (which is identified
analytically) as well as a finite-dimensional non-Gaussian measure. We also introduce a novel notion of the mode of a
conditional measure by taking the limit of the natural relaxation of the problem, to which we can apply the existing notion of
maximum a posteriori estimators of posterior measures. Finally, we introduce a variant of the Laplace approximation for the
efficient simulation of the aforementioned conditioned Gaussian random variables towards uncertainty quantification.

Keywords Gaussian measures · Conditional probability · Bayesian inference

1 Introduction

Weconsider the problem of conditioning aGaussianmeasure
on a finite set of nonlinear observations in the form of a
nonlinear transformation of bounded linear functionals. Let
{X , 〈·, ·〉X , ‖ · ‖X } be a separable Hilbert space with dual
X ∗ and consider a Gaussian measureμ = N (0,K) ∈ P(X ),
whereP(X ) denotes the set of all Borel probabilitymeasures
onX . LetK : X → X denote the covariance operator under
μ. Fix a vector φ = (φ1, . . . , φN ) ∈ (X ∗)⊗N for N ∈ N,
along with a nonlinear map F : RN → R

M for M ∈ N. Let
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ξ ∼ μ and β > 0 be a parameter; then our goal in this article
is to characterize the family of measures

μ
y
β := Law{ξ | y ∼ N (F(φ(ξ)), β2 I )}, (1)

and theirmodes, in the limit of smallβ. The natural candidate
for the β = 0 limit is

μ
y
0 := Law{ξ | F(φ(ξ)) = y}. (2)

We refer to the measures μ
y
β for β > 0 as posteriors and

to their β = 0 limit μ
y
0 as conditionals. The modes of the

posterior measures μ
y
β , which are often called the maximum

a posteriori (MAP) estimator, can be characterized via opti-
mization problems of the following form

uyβ := argmin
u∈K1/2X

‖K−1/2u‖2X + 1

β2 |F(φ(u)) − y|2. (3)

This variational characterization of the MAP estimator is a
natural generalization of the definition in finite-dimensional
Euclidean spaces (Kaipio and Somersalo 2006, Sec. 3.4) and
appears in Dashti et al. (2013); it is one of several possible
generalizations to infinite-dimensional spaces as we outline
in Sect. 3.1; the key technical issue arising in infinite dimen-
sions is the need to seek a minimizer in the Cameron–Martin
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Fig. 1 Diagram relating small-noise limits of posteriors μ
y
β and their

MAP estimators uyβ to their conditional counterparts μ
y
0 and u

y
0

space of the Gaussian measure, K1/2X . Proceeding in anal-
ogy with the definition of μ

y
0, we may take the β = 0 limit

of (3) to formally obtain a variational characterization of the
mode of μ

y
0 via

uy0 := argmin
u∈K1/2X

‖K−1/2u‖X subject to ( s.t.)

F
(
φ(u)

) = y.
(4)

The rigorous characterization of the aforementioned pos-
terior and conditional measures, along with their modes, is
the primary focus of this article. To this end, we make the
following contributions:

1. We establish the existence of appropriate limits ofμy
β and

uyβ asβ → 0,making precise the natural candidates forμy
0

and uy0 defined above, and characterizing u
y
0 as an approx-

imate definition of the mode of the conditional measure
μ
y
0. These relationships, and the theorems making them

explicit, are summarized in Fig. 1.
2. We show that for β ≥ 0, the posterior measures μ

y
β

can be decomposed as the convolution of a conditional
Gaussian measure and a non-Gaussian measure that is
finite-dimensional; this result is given in Theorem 4. This
decomposition is analogous to representer theorems for
the MAP estimator uyβ , stating that the minimizers of (3)
are effectively finite-dimensional; see Theorem 6.

3. We introduce a technique for generating samples from
the posteriors μ

y
β by decomposing them into a finite-

dimensional component, which is sampled by standard
algorithms such as Markov chain Monte Carlo (MCMC)
or variational inference, and an infinite-dimensional
Gaussian component, which may be simulated exactly
using analytical properties of Gaussian measures; see
Sect. 4. In particular, we show that the non-Gaussian com-
ponent is amenable to approximation using a Laplace or
Gauss–Newton-type approximation in settings where lots
of observations are available, leading to efficient numer-
ical algorithms in applications such as PDE solvers.

1.1 Motivating examples

In what follows we give three motivating examples for the
study of posterior measures of the form (1), their MAP esti-
mators and conditional counterparts. In Sect. 1.1.1 we study
a Bayesian inverse problem; Sect. 1.1.2 is devoted to the GP-
PDE methodology for solving forward problems in PDEs;
and Sect. 1.1.3 combines the two preceding subsections to
study the GP-PDE methodology for inverse problems.

1.1.1 Inverse problems

Fix any β > 0. Then the posterior measures μ
y
β solve the

Bayesian inverse problem (BIP) of finding the conditional
distribution of u | y when u ∼ μ, ζ ∼ N (0, β2 I ) indepen-
dent of u, and y (the data) is given by the model

y = G(u) + ζ , (5a)

G := F ◦ φ. (5b)

We can employ Bayes’ rule (Stuart 2010) to characterize the
μ
y
β via their Radon-Nikodym derivatives with respect to μ :

dμy
β

dμ
(u) = 1

ωβ(y)
exp

(
− 1

2β2 |F(φ(u)) − y|2
)

,

ωβ(y) := Eu∼μ exp

(
− 1

2β2 |F(φ(u)) − y|2
)

.

(6)

Example 1 To illustrate this setting we consider the inverse
problem of finding u from y = (y1, . . . , yM ) where

ym = p(xm) + ζm, m = 1, . . . , M

where {xm}Mm=1 ⊂ (0, 1)2 are a set of observation locations
and p solves the elliptic PDE

{ − ∇ · (
exp(u(x)∇ p(x)

) = f (x), x ∈ (0, 1)2,

p(x) = 0, x ∈ ∂(0, 1)2.
(7)

Assume that the prior μ on u is a centred Gaussian random
field and let φ(u) denote the vector of the first N coefficients
in an expansion of u in the (ordered according to decreasing
eigenvalues) eigenfunctions of the covariance operator of μ.
As the basis of a practical computational approach to the
inverse problem, now consider solving the elliptic PDE with
u replaced by its truncation uN to N terms in this eigenbasis:

{ − ∇ · (
exp(uN (x))∇ pN (x)

) = f (x), x ∈ (0, 1)2,

pN (x) = 0, x ∈ ∂(0, 1)2.

The resulting solution pN of this PDE, evaluated at the
points {xm}Mm=1, defines a map F : RN → R

M from φ(u)
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to {pN (xm)}Mm=1. We then consider the inverse problem of
recovering u from y where

ym = pN (xm) + ζm, m = 1, . . . , M .

This may be written in the general form (5) for G(u) =
F ◦ φ(u).

A common task in solving inverse problems and uncer-
tainty quantification (UQ) is to estimate various statistics of
the above posterior measures. The MAP uyβ is a popular
choice among practitioners, which highlights the impor-
tance of understanding its properties. Alternatively, one may
choose to generate samples from μ

y
β directly using MCMC

and then compute empirical statistics such as posterior mean
and variance. In either case, our finite-dimensional represen-
tations of μ

y
β and its MAP uyβ offer a path towards efficient

calculations. Moreover, it is natural to characterize solutions
of these problems in the small noise limit as β → 0 to under-
stand the consistency of the underlying inverse problems and
their limit behavior.

1.1.2 Solving PDEs with Gaussian processes

One of the core problems of the field of scientific machine
learning (ML) is the design of novel algorithms for the solu-
tion of PDEs based on ML techniques. An example of such
a methodology was introduced by the authors in Chen et al.
(2021) where a Gaussian Process (GP) solver was developed
for the numerical solution of nonlinear PDEs; henceforth
referred to as GP-PDE. We briefly recall this methodology
in the context of a specific example from Chen et al. (2021).

Example 2 Consider the PDE

{ − �u(x) + τ(u(x)) = f (x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2,
(8)

for τ : R → R and f : (0, 1)2 → R. We assume the
existence of a unique solution u
 in the strong/classical
sense. Then GP-PDE aims to find a numerical approxima-
tion uyβ to u
 by the following recipe: First, choose a set

of M collocation points x1, . . . , xM ∈ [0, 1]2, with J in
the interior and M − J on the boundary, ordered so that
x1, . . . , xJ ∈ (0, 1)2 while xJ+1, . . . , xM ∈ ∂(0, 1)2. Then
defineφ = (φ1, . . . , φN ) for N = J+M with theφm defined
as

φm(u) = u(xm), for m = 1, . . . , M,

φm(u) = �u(xm−M ), for m = M + 1, . . . , M + J .
(9)

and the nonlinear function F : RM+J → R
M defined row-

wise as

Fm(z) =
{

− zm+M + τ(z j ), 1 ≤ m ≤ J ,

zm, J + 1 ≤ m ≤ M,
(10)

Furthermore, define the vector y ∈ R
M defined element-wise

as

ym =
{

f (xm), 1 ≤ m ≤ J ,

0, J + 1 ≤ m ≤ M .
(11)

With these definitions, wemay now consider our PDE solver
as an instance of (5).

Recalling the discussion earlier in Sect. 1 suggests that
the resulting minimizer identifies the mode of an underlying
posterior measure μ

y
β . This observation was discussed infor-

mally in Chen et al. (2021), in the setting of the GP-PDE
methodology, and our Theorem 5 establishes this connection
rigorously. TheGP-PDEmethodology relies on a representer
theorem (see also Smola and Schölkopf 1998) that identifies
the solution of (3), in the GP-PDE context, via a finite-
dimensional optimization problem. In Chen et al. (2021) it is
argued that the natural β → 0 limit of (3), namely (4), can
also be solved with a representer theorem. Theorem 4 and
Theorem 6 can be viewed as establishing Bayesian analogs
of these results from Chen et al. (2021), where the exposition
is primarily focused on kernel methods.

1.1.3 Simultaneous solution of PDEs and inverse problems

For our final motivating example we consider a methodol-
ogy introduced in Chen et al. (2021), for the solution of PDE
based inverse problems, using the GP-PDE methodology, in
which we seek both the solution of the PDE and an unknown
coefficient at the same time. We outline how the formula-
tion fromn that paper is also encompassed by the theoretical
framework in this paper.

Example 3 Consider the elliptic PDE (7) in a 1D setting and
with slightly modified notation

{
− ∂x · (

exp(a(x))∂x p(x)
) = f (x), x ∈ (0, 1),

p(0) = p(1) = 0,

and let u = (a, p) be the parameter we wish to infer. Con-
sider the inverse problem of finding u from data/observations
yobs ∈ R

Mobs where

yobsm = p(xm) + ζ obs
m , m = 1, . . . , Mobs, (12)

and the {xm}Mobs
m=1 ⊂ (0, 1) are once again our observa-

tion locations as in Example 1. Now consider a mesh
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{xm}Mmesh
m=1 } ⊂ (0, 1) (ignoring boundary points for brevity)

and discretize the PDEusing theGP-PDE approach of Exam-
ple 2. Consider the maps

φobs
m (u) = p(x j ), m = 1, . . . , Mobs,

φ
p
m(u) =

⎧
⎪⎨

⎪⎩

p(xm) m = 1, . . . , Mmesh,

∂x p(xm) m = Mmesh+1, . . . , 2Mmesh,

∂xx p(xm) m = 2Mmesh+1, . . . , 3Mmesh,

φa
m(u) =

{
a(xm) m = 1, . . . , Mmesh,

∂xa(xm) m = Mmesh+1, . . . , 2Mmesh,

along with the (artifically) noisy PDE data

ymesh
m = f (xm) + ζmesh

m , m = 1, . . . , Mmesh.

