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ARTICLE INFO ABSTRACT
MSC: We introduce a priori Sobolev-space error estimates for the solution of arbitrary nonlinear,
60G15 and possibly parametric, PDEs that are defined in the strong sense, using Gaussian process
65M75 and kernel based methods. The primary assumptions are: (1) a continuous embedding of the
2;3;; reproducing kernel Hilbert space of the kernel into a Sobolev space of sufficient regularity;
47B34 and (2) the stability of the differential operator and the solution map of the PDE between
41A15 corresponding Sobolev spaces. The proof is articulated around Sobolev norm error estimates
35R30 for kernel interpolants and relies on the minimizing norm property of the solution. The error
34B15 estimates demonstrate dimension-benign convergence rates if the solution space of the PDE is
smooth enough. We illustrate these points with applications to high-dimensional nonlinear elliptic
Keywords: PDEs and parametric PDEs. Although some recent machine learning methods have been presented
Kernel methods as breaking the curse of dimensionality in solving high-dimensional PDEs, our analysis suggests a
Gaussian processes more nuanced picture: there is a trade-off between the regularity of the solution and the presence
Optimal recovery of the curse of dimensionality. Therefore, our results are in line with the understanding that the

Nonlinear PDEs
High-dimensional PDEs
Parametric PDEs

curse is absent when the solution is regular enough.

1. Introduction

In recent years the adoption of machine learning in the natural sciences and engineering has led to the development of new methods
for solving PDEs [70,86,87,47,52]. The majority of these methods rely on the approximation power of artificial neural networks
(ANNG5) either as a function class to approximate the solution of the PDE or as a high-dimensional function class to approximate the
solution map of the PDE. Despite the empirical success of the aforementioned ANN based methods, current theoretical understanding
of these PDE solvers is scarce and, beyond particular PDEs (e.g., [81,53,25]), results are oftentimes limited to existence results rather
than convergence guarantees or rates.

Similar to ANNs, kernel methods and Gaussian processes (GPs) have been very effective in scientific computing and machine
learning [80,59,7,89] and at the same time they are supported by rigorous theoretical foundation [7,88,66]. Recently in [12], the
authors introduced a kernel collocation method for solving arbitrary nonlinear PDEs with a rigorous convergence guarantee. The
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theory presented in that work was based on the assumptions that (1) the solution belongs to the reproducing kernel Hilbert space
(RKHS) defined by the underlying kernel which in turn is embedded in the Sobolev space H* for s > d /2 + “order of the PDE” (where
d is the dimension of the domain of the PDE) and (2) the fill-distance between collocation points goes to zero. Convergence was
proved via a compactness argument but no convergence rates were provided.

The goal of this article is to provide quantitative convergence rates for the PDE solver introduced in [12]. Our quantitative rates
also reveal the interplay between the regularity of the solution of the PDE and the dimension d of the problem. At the same time we
make improvements to the methodology of [12] and extend it to the case of parametric PDEs. In the rest of this section we summarize
our main contributions in Subsection 1.2 followed by a review of the relevant literature in Subsection 1.3, and an outline of the article
in Subsection 1.5.

1.1. Significance of contributions

The use of meshless, collocation methods with radial basis functions for solving PDEs dates back to the 1990s [39,40,30,26].
Typical approaches include symmetric collocation [30,26] and unsymmetric collocation methods (also known as the Kansa method
[39,401); see [77,28] for reviews. It is recognized that the unsymmetric collocation approach may encounter instability issues and
require additional techniques [48,74,49,15], whereas the symmetric collocation approach always yields positive definite symmetric
matrices and is stable. The reason is that the symmetric collocation approach includes higher-order derivatives of the kernel as
basis functions and leads to solutions that can be identified as optimal recovery (worst case minimax optimal) solutions. This optimal
recovery property makes the algorithm generally applicable for any well-posed linear PDEs [38,75,76]. Furthermore the analysis
becomes straightforward because of this optimality; see [29,30] for linear PDEs and [9,10] for some degree of generalization to
quasi-linear/nonlinear problems. Note that the optimality has long been recognized, however not extensively acknowledged, as
highlighted in [75]: “This technique has been around since at least 1998, but its optimality properties went unnoticed.” The GP-PDE
methodology proposed in [12] can be seen as a nonlinear generalization of the optimal recovery approach to solving (and learning)
arbitrary classically/strongly defined nonlinear PDEs. This paper aims to offer a simple and transparent theoretical error analysis of
this nonlinear optimal recovery method. This analysis extends the linear setting [33] and shares conceptual steps (in terms of the
role of stability and sampling inequalities) with [9] while explicitly focusing on optimal recovery solutions rather than solutions
obtained from finite-dimensional trial spaces and residual minimization. Such theoretical analyses are notably rare within the sphere
of machine learning-based PDE solutions (where theoretical guarantees are typically limited to existence results). Furthermore, while
there is no general theory for strongly defined arbitrary nonlinear PDEs, the optimal recovery approach provides a way of obtaining
general theoretical guarantee for the numerical approximation of such PDEs. Beyond its wide scope, the proposed analysis also lays the
groundwork for developing rigorous, efficient, and scalable (near-linear complexity) learning-based methods for arbitrary nonlinear
PDEs. This can be achieved by integrating the proposed error estimates with the fast algorithms developed in [13] for kernel matrices
whose entries contain higher-order derivatives of the kernel, a setting well suited for the optimal recovery approach. We note that the
analysis in the paper is focused on the minimizer of a loss function induced by kernel and GP methods. Understanding theoretically
how iterative algorithms are able to achieve this minimizer represents another crucial stride towards our ultimate objective; this
could be potentially done by combining analysis results for iterative linearization, for example the work in [6].

1.2. Summary of contributions

Throughout the article we consider parametric PDEs of the form

{P(u*)(x; 0)=7(x:0), (xX,0ecQx0,

(1.1
Bu*)(x;0) = g(x;0), (x,0)€0QX0O,

where Q C R? is a bounded connected domain with an appropriately smooth boundary dQ, 7 and /3 are the interior and boundary
differential operators that define the PDE and f, g are the source and boundary data. x denotes the spatial variable with € denoting
a parameter belonging to a compact set ® C R?. The function u* denotes the exact, strong solution of this PDE.

We view the solution u* as a function on Q X © and approximate it in an appropriate RKHS by imposing the PDE as a constraint
on a set of collocation points in the product space QX ©. Our main contributions are four-fold as summarized below:

1. We extend the kernel PDE solver of [12] to the case of the parametric PDE (1.1). This extension follows by viewing the solution
u*(x;0) as a continuous function defined on Q X © and approximating it with a function u' in an appropriate RKHS V" after
imposing the PDE as a constraint on a set of collocation points. At the same time we improve the efficacy and performance
of the Gauss-Newton (GN) algorithm of [12] through an approach of “linearize first then apply the kernel solver”. For many
prototypical PDEs this new approach leads to smaller kernel matrices that can be factored or inverted more efficiently. These
numerical strategies are outlined in Section 2, and our proposed methodology is summarized in Algorithms 2.1 and 2.2.

2. We provide explicit a priori convergence rates for the kernel estimator u™ € U to the true solution u*. Our proof relies on three
assumptions: (1) the RKHS U C H*(Q) for s > (d + p)/2 + “order of the PDE”; (2) the true unique solution u* € U’; (3) the forward
PDE operator and the associated solution map of the PDE are Lipschitz stable. Our error estimates are of the general form

lu® = u* | 2y S A N* Nl (1.2)
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Solution operator is stable —> "u'r - upll < ClIP (uf) = Pun)ll
Sampling error estimates —> P (u+) - Pun)ll, < Ch?||P (u+) = P(un)lls
Forward operator is stable —> |[|P (u*) - Pupn)llz < Cllut —uylls

Continuous embedding of RKHS —> |lut —uylly < Cllut —uylly

lunllu < Mty > |t - uylly < 2luflly

— lut —uyll; < ChY|lut|ly

Fig. 1. A summary of the main steps in our proof of convergence rates outlined in Theorems 3.1, 3.3, 3.8, and 3.12. The 1-4 norms denote arbitrary norms on
appropriate Banach spaces while the || - ||,--norm can be chosen as an RKHS norm or another desired norm with respect to which the numerical algorithm is stable.

where £ is the fill-distance (mesh-norm) of our collocation points. Indeed, if expressed in terms of N, the number of collocation
points, the rate will read as (N ~$/(*P)), The above rate indicates a trade-off between the regularity of the solution space and the
dimension d + p of Q x O stating that the convergence rate is dimension-benign so long as the solution u* is sufficiently regular;
these results are outlined in Section 3.