Then the PDE constrained to the mesh points {xm}Mmesh
m=1

defines the relationship

ymesh
m = − exp(φa

m(u))
[
φ
p
m+2Mmesh

(u) + φa
m+Mmesh

(u) · φ
p
m+Mmesh

(u)
]

+ ζmesh
m .

This model, together with (12), defines a nonlinear map F :
R

N → R
M for N = Mobs+5Mmesh andM = Mobs+Mmesh

so that

y = F(φ(u)) + ζζζ , where y =
(
yobs

ymesh

)
,

φ(u) =
⎛

⎝
φobs(u)

φ p(u)

φa(u)

⎞

⎠ , ζζζ =
(

ζζζ obs

ζζζmesh

)
.

Here we used bold letters to denote the vectorized versions
of the maps and variables defined above.We place a GP prior
on u, implying a joint GP prior on a and p. Furthermore we
assume that this prior is chosen so that p satisfies the bound-
ary conditions, justifying the use of collocation points only
in the interior of (0, 1). This allows us to cast the problem of
simultaneous recovery of both p and a in the desired form
(5).

1.2 Literature review

Below we give an overview of published literature that is
relevant to our work. We do so with a particular focus on the
theory of Bayesian inverse problems, GPs, and probabilistic
methods in numerical analysis.

1.2.1 Bayesian inverse problems andMAP estimators

Bayesian inference (Gelman et al. 1995) is a cornerstone
of modern statistics and data science. When applied in

the context of infinite-dimensional or functional inference
the methodology is best known under the term Bayesian
inverse problems (Franklin 1970; Tarantola 2005;Kaipio and
Somersalo 2006; Stuart 2010).Over the past decade, the algo-
rithmic development and theoretical analysis for Bayesian
inverse problems have become mature areas of research.
Here, Bayesian inference with Gaussian prior measures is by
far the most common setup for both algorithms and theoret-
ical analysis. The overwhelming majority of function space
MCMC algorithms (Tierney 1998; Beskos et al. 2011; Cotter
et al. 2013; Cui et al. 2016; Beskos et al. 2017) are developed
specifically for Gaussian priors; see Hosseini (2019) and ref-
erences within for examples of algorithms for non-Gaussian
priors. The well-posedness theory of Bayesian inverse prob-
lems was originally developed for the case of Gaussian (or
sub-Gaussian) priors (Cotter et al. 2009; Stuart 2010) and
was later extended to the non-Gaussian setting (Dashti et al.
2012; Hosseini and Nigam 2017; Hosseini 2017; Sullivan
2017; Sprungk 2020; Latz 2020) but the case of Gaussian
priors remains most applicable as it allows for the widest
range of nonlinear forward maps. From this perspective, this
article makes important theoretical contributions towards the
understanding and characterization of Bayesian posteriors
under nonlinear observation models with Gaussian priors.
Most importantly, our second contribution enables the use of
finite-dimensionalMCMC algorithms for nonlinear observa-
tion models without the need for direct discretization of the
inverse problem.

Variational methods are also an important family of algo-
rithms for the solution ofBayesian inverse problems. Perhaps
the most common task here is computing a MAP estimator.
Defining a MAP estimator in the function space setting is
highly non-trivial. Several definitions, and resulting analy-
ses, of modes of measures on infinite-dimensional spaces
exist (Agapiou et al. 2018; Ayanbayev et al. 2021a, b; Clason
et al. 2019; Dashti et al. 2013; Helin and Burger 2015) where
the choice of the notion of the mode is closely tied to the
choice of the prior measure. Once again, the Gaussian priors
lead to themost natural definition of aMAPestimator (Dashti
et al. 2013; Ikeda andWatanabe 2014) which is the same one
we shall use to define uyβ in (3). However, to our knowledge,

a notion of a conditional mode, i.e., a precise definition of uy0
as in (4) has not been studied before and constitutes one of
our main contributions.

1.2.2 Gaussian measures and processes

The general theory of Gaussian measures in infinite-dimen-
sional settings is a classic subject in probability theory and the
theory of stochastic differential equations.We refer the reader
to the work of Bogachev (1998) for the detailed treatment
of this subject on topological vector spaces and Maniglia
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and Rhandi (2004) and Janson (1997) for the case of Hilbert
spaces.

GPs, as a special instance of Gaussian measures, and, by
extension, reproducing kernel Hilbert space (RKHS) meth-
ods (Kanagawa et al. 2018; van der Vaart et al. 2008) and
support vector machines (Smola and Schölkopf 1998), have
a long history in approximation theory (Wendland 2004),
statistical modeling and inference (Giné and Nickl 2021),
inverse problems (Cressie 1990), andmachine learning (Ras-
mussen and Williams 2007; Smola and Schölkopf 1998).
While in this article we mainly focus on solving differential
equations with GPs as an application of our theory (Särkkä
2011; Owhadi 2015; Chkrebtii et al. 2016; Cockayne et al.
2017; Raissi et al. 2018; Swiler et al. 2020; Chen et al. 2021;
Wang et al. 2021) (see also Sect. 1.2.3 below), GPs have
wide applications inmanymodern areas of scientific comput-
ing and machine learning such as deep GPs (Damianou and
Lawrence 2013; Dunlop et al. 2018; Jakkala 2021; Dutor-
doir et al. 2021; Owhadi 2023) as a model for deep learning,
vector-valued GPs for operator learning (Batlle et al. 2024)
and generative modeling (Murray et al. 2008; Casale et al.
2018; Fortuin et al. 2020; Pandey et al. 2024), and graphical
models for semi-supervised learning (Bertozzi et al. 2018).

The reasons for this widespread use of GPs are their many
desirable theoretical properties that lead to efficient algo-
rithms. Perhaps the most useful are the facts that (1) GPs are
completely identified by their mean and covariance opera-
tors; (2) GPs are closed under affine transformations; and (3)
GPs conditioned on affine observations are also GPs that can
be identified analytically; see Lemma 2. However, GPs con-
ditioned on nonlinear observations are in general no longer
GPs and cannot be identified analytically. Due to this fact,
such conditional measures are often characterized compu-
tationally using MCMC (Cotter et al. 2013; Beskos et al.
2017;Robert andCasella 1999), or variational inference (Blei
et al. 2017; Pinski et al. 2015). Such conditional measures
are readily common in the field of inverse problems but they
are increasingly common in modern machine learning appli-
cations mentioned in the previous paragraph as well. To this
end, one of the main contributions of this article is to reveal
the additional structure of conditioned GPs in the nonlinear
setting that can be further leveraged by both MCMC and
variational algorithms to further improve the accuracy and
complexity of algorithms.

1.2.3 The intersection of numerical analysis and probability

As discussed in Owhadi et al. (2019), the fields of numer-
ical approximation and statistical inference, traditionally
viewed as distinct, are in fact deeply connected through their
common purpose of making estimations with partial infor-
mation (Owhadi and Scovel 2019, Chap. 20). This shared
purpose has recently stimulated a growing interest in learn-

ing approaches to solving PDEs (Owhadi 2015; Raissi et al.
2017) and in the merging of numerical errors with model-
ing errors and UQ (Hennig et al. 2015). Although this trend
may seem novel, the synergy between numerical approxi-
mation and statistical inference has historical roots, dating
back to Poincaré’s lectures on Probability Theory (Poincaré
1896), and extending through the pioneering work of Sul’din
(1959), Palasti and Renyi (1956), Sard (1963), Kimeldorf
and Wahba (1970), and Larkin (1972). While these studies
initially “attracted little attention among numerical analysts”
(Larkin 1972), they were revived in the fields of Information
Based Complexity (Traub et al. 1988), Bayesian Numerical
Analysis (Diaconis 1988), and more recently in Probabilistic
Numerics (Hennig et al. 2015; Cockayne et al. 2019). This
connection between inference and numerical approximation
is also central to Bayesian/decision-theoretic approaches to
solving ODEs (Skilling 1992) and PDEs (Owhadi 2015), in
identifying operator adapted wavelets (Owhadi and Scovel
2019) and designing fast solvers for kernel matrices (Schäfer
et al. 2021a, b; Chen et al. 2024), and in parameter estimation
(Chen et al. 2021).

Another connection between numerical approximation
and statistical inference arises in the framework of optimal
recovery introduced byMicchelli and Rivlin (1977), Owhadi
and Scovel (2019) and its connection to Bayesian inference
and GP regression through decision and game theory (Wald
1945; von Neumann 1928). Optimal recovery was initially
used for solving linear PDEs (Harder and Desmarais 1972;
Duchon 1977; Owhadi 2015), but was extended to nonlin-
ear PDEs in Chen et al. (2021) and to general computational
graph completion/discovery problems in Owhadi (2022) and
Bourdais et al. (2024) where the connection between optimal
recovery and the GP perspective on solving PDEs is made
explicit. Finally, we mention the recent papers (Long et al.
2022) andVadeboncoeur et al. (2023)where numerical errors
are analyzed as Bayesian posterior measures. Further details
about the connection between optimal recovery, decision the-
ory, and GPs can be found in Section A.

1.3 Notation and preliminaries

We use | · | to denote the finite-dimensional Euclidean norm.
SinceX is Hilbertian, all elements of the dual spaceX ∗ may
be Reisz-represented by elements of X itself; if ψ ∈ X ∗
then we write ψ∗ ∈ X for its Reisz-representer. Likewise,
if θ ∈ X then we write θ∗ for the dual element it Reisz-
represents. Throughout we will write Br (u) ⊂ X to denote
the ball of radius r ≥ 0 centered at u.

We give a brief summary of the notation from Gaus-
sian measure theory needed for this paper; we follow Hairer
(2009, Section 3) and the reader seeking more details may
consult (Bogachev 1998). We say that a measure μ ∈ P(X )

is a Gaussian measure (process) on X if and only if for any
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ψ ∈ X ∗, the pushforward measure μ◦ψ−1 =: ψ
μ ∈ P(R)

is a Gaussian measure. Henceforth we write μ = N (m,K)

to denote a Gaussianmeasure inP(X )withmeanm ∈ X and
covariance operator K : X → X . Whenever m = 0 we say
μ is a centered Gaussian measure. Note that K is necessar-
ily compact, indeed it is trace-class, and we may define the

symmetric operator K 1
2 by spectral calculus; operator K− 1

2

can also be densely defined onK1/2X . Indeed, associated to
a centered Gaussian measure μ = N (0,K), we identify its
Cameron–Martin spaceH(μ) := K1/2X which is Hilbertian
with corresponding inner product

〈u, v〉H(μ) := 〈K−1/2u,K−1/2v〉X , ∀u, v ∈ H(μ);

we write ‖ · ‖H(μ) for the induced norm. The Cameron–
Martin space is a Reproducing Kernel Hilbert Space (RKHS)
if pointwise evaluation is defined in H(μ); the kernel
of the RKHS is the covariance function associated with
μ; see van der Vaart et al. (2008, Sec 2.3). For any
infinite-dimensional Gaussian measure, it is always true that
μ

(H(μ)
) = 0; in contrast, by construction, μ(X ) = 1. Fur-

thermore H(μ) is compactly embedded into X .