3. In fact, our method for proving the rate (1.2) is more general than the case of PDEs (see Fig. 1 for the road map of the proof
technique). The proof can be viewed as a recipe for convergence analysis of solutions to nonlinear functional equations of the
form P(u) = f where u, f belong to sufficiently regular function spaces and P is invertible (at least locally). Then the Lipschitz
stability of 7 and P~! plus RKHS interpolation bounds on f yield convergence rates for u. Results at this level of generality are
presented in [76] for linear maps P which are then extended to nonlinear problems in [9,10]. In these works, the stability of
the discretization method is furthermore assumed. In the GP methodology, this property is guaranteed, due to the minimal RKHS
norm and optimal recovery property of the solution. This has been pointed out in [76, Sec. 10] for linear PDEs. Our theory can
be seen as a generalization of the result in [76] to the nonlinear case.

4. We present a suite of numerical experiments that elucidate and extend our theoretical analysis in item 2. We present an example
of a nonlinear elliptic PDE with a prescribed solution of varying regularity in various dimensions. We then explore the interplay
between regularity and dimensionality as well as the rate in (1.2). We further verify our result for a one dimensional parametric
PDE by varying p, the dimension of the parameter space ®. Because of this trade-off between regularity and dimensionality,
showing that a numerical method remains accurate for a high dimensional PDE may not be an indication that it is breaking the
curse of dimensionality but simply an indication that the problem being solved is very regular; see our experiments in Section 4
and in particular Subsection 4.3.

1.3. Literature review
Below we present a brief review of the literature relevant to the current work.

1.3.1. Kernel and Gaussian process solvers for PDEs

As mentioned earlier our algorithmic and theoretical developments are focused on the kernel method introduced in [12] and
extending that approach to parametric PDEs. Further extensions and applications of the aforementioned framework can also be found
in [58,57,50,13]. When applied to linear PDEs our kernel method coincides with the so-called symmetric collocation method [77,
Sec. 14] and is closely associated with radial basis function (RBF) PDE solvers [28,26,30]. Various error analyses for RBF collocation
methods can be found in [29,30]. In particular, the article [33] is the closest to our work and their rates coincide with ours in the
linear PDE setting. The articles [48,74,49,15] present similar bounds for the so-called Kansa method [39,40], a non-symmetric RBF
collocation PDE solver. Finally, [76] presents an abstract set of convergence rates for RBF interpolation of “well-posed” linear maps
between regular function spaces that includes RBF PDE solvers as a special case. All of the aforementioned analyses consider linear
PDEs and some generalizations to nonlinear problems are studied in [9,10].

The deep connection of Kernels and RKHSs to the theory of GPs [8,43,89,84] suggests that kernel PDE solvers can be viewed from
lens of probability theory as a conditioning problem for GPs. While not as extensively developed as the kernel solvers mentioned
earlier, this direction has been explored for the solution of linear PDEs as well as nonlinear ODEs [18,21,64,73,82] and recent works
have extended this idea to some nonlinear and time-dependent PDEs [20,69,85]. The GP interpretation is attractive due to the ability
to provide rigorous uncertainty estimates along with the solution to the PDE. The idea here is that the uncertainties can serve as
a posterior or a priori error indicators for the PDE solver. Some ideas related to this direction were discussed in [12,20]. A fully
probabilistic GP interpretation of our kernel framework for linear PDEs can be found in [64,20,66] but the case of nonlinear PDEs
remains partially investigated [12,57,58,51]. Moreover we note that in the GP framework, hierarchical Bayes learning can be used
to select kernels to get better convergence rates [14,90,67,24].
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Table 1
A qualitative comparison of the properties of traditional PDE solvers (such as FEM, FVM, FDM, spectral methods, etc) against kernel methods
and ANNs.
Method  Ease of Provable Near Occam’s  Transparent  Ease of Built-in  Software
implementation guarantees  linear razor reproducibility ~ UQ support
in high-dimensions complexity
Trad. X v v 4 v v X v
Kernel v v v v v v v Limited
ANN v Limited X X X Limited X v

1.3.2. Parametric and high-dimensional PDEs

Parametric PDEs are ubiquitous in physical sciences and engineering and in particular in the context of uncertainty quantification
(UQ) and solution of stochastic PDEs (SPDEs) [19,32,44,92]. A vast literature exists on the subject, connecting it to reduced basis
models [1,63], emulation of computer codes [42], reduced order models [54], and numerical homogenization [66]; for settings
that most closely resemble our problems we refer the reader to [32,91,22] for a general overview. Broadly speaking, the dominant
approaches for approximation of high-dimensional and parametric solution maps include polynomial/Taylor approximation methods
[5,16,17,62,61]; Galerkin methods [36,23]; reduced basis methods [37]; and more recently ANN operator learning techniques such
as [47,52]. In comparison to the aforementioned works we propose to directly approximate the solution of the parametric PDE as a
function on the tensor product space of the physical and parameter domains in a similar spirit as [41]. The recent article [4] also
presents a kernel based operator learning approach to various PDE problems including parametric PDEs.

1.3.3. The curse of dimensionality

Although the trade-off between regularity and accuracy is well understood in numerical approximation/integration, where it has
led to the development of the Kolmogorov N-width and stress tests for finite-element methods [68,56,3], its impact is oftentimes
overlooked when communicating the convergence of Machine Learning and Deep Learning methods for high-dimensional PDEs. In
particular, since artificial neural networks (ANNs) can be interpreted as kernel methods [60,45,65] with data-dependent parameter-
ized kernels, our results raise the further question of understanding whether the (empirically observed) convergence of ANN-based
methods for high-dimensional PDEs is an indication of the absence of the curse (i.e., the regularity of the solution in selected numer-
ical experiments is high) or the breaking of that curse. In particular, empirically observing numerical accuracy for an algorithm and
particular solutions is insufficient to prove that the curse of dimensionality is broken, and one must also show that the underlying
problem and those solutions are not too regular. We emphasize that the curse of dimensionality referred to here, is the one associated
with the worsening of the accuracy of a numerical approximation algorithm as a function of the dimension of the domain of the
PDE as opposed to the impact of the curse on the number of degrees of freedom in the implementation level (e.g., finite difference
methods suffer from that second curse but ANN/kernel based methods do not).

1.4. The potential value of kernel/GP methods

The proposed work aims to further develop Gaussian Process (GP) and kernel methods for solving PDEs. We are motivated to do
so because GP methods have the potential to offer the best of both worlds by combining the profound theory underlying traditional
methods (and in particular finite element methods) with the ease of implementation of emerging Deep Learning (DL) methods.
They also come equipped with automatic uncertainty quantification (UQ) capabilities, not readily available in either traditional or
deep-learning based methods. And finally they provide easily implementable meshless methods that can be used to benchmark other
machine learning based algorithms such as PINNs [70].

Compared to traditional methods (such as finite element methods (FEM), finite volume methods (FVM), finite difference methods
(FDM), spectral methods, etc), GP methods generalize meshless, RBF, optimal recovery methods and are flexible and applicable in
high dimensions. Compared to DL methods that use an expressive neural network representation, GPs offer transparent methods
that are easy to reproduce and analyze. Furthermore the natural probabilistic interpretation of GPs enables convenient UQ and also
facilitates the process of scientific discovery itself [66]; FEM and DL methods do not interface so cleanly with UQ. Moreover, with
hierarchical kernel learning [14,90,67,24], GP methods can also be made highly expressive. In fact, as shown in the table below,
GP methods can offer many advantages over traditional and DL methods. In the context of PDEs these advantages include: greater
flexibility, applicability in high dimensions, provable guarantees, near-linear complexity computation, Occam’s razor principle in
the design of statistical models, mathematical transparency and interpretability, and ease of reproducibility; see Table 1. Although
software support for GPs is currently not as advanced as that for DL and traditional methods, GPs are still easy to program and can be
seamlessly integrated into an engineering pipeline. Table 1 should be interpreted in this light: as an argument for further deployment
and development of software infrastructure for GP-PDE based methods.

Given their long training times, ANN-based methods may not be competitive with FEM in low dimensions [35]. In contrast, GP-
based methods can achieve near-linear complexity when combined with fast algorithms for kernel methods such as the sparse Cholesky
factorization [78,79,13]. In some applications, these algorithms can be competitive (both in terms of complexity and accuracy) even
when compared to highly optimized algebraic multigrid solvers such as AMGCL and Trilinos [11]. GP methods are naturally amenable
to analysis and come with simple provable guarantees, while ANN-based methods involve complicated optimizations and many
heuristics, which can make them hard to understand. GP methods fit Occam’s razor, offering a clarity of purpose in their structure.
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We can understand why and when they work, which is of scientific importance [27]. Therefore, it is of potential value to benchmark
deep learning methods against kernel-based methods to ensure that the deep part of a DL method serves a significant purpose beyond
adding complexity.

1.5. Outline of the article

The rest of the article is organized as follows: We present a brief overview of our GP and kernel approach for solving nonlinear
and parametric PDEs in Section 2; our error analysis is outlined in Section 3; followed by numerical experiments in Section 4 and
conclusions in Section 5. Auxiliary results are collected in Appendices A to C.