We will also review some preliminary definitions and
results for conditional measures identified via a mapping as
these ideas are central to our study. Our reference for this
material is Bogachev (2007, Sec. 10.4). Let X ,Y be separa-
bleHilbert spaceswithB(X ),B(Y) denoting their respective
Borel σ -algebras together with a measure ν ∈ P(X ). Con-
sider a (B(X ),B(Y))-measurable map T : X → Y . We
then have the following definition of a system of conditional
measures of ν generated by the mapping T :

Definition 1 A function (A, y) �→ ν y(A) is a system of con-
ditional measures for ν with respect to the map T if:

(a) for every fixed y ∈ Y the function ν y ∈ P(X );
(b) for every fixed A ∈ B(X ) the function y �→ ν y(A) is

measurable with respect to B(Y) and T
ν-integrable;
(c) for all A ∈ B(X ) and E ∈ B(Y) it holds that

ν(A ∩ T−1(E)) =
∫

E
ν y(A)T
ν(dy).

We also use the alternative notation ν(dξ | T (ξ) = y)
to denote the system of conditional measures in the above
definition; this notation succintly captures what is behind
the definition. The next result is a consequence of Bogachev
(2007, Lem. 10.4.3 and Cor. 10.4.10):

Proposition 1 Consider the above setting and suppose T :
X → Y is ν-measurable. Then it holds that:

(a) there exists a system of conditional measures ν y for ν

with respect to the map T ;

(b) the conditional measures ν y are essentially unique, i.e.,
there exists a set Z ∈ B(Y) so that T
ν(Z) = 0 and the
ν y are unique for all y ∈ Y \ Z (i.e., essentially unique);

(c) for T
ν-a.e. y the measures ν y concentrate on T−1(y),
i.e., ν y(X \ T−1(y)) = 0.

Remark 1 In most of this paper we consider T = G where G
is defined in (5b); thus Y is finite-dimensional. However we
domake some theoretical observations and remarks about the
more general setting, which includes infinite-dimensionalY .

1.4 Outline

In Sect. 2 we analyze the posterior measure, and limits as
β → 0. Section3 is devoted to the modes, or MAP estima-
tors, associated with the family of posterior measures, and
their β → 0 limit. In Sect. 4 we discuss algorithms to sample
the posterior measures, exploiting the special structure of the
observations and the decomposition of posterior measures.
Finally, we give our conclusions in Sect. 5. Proofs of various
technical results are collected in the appendix.

2 Analysis of posterior and conditional
measures

In this section we study the posterior measures μ
y
β , and the

conditionalsμ
y
0. In Sect. 2.1 we prove a form of convergence,

suitably defined, of μ
y
β to μ

y
0. Section2.2 studies decompo-

sitions of the conditionals and posteriors respectively into
the convolution of finite-dimensional non-Gaussians with an
infinite-dimensional Gaussian part.

2.1 Convergence of posterior measures
to conditionals

In this subsection we show that in the limit β → 0 the pos-
terior measures μ

y
β converge to the conditional measures

μ
y
0 in an appropriate sense. We start by identifying condi-

tions that ensure that the family of posterior measuresμ
y
β are

well-defined for β > 0. To this end consider the set-up of
Sect. 1.1.1. We formulate the BIP of determining u|y, from
(5), under the following assumptions:

Assumption 1 Assume that u ∼ μ, ζ ∼ πβ := N (0, β2 I )
and u, ζ are independent. Assume further that the map F :
R

N → R
M is finite at some point z′ ∈ R

N and that F is
locally Lipschitz, i.e., for every r > 0 there exists L(r) > 0
such that

‖F(z1) − F(z2)‖2 ≤ L(r)‖z1 − z2‖2 ∀z1, z2 ∈ Br (0).
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Note that, since F is finite at one point z′ ∈ R
N then this

assumption implies that F is locally bounded from above,
i.e., for every r > 0 there exists M(r) > 0 such that

‖F(z)‖2 ≤ M(r) ∀z ∈ Br (0).

Recalling definition (5b), we have:

Lemma 1 Let Assumption 1 hold and consider the BIP for
u|y defined via (5). Then, for every β > 0, the posterior dis-
tribution μ

y
β is given by (6). Furthermore, the map G defines

a unique (up to equivalence) system of conditional measures
of μ, denoted μ

y
0 := μ(du | G(u) = y).

Proof (Dashti and Stuart 2017, Thm. 10) establishes the
result for β > 0. The result for β = 0 follows from Propo-
sition 1, using the fact that, under the stated assumptions on
F , G is continuous and hence μ-measurable as a map from
X into RM . ��

We now consider the limit of the measures μ
y
β as β → 0.

It is convenient to express the result in terms of the joint
measure P(du, dy). This joint measure may be factored as
P(du|y)P(dy) or as P(dy|u)P(du). The latter necessarily
involves a Dirac mass when β = 0 and is not convenient
to work with; we hence use the former factorization.

Theorem 2 Let Assumption 1 hold. Then the measures
μ
y
β(du)G
μ ∗ πβ(dy) converge weakly to μ

y
0(du)G
μ(dy)

as β → 0. That is, ∀ f ∈ Cb(X × Y)

lim
β→0

∫

Y

∫

X
f (u, y)μy

β(du)G
μ ∗ πβ(dy)

=
∫

Y

∫

X
f (u, y)μy

0(du)G
μ(dy).

Proof It will be helpful to extendπβ to ameasure onX ×R
M

by definingπ ′
β := δ0×N (0, β2 I ).With this notationwe note

that

μ
y
β(du)G
μ ∗ πβ(dy) = (I d × G)
μ ∗ π ′

β(du, dy),

and that

μ
y
0(du)G
μ(dy) = (I d × G)
μ(du, dy).

The desired result thus reduces to proving that,∀ f ∈ Cb(X×
Y),

lim
β→0

∫

Y

∫

X
f (u, y)(I d × G)
μ ∗ π ′

β(du, dy)

=
∫

Y

∫

X
f (u, y)(I d × G)
μ(du, dy).

Noting that π ′
β converges weakly to a Dirac at the origin in

X × R
M as β → 0 gives the desired result. ��

Remark 2 We note that the above result can be interpreted as
an “almost” weak convergence result for the posterior mea-
sures μ

y
β . More precisely, take f (u, y) = g(u)h(y) where

g ∈ Cb(X ) and h ∈ Cb(X ) is a continuous approximation
to 1

μ(Bε (y′))1Bε (y′) for some fixed y′ ∈ R
M and ε > 0. Then

Theorem 2 tells us that the expectation of g with respect to

μ
y′
β converges to the conditional expectation with respect to

μ
y′
0 so long as we average y in a ball with arbitrarily small

but positive radius ε around y′.

2.2 Finite-dimensional representation
of conditional and posterior measures

The finite-dimensional representation of the conditionals is
analogous to the family of representer theorems for kernel
methods (Smola and Schölkopf 1998, Sec. 4.2), generalized
to the probabilistic setting, and is stated as Theorem 3 below.
To understand this proposition, we first recall a classic lemma
pertaining to conditioning Gaussian measures on direct sums
of Hilbert spaces, and a corollary thereof.

Let X = X1 ⊕ X2 where X1,X2 are separable Hilbert
spaces and let μ be a Gaussian measure on X and �i :
X → Xi denote the natural projection onto Xi . Then by
Stuart (2010, Lem. 4.3) and Owhadi and Scovel (2018) (see
also Owhadi and Scovel 2019, Chap. 17.8) we have that the
conditional measure of μ with respect to the maps �i is also
Gaussian and can be characterized explicitly:

Lemma 2 Letμ = N (m,K) ∈ P(X )whereX = X1⊕X2 as
above.Writem = (m1,m2) for themeanand letK be the pos-
itive definite covariance operator and defineKi j = �iK�∗

j .
Write μx1 for the system of conditional measures of μ with
respect to �1. Then for (�1)
μ-a.e. x1 ∈ X1 it holds that
μx1 = δx1⊗N (mx1,K2|1)where N (mx1 ,K2|1) is aGaussian
measure on X2 with mean mx1 = m2 + K21K−1

11 (x1 − m1)

and covariance operator K2|1 = K22 − K21K−1
11 K12.

We will now present a corollary of the above lemma
that characterizes the conditionals of Gaussian measures
under general linear observations. Before presenting that
result we introduce some notation which is used exten-
sively throughout the rest of the article. Given a trace class
covariance operator K on X and a vector of dual elements
φ = (φ1, . . . , φN ) ∈ (X 
)N we define the vector θ =
(θ1, . . . , θN ) ∈ X N and the symmetric matrix � ∈ R

N×N

defined as

θi := Kφ∗
i , and �i j := φi (Kφ∗

j ). (13)

In the parlance of kernel methods the θi are referred to as
features/ representers of the φi while � is the kernel matrix.
Assuming � is invertible, and given any vector z ∈ R

N , we
further define the conditional mean uz ∈ X and covariance
operator Kφ as
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uz = θ��−1z :=
N∑

i, j=1

(�−1)i jθi z j , (14a)

Kφ = K − θ��−1θ∗ := K −
N∑

i, j=1

(�−1)i jθiθ
∗
j . (14b)

With this notation at handwe then obtain the following corol-
lary that can be proven by applying Lemma 2 to the measure
μ ⊗ φ
μ on the product space X × R

N , using the fact that
φ
μ = N (0,�) and that the tensor product of two Gaussian
measures is also Gaussian:

Corollary 1 Suppose μ = N (0,K) with K a trace-class
covariance operator on X . Consider the map φ = (φ1, . . . ,

φN ) ∈ (X ∗)N and the system of conditional measures μz ≡
μ

(
du | φ(u) = z

)
. If � is invertible then μz = N (uz,Kφ).

Remark 3 We often consider the vector of functions ϕ :=
�−1θ ∈ X N ; the entries ϕi of ϕ are referred to as the Gam-
blets in the parlance of Owhadi and Scovel (2019). We can
then write uz = ϕ�z and refer to ϕ� : R

N → X as the
Gamblet reconstruction map. In the rest of the article it is
also useful to define the measures

μφ := N (0,Kφ), and η := N (0,�),

where the former is conditional measure μ
(
du | φ(u) = 0

)

and the latter is the distribution of φ
μ.

Now notice that the measureμ can be reconstructed as the
convolution μ = μφ ∗ϕ�


 η. Crucial to this fact is that the uz

depends on z whereas Kφ does not, it only depends on the
linear map φ and not the vector z, and that z ∼ η under μ.

Building on this remark we have the following useful fac-
torization of the conditional μ

y
0 which is one of our main

theoretical contributions.

Theorem 3 SupposeAssumption1holds and thatCorollary 1
is satisfied. Then μ = μφ ∗ ϕ�


 η and μ
y
0 = μφ ∗ ϕ�


 η
y
0 ,

where η
y
0 := η(dz | F(z) = y) is the system of conditionals

of η = N (0,�) with respect to the map F.

Proof Let u ∼ μ. Conditional on φ(u) = z the distribution
of u is N (uz,Kφ), by Corollary 1. In the absence of obser-
vations, z ∼ η and then uz ∼ ϕ�


 η. When conditioned on

F(z) = y, however, we obtain z ∼ η
y
0 and uz ∼ ϕ�


 η
y
0.

Because μφ is independent of z the two results follow by the
properties of convolutions of measures. ��

We may now generalize Theorem 3 to the setting β >

0; we show that the posterior measures in (6) can be
decomposed as the convolution of a finite-dimensional (in
general) non-Gaussian measure with an independent cen-
tered Gaussian measure. The result may also be viewed as

a generalization of Corollary 1 to nonlinear measurements.
This theorem is the second major theoretical contribution of
our work.

Theorem 4 SupposeAssumption1holds and thatCorollary1
is satisfied. Letμy

β be as in (6) and let� denote the Lebesgue

measure. Then μ
y
β = μφ ∗ ϕ�


 η
y
β where η

y
β ∈ P(RN ) has

Lebesgue density

dηyβ
d�

(z) = 1

�β(y)
exp

(
− 1

2β2 |F(z) − y|2 − 1

2
z��−1z

)
,

�β(y) :=
∫

RN
exp

(
− 1

2β2 |F(z) − y|2 − 1

2
z��−1z

)
�(dz).

Proof Recall πβ from Assumption 1 and, for any measure π

on a vector space, let π(dy + m) denote the shift of π by a
vectorm. Consider themeasure ν(du, dy) := μ(du)πβ(dy+
F(φ(u))). By Bayes’ rule the posterior measures μ

y
β(du) ⊗

δy(dy) are precisely the conditionals of ν with respect to the
projection � : X × R

M → R
M , i.e.,

ν(A ∩ �−1(E)) =
∫

E

(
μ
y
β ⊗ δy

)
(A)

(
F
(φ
μ) ∗ πβ

)
(dy),

A ∈ B(X × R
M ), E ∈ B(RM ).

Further consider the measure η̃(dz, dy) := φ
μ(dz)πβ(dy+
F(z)). Applying Bayes’ rule once again we identify η

y
β as the

conditionals of η̃ with respect to the projection �̃ : RN ×
R

M → R
M ,

η̃(B ∩ �̃−1(E))

=
∫

E

(
η
y
β ⊗ δy

)
(B)

(
F
(φ
μ) ∗ πβ

)
(dy),

B ∈ B(RN × R
M ), E ∈ B(RM ).

By Corollary 1 we have that (I × φ)
μ(du, dz) = μφ(du +
ϕ�z)φ
μ(dz). Now define the measure ν̃ := (I × φ)
μ(du,

dz)πβ(dy + F(z)) ∈ P(X × R
N × R

M ). We then have, by
the above arguments and Remark 3,

ν̃(du, dz, dy) = μφ(du + ϕ�z)φ
μ(dz)πβ(dy + F(z))

= μφ(du + ϕ�z)η̃(dz, dy)

= μφ(du + ϕ�z)ηyβ(dz)
(
F
(φ
μ) ∗ πβ

)
(dy).

Now observe that ν = T
ν̃ where T : (u, z, y) �→ (u, y) so
that we have the desired identity

ν(du, dy) = (
μφ ∗ ϕ�


 η
y
β)(du)

(
F
(φ
μ) ∗ π

)
(dy).

��
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3 Modes of posterior and conditional
measures

In this sectionwe analyze themodes of the posteriorsμ
y
β (i.e.,

the MAP estimators) and the conditionals μ
y
0. Section3.1

defines themode of the posterior; subsection Sect. 3.2 defines
the mode of the conditional; and Sect. 3.3 considers the β →
0 limit of the posterior modes.

3.1 Modes of measures

For a recent overview of definitions of mode in problems
defined on infinite dimensional spaces, see (Lambley and
Sullivan 2023). In this paper we employ the following notion
of the mode of a measure, from Dashti et al. (2013):

Definition 2 Consider a measure ν ∈ P(X ). Any point u† ∈
X is a mode of ν if it satisfies

lim
r→0

ν(Br (u†))

supu∈X ν(Br (u))
= 1.

This formalizes the idea of defining the mode as the
centre of a small ball of maximal probability, in the limit
of vanishing radius. The modes of the posterior measures
μ
y
β ∈ P(X ) defined in (6) are referred to as MAP esti-

mators. The next proposition follows directly from Dashti
et al. (2013, Cor. 3.10) which allows us to characterize the
MAP estimators of μ

y
β via the optimization problem (3). We

emphasize that local minimizers of (3) may not be unique,
but that a global minimizer exists provided that F ◦ φ is
continuous on X (Dashti et al. 2013).

Theorem 5 Suppose μ = N (0,K), μ
y
β is defined as in (6)

with β > 0 and y ∈ R
M, and the map F : R

N → R
M

satisfies Assumption 1. Define the Onsager–Machlup (OM)
functional J yβ : X → [0,∞] by

Jyβ (u) :=
⎧
⎨

⎩

1

2β2 |F(φ(u)) − y|2 + 1

2
‖u‖2H(μ)

, if u ∈ H(μ),

+ ∞, if u ∈ X \ H(μ).

Then a point uyβ ∈ X is a MAP estimator for μ
y
β , according

to Definition 2, if and only if it is a minimizer of J yβ over X .

Proof To apply the stated corollary define �(u) := 1
2β2

|F(φ(u)) − y|2. Notice that � is bounded below uniformly
on X , is bounded above on bounded sets in X and is Lip-
schitz on bounded sets in X . Then the result follows by a
direct application of Dashti et al. (2013, Cor. 3.10). ��

We now further characterize MAP estimators of μ
y
β via a

representer theorem for the minimizers of OM functionals.
This theorem constitutes our main result towards the finite-
dimensional characterization of MAP estimators.

Theorem 6 Suppose that the conditions of Theorem 5 are
satisfied. Then uyβ is a MAP estimator for μ

y
β if uyβ = ϕ�zyβ

and zyβ ∈ R
N solves

minimize
z∈RN

1

2β2 |F(z) − y|2 + 1

2
z��−1z. (15)

Proof By Theorem 5 uyβ is a MAP estimator for μ
y
β if it

is a minimizer of the OM functional. Applying Chen et al.
(2021, Prop. 2.3) to characterize the minimizers of the OM
functional yields the desired result. ��
Remark 4 Let β > 0. Note that solutions of the optimiza-
tion problem (3) (i.e., minimizers of the OM functional) are
necessarily in H(μ); samples from the posterior μ

y
β given

by (1), however, are almost surely not in H(μ) because the
posterior is absolutely continuous with respect to the prior μ

and μ
(H(μ)

) = 0. Simply put, we need X to be sufficiently
regular so that φi ∈ X ∗ for the probabilistic formulation to
make sense, however, the optimization problems (3) and (4)
require the φi to be bounded and linear functionals on both
H(μ) and X .

This observation has important implications in the context
of the GP-PDE solver of Sect. 1.1.2. In order to apply the
optimization approaches (3) or (4) to solving PDEs as in
Chen et al. (2021), it is necessary that pointwise evaluation
of all derivatives appearing in the PDE is possible in H(μ).
To apply the probabilistic (Bayesian) approach (1) or (2)
to the same problem, pointwise evaluation of all derivatives
appearing in the PDE is needed over the support of μ, i.e.,
the space X . Thus the probabilistic approach places a more
stringent requirement on the Gaussian prior measure μ than
does the optimization approach.

3.2 Modes of conditional measures

Here we define a novel notion of a mode for a conditional
measure. We develop a theorem applicable for general maps
T with respect to which conditional measures are defined
and specified to the case T = G, with G given by (5b), in a
corollary.

Definition 3 Consider separable Hilbert spacesX ,Y , a mea-
sure ν ∈ P(X ), and a map T : X → Y . Fix a point
y ∈ supp T
ν. Then any point u† ∈ T−1(y) that satisfies

lim
r→0

ν(Br (u†))

supu∈T−1(y) ν(Br (u))
= 1,

is a conditional mode of ν(du | T (u) = y).

The above definition of the conditional mode is a natu-
ral extension of Definition 2 and modifies that definition by
restricting the feasible set of u† to the subset T−1(y) ⊆ X .
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Below we show that this definition leads to a natural char-
acterization of conditional modes of Gaussian measures via
constrained optimization problems, this is the conditional
analog of Theorem 5 and constitutes one of our main theo-
retical contributions in the paper.

Theorem 7 Let X ,Y be separable Hilbert spaces and sup-
pose T : X → Y is continuous. Consider μ = N (0,K) ∈
P(X ) with Cameron–Martin space H(μ). Fix a point y ∈
T (H(μ)) ∩ supp T
μ, assuming the intersection is non-
empty. Then uy is a conditional mode of μ(du | T (u) = y)
if and only if it solves the optimization problem

minimize
u∈X

‖u‖H(μ) s.t. T (u) = y. (16)

The proof follows by adapting the proof techniques of Dashti
et al. (2013,Cor. 3.10) to our definition of a conditionalmode.
The details are summarized in Appendix B for brevity.

Remark 5 The preceding theorem requires both that y ∈
supp T
μ and that y ∈ T (H(μ)). The first condition is natu-
ral: we want the data to have arisen, in principle, from a map
T applied to the realization of the measure μ. The second
condition, however, says that it must also be realized as an
application of the map T to a point in the Cameron–Martin
space H(μ). Recall that μ(H(μ)) = 0. Requiring both of
these conditions to hold leads to restrictions on the map T .

Consider the following example of a Gaussian measure
from Dashti and Stuart (2017). Assume a centered Gaussian
measureμwith a covariance operator which is the inverse of
− d2

dx2
on I := (0, 1), with homogeneous Dirichlet boundary

conditions; this is a compact operator from L2(I ) into itself.
Thusμ is the Brownian bridge and wemay takeX = Hs(I ),
for any s < 1

2 since all such Sobolev spaces are in the support
of μ. Furthermore any draw from μ is almost surely not an
element of Hs(I ) for any s ≥ 1

2 . In particular the Cameron–
Martin space is H1

0 (I ) and μ(H1
0 (I )) = 0. Now define t :

R → Rby t(u) = min(1, u) and T : X → X by T (u)(x) :=
t
(
u(x)

)
.Applying such a function t(·) pointwise to any draw

fromμ results, almost surely, in a function with nomore than
s < 1

2 weak derivatives in L2(I ). Such a function cannot
simultaneously be the image under a globally Lipschitz T (·)
of an element of H1

0 (I ). Thus the preceding theorem cannot
be applied.

On the other hand, working with the same measure μ,
taking Y = R and T (u) = u( 12 ) it follows from the previous
regularity discussions, and the properties of Brownian bridge
at any point in the open interval I , that any y ∈ R is also in
T (H(μ)) ∩ supp T
μ. Thus the theorem can be applied.

Noting the ideas underlying the preceding remark, the
following corollary of Theorem 7 is immediate, noting the
finite-dimensionality of the image of T := F ◦ φ.

Corollary 2 Consider μ = N (0,K) ∈ P(X ) with Cameron–
Martin space H(μ), and map F : R

N → R
M satisfying

Assumption 1. Supposeμ
y
0 is defined as in Lemma 1 for some

y ∈ F
(
φ
(H(μ)

)) ⊆ R
M and with φi ∈ X 
. Then a point

uy0 ∈ X is a conditional mode for μ
y
0, according to Defi-

nition 3, if and only if it is a minimizer of the constrained
optimization problem

minimize
u∈X

‖u‖H(μ) s.t. F
(
φ(u)

) = y. (17)

Using the representer theorem(Chenet al. 2021, Prop. 2.3),
we can further characterize the conditional modes uy0 via
a finite-dimensional optimization problem. We recall this
result for convenience.