2. Kernel methods for parametric PDEs

In this section we extend the kernel methodology of [12] to the case of parametric PDEs as outlined in Subsection 2.1. Some
numerical strategies and ideas for improving the efficiency of the solver are discussed in Subsection 2.2.

2.1. Solving parametric PDEs

Let us consider bounded connected domains Q € RY with a Lipschitz boundary for d > 1 and ® C R? for p > 1. We consider
nonlinear and parametric PDEs of the form

Pw*)(x;0)= f(x;0), (x,0)eQX0O,
Bu*)(x;0) = g(x;0), (x,0)€0QX0O,

(2.1)

where P, B are nonlinear differential operators in the interior and boundary of Q, 0 is a parameter, and f, g are the PDE source and
boundary data. For now we assume that the above PDE is well-posed and has a unique solution «*(x; 8) which is assumed to exist in
the strong sense over Q and for all values of 8 € ®. In [12] the authors introduced a GP/kernel method for solving nonlinear PDEs
of the form (2.1) without parametric dependence. Here we extend that approach to the parametric case.

Let Y :=Q X 0O and 9Y :=0Q X O and write s := (x,0). Choose M > 1 collocation points {s,,,}f:f:1 €Y such that {s,,,}::liﬂ1 eY
and {s,,} ”r‘l”: Mg+1 €0Y! and consider a kernel K : Y X Y — R with its corresponding RKHS denoted by " and norm || - ||;-. We then
propose to approximate u*(s) by solving the optimization problem

minimize ||lu

nimize [Jull
s.t. Pu)(s,,)=f(s,), m=1,...,Mq, (2.2)

Bu)(s,,) =g(s,), m=Mqg+1,....M.

Observe that our approach above approximates the solution u as a function defined on the set product set Y which is different from

previous works [5,16,17,62,61] where the solution map € — u*(-;0), as a mapping from © to an appropriate function space, is

characterized and approximated. The latter approach requires different discretization methods for the 6 parameter and the functions

u*(-; 0) while our approach leads to a meshless collocation method on the product space which is desirable and convenient at the

level of implementation, following [12, Sec. 3.1] (see also [33]).
We make the following assumption on the differential operators P, /3.

Assumption 2.1. There exist bounded and linear operators L, ... ,LQQ € E(U‘; C(Y)) and LQQ+1’ Lo € E(U‘;C(dY)) for some
1 £ Qg < O together with maps P : R92 — R and B : R2792 — R, which may be nonlinear, so that P, B3 can be written as

Pu)s) = P(L, @O ... Lo, @)(s)  VsET,

(2.3)
Bu)(s) = B(LQQH(u)(s), s LQ(u)(s)) vseaY. ¢
We briefly introduce a running example of a parametric PDE for which the above assumptions can be verified easily.
Example 2.2 (Nonlinear Darcy flow). Consider the nonlinear Darcy flow PDE
—div, (exp(a(x,0)Vu)(x) +rux) =1, x€Q,
2.9
ux)=0, x€0Q,

1 Note that we do not specifically ask for collocation points on 9 X d® since we may not have boundary data on the 6 parameter.
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where Q c R? is a bounded domain with a Lipschitz boundary and 7 : R — R is a continuous and nonlinear map. We assume that
the permeability field a is parameterized as

P
a(x,0)= )" 0,y,(x), (2.5)

Jj=1

where 0; €(0,1) so that ® =(0,1)” and y; € C(ﬁ). Substituting into the PDE and expanding the differential operator we can rewrite
our nonlinear PDE as

P P
—exp <Z ejwj(x)> ' 0,V,(x) - Vu(x; 0)

j=1 j=1
P
—exp <Z 9jl//,-(X)> Au(x;0)+t(u(x;0) =1, (x,0)eQx0,
Jj=1
u(x;0)=0, (x,0)€0Qx0,

where we used subscripts on the differential operators to highlight that derivatives are computed for the x variable only and not 6.
We also did not use the compact notation s = (x, 8) since it is more helpful to be able to distinguish between the x and 0 variables in
this example. We can directly verify Assumption 2.1 with the bounded and linear operators

Ly :u(x;0) — u(x;0),

14 )4
L, : u(x;0) — exp <Z 9jwj(X)> Z 0,V ;(x) - Viu(x; 0),

j=1 j=1

D
Ly : u(x; ) — exp (2 9j1,/j(x)> A u(x;0)
j=1
Ly @ u(x;0) — u(x; 0).
Note that operators L;, L, are the same here since the point values of u appear in both the interior and boundary conditions. Thus
we have Qg =3 and Q =4 and the maps
P(ty,ty,13) =—t, —t3 + 7(1}), Bip=t. O

If U is sufficiently regular and Assumption 2.1 holds, then we can define the functionals ¢}, € U"* for 1 <q < Q as

1<m<Mg if 1<g<Qq
ol 1=, )0L,s where (2.6)
" Mo+1<m<M if Qg1 <¢g<0.

In what follows we write [¢,u] to denote the duality pairing between U" and U"* and further use the shorthand notation ¢@ to
denote the vector of dual elements ¢, for a fixed index q. Note that qﬁ(") e (WU®Ma if g < Qg but qﬁ(") e (U®M-Mo) if 4> Og
in order to accommodate different differential operators defining the PDE and the boundary conditions. We further write N =
MoOqg + (M — Mg)(QO — Qg) and define

o= (¢",....0 Q) e (U*)®".

Henceforth we write ¢, for n=1,..., N to denote the entries of the vector ¢ and write [¢,u] = ([¢y,ul,...,[dy.ul) € RN . With this
notation we rewrite problem (2.2) as

minimize ||u||y,
{ st. F(lg,u) =y,
where the data vector y € RM has entries
) fGs,), if 1<m< Mg,
T {g(sm), if Mo+l<m<M,

and F : RN - RM is a nonlinear map whose output components are defined as

P(Ighoul s lgf®oul) i 1<m< Mg,

(F(g.uD), = 2.7)

B(169°% ul. ... 16Q.u1) if Mg +1<m< M.

Further define the kernel vector field
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KC.): Y=UN, K. ¢) :=[¢y. K. (2.8)

and the kernel matrix

K@, p) eRVN K@, )i =, KC. )] (2.9)

We can then characterize the minimizers of (2.2) via the following representer theorem which is a direct consequence of [12,
Prop. 2.3]:

Proposition 2.3. Suppose Assumption 2.1 holds and K (¢, ¢) is invertible. Then a function u’ : Y — R is a minimizer of (2.2) if and only if

u'(s)=K(s,p)K(¢. )" '2", (2.10)

where 2" € RY solves

minimize z' K(¢, ¢p) 'z,
nimi (2.11)
s.t. F(z)=Yy,

with the nonlinear map F defined in (2.7).

This result allows us to reduce the infinite-dimensional optimization problem (2.2) to a finite-dimensional optimization problem
without incurring any approximation errors; it is an instance of the well-known family of representer theorems [80, Sec. 4.2]. Thus,
to find an approximation to u* we simply need to solve (2.11) and apply the formula (2.10); algorithms for this task are discussed
next.

2.2. Numerical strategies

We now summarize various numerical strategies for solution of (2.11). These strategies are naturally applicable to non-parametric
PDEs as they can be viewed as a special case of (2.1) with a fixed parameter. In Subsection 2.2.1 we summarize a Gauss-Newton
algorithm that was introduced in [12] followed by a new and, often, more efficient strategy that linearizes the PDE first before
formulating the optimization problem in Subsection 2.2.2.

2.2.1. Gauss-Newton
To solve the optimization problem (2.11), a Gauss-Newton algorithm was proposed in [12] which we recall briefly. The equality
constraints can be dealt with either by elimination or relaxation. Suppose that there exists a map F : R¥N-M x RM — RV so that

F()=y ifandonlyif z=F(w,y), forauniqueweRN"M

Then, we rewrite (2.11) as the unconstrained optimization problem

minimize F(w,y)" K(¢,d)" F(w,y). (2.12)
weRN-M

Then a minimizer w' of (2.12) can be approximated with a sequence of elements w’ defined iteratively via w/*! = w’ + a/ 6w’

where a > 0 is an appropriate step size while 5w’ is the minimizer of the optimization problem

_ _ T _ _
minimize (F(wf’ ¥) + V F(W, y)éw) K(p, )" (F(w" )+ V, F(W, y)éw) .
SweRN-M
Alternatively, if the map F does not exist or is hard to compute, i.e., eliminating the constraints is not feasible, then we consider
the relaxed problem
S l 7 —1 1 2
minimize =z K(¢, z+ —|F(z)-Yy|,
nimize 52" K@$.9) 2+ 5 1F@) -]

for a sufficiently small parameter § > 0. Here || - || is the L? norm of the vector. A minimizer z

of the above problem can be
approximated with a sequence z° where z°*! =z + a? 627 where 6z is the minimizer of
minimize 62" K(¢, )" 'z" + L |F(z°)+ VF@")sz - y|>.
szeRN Zﬂz

We summarize the proposed Gauss-Newton algorithm for solution of parametric PDEs in Algorithm 2.1.