Proposition 8 Suppose Corollary 2 is satisfied. Then every
conditional mode uy0 of μ

y
0 can be written as uy0 = ϕ�zy0

where zy0 is a solution of

minimize
z∈RN

z��−1z s.t. F(z) = y. (18)

3.3 Convergence of MAP estimators to conditional
modes

Finally, we establish the convergence of the MAP estimators
uyβ to the conditional modes uy0 in the setting where T = G,
with G given by (5b).

Theorem 9 Consider μ = N (0,K) ∈ P(X ) with Cameron–
Martin space H(μ), and a map F : RN → R

M satisfying
Assumption 1. Fix a point y ∈ G

(H(μ)
)
and consider the

posteriors μ
y
β and their MAP estimators uyβ , along with the

conditional measures μ
y
0 and their conditional modes uy0.

Then for any sequence of β → 0 there exists a subsequence
βn → 0 so that uyβn converges to a conditional mode uy0.

Proof First define Jβ(u) := ‖u‖2H(μ)
+ 1

β2 |G(u)−y|2, recall-
ing thatH(μ) = K 1

2X is compactly embedded intoX . Note
that uyβ is a minimizer of Jβ over X and that uy0 minimizes

‖u‖H(μ) in G−1(y) ⊆ X . Hence, it holds that

‖uyβ‖2H(μ) ≤ Jβ(uyβ) ≤ Jβ(uy0) = ‖uy0‖2H(μ). (19)

Thus we have that ‖uyβ‖H(μ) ≤ ‖uy0‖H(μ) for all β > 0.
Since H(μ) is a compact subset of X we have convergence
of uyβ in X to a limit u∗ ∈ H(μ), as well as weak conver-
gence inH(μ), along a subsequence βn . It is immediate that
u∗ ∈ G−1(y) as otherwise (along a further relabelled subse-
quence) there is ε > 0 and N ∈ N such that Jβn (u

y
βn

) ≥ ε/β2
n

for all n ≥ N , which contradicts (19) for all n such that βn

is sufficiently small. To show that u∗ is equal to a mini-
mizer of ‖u‖H(μ) in G−1(y) we assume for contradiction
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that ‖u∗‖H(μ) > ‖uy0‖H(μ). By (19) we have

‖uyβn‖2H(μ) ≤ Jβn (u
y
βn

) ≤ Jβn (u
y
0) = ‖uy0‖2H(μ) < ‖u∗‖2H(μ).

However, by lower semi-continuity of Hilbert space norms,
we also have

liminfβn→0 ‖uyβn‖2H(μ) ≥ ‖u∗‖2H(μ),

giving the desired contradiction. ��

4 Algorithms

In this section, we discuss algorithms to sample the posterior
and conditional measures of Gaussian priors. According to
Theorems 3 and 4, both measures can be represented by a
convolution of a finite-dimensional measure that is possibly
non-Gaussian, and an infinite-dimensionalGaussianmeasure
that can be identified analytically. Our goal here is to exploit
this structure to design efficient algorithms for simulation
of the aforementioned posterior and conditional measures
as summarized in Sects. 4.1 and 4.2. In Sect. 4.4 we present
more concrete examples where posterior measures arising
within the GP-PDE methodology are simulated.

4.1 Sampling strategies for posterior measures
(ˇ2 > 0)

The key idea behind our proposed numerical algorithms is
the observation that Theorem 4 enables the decomposition
μ
y
β = μφ ∗ ϕ�


 η
y
β where μφ = N (0,Kφ) is a Gaussian

whose covariance operator is given by (14), in terms of the
measurement operator φ and the prior covariance matrix K.
Thus, the measure μφ can be simulated via standard tech-
niques for discretization and sampling of Gaussian processes
and measures (Rasmussen and Williams 2007; Betz et al.
2014; Snelson and Ghahramani 2007). Furthermore, the map
ϕ (recall Remark 3) is also defined using φ andK and so can
be approximated via appropriate discretization. It remains to
simulateη

y
β which is, in general, non-Gaussian.We recall that

Theorem 4 identifies η
y
β ∈ P(RN ) via its Lebesgue density

dηyβ
d�

(z) ∝ exp

(
− 1

2β2 |F(z) − y|2 − 1

2
z��−1z

)
.

At this level any sampling algorithm of choice such as
MCMC (Robert and Casella 1999), sequential Monte Carlo
(Doucet et al. 2001), or variational inference (Blei et al.
2017) can be used to simulate samples from η

y
β , leading to an

algorithm for simulating posterior samples as summarized in
Algorithm 1. While this approach is accurate up to the dis-
cretization errors of Kφ and ϕ and the convergence of the

utilized sampling algorithms for η
y
β , it has limited utility in

the limit β → 0 which is particularly important in the con-
text of the GP-PDE solver of Sect. 1.1.2. This is due to the
well-understood phenomenon that as β → 0 the measure η

y
β

concentrates on the set F−1(y) which may have very small
prior measure, leading to poor convergence rates for sam-
pling algorithms such as MCMC.

Algorithm 1 Recipe for generating samples from μ
y
β using

MCMC on η
y
β

1: Input: Prior covariance K, maps F,φ, and β > 0
2: Output: Samples u j ∼ μ

y
β

3: Discretize the operators Kφ and ϕ as K̂φ and ϕ̂

4: for j = 1, . . . , Number of samples do
5: Simulate w j ∼ μφ by setting w j = (K̂φ)1/2ξ j where ξ j ∼

N (0, I )
6: Simulate v j ∼ η

y
β using MCMC (or similar algorithm)

7: Set u j = w j + ϕ̂�v j
8: end for

Under the conjecture that ηyβ approaches a Gaussian mea-
sure in the limit of large data and small noise, we propose to
replace Step 6 ofAlgorithm 1with aGaussian approximation
step at the mode; this is sometimes referred to as the Laplace
approximation to η

y
β (Kass et al. 1991). More precisely, let-

ting zyβ be a mode of η
y
β obtained by solving (15), we define

the Gaussian measure

dηyβ
d�

(z) ∝ exp

(
− 1

2β2 (z − zyβ)�
(
∇F(zyβ)�∇F(zyβ)

+D2F(zyβ)(F(zyβ) − y)
)

(z − zyβ)
)

.

(20)

The above Laplace approximation leads to an efficient sam-
pling algorithm for the posterior since η

y
β is Gaussian and

can be simulated exactly given access to the second variation
D2F . In situations where this second variation is expensive
to compute we propose an alternative approximation to η

y
β

as follows:

dη̃yβ
d�

(z) ∝ exp

(
− 1

2β2 |F(zyβ) + ∇F(zyβ)�(z − zyβ) − y|2

−1

2
z��−1z

)
.

(21)

We refer to this measure as the Gauss–Newton approxima-
tion to η

y
β as it arises from the probabilistic interpretation

of the Gauss–Newton algorithm of Chen et al. (2021) that
was proposed for finding the mode zyβ . The advantage of
the Gauss–Newton approximation over the regular Laplace
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approximation is that it only uses ∇F and not its second
variation,

The Laplace and Gauss–Newton approximations are
related to each other, indeed we have

dηyβ
d�

(z) ∝ dη̃yβ
d�

(z) exp
(

− 1

2β2 (z − zyβ)�

[
D2F(zyβ)(F(zyβ) − y)

]
(z − zyβ)

)
,

implying that the Gauss–Newton approximation is close to
Laplace whenever F(zyβ) − y is small. We anticipate that
this approximation is accurate in the regimes where density
η
y
β would concentrate around the set F−1(y). Our numerical

experiments indicate that this happens in the GP-PDE set-
ting when we have a lot of observation points and β → 0,
however, we do not expect this approximation to be good in
the setting where β → 0, but only a few observations are
available.

4.2 Sampling strategies for conditional measures
(ˇ2 = 0)

The conditional measure μ
y
0 can be simulated using similar

ideas from the previous section. By Theorem 3, we can write
μ
y
0 = μφ ∗ ϕ�


 η
y
0. Once again, the measure μφ can be sim-

ulated (up to discretization errors) exactly and so it remains
to generate samples from η

y
0 = η(dz|F(z) = y), the condi-

tional of η = N (0,�) with respect to the map F . To do so,
we will identify an explicit expression for the Lebesgue den-
sity of this conditional. For simplicity we assume that there
is a decomposition z = (z1, z2) such that F(z) − y = 0 is
equivalent to z2−G(z1; y) = 0 for somemappingG depend-
ing on y (and implicitely F). Here z1 ∈ R

N1 , z2 ∈ R
N2 such

that N = N1 + N2. Such a decomposition is often easy to
obtain in many practical applications including the GP-PDE
example of Sect. 1.1.2 and can generally be guaranteed by
the implicit function theorem under mild conditions on F .

With this decomposition, and a slight abuse of notation,
we have

η
y
0 = η(dz|z2 = G(z1; y)) = η(dz1|z2 = G(z1; y))δG(z1;y)(z2).

distribution with identity covariance in R
N .

Proposition 10 Let z = (z1, z2) ∼ N (0,�), where z1 ∈
R

N1 , z2 ∈ R
N2 , and� is non-singular. Consider themeasure

η̆β(dz1) := η(dz1|z2 = G(z1)+βξ)where ξ ∼ N (0, I ) and
G is a measurable function1 in R

N1 . Then the density of η̆β

1 Note that the dependence of G on y is suppressed here since the
theorem holds for arbitrary measurable maps G.

converges uniformly as β → 0 to a density η̆0, where

dη̆0
d�

(z1) ∝ exp

(
−1

2
(z1,G(z1))�−1

(
z1

G(z1)

))
. (22)

Proof We can write down the density of η̆β using Bayes’
formula:

η̆β (dz1) ∝ �(dz1)
∫

exp

(
− 1

2
(z1, z2) �−1

(
z1
z2

))

exp

(

−|z2 − G(z1)|2
2β2

)

�(dz2)

∝ �(dz1)
∫

exp

(
− 1

2
(z1,G(z1) + z3) �−1

(
z1

G(z1) + z3

))

exp

(

−|z3|2
2β2

)

�(dz3) ,

(23)

where we have used the change of variables z2 = G(z1)+z3.
Let us define

g(z1, z3) : = exp

(
−1

2
(z1,G(z1)+z3) �−1

(
z1

G(z1)+z3

))
,

so thatwecanwrite η̆β(dz1) ∝ �(dz1)
∫
g(z1, z3)ρβ(z3)�(dz3)

where ρβ is the density of a Gaussian random variable with
mean 0 and covariance β2 I . As ρβ is a mollifier, it holds
that limβ→0

∫
g(z1, z3)ρβ(z3)�(dz3) = g(z1, 0) for any z1;

here such convergence is also uniform for all z1 which yields
the uniform convergence of the density of η̆β to that of η̆0,
as β → 0 as desired.

To verify the claimed uniform convergence above, con-
sider

∣
∣∣
∫

g(z1, z3)ρβ(z3)�(dz3) − g(z1, 0)
∣
∣∣

≤
∫ ∣∣g(z1, z3) − g(z1, 0)

∣∣ρβ(z3)�(dz3)

≤ sup
z1,z3

∣
∣∇z3g(z1, z3)

∣
∣
∫

|z3|ρβ(z3)�(dz3) ≤ Cβ ,

where C is a universal constant that depends only on the
dimension N and the eigenvalues of �, but independent of
z1, z3 and β since

sup
z1,z3

∣
∣∇z3g(z1, z3)| ≤ sup

z1,z3

∣
∣∣�−1

(
z1

G(z1) + z3

)∣
∣∣ · |g(z1, z3)|

≤ sup
x

|x| exp
(
−1

2
x��x

)
≤ C1.

Here C1 ≥ 0 is a constant that also depends on N and the
spectrum of �. Moreover, by the standard moment formula
forGaussiandistributions, it holds that

∫ |z3|ρβ(z3)�(dz3) ≤
C2β. Taking C = C1C2 ≥ 0 leads to the desired result. ��
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Since Proposition 10 gives a closed form expression for
the Lebesgue density of the conditional measure η0, we can
use standard algorithms, such as those discussed in Sect. 4.1,
to (approximately) sample this measure. Notably, letting z†1
denote the mode of η0, the Gauss–Newton approximation to
(22) will now correspond to the measure

dη̃0
d�

(z1)

∝ exp

(
−1

2

(
z1,G(z†1) + ∇G(z†1)(z1 − z†1)

)
�−1

(
z1

G(z†1) + ∇G(z†1)(z1 − z†1)

))
.

(24)

4.3 On computational complexity and accuracy

Our proposed Laplace and Gauss–Newton methods can lead
to significant gains in terms of computational complexity
and algorithmic wall-clock times. Indeed, the main compu-
tational bottleneck for these algorithms is the inversion of
the dense kernel matrix �. While this cost is also shared by
MCMC algorithms, such as those used in our experiments in
Sect. 4.4, the number of linear solves involving this matrix
is drastically smaller for our algorithms. For example, in our
experiments in Sect. 4.4 we routinely used O(107) MCMC
steps while Laplace and Gauss–Newton typically converge
using O(10) iterations. Naturally, Gauss–Newton is themost
efficient option due to skipping Hessian calculations. We
emphasize that the efficiency of Laplace and Gauss–Newton
comes at the price of non-zero asymptotic accuracy due to the
Gaussian approximation which is noticeable if η

y
β is highly

non-Gaussian.
We also note that while� is in general dense, and so costs

O(N 3) operations to invert, in many practical settings it can
be inverted much more efficiently. For example, when K is
a covariance operator of a GP defined on some compact set
� ⊂ R

d then we can employ the sparse Cholesky algorithm
developed in Chen et al. (2024) to obtain a near-linear com-
plexity solver for �; more precisely, the sparse Cholesky
solver achieves an ε-accurate approximation of �−1 at the
cost of O(N log2d N

ε
).

Finally, we emphasize that the choice of the operators φi

has a nontrivial impact on the cost of constructing �. For
examples such as the GP-PDE methodology, these operators
are obtained as compositions of pointwise evaluation func-
tions with differential operators that are often implemented
efficiently using automatic differentiation or analytic formu-
lae.However, if theφi are integral operators then construction
of the θi and in turn the entries of � according to (13) may
require additional quadrature steps and numerical approxi-
mation.

4.4 Numerical experiments

Our numerical experiments contain two parts: The first part
investigates the Laplace and Gauss–Newton approximations
introduced in Sects. 4.1 and 4.2, for (approximately) sam-
pling the posterior and conditional distributions. The second
part applies ourmethodology toGP-PDE solvers for example
nonlinear PDEs. In Sect. 4.4.1, we compare, through numeri-
cal experiments, MCMC, the Laplace approximation and its
Gauss-variant; we show that, on the examples considered,
the Laplace and Gauss–Newton approximations are good
approximations to MCMC in certain regimes as the poste-
riors concentrate around the true values of the parameter,
making Gauss–Newton a good approximation to Laplace.

We apply our methodology to perform UQ as a proxy
for error estimation for GP-PDE solvers in Sect. 4.4.2. In
Sect. 4.4.3, we use UQ estimates for adaptive selection of
collocation points for the solver.

4.4.1 Laplace vs Gauss–Newton

In this subsection, we numerically demonstrate, in a non-
linear elliptic PDE example, the accuracy of Laplace and
Gauss–Newton approximations when compared to (the
viewed as gold standard) MCMC algorithms. We consider
the PDE (8) with d = 2 and τ(u) = 10u3 and choose
the ground truth solution u†(x) = sin(πx1) sin(πx2) +
sin(3πx1) sin(3πx2) and determine the right-hand side f
which gives this solution, noticing that the Dirichlet bound-
ary conditions are readily satisfied by the prescribed solution.
We take J collocation points on a uniform grid in the
interior of the domain and M uniform points on the bound-
ary. We denote the interior points by x1, ..., xJ and the
boundary points by xJ+1, ..., xM . For our experiments we
took (J , M) = {(16, 25), (49, 64), (81, 100)}. Following
Sect. 1.1.2, we then define F(φ(u)) and y, based on these
collocation points and on f , such that identity F(φ(u)) = y
encodes the PDE constraint at the collocation points.

Suppose u is a priori distributed according to the GP
μ = N (0,K) where K is the integral operator correspond-
ing to the Matérn kernel with regularity parameter ν = 7/2
(Rasmussen and Williams 2007, Sec. 4.2.1) , with length-
scale parameter l = 0.3. The Matérn kernel is widely used
formodeling of spatial fields and is particularly well suited to
PDE applications since its Cameron–Martin space coincides
with classic Sobolev spaces (Kanagawa et al. 2018, Ex. 2.6).
This kernel was also used extensively in Chen et al. (2021)
in the context of the GP-PDE solver. We further observed
that our results are not very sensitive to the choice of ν, l as
long as these values are not unusually small or large. Then
the conditional μ

y
0 encodes information about the solution

to the PDE. We compute the conditional mode uy0 using the
Gauss–Newton optimization algorithm of Chen et al. (2021)
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Fig. 2 Numerical results for nonlinear elliptic (8) as described in
Sect. 4.4.1 with (J , M) = (81, 100) collocation points. Top row: True
solution, error ofMCMCmean, and error of theMAPestimator obtained
by the GP-PDE methodology. Bottom row: standard deviation field of

MCMC samples followed by its difference from the standard deviation
fields obtained using the Gauss–Newton and Laplace approximations.
Boundary points are excluded from the plots for clarity, sinceweobserve
the exact values of the solution on the boundary

that gives a numerical solution to the optimization problem
(18) that characterizes uy0. Using this mode we further com-
pute the Laplace and Gauss–Newton approximations to μ

y
0

following the approach of Sect. 4.2.
In Fig. 2 (top row), we compare the true solution of the

PDE to the MAP estimator uy0 and the posterior mean of
the MCMC samples with (J , M) = (81, 100). We observe
that the MAP and the MCMC mean are comparable approx-
imations to the true solution, indicating that the posterior
measure is concentrated around the truth. This claim is fur-
ther supported by Fig. 2 (bottom row)wherewe compare the
pointwise standard deviations computed by MCMC, Gauss–
Newton, and Laplace. We see good agreement between all
three methods, suggesting that (a) the posterior is close to
being Gaussian and (b) the Gauss–Newton approximation is
as good as Laplace. In Table 1we further compare the relative
L2 error between the MCMC mean and standard deviations
with those of Laplace and Gauss–Newton approximations.
We observe that not only does the MAP converge to the
MCMC mean but that Laplace and Gauss–Newton approxi-
mations to the standard deviation fields converge to that of the
MCMC samples. Moreover, the Gauss–Newton and Laplace

errors are comparable, with Gauss–Newton achieving higher
errors when collocation points are scarce.

In Fig. 3, we evaluate the posterior fields at the location
x = [0.6, 0.4] for different mesh sizes and compare the ker-
nel density estimator of theMCMCsamples to that ofLaplace
and Gauss–Newton approximations. Here we observe that
(a) the Laplace and Gauss–Newton approximations are very
close to each other and (b) as we refine the mesh, these
two approximations converge to the MCMC posterior. We
observed this behavior consistently at other locations as well,
supporting the claim that the posterior is nearly Gaussian
around the MAP.

4.4.2 UQ for GP-PDE

One of the advantages of the GP-PDE perspective is that the
conditional/posterior uncertainties can be readily computed
as a priori indicators of the performance of the algorithm.
Here we will investigate the usefulness of such uncertainties
in the context of our nonlinear elliptic PDE (8) as well as
Burgers’ equation.
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Table 1 Relative L2 error for the mean and stanfard deviation of the Laplace approximation and its Gauss–Newton variant at sampled points
compared with MCMC for the nonlinear elliptic PDE (8) as described in Sect. 4.4.1. MCMC results were obtained using 107 time steps

Relative L2 error (J , M) = (16, 25) (J , M) = (49, 64) (J , M) = (81, 100)

MAP vs MCMC mean 1.086e−1 1.682e−2 6.320e−3

(std) Laplace vs MCMC 6.360e−2 5.557e−3 2.136e−3

(std) Gauss–Newton vs MCMC 7.934e−2 1.038e−2 4.086e−3

Fig. 3 Pointwise numerical results for the nonlinear elliptic PDE (8) as
described in Sect. 4.4.1. Here we compared the conditional distribution
of the solution to its various approximations at a single point [0.6, 0.4]

with (Left) (M, J ) = (16, 25), (middle) (M, J ) = (49, 64), and (right)
(M, J ) = (81, 100) collocation points

Nonlinear elliptic PDE
We start by considering the nonlinear elliptic PDE (8) once
more with τ(u) = αu3 along with prescribed solution
u†(x) = sin(x1) sin(x2) + sin(10x1) sin(ax2) with scalar
parameters α, a > 0 to be chosen later. We solve the PDE
using (J , M) = (16, 25) with the prior μ = N (0,K) with
K being the 7/2-Matérn kernel. To estimate the conditional
mode and standard deviations we ran three steps of the
Gauss–Newton algorithm for different choices of (α, a) as
shown in Fig. 4. We observe that in the linear PDE setting
where α = 0, the resulting posterior standard deviation field
is very smooth and is known to be independent of the PDE
solution and only dependent on the collocation points. As
expected, maximum standard deviation occurs in the mid-
dle of the domain as is often expected in GP regression.
Interestingly, the posterior standard deviation fields appear to
change noticeably with stronger nonlinearities. In particular,
the maximum uncertainty no longer occurs in the middle of
the domain but rather over a non-trivial set.

It is well-known, in the context of GP regression (Owhadi
2015, Thm.5.1) that if u† is the ground truth and uy0 is its GP
interpolant, that the following error bound holds

|u†(x) − uy0(x)| ≤ ‖u†‖H(μ)σ (x) ∀x ∈ �, (25)

where σ(x) is the standard deviation field of the conditioned
GP and ‖ · ‖H(μ) denotes the Cameron–Martin/RKHS norm
of u† corresponding to the GP prior μ. It is therefore natural
to investigate, numerically, whether this error bound remains
valid in the case of the GP-PDE solver. Since in practice
we do not have access to ‖u†‖H(μ), we replace it with the
Cameron–Martin norm of the MAP, i.e., ‖uy0‖H(μ).

In Fig. 5we show a slice of the PDE solution u† alongwith
the GP-PDE solution and the requisite error bounds com-
puted using the standard deviation fields for our nonlinear
elliptic PDE example. We observe that in all three cases, the
conditional mode uy0 is a good approximation to u† while the
upper and lower bounds computed via (25) always contain
both the numerical and true solutions. However, we note that
the computed error bands appear to be too large compared to
the actual error of the numerical solution.
Burgers’ equation
Next we consider the viscous Burgers equation:

∂t u + u∂xu − 0.01∂2x u = 0, ∀(x, t) ∈ (−1, 1) × (0, 1] ,

u(x, 0) = − sin(πx) ,

u(−1, t) = u(1, t) = 0 .