2.2.2. Linearize then optimize

The Gauss-Newton approach of Subsection 2.2.1 is applicable to wide families of nonlinear PDEs. The primary computational
bottleneck of that approach is the construction and factorization of the kernel matrix K (¢, ¢) which for some PDEs can be prohibitively
large. To get around this difficulty we propose an alternative approach to approximating the solution of (2.2) by first linearizing the
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Algorithm 2.1 Kernel Methods for Parametric PDEs using Gauss-Newton (Subsection 2.2.1).

Input: PDE of the form (2.1) defined on Y = Q x ® with boundary condition on dY =9dQ X ®, M > 1 collocation points in ?, and kernel K :
YxY—>R
Output: Approximation u'(s) to exact solution u*(s)
1: N := Mo0, + (M — Mu)(Q — Qg)
2: fori=1: N do > Build Kernel Matrix K (¢, ¢) (2.9)
3 forj=1: N do
4 K(@.9),, = ¢, K(.9);]
5: end for
6: end for
7: while not converged do
8
9.

— —_ T — —_
sw’ :=argming, (F(wf )+ V F(w’ ,y)&w) K, ) (F(wf ¥) + V F(w’ ,y)&w)
wtl =w’ +a’ 5w,
10: end wlﬁle
11: z' 1= F(w,y)
12: uf(s) := K(s,p)K(p, p)~'z* > Apply (2.10)

PDE operators before applying Proposition 2.3. The resulting approach is more intrusive in comparison to the Gauss-Newton method
as it requires explicit calculations involving the PDE but often leads to smaller kernel matrices and better performance. This method
can also be viewed as applying the methodology of [12,33] to discretize successive linearizations of the PDE.

Let u" denote the minimizer of (2.2) as before. Assuming that the operators P and /3 are Fréchet differentiable we then approximate
u" with a sequence of elements u’ obtained by solving the problem

mlggfnze [l
st. (P@H+P W Hwu—-u"H) 5, =/, m=1,...,Mgq, (2.13)
(Ba™H+B @ Hu-u"")|, =gs,). m=Mg+1,...M,
where, P’ and B’ are the Fréchet derivatives of P and B.

Let us further suppose that Assumption 2.1 holds. Observing that the constraints in (2.13) are linear in u we obtain an explicit
formula for u? by [12, Prop. 2.2]:

1

W (s)=Kes, ¢ K@ e (2.14)

where 27~ ! = (szl, ,zi;l)T has entries
1 (f =P D+P @, if1<m< Mg, 215
m (f = P@ D+ B )|, i Mg+1<ms M. )
The vectors JJf_l € (U*)®M are obtained by concatenating the dual elements
Py 85, 0P (W'Y, if 1<m< Mg, 2.16)
" 8 0B WY, if Mg+1<m< M. '

We note that the above scheme implicitly assumes that V" is sufficiently regular so that the derivatives P’(u’~!) and B’ (u’~!) can
be regarded as linear operators mapping V" to C(Y) where pointwise evaluation is well-defined. The most important feature of the
linearize-then-optimize approach is that the kernel matrices K ((i)f_l, (}Sf_l) are of size M X M while the kernel matrix K(¢, ¢), used
in the Gauss-Newton approach of Subsection 2.2.1, is of size N X N. Note that N/M = Q, and for instance, in Example 2.2, Qg =3
so there is an approximately 3x reduction in the kernel matrix size. Thus, the linearize-then-optimize approach requires the inversion
of much smaller kernel matrices at each iteration but these matrices need to be updated successively since the ¢° depend on the
previous solution u”~!. In the case where Assumption 2.1 holds and P, B are differentiable, then the P’(u) and 58’ (u) operators can
be written explicitly as

o Lw
Pw ) tum VP (LG, Loy ™) | |,
Lo,

LQ +1(ll)
Bw ™ :u~VB (LQQ+1(’/_1)’ ’LQ(MK_I)>T QE
Lo

8
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Algorithm 2.2 The linearize-then-optimize approach to parametric PDEs.

Input: PDE of the form (2.1) defined on Y = Q x ® with boundary condition on 0Y =0Q X ®, M > 1 collocation points in 7, and kernel K :
YxY->R

Output: Approximation u'(s) to exact solution u*(s)

1: while not converged do o> Iteratively approximate u'

fF=PWNH+P W W), ifm=1,..., Mg,
2 zZ0-li= ( o ey |) S @ > Build z°~!
(f=P@™H+BW "), ifm=Mg+1,.. M.
_ 5. oP WY, ifm=1,..., Mg, e
3 gti=q ° & Build ¢
8 0B W™, ifm=Mg+1,...,M.

&  W(©=Ksd HK@ ¢ e
5: end while

We note that while the “linearize then optimize” approach can reduce the size of kernel matrices by a constant factor, which is
significant in practice, the size still scales with the number of collocation points. For very large-scale problems requiring many
collocation points, we can further employ fast algorithms for these kernel matrices; see for example [13].

Remark 2.4. The “linearize then optimize” approach performs linearization first at the continuous level, while the Gauss-Newton
iteration linearizes at the discrete level after applying the representer theorem and transforming the optimization problem into
an unconstrained form, either through elimination or relaxation. The “linearize then optimize” approach and the Gauss-Newton
iteration are mathematically equivalent if the latter is implemented using elimination with a specific choice of F. This equivalence
is demonstrated in [13, Sec. 5.1] for a nonlinear elliptic example, where the algorithm is also shown to be equivalent to a sequential
quadratic programming approach for solving (2.11). In general, these approaches may differ in how the nonlinear operators P, /3, or
the nonlinear map F are represented. ()

Finally, we summarize our linearize-then-optimize approach as a pseudo-algorithm within Algorithm 2.2.
3. Error analyses

We now present our main theoretical results concerning convergence rates for the minimizers u’ of (2.2) to the respective true
solutions u*. We start in Subsection 3.1 by articulating the abstract framework, main theorem and proof. We then consider the simple
setting of a nonlinear PDE in Subsection 3.2 where the RKHS U" already satisfies the boundary conditions of the PDE to convey the
main ideas of the proof in a simple setting. Non-trivial boundary conditions are then considered in Subsection 3.3 followed by the
case of parametric PDEs in Subsection 3.4. Our proof technique is a generalization of the results of [33,76] to the case of nonlinear
and parametric PDEs that are Lipschitz stable and well-posed.

3.1. An abstract framework for obtaining convergence rates

We present here an abstract theoretical result that allows us to obtain convergence rates for nonlinear operator equations. Our
error analyses concerning the numerical solutions u' and the true solution to the PDE u* then follow as applications of this abstract
result. Our main result here can also be viewed as a generalization of the results of [76, Sec. 10], which focused on linear operators,
to the nonlinear case.

Let us consider operator equations of the form

T (%) =w*, 3.1

where v*, w* are elements of appropriate Banach spaces and 7 is a nonlinear map. In the setting of PDEs the map 7 is defined by the
differential operator of the PDE, v* coincides with the solution and w* is the source/boundary data. Broadly speaking our goal is to
approximate the solution v* under assumptions on its regularity and the stability properties of the map 7 . To this end, we present a
general result that allows us to control the error of approximating v* given an appropriate candidate v'. Henceforth we write B,(V)
to denote the ball of radius r centered at zero in a Banach space V.

Theorem 3.1. Consider abstract Banach spaces (V,, || - ||,.);‘: as well as (U, || - ||y+)- Suppose the following conditions are satisfied for any
choice of r > 0 (all the appeared constants C(r) are non-decreasing regarding r):

(A1) For any pair v,V € B.(V}) there exists a constant C = C(r) > 0 so that
lo—d'lly <CIT @) = T @), (3.2)

(A2) For any pair v,V € B,(V,) there exists a constant C = C(r) > 0 so that

17 @) =T (@)ll3 < Cllo =Vl (3.3)
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(A3) For any v € V,, there exists a constant C > 0 so that

llolly < Cllolly-

(A4) There exists a set Ve V,NV; and a constant € > 0, so that for all w,w' € V it holds that
llw—w'll, <ellw—w|l;. (.4
Suppose problem (3.1) is uniquely solvable with v* € U and let v* € U" be any other function such that:

(A5) TW*),TwHeV.
(A6) There exists a constant C > 0, independent of v* and v, so that

10711y < Cllo* 1y (3.5)
Then there exists a constant C > 0, depending only on |[v* ||, such that

;
" = v*[ly < Cellv™lly

Proof. By (Al) we have that

0" = v*|l; < CNT @) = T @), (3.6)

Then (A4) and (AS5) imply that |7 (v") — T (0*)|l, < Ce||T (v") — T (v*)||5. By the triangle inequality we have ||7(v") — T (v*)||; <
17 @ =T O3+ |7 (@*)=T (0)|15. Using (A2), (A3), and (A6) in that order, we get || 7 (v") =T (0)||; < Clo*|l4 < Cllvlly, < Cllo* Iy
Similarly, we have ||7(v*) — 7 (0)||5 < C||v* ||+ Combining these bounds we obtain |7 (v") — T (v*)|l; < Cel||v* ||~ which yields the
desired result due to (3.6). []

Let us provide some remarks regarding the assumptions of the theorem. In our PDE examples we often take the V; spaces to be
Sobolev spaces of appropriate smoothness while V" is taken as an RKHS that is sufficiently smooth and so v* € U" amounts to an
assumption on the regularity of the true solution to the problem. Conditions (A1) and (A2) amount to forward and inverse Lipschitz
stability of the operator 7 while (A4) is often given by a sampling/Poincaré-type inequality for our numerical method. We treat the
constant ¢ separately from the other constants in the theorem since in practice ¢ often coincides with some power of the resolution
(fill-distance/meshnorm) of our numerical scheme, constituting the rate of convergence of the method. Assumption (A3) also concerns
the regularity of the RKHS and the choice of the space V, (we simply ask for U" to be continuously embedded in V) and is a matter
of the setup of the problem. Condition (A6) is less natural as it requires the norm of the approximate solution v* to be controlled
by the norm of v*. While this condition does not hold for many numerical approximation schemes, we will see that it follows easily
from the setup of our collocation/optimal recovery scheme.

In plain words, the most important message of Theorem 3.1 is that: given Condition (3.5) and the Lipschitz-continuity of T and its
inverse, it follows that the approximation error between v' and v* is bounded by the approximation error between T (v") and 7 (v*). This
result can be applied to both GP/kernel and ANN based collocation methods, since both seek to minimize the error between 7 (vf)
and 7 (v*) at collocation points. This Condition (3.5) is automatically satisfied for our GP/Kernel based methods that solve problems
of the form
i

o =argminfolly st (@R TOI=[dn TN i=1...M,

with 7" denoting the differential operator of a PDE and ¢; denoting a set of dual elements (e.g. pointwise evaluations at collocation
points). Then since the true solution v* satisfies the PDE for an infinite collection of dual elements (e.g. pointwise within a set, or
in a weak sense) then we immediately have that ||v7||;» < ||v*||7+. One can also take V" to be a Barron space (indeed the V; norms
could be arbitrary) to obtain an analogous result for ANNs, but it is unclear if this setup coincides with (or leads to) any practical
algorithms.

3.2. The case of second order nonlinear PDEs

We begin our error analysis in the case where (2.1) does not depend on the parameter 0 and homogeneous Dirichlet boundary
conditions are imposed, i.e., nonlinear second order PDEs of the form

PU)(x)=f(x), X€Q,
3.7)
u*(x) =0, X € 0Q.
The choice of Dirichlet boundary conditions is only made for simplicity here and can be replaced with other conditions of interest.
We will also consider approximate boundary conditions in Subsection 3.3. We further assume that the kernel K is chosen so that the
elements of U" readily satisfy the boundary conditions of the PDE and consider optimization problems of the form

10
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minimize ||u
nimize [l

st Pu)(x,)=f(x,), m=1,....,Mq, (3.8)
u(x) =0, X € 0Q,

where X, :={x,, }mel C Q are a set of collocation points. We need to impose appropriate assumptions on the RKHS U/, the domain
Q and the PDE operator P.

Assumption 3.2. The following conditions hold:

(B1) (Regularity of the domain) Q C R¢ is a compact set with a Lipschitz boundary.
(B2) (Stability of P) There exist indices y > 0 and k € N satisfying d /2 <k +y and s > 1,7 € R, so that for any r > 0 it holds that

luy = uyll ge @) < CNIP @) = Pl ey Vuy,u, eB,(Hf(Q)mHé(Q)) (3.9
IPuy) = Pyl ricer e < Clliey = sl g5y Vuy,uy € B,(H*(Q) 0 H(Q) (3.10)

where C = C(r) > 0 is independent of the u;’s. The space H*(Q2) N H 5 () can be equipped with the norm || - | ys(q), which is
used to define the balls above.
(B3) U is continuously embedded in H*() N HOl «@. ¢

Item (B1) is standard while (B3) dictates the choice of the RKHS U/, and in turn the kernel, which should be made based on a priori
knowledge about regularity of the strong solution u*. We highlight that, asking elements of V" to satisfy the boundary conditions
is only practical for simple domains and boundary conditions such as periodic, Dirichlet, or Neumann conditions on hypercubes or
spheres. Assumption (B2) on the other hand is a question in the analysis of nonlinear PDEs and is independent of our numerical
scheme; simply put we require the PDE to be Lipschitz well-posed with respect to the right hand side/source term.

We are now ready to present our first theoretical result characterizing the convergence of the minimizer u® of (3.8) to u* the
strong solution of (3.7).

Theorem 3.3. Suppose Assumption 3.2 is satisfied and let u* € U" denote the unique strong solution of (3.7). Let u® be a minimizer of (3.8)
with a set of collocation points X C Q and define their fill-distance

hg = sup inf |x' —x|.
X eQXEXq

Then there exists a constant hy > 0 so that if hg < h then

llu" = u* | ey < CL U Il

where the constant C > 0 is independent of u', and hg,.

Proof. We will obtain the result by applying Theorem 3.1 with the map 7 = P and the spaces V; = H/(Q), V, = H¥X(Q), V; =
H*7(Q), and V, = H*(2). With this setup we proceed to verify the conditions of Theorem 3.1: Condition (A1) follows from (3.9),
(A2) follows from (3.10), (A3) follows from (B3).

Condition (A6) holds since ' is a minimizer of (3.8) and so ||u' ||~ < ||u* ||, since u* is feasible but satisfies additional constraints
compared with u7, i.e., it solves the PDE over the entire set Q. Thus, (3.5) is verified with constant C = 1.

It remains to verify (A4): Let f = P(u’) — P(u*) and observe that f(x) =0 for all x € Xg,. Thus f € H**7(Q) is zero on X, and an
application of Proposition A.1 yields the existence of a constant A, > 0 so that whenever hg < hg then || f]| @) < Chgll 7l H**7(Q)-
This verifies (3.4) with £ = Chg. O

Remark 3.4. We note that Item (B2) and in turn Theorem 3.3 can easily be modified to a local version where the stability estimates
(3.10) and (3.10) are stated for u,, u, belonging to a ball of radius r > 0 around the true solution u*. Then one can obtain an asymptotic
rate for |lu’ —u*|| ¢ (o) under the additional assumption that u' is sufficiently close to u*. ()

Remark 3.5. The assumptions and results of Assumption 3.2 are analogous to the one used to obtain error estimates in numerical
homogenization for elliptic PDEs [66]. In particular Theorem 3.3 can be extended to the setting where measurements on the PDE are
not pointwise but involve integral operators and where the coefficients may be rough. ¢

We now present a brief example where Assumption 3.2 can be verified and so Theorem 3.3 is applicable to obtain convergence
rates for our GP/kernel collocation solver.

11
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Example 3.6 (Nonlinear Darcy flow continued). Let us consider the nonlinear Darcy flow PDE (2.4) and assume that Q has a smooth
boundary and a(x) € C*(Q) is fixed and satisfies a(x) > 1. Further suppose 7(z) = 1 + tanh(fz) for a fixed constant f > 0 to be
determined. Now pick k = [d /2 + a] from which it follows that H¥(Q) is continuously embedded in C*(Q) [34, Thm. 7.26] and fix
an integer y > 0.2 It is then straightforward to verify (3.10) with s = k + y +2 as well as Assumption 3.2(iii) by choosing the kernel K
to be the Green’s function of the operator (—A)* on the domain €, subject to homogeneous Dirichlet boundary conditions. We note
that approximating this Green’s function can be expensive in practice and in Subsection 3.3 we propose a way around this step by
using collocation points on the boundary of Q to impose the boundary conditions.

Furthermore our assumptions on a and 7 imply that P is uniformly elliptic in Q (see [34, Part II] for definition of ellipticity for
nonlinear elliptic PDEs). Since 7 is smooth it follows from [34, Thm. 13.8] that, for any « € (0,1) and f € C*(Q), the PDE

—div( exp(a)Vu) +tuw)=f, xX€Q,
u=0, x€0Q,

(3.11)

has a solution u € C*(Q). Now pick f;, f, € H¥(Q) which, by the aforementioned Sobolev embedding result, belong to C%(Q). Write
uy,uy € C2(Q) for the solution of the PDE with both right hand sides and observe that the difference w := u, — u, solves the PDE

—div( exp(a)Vw) = f1— for+ 1) —v(u).
Standard stability results for linear elliptic PDEs then imply the bound

”w”HZ(Q) <B (||f1 - f2”L2(Q) + [l 7(uy) — T(u1)||L2(g)) s

for a constant B > 0 independent of w, f|, f,,u;,u,. Since 7 is globally f-Lipschitz we infer that ||z(u;) — z(u,)|| 2@ < Bllwl| 12Q)
which, together with the subsequent bound, yields

B
||W||H2(Q) < m”fl - f2||L2(Q)~

Thus, assumption (3.9) is satisfied with # =2 as long as B < 1. (}

3.3. Handling boundary conditions

We now turn our attention to the case where (2.1) is still independent of the 6 parameter but involves non-trivial boundary
conditions, i.e.,

{P(u*)(X) =f(x), xeQ

(3.12)
Bu*)(x)=g(x), x€oQ.