(26)

We solved this equation using the space-time GP-PDE
approach of Chen et al. (2021). Collocation points were
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Fig. 4 Comparing posterior standard deviation fields for the nonlinear elliptic PDE (8) as described in Sect. 4.4.2. From left to right the panels
show the standard deviation fields for increasingly stronger nonlinearities

Fig. 5 Truth and the upper and lower error bound obtained by the GP-PDE method, for the slice x2 = 0.5, in the nonlinear elliptic PDE (8) as
described in Sect. 4.4.1. From left to right the panels show the posterior mean with uncertainty bands for increasingly stronger nonlinearities

uniformly distributed on a regular grid with time step size
dt = 0.05 and spatial step size dx = 0.0125. The kernel of
the covariance function of the GP is chosen as the anisotropic
Gaussian kernel, same as Chen et al. (2021):

K
(
(x, t), (x ′, t ′); σ

)
= exp

(
−σ−2

1 (x − x ′)2 − σ−2
2 (t − t ′)2

)
(27)

with σ = (1/20, 1/3) ; this anisotropic kernel was also used
in Chen et al. (2021) to account for different regularity of
the solution of Burgers’ equation in the temporal and spatial
domains. The spatial and temporal lengthscales were tuned
by hand. We ran 15 steps of Gauss–Newton to obtain the
conditional mode and the corresponding approximation to
the conditional covariance matrix. In Fig. 6 (left and mid-
dle) we show the GP-PDE solution to the Burgers’ equation
as well as the posterior standard deviation estimated using
Gauss–Newton. We clearly observe that the standard devia-
tion is peaked around the location of the (near) discontinuity
in the solution, indicating that the standard deviation field is a
good proxy for the adaptive placement of collocation points.

4.4.3 Adapting collocation points

Based on our observation in the previous section (e.g. Fig. 6)
it is of interest to investigate whether the UQ estimates from
the posterior/conditional measure can be used for the adap-
tation of collocation points for PDE solvers. For example,
we may add more collocation points in areas of maximum
variance under the posterior/conditional on the solution of
the PDE.

For our first experiment we considered the Burgers equa-
tion (26) which was originally solved on a uniform grid
and added 30 new collocation points in the region of max-
imum posterior variance which happens to surround the
(smoothed) shock. This produces a non-uniform grid of col-
location points as shown on the right panel of Fig. 6. In
our experiments we observed that adding these new points
leads to a factor 2 improvement in the L∞ error of the
solution at time t = 1. This demonstrates the effectiveness
of using UQ estimates for adaptive selection of collocation
points. We observed that when we continued to select points
based on this greedy approach, the improvement in accuracy
was less significant and sometimes even numerical instabil-
ity occurs. We attribute this phenomenon to the use of a
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Fig. 6 Numerical experiments for the Burgers’ PDE (26). Left: Contour plot of the MAP estimator of the solution in space-time; Middle: Contour
plot of the conditional standard deviation field; Right: Adaptively sampled collocation points guided by areas of concentrated uncertainty

global space-time formulation,which overlooks the causality
of time dependent PDEs and could lead to numerical chal-
lenges. This could also be attributed to the ill-conditioning of
the involved kernel matrices associated to a large number of
points packed in a small region of the domain which further
warrants the use of a nugget term.

For our second experiment we return to the nonlinear
elliptic PDE (8) with τ(x) = 10x3. We prescribe the exact
solution u(x) = 24px2p1 (1− x1)px

2p
2 (1− x2)p with p = 10

as shown in Fig. 7; this example is designed to have a highly
localized feature around the location (2/3, 2/3). We then
solve the PDE and adaptively add collocation points as fol-
lows: (1) Startwith 100 uniformly sampled collocation points
in the interior and on the boundary of the unit box; (2) com-
pute the Gauss–Newton approximation to the posterior of
the solution and sample 50 new collocation points in areas of
largest posterior variance; (3) repeat step (2) for 10 iterations
to get a total of 600 collocation points in the interior.

In the bottom left panel of Fig. 7 we show an instance
of the collocation points obtained by the above procedure
which may be compared with the top right panel, depicting
a uniform set of collocation points. We see that the poste-
rior adapted points are blind to the concentrated features of
the solution to the PDE, contrary to our early example for
Burgers’ equation. We further modified our adaptive sam-
pling of the collocation points to place new points in regions
of large equation residual which produced the bottom right
panel of Fig. 7. We observe that this new strategy leads to
collocation points that are clustered around the main feature
of the solution.We present L2 and L∞ errors of the solutions
obtained by the three sampling strategies in Table 2, showing
that the conditional variance adaptation scheme leads to an
order of magnitude improvement in the error over uniform
points while residual adaptation leads to yet another order of
magnitude improvement.

These experiments show the advantages and potential
limitations of using the posterior/conditional variance for
adapting collocation points. Interestingly, in the case ofBurg-
ers’ equation the conditional variance captures the interesting
structures in the solution while this property is not prominent
in the case of our nonlinear elliptic PDE.

5 Conclusions

Our focus in this article was the characterization of Gaussian
measures conditioned on finite nonlinear observations that
are obtained as the composition of a nonlinear map with a
bounded and linear operator. We showed that (1) such condi-
tionals can be characterized as the limit of posteriormeasures
with noisy observations with vanishing small noise standard
deviation.We showed that this small-noise limiting argument
also applied to the MAP estimators of the resulting condi-
tionals leading to the novel definition of a conditional MAP
of a Gaussian measure; (2) We showed that the resulting
posteriors/conditional measures can be decomposed as the
convolution of a Gaussianmeasure that can be identified ana-
lytically with a finite-dimensional non-Gaussian measure.
This decomposition mirrored well-known representer theo-
rems from RKHS theory. Item (2) further led us to the design
of novel algorithms for the simulation of Gaussians condi-
tioned on nonlinear observations by focusing computational
effort on the non-Gaussian component.

Weapplied our results to the particular case of theGP-PDE
methodology, a collocation method for solving nonlinear
PDEs that models the solution of the PDE as a GP condi-
tioned on the PDE constraint at the collocation points. We
developed two variational inference techniques for simula-
tion of the non-Gaussian component in this case under the
conjecture that, if the collocation points are sufficiently dense
then the non-Gaussian component of the posterior should
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Fig. 7 An instance of adaptively selected collocation points for the nonlinear elliptic PDE (8) as described in Sect. 4.4.3. Top left: true solution;
top right: uniform sampling; bottom left: greedy sampling based on the conditional standard deviation; bottom right: greedy sampling based on
equation residues

Table 2 Relative L2 and L∞
errors of the numerical solutions
of the nonlinear elliptic PDE (8)
as described in Sect. 4.4.3

Sampling strategy Uniform Conditional variance Equation residue

Relative L2 error 2.337e−2 3.345e−3 1.365e−4

Relative L∞ error 1.565e−2 2.554e−3 1.046e−4

Various strategies for adaptive sampling of collocation points were compared. The errors were averaged over
20 trials

be approximately Gaussian around its MAP. Our numerical
experiments confirmed this claim. We also investigated the
usefulness of the resulting uncertainty estimates for improv-
ing the accuracy of the PDE solver by adaptive selection of
collocation points.

While the GP-PDE setting was the main motivation for
our work, our results have wide application in the field of
inverse problems where Gaussian priors are widely used in
a function space setting. Here one often discretizes the prob-
lem and samples the posterior using a function spaceMCMC
algorithm. However, our results here suggest that significant
speed upmay be achieved by performingMCMConly on the
non-Gaussian component and directly simulating the Gaus-
sian component, for example by computing the underlying
precision matrix of the prior. Our experiments also suggest
that this non-Gaussian componentmay bewell approximated

by a variational technique such as a Laplace approximation.
We also observed that our Gauss–Newton approximation
(which is only first order) appears to work well in practice,
a topic that warrants more detailed theoretical analysis.

Appendix A On optimal recovery, game
theory, and probabilistic
numerics

As presented in Owhadi and Scovel (2019), the framework
of optimal recovery of Micchelli and Rivlin (1977) pro-
vides a natural setting for understanding the correspondence
between numerical approximation and Bayesian inference,
which involves the counter-intuitive modeling of a per-
fectly known function as a sample from a random process.
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To describe this consider a Banach space (B, ‖ · ‖) and
write [·, ·] for the duality product between B and its dual
space (B∗, ‖ · ‖∗). When B is infinite (or high) dimen-
sional, as conceptualized in Information Based Complexity
(Traub et al. 1988) (the branch of computational complexity
founded on the observation that numerical implementation
requires computation with partial information and limited
resources), one cannot directly compute with u ∈ B but
only with a finite number of features of u. The type of fea-
tures we consider here are represented as a vector �(u) :=([φ1, u], . . . , [φm, u]) corresponding to m linearly indepen-
dent measurements φ1, . . . , φm ∈ B∗. The objective is to
recover/approximate u from the partial information con-
tained in the feature vector �(u). Then, using the relative
error in ‖ · ‖-norm as a loss, the classical numerical analysis
approach is to approximate u with the minimizer v† of

min
v

max
u

‖u − v(�(u))‖
‖u‖ , (A1)

where the maximum is taken over all u ∈ B and the min-
imum is taken over all possible functions v of the m linear
measurements. The minimax approximant is Micchelli and
Rivlin (1977) and Owhadi and Scovel (2019, Chap. 18) then

v†(y) = argmin

{
Minimize ‖v‖
Subject to v ∈ B and �(v) = y.

(A2)

Furthermore, the minmax problem (A1) can be viewed as
the adversarial zero sum game in which Player I chooses an
element u of the linear space B and Player II (who does not
see u) must approximate Player I’s choice based on seeing
the finite number of linear measurements �(u) of u. The
function (u, v) �→ ‖u−v(�(u))‖

‖u‖ has no saddle points, so to
identify a minmax solution as a saddle point one can pro-
ceed, as in Wald’s decision theory (Wald 1945), evidently
influenced by von Neumann’s theory of games (von Neu-
mann 1928), by introducing mixed/randomized strategies
and lift the problem to probability measures over all pos-
sible choices for players I and II. For the lifted version of
the game, the optimal mixed strategy of Player I is a cylinder
measure defined by the norm ‖ ·‖ and the optimal strategy of
Player II is a pure strategy because ‖ · ‖ is convex. Further-
more if the norm ‖·‖ is quadratic, then the optimal strategy of
Player I is a centered Gaussian field whose covariance oper-
ator Q : B∗ → B is defined by the norm ‖ ·‖ and the identity
‖φ‖2∗ = [φ, Qφ]. For further references on Gaussian mea-
sures on infinite-dimensional spaces, we refer to Bogachev
(1998) and Maniglia and Rhandi (2004) (for Hilbert spaces).
See also Janson (1997) for Gaussian fields on Hilbert spaces.
The applicationof optimal recovery, initially focusedon solv-
ing linear PDEs (Harder and Desmarais 1972; Duchon 1977;
Owhadi 2015), has been extended to nonlinear PDEs in Chen

et al. (2021) and to general computational graph completion
problems in Owhadi (2022).