We will further assume that the elements of U do not satisfy the boundary conditions exactly and so boundary collocation points are
utilized to approximate those conditions leading to the problem

minimize ||u
nimize [l

st. Pu)(x,)=f(x,). m=1,.. Mg, (3.13)
Bu)(x,,) =gX,), m=Mg+1,....M,

points. We will state our assumptions and results for PDEs in d > 1 dimensions since in the 1D case we can, in principle, impose the
boundary conditions exactly by placing some collocation points on boundary. The main difference, in comparison to Theorem 3.3, is
that here we need to impose new assumptions on the PDE operators 7 and /3 and the boundary of Q to be able to use Proposition A.1
(sampling inequality on manifolds) in the final step of the proof to obtain approximation rates for the boundary data.

where Xq :={x, }Z[:Ql C Q are the interior collocation points as before and X, := {x,,} C 0Q are the boundary collocation

Assumption 3.7. The following conditions hold:

(C1) (Regularity of the domain and its boundary) Q c R¢ with d > 1 is a compact set and dQ is a smooth connected Riemannian
manifold of dimension d — 1 endowed with a geodesic distance p,q.
(C2) (Stability of the PDE)
There exist y > 0 and k,7 € N satisfying d/2 < k+y and (d — 1)/2<t+y, and 5,7 € R, so that for any r > 0 it holds that

lluy = wsll ey SC (1P ) = Pl ey

’ (3.14)
+ 1By = Bu)ll grog))  Yuy.up € B.(H(Q)),

2 We only assume the exponents are integers for simplicity but our arguments can be generalized to the case of non-integer indices.

12
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(1P(uy) = Pl gy + 1BWy) = Bl givr o0
< Clluy —usll sy Yu,,uy € B,(H*(Q)),

(3.15)

where C = C(r) > 0 is a constant independent of the u;.
(C3) U is continuously embedded in H*(Q). ¢

Observe that the above assumptions are analogous to Assumption 3.2 with the exception that we no longer work with the restricted
Sobolev spaces H, (')‘ since we do not need to impose the boundary conditions. However, we need to state our stability results for both
P and B. We emphasize that the verification of condition (C2) remains a question in the analysis of PDEs. We are now ready to

extend Theorem 3.3 to the case of non-trivial boundary conditions.

Theorem 3.8. Suppose Assumption 3.71s satisfied and let u* € U" denote the unique strong solution of (3.7). Let u® be a minimizer of (3.8)
with a set of collocation points X C Q where X C X denotes the collocation points in the interior of Q and X, denotes the collocation
points on the boundary 0€2. Define the fill-distances

hg = sup inf |x —x|, hyo := sup inf pyo(x’,x),
X' eQXEXq x' €0 XEX90

where pyg : 0Q X 0Q — R, is the geodesic distance defined on 0Q (see Appendix A), and set h :=max{hg, hyo}. Then there exists a
constant hy > 0 so that if h < hy, then

llu" = u* | sy < CRY [lu* [l

where C > 0 is independent of u" and h.

Proof. The proof follows an identical approach to Theorem 3.3 and applies Theorem 3.1 with the appropriate setup. We take the
operator 7 : u - (P(u), B(u)). We then choose the spaces V; = HY(Q), V, = H*(Q) x H'(dQ), V5 = H*7(Q) x H*"(Q), and V, =
H*(€) where we equip V, with the norm ||(f. &)l := I/l gr@) + 18|l 41(ay and similarly for V3 with the H*(Q) and H'(0Q) norms
replaced by H**7(Q) and H'*"(dQ) norms.

Analogously to the proof of Theorem 3.3, we can verify Conditions (A1), (A2), and (A3) by the hypothesis of the theorem. Condition
(A6) is also satisfied since u' is a minimizer of (3.13) and so ||u'||~ < ||u*||~ as u' satisfies more relaxed constraints.

It remains for us to verify (A4). Repeating the same argument as in the proof of Theorem 3.3, in the interior of Q, yields the bound

IP@") = Pl iy < CHLIPGY) = P@)l icer () (3.16)

whenever hg, < i, and h, is a sufficiently small constant that is independent of u' and u*.
Let g = B(u") — B(u*) which satisfies §(x) = 0 for all x € X, and so § € H'*"(3Q) is zero on the set X,,. Then Proposition A.1

implies the existence of a constant &, > 0 so that whenever h,, < h, we have

121l 100y < CRoNEN e (o0
Now take hq = min{h;, h,} and combine the above bound with (3.16), and substitute the definition of g to get

1P = Pl kg + 180N = B i)

SCR (IP@) = Pl rier ey + 1B = B e o))

whenever & < hy. This verifies (A4) with e = Ch?. []

Remark 3.9. We highlight that our statement of Theorem 3.8 can easily be extended to PDEs with mixed boundary conditions simply
by modifying the norm that is chosen on the boundary, i.e., the spaces V, and V;, so long as we can prove the requisite stability
estimates in condition (C2). In particular, this idea will allow us to obtain errors for time-dependent PDEs, cast as a static PDE
in an space-time domain Q with the initial and boundary conditions imposed as mixed conditions on 0. In fact, in the case of
time-dependent PDEs we do not need to impose the boundary conditions on all of 0Q but only on a subset. ()

We now return to our running example to verify Assumption 3.7 for the Darcy flow PDE.

Example 3.10 (Nonlinear Darcy flow continued). Consider the PDE (3.11) but this time with the boundary condition u = g on 9Q for
a function g € H'*?(0Q) with ¢ > min{3/2,(d — 1)/2} and y > 0. Now fix a function ¢ € H'*7*1/2(Q) so that its trace coincides with
g and define v = u — @ and observe that u solves the above PDE if v solves

—div(exp(@)Vv) +'(v) = f', x€Q,
v=0, X € 0Q,

13
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where we defined 7/(v) :=t(v+ @) and f' 1= f + div( exp(a)V(p). Now observe that the functions 7/ and f’ still satisfy the same
conditions as 7, f in Example 3.6 and so we obtain existence and uniqueness of the solutions v and in turn u.

Now consider two solutions u,u, arising from source terms f|, f, and boundary data g;, g,. Then the error w = u; — u, solves
the PDE

—div(exp(@Vw) = f +t(uy) — 7(u;), XEQ,
w=g|— g, X € 0Q.
By standard stability results for linear elliptic PDEs [55, Thm. 4.18] we have

||W||H2(Q) < B(”fl - f2||L2(Q) + ||T(u1) - T(”2)||L2(Q) + ”81 - g2||H3/2(Q))
We can now repeat the same argument as in the final steps of Example 3.6 to get the bound
B
||w||H2(Q) < m (”fl - fz”HZ(Q) + I8 _g2||H3/2(Q)> >

which verifies Assumption 3.7(ii) with s =2 provided that fB< 1. ¢
3.4. The case of parametric PDEs

We now consider the setting of the parametric PDE (2.1). Our error estimates can be viewed as further extending Theorem 3.8
with additional assumptions due to the fact that we will need to approximate the solutions on the set Y = QX © as well as its relevant
boundary which needs to be sufficiently regular for us to apply Proposition A.1. Beyond this technical point, the statement and proof
of the result for parametric PDEs is identically to PDEs with boundary conditions and so we state our results succinctly, starting with
the requisite assumptions on the parametric PDE.

Assumption 3.11. The following conditions hold:

(D1) Qc R? and ® Cc R? are compact sets such that 0Q and 0@ are smooth Riemannian manifolds of dimensions d — 1 and p — 1
respectively.

(D2) (Stability of the parametric PDE) There exist y > 0 and k,t € N satisfying (d + p)/2 < k+y and (d + p—1)/2 <t +y, and Banach
spaces V| and V, so that for any r > 0 it holds that

lluy =l
(3.17)
< C(||73(ul) - p(”z)”yk(y) +1B@;) - B(”z)”yi(ay)) Vuy,uy € B.(V)),
1Puy) = Pl g (xy + 11Bwy) = Bl geer o
(3.18)

S Clluy —uylly,  Vuy,uy € B.(Vy),

where C = C(r) > 0 is a constant independent of the u;.
(D3) U is continuously embedded in V. (>

Unlike Assumptions 3.2 and 3.7 here we left the function spaces ¥ and V¥, as generic Banach spaces of functions u : Y — R since,
for parametric PDEs, we can often obtain the desired stability results in non-standard norms, such as the mixed norm in Example 3.13
below, as opposed to the Sobolev norms used for the non-parametric PDE setting. More generally, one may also impose V,, V3 to be
generic Banach spaces rather than the standard Sobolev spaces. The Sobolev space setting suffices for applications in this paper.

With the above assumptions we can now present our main result for the parametric PDE setting. The proof is omitted since it is
identical to that of Theorem 3.8 except that (1) the argument on 0Q2 is now repeated for 0Y = 0Q2 X ® which is in general a smooth
manifold with boundary but this modification does not affect any of the steps in the proof, and (2) the results are stated in terms of
the norm on the space V.

Theorem 3.12. Suppose Assumption 3.11 is satisfied and let u* € U" denote the unique strong solution of (2.1). Let u’ be a minimizer of
(2.2) with a set of collocation points .S C Y U dY where Sy C .S denotes the collocation points in the interior of Y and S,y denotes the
collocation points on the boundary 0Y. Define the fill-distances

hy :=sup inf |’ =s|,  hyy := sup inf pyy(s,s),
s’'eY SESY s’ €aY SESoY

where pyy : Y X 0Y — R, is the geodesic distance defined on Y (see Appendix A), and set h := max{hy,hyy}. Then there exists a
constant hy > 0 so that if h < hy, then

Il = u*lly < CRY|lu* Iy,

where C > 0 is independent of u® and h.
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We end this section by returning to our example of the Darcy flow PDE but this time in the setting where the coefficient a and the
source f are dependent on a finite dimensional parameter 8. We will show that Assumption 3.11 can be verified in this case, with
¥V, and V, taken as Banach spaces with mixed Sobolev and L? norms, and so Theorem 3.12 is applicable.

Example 3.13 (1D Parametric Darcy flow PDE). Consider the parametric elliptic PDE
—div(A(x,0)Vu) = f(x,0) xEQ,
u=0, X € 0Q,

over a compact domain Q and 0 € ® where both Q and © are assumed to satisfy condition (D1); e.g., take 2 and ® to be unit balls.
For simplicity we are ignoring the boundary operator in this case and imposing homogeneous Dirichlet boundary conditions. In this
example we assume a is smooth in both x and 6, and there exists m, M > 0 such that m < A(x,0) < M. As a concrete example we
may take A(x,0) = Ele 0,w;(x) where the y; are a set of smooth functions on € that are uniformly bounded from below.

First, the boundness of the operator P is straightforward to obtain, since a is smooth and its derivatives will be bounded in the
bounded domain Q x ®. More precisely, for any y > 0, since f = —div(A(x, 0)Vu) =—-V A V,u— AAu, there exists some constant
C independent of u and f such that

||f||H7(Q><®) < Cllullﬂ}’+2(gx®) .

Due to the linearity of the equation, by replacing u by u; — u, and noting that f = Pu = Pu; — Pu,, we obtain the forward stability

1Puy = Pus || g7 oxey < Clluy — u2||HV+2(Q><G)) . (3.19)

For the backward stability estimate, via integration by parts, we have

/A(X,G)leu(x,G)lzdxdez/u(x,0)f(x,0)dxd9
Y Y
< / . )l 2 1 - Ol 2,00 4O
(€]

SCo/||qu(',0)||L2(Q)||f(',9)||L2(Q)d9
(€]

< C[ ”u”LZ(G),H(;(Q)) ||f||L2(®,L2(Q)) N

where in the first and third inequalities, we used the Cauchy-Schwarz inequality; in the second inequality, we used the Poincaré
inequality as u(-, 0) is zero on 0Q2. Here we used the notation:

2 . o2 2 . o2
IIMIILZ(@’H(;(Q)) -—/Ilu(,O)IIHé(Q)dB and I/ 11726 12y /Ilf(,9)||L2(Q)d9-
) )

Note that the L2(®, L*(Q)) norm is also equivalent to the L*(Q x ©) norm. Now, using the bound on A, we obtain that there exists
a constant C such that

||u||L2(®,H1(Q)) < C”f”LZ(Qx@) :
Similar to the proof for the forward stability, the backward stability follows by the linearity of the equation. We have

luy = usll 20,11 Q) < CIPuy = Pusll 120x0)- (3.20)

Thus it follows that we can verify condition (3.17) with the norm || - ||; = || - ||L2(®,H(;(Q)), - lls =11 - | r+2(x@)> @and k=0. O

3.5. Bounding fill-distances

Our bounds in Theorems 3.3 and 3.12 are given in terms of the fill distances & of our collocation points. In this section, we
provide an upper bound of these fill distances in terms of the number of collocation points, under the assumptions that the points are
randomly drawn according to uniform distributions both in the interior of the domains and their pertinent boundaries. Throughout
this section we only consider the case of non-parametric PDEs, hence we work with , assumed to be a compact subset of R? with
boundary 0Q which is a compact smooth manifold of dimension d — 1. We focus on the non-parametric setting for simplicity and our
results can easily be extended to the parametric PDE setting by simply replacing Q with Y as a compact subset of R¢*?.

Proposition 3.14. Suppose we sample M, points in Q and M 4 points on 0€2, uniformly with respect to the canonical volume and surface
measures. Let 6 > 0. Then, with probability at least 1 — 6, the fill-in distances hq, and h,q satisfy
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log(Mq/8)\ /¢ log(M,q,/8)\ /@D
hQ$C< og(Mq/ )) . h,)gSC< (Mo / )) ’
Mg Mg

where C is a constant independent of Mg, M and 6.

The proof of Proposition 3.14 can be found in Appendix B.
Let’s combine Proposition 3.14 and previous error estimates to get error bounds regarding the number of collocation points. In
the case of Theorem 3.3 where there is no boundary, we get

log(Mg/8)\""¢
—Q) llu* Nl

T *
u' —u sy < C
I s @) < M,

while in the case of Theorem 3.8 where boundary is considered, we have

- log(Mq/6)\"*  (log(Myq/8)\"/“ "\
e’ —u* s <C| (—o— ) +( —— l* 1l
Mg M;q

More generally, we note that the bounds in Proposition 3.14 can be applied to the abstract setting in Theorem 3.1 when ¢ depends
on the fill-in distance.

If s and y are appropriately chosen such that the required assumptions hold, and y > d/2, then the convergence rate is at least as
fast as the Monte Carlo rate, for uniformly sampled collocation points. There is no curse of dimensionality in this case.

4. Numerical experiments

In this section, we study several numerical examples to demonstrate the interplay between the dimensionality of the problem and
the regularity of the solution. Our theory demonstrates that this interplay is central to determining the convergence rate, and hence
accuracy, of the methodology studied in this paper.

In Subsection 4.1, we consider a high dimensional elliptic PDE with smooth solutions. By varying the dimension of the problem
and the frequency of the solution, we demonstrate dimension-benign convergence rates, and in particular the accuracy is better
when the frequency of the solution is lower. In Subsection 4.2, we consider a high dimensional parametric PDE problem to illustrate
the importance of choosing kernels that adapted to the regularity of the solution. In Subsection 4.3, we present a high dimensional
Hamilton-Jacobi-Bellman (HJB) equation, which goes beyond our theory and demonstrates the interplay between dimensionality and
regularity.

4.1. High dimensional PDEs

Consider the variable coefficient nonlinear elliptic PDEs

(4.1)

—V-(AVw)+i’=f, inQ,
u=g, onodQ.

We set A(x) =exp (sin (2;‘;1 cos(x j)) ), and the ground truth solution

d
u*(x; ) = exp(sin(B Y cos(x)))),
j=1
where we have a parameter § to control the frequency of u. The right hand side and boundary data are obtained using A and u*.

In the experiment, we choose the domain Q to be the unit ball in R¢ for d = 2,3, ...,6. We sample Mg, = 1000,2000,4000, 8000
points uniformly in the interior, and respectively M,q = 200,400, 800, 1600 points uniformly on the boundary.

After selecting the kernel function, the number of iteration steps in our algorithm is set to be 3 with initial solution 0. We sample
another set of M, test points and evaluate the L? error of the solution on these points. The results are averaged over 10 independent
draws of the uniform collocation points.

In the first experiment, we choose the Matérn kernel with v =7/2 and with lengthscale ¢ = 0.25 \/E . We choose f = 1,4, to
compare the convergence given ground truth with different frequencies. The results are shown in Fig. 2. It is clear that when f is
small, the accuracy is better. The slopes of convergence curves also have a tendency to improve for d > 3 if we increase f.