Appendix B Proof of Theorem 7

The main ideas required for the proof of Theorem 7 are
contained in Proposition 12. The proposition and theorem
themselves rest on several lemmas which we collect together
in a preliminary subsection.

First we recall three technical results, concerning small
ball probabilities, from Dashti et al. (2013).

Lemma 3 ( Dashti et al. 2013, Lem. 3.6) Let μ = N (0,K),
r > 0 and u ∈ X . Then there exists a constant α > 0
indepenent of u, r so that

μ(Br (u))

μ(Br (0))
≤ exp

(α

2
r2

)
exp

(
−α

2
(‖u‖X − r)2

)
.

Lemma 4 (Dashti et al. 2013,Lem. 3.7) Suppose u0 /∈ H(μ),
{ur }r≥0 ⊂ X and ur converges weakly to u0 in X as r → 0.
Then for any ε > 0 there exists r > 0 small enough so that

μ(Br (ur ))

μ(Br (0))
< ε.

Lemma 5 (Dashti et al. 2013,Lem. 3.9) Consider a sequence
{ur }r≥0 ⊂ X and suppose ur converges weakly and not
strongly to 0 in X as r → 0. Then for any ε > 0, there
exists r small enough such that

μ(Br (ur ))

μ(Br (0))
< ε.

A fourth useful lemma concerning small ball probabilities is:

Lemma 6 (Bogachev 1998, Lem. 4.7.1) For all u ∈ H(μ) it
holds that

1 ≤ 1

μ(Br (0))

∫

Br (0)
exp

(〈u, x〉H(μ)

)
dμ(x).

For our final lemmawe recall the following classic result [see
for example Bogachev (1998, Cor. 4.7.8)] which is integral
to the analysis in the following subsection.

Lemma 7 Let μ = N (0,K) ∈ P(X ). Then

lim
r→0

μ(Br (u1))

μ(Br (u2))
= exp

(
1

2
‖u2‖2H(μ) − 1

2
‖u1‖2H(μ)

)
,

∀u1, u2 ∈ H(μ).

Now recall Definition 3 of the conditional mode. Our goal
is to show that such a point is equivalent to a minimizer of
(16). We start by establishing the existence of such minimiz-
ers.
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Proposition 11 Let μ = N (0,K) and fix y ∈ T (H(μ)) for a
continuous map T : X → Y . Then there exists a minimizer
uy of (16).

Proof Since y ∈ T (H(μ)) by assumption, then the feasible
set T−1(y)∩H(μ) is non-empty. Define I := inf{‖u‖H(μ) :
u ∈ T−1(y)} and let {un} ∈ T−1(y) be a minimizing
sequence. Then for any δ > 0 there exists N = N (δ) so
that

0 ≤ I ≤ ‖un‖H(μ) ≤ I + δ, ∀n ≥ N .

Since H(μ) is a Hilbert space and {un} is bounded we infer
the existence of a limit point uy ∈ H(μ) (possibly along a
subsequence) so that un converges to uy weakly inH(μ). The
weak lower semicontinuity of the H(μ)-norm now yields,
I ≤ ‖uy‖H(μ) ≤ I + δ and the result follows since δ is
arbitrary. ��

Proposition 12 Consider μ = N (0,K), a continuous map
T : X → Y and a point y ∈ T (X ). Define

ur := argmax
u∈T−1(y)

μ(Br (u)). (B3)

Then:

(i) the maximizer ur ∈ X exists for every r > 0;
(ii) if y belongs to T (H(μ)) then there exists uy ∈ H(μ)∩

T−1(y) and a subsequence of {ur }r≥0 which converges
to uy strongly in X as r → 0;

(iii) if y belongs to T (H(μ)) ∩ supp T
μ, and the intersec-
tion is not empty, then the limit uy is both a conditional
mode of μ(du|T (u) = y) and a minimizer of (16).

Proof (i) First observe that by assumption T−1(y) is not
empty. By Lemma 3 we deduce that any maximizing
sequence is bounded in X . Extract a weakly convergent
subsequence {u(n)

r }n∈N with limit ur . Since X is a Hilbert
space and T−1(y) is closed we conclude that ur ∈ T−1(y).
The Gaussian measures μ(·+ u(n)

r ) then converge weakly as
n → ∞ to Gaussian measures μ(· + ur ) (Bogachev 1998).
Thus μ(Br (u

(n)
r )) → μ(Br (ur )) since the indicator func-

tion of a ball is a bounded measurable function. Hence, since
the subsequence is a maximizing subsequence, the result is
proved.

(ii) Now consider the sequence ur = argmaxu∈T−1(y)
μ(Br (u)), indexed over r ≥ 0. Our first task is to show
that {ur }r≥0 is bounded in X . By the hypothesis that y ∈
T (H(μ)) we can pick a point u
 ∈ H(μ) ∩ T−1(y), which
we will fix for the remainder of the proof of (ii). Since ur is,
by definition, the maximizer of μ(Br (u)) over T−1(y) then

we have that

μ
(
Br (ur )

)

μ
(
Br (u
)

) ≥ 1. (B4)

By the Cameron–Martin formula we can further write

1 ≤ μ
(
Br (ur )

)

μ
(
Br (u
)

) = μ
(
Br (ur )

)

μ
(
Br (0)

)
μ

(
Br (0)

)

μ
(
Br (u
)

)

= μ
(
Br (ur )

)

μ
(
Br (0)

) exp

(
1

2
‖u
‖2H(μ)

)

μ(Br (0))∫
Br (0)

exp(−〈u
, x〉H(μ))dμ(x)
.

An application of Lemma 6 yields the lower bound

μ(Br (ur ))

μ(Br (0))
≥ exp

(
−1

2
‖u
‖2H(μ)

)
. (B5)

Now suppose, to obtain a contradiction, that {ur }r≥0 is not
bounded in X , so that for any R > 0 there exists rR so that
‖urR‖X > R with rR → 0 and R → ∞. Then the lower
bound (B5) contradicts Lemma 3 for large R and sufficiently
small rR leading to the conclusion that {ur }r≥0 is bounded.
Since X is a Hilbert space and T−1(y) is closed we infer
there exists a point uy ∈ T−1(y) and a subsequence {ur }
which converges weakly to uy in X as r → 0.

Now suppose, again for contradiction, that either: (a) there
is no strongly convergent subsequence of {ur } in X ; or (b)
if there is such a subsequence its limit u0 does not belong to
H(μ). We start with the case (b). Consider (B5) and apply
Lemma 4 with ε = 1

2 exp(− 1
2‖u
‖2H(μ)

) to obtain

exp

(
−1

2
‖u
‖2H(μ)

)
≤ μ(Br (ur ))

μ(Br (0))

<
1

2
exp

(
−1

2
‖u
‖2H(μ)

)
, (B6)

which is a contradiction and so the limit point u0 ∈
H(μ). Now consider case (a) where there exists no strongly
convergent subsequence that converges to u0. Then the
(sub)sequence ur − u0 satisfies the conditions of Lemma 5.
We can then repeat the above argument with the same choice
of ε to obtain (B6) once again which is a contradiction. This
concludes the proof of part (ii).

(iii) In what follows we let u0 ∈ T−1(y) ∩ H(μ) denote
the limit of the relabelled subsequence {us} of {ur } as in part
(ii). Now suppose either {us} is not bounded inH(μ) or if it
is, it only converges weakly to u0 and not strongly inH(μ).
This implies that ‖u0‖H(μ) ≤ lim infs→0 ‖us‖H(μ) which
in turn implies the existence of a sufficiently small s for
which ‖u0‖H(μ) ≤ ‖us‖H(μ). Therefore Lemma 7 implies
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that lim sups→0
μ(Bs (us ))
μ(Bs (u0))

≤ 1. On the other hand, by the
definition of us we have that μ(Bs(us)) ≥ μ(Bs(u0)) and so
lim infs→0

μ(Bs (us ))
μ(Bs (u0))

≥ 1, from which we conclude that

lim
s→0

μ(Bs(us))

μ(Bs(u0))
= 1. (B7)

By Definition 3 it follows that u0 is a conditional mode. It
remains to consider the settingwhere {us} converges strongly
tou0 inH(μ). Then by theCameron–Martin formulawehave

μ(Bs(us))

μ(Bs(u0))
= exp

(
1

2
‖u0‖2H(μ) − 1

2
‖us‖2H(μ)

)

∫
Bs (0)

exp
(−〈us, v〉H(μ)

)
μ(dv)

∫
Bs (0)

exp
(−〈u0, v〉H(μ)

)
μ(dv)

.

It follows, from Bogachev (1998, Lem. 4.7.1; see also proof
of Lem. 4.7.2), that the maps

u �→ μ(Bs(0))
−1

∫

Bs (0)
exp

(−〈u, v〉H(μ)

)
μ(dv),

are locally Lipschitz onH(μ) fromwhich we infer (B7) once
again.

We now show that u0 solves (16). Suppose otherwise, so
that ‖u0‖H(μ) − ‖uy‖H(μ) > 0. By Lemma 7 we have that

μ(Bs(u0))

μ(Bs(uy))
≤ K (s) exp

(
1

2
‖uy‖2H(μ) − 1

2
‖u0‖2H(μ)

)
,

with K (s) → 1 as s → 0. Now choose s̃ sufficiently small
so that

1 ≤ K (s) < exp

(
1

2
‖u0‖2H(μ) − 1

2
‖uy‖2H(μ)

)

for any s < s̃. Then by the above display we have

μ(Bs(u0))

μ(Bs(uy))
< 1.

Using this bound and (B7) we can then write

lim sup
s→0

μ(Bs(us))

μ(Bs(uy))
= lim sup

s→0

μ(Bs(us))

μ(Bs(u0))

μ(Bs(u0))

μ(Bs(uy))

< lim sup
s→0

μ(Bs(us))

μ(Bs(u0))
≤ 1,

which is a contradiction since by the definition of us we have
μ(Bs(us)) ≥ μ(Bs(uy)) for any s > 0. Thus u0 solves (16).

��
Proof of Theorem 7 First let uy be a conditional mode and
take the sequence {ur }r≥0 as in (B3). By Proposition 12

there exists a relabelled subsequence {us} which converges
strongly in X to u0 ∈ H(μ) ∩ T−1(y) and u0 is also a con-
ditional mode and so by Definition 3

it holds that limr→0
μ(Br (ur ))
μ(Br (u0))

= 1. Since uy is also a
conditional mode we have

lim
r→0

μ(Br (uy))

μ(Br (u0))
= lim

r→0

μ(Br (uy))

μ(Br (ur ))
lim
r→0

μ(Br (ur ))

μ(Br (u0))
= 1.

We infer from Lemma 4 that uy ∈ H(μ) ∩ T−1(y) since
otherwise the limit limr→0

μ(Br (uy))
μ(Br (ur ))

would vanish. Now sup-
pose uy does not solve (16). We can obtain a contradiction
by repeating the last step of the proof of Proposition 12.

To prove the converse statement let uy be a solution
of (16) with u0 defined as before. Then Lemma 7 implies
limr→0

μ(Br (u0))
μ(Br (uy))

= 1, and so we have

lim
r→0

μ(Br (ur ))

μ(Br (uy))
= lim

r→0

μ(Br (ur ))

μ(Br (u0))
lim
r→0

μ(Br (u0))

μ(Br (uy))
= 1.

The result follows from Definition 3. ��
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