In the second experiment, we fix f =4, and choose the Matérn kernel with v =5/2,9/2 and with lengthscale ¢ = 0.25 \/E . Results
are shown in Fig. 3. Comparing v =5/2,9/2 and v = 7/2 in the last example, we observe that increasing v leads to faster convergence.
This is due to the fact that the true solution is smooth. In dimension d =2, we can identify the exact convergence rate as v — 1. In all
dimensions, the rate is faster than the Monte Carlo rate. We observe that the regularity of the solution softens the effect of the curse
of dimensionality, i.e., convergence rates are better in higher dimensions when f is smaller.
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Fig. 2. L? test errors of solutions to Problem (4.1) as a function of the number of collocation points. Left: § = 1; right: # = 4. In both cases, we choose Matérn kernel
with v =7/2. Reported slopes in the legend denote empirical convergence rates.
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Fig. 3. L? test errors of solutions to Problem (4.1) as a function of the number of collocation points with § = 4. Left: Matérn kernel with v = 5/2; right: Matérn kernel
with v =9/2. Reported slopes in the legend denote empirical convergence rates.

4.2. Parametric PDEs

We consider a parametric version of the linear (z = 0) Darcy flow problem in Example 2.2:

—div( exp(a(x, 9))Vu)(x) =f(x), x€Q, 42)
4.2
ux)=g(x), Xx€IQ.

Following the general form (2.1), we aim to obtain the solution as a function taking values in the product space Y. (4.2) can be
rewritten in terms of s = (x, @) with new forcing terms f and § depending only on the first coordinate of s

—divy (A(S)qu(s))(s) = f(s) =f(x), s€Y,
u(s) =g(s)=g(x), se€aY.

(4.3)

Recall that we defined 0Y = 0Q x ©. For our numerical example, we let d = 1 and vary p. We set A(x,0) =2+6,+ Zf:] f—ﬁ sin(zx + j),
f(x) =x and g(x) =0, a similar setting as in [16]. We choose Q =[0,1], and ® =[0,1]?, for p=2,3,...,6. Note 1 < A(s) < 4 since
the sum is in [—1, 1] for all p and # € ®, matching the setting of Example 3.13.

We sample different M points uniformly in the interior, and Mo = M /10 points uniformly on the boundary of x. We do two
experiments with different choices of kernel, in the first (Fig. 4, left), a vanilla Gaussian kernel with different length scales for the
x and 6 dimension, and with a scaling of the length scale in 6 proportional to \/E In the second one (Fig. 4, right), we adapt the
Gaussian kernel to the decay in A(x,6), by including the decay of 1/,* in the norm in @ space used by the kernel. We see significant
improvement in test error using this adaptation in high dimensions, which suggests future research directions of kernel adaptation to
the specific form of the PDE. In all cases, we use a cross-validation procedure for hyperparameter tuning and we observe the average
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Fig. 4. L test error of solutions to Problem (4.3) as a function of the number of collocation points. Left: vanilla gaussian kernel; Right: Gaussian kernel adapted to
the regularity of A. Reported slopes in the legend denote empirical convergence rates.

L2 test error on an independent set of test points for different values of p and M,. Since d = 1 we computed our ground truth solution
by numerically integrating Equation (4.3) using quadrature.

As mentioned, this problem was also explored by [16], in which sparse multivariate polynomials are used to estimate the solution
with a rate independent of the number of parameters, provided the decay of the coefficient functions is large enough (in #? for
some 0 < p < 1). While this assumption is satisfied in this example, our method’s convergence rate greatly depends on the dimension
of & when the kernel is not adapted to the particular equations and coefficients A(x,8). Our results indicate improvement in the
dependence of convergence rates on dimension when the kernel is adapted to the regularity of A. It remains open whether our
kernel based approach (which is not specific to parametric equations) can achieve the same dimension independent convergence
rates as the ones in [16] (which apply even in the countably infinite dimensional case and which they refer to as breaking the curse
of dimensionality) for parametric elliptic PDEs with rapidly decreasing parametric dependence as specified above (this assumption
implies a finite number of effective parameters).

4.3. High dimensional HJB equation

Consider a prototypical HJB equation:

0, + AV (X, D)= |VV(x,0>=0
(4.4)
Vx,T)=g(x),

where, g(x) = log( % + %lxlz),x € R4t €[0,T]. We are interested in solving V(xy,0) for some x, € R?. We adopt the stochastic
differential equation (SDE) formula for representing the solution of the PDEs, following [86,72]. More specifically, consider the SDE

dX,=V2dW,, Xy,=x,. (4.5)
We define Y, =V (X,,s),Z, = \/EVV(X s»8). By Ito’s formula, one obtains
dy, = %lZS|2d5+ZS-dWs. (4.6)

The strategy is to integrate the above SDE backward to ¥;. An implicit® Euler discretization from time 7, to t, (At =1t,,; —1,) leads
to the following equation:

VX, i) = VX, 1)+ YV X, 1)PA+ V2VV(X, 1) &, VAL (4.7)

Algorithmically, we sample J different paths of the forward SDE in (4.5), namely ij 1< j < J, using the Euler-Maruyama
scheme. Then, backward in time, we apply our kernel method, namely to solve the following optimization problem

3 Implicit because are integrating backwards in time.
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Table 2
Numerical results for the HJB equation (4.4), computing the quantity V' (x,,0).

c 10 25 50 100 200

Computed solution V' (x,,0) 5.6042 4.6366 4.6039 4.6021 4.6021
Relative accuracy 22.10% 1.0154% 0.303% 0.2638% 0.2638%

minimize |lull,,
= 0 0] ) 0) (4.8)
st uX?, 1)+ 1VuX?, 1) PAr+ VaVuX D, 1,) £, VA=V (XD 1,41)

to get the solution V'(-,7,), assuming V'(-,¢,,) has been solved. Iterating this process, we end up with the solution V'(x,,0). We can
understand the algorithm as applying our kernel method iteratively with the sample path as the collocation points.
Experimentally, we consider d = 100 as in [86,72]. We aim to solve V (x,,0) for x, = 0. The ground truth is V' (x,,0) = 4.589992

—yI12 -1
provided in [86]. We sample J = 2000 paths from x, and choose the inverse quadratic kernel k(x,y;c) = (% + 1) . We use the

“linearize-then-optimize” approach to compute an approximate solution to (4.8). The nugget term is set to be # = 103, The result is
shown in Table 2. We observe that a suitable choice of the lengthscale of the kernel is crucial to obtain an accurate solution. Compared
to the relative accuracy of 0.171% (reported in [72]) using neural networks (DenseNet like architecture with 4 hidden layers) to solve
(4.7), the accuracy of using kernel methods with a simple quadratic kernel is comparable. Moreover, the lengthscale of the kernel
is very large, indicating that the solution behavior of this HJB equation is very smooth; similar “blessings of dimensionality” have
been reported and discussed in [72], where they used a constant function (and the terminal function g) as ansatz to solve (4.7) and
obtained very high accuracy.* Thus, this HJB example in dimension 100 demonstrates again the trade-off between the smoothness of
the solution and the curse of dimensionality.

5. Conclusions

In this paper, we conducted an error analysis of GP and kernel based methods for solving PDEs. We provided convergence rates
under the assumptions that (1) the solution belongs to the RKHS which is embedding to some Sobolev space of sufficient regularity,
and (2) the underlying forward and inverse PDE operator is stable in corresponding Sobolev spaces.

Our analysis relies on the crucial minimizing norm property of the numerical solution in the kernel/GP methodology. The analysis
could be seamlessly generalized to the function class of NNs and other norms such as non-quadratic norms if we can formulate the
training process as a minimization problem over the related norm.

We emphasize that our convergence rates hold for the exact minimizer of the minimization problem. In practice, finding such a
minimizer algorithmically can be a separate and challenging problem. Our numerical experience suggests that Gauss-Newton itera-
tions usually perform well, and typically, 2-5 iterations are sufficient for convergence. Therefore, we can combine the error analysis
in this paper and the fast implementation of the algorithm in [13] to obtain a near-linear complexity solver for nonlinear PDEs with
rigorous accuracy guarantee.

It is worth mentioning that this paper focuses only on analyzing the MAP estimator within the GP interpretation. Exploring the
posterior distribution of the GP can provide a means for quantifying uncertainty in the solution. In particular, analyzing the posterior
contraction is an interesting direction for future research.
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Appendix A. Sobolev sampling inequalities on manifolds

Below we collect useful sampling inequalities for Sobolev functions defined on smooth manifolds with corners. Following [46,
Chs. 1, 16] we consider a smooth, compact Riemannian manifold M c R? of dimension k < d with corners, i.e., a Riemannian
manifold with a smooth structure with corners; see [46, Ch. 16]. On such a manifold we define the natural geodesic distance

1
Pam i MXM=R, pp(x,y) :=inf/||f'(r>||dr,
0

where the infimum is taken over all piecewise smooth paths ¢ : [0, 1] —» M satisfying the boundary conditions #(0) = x and (1) =y,
and ||Z(1)|| is the length of the tangent vector #(T') under the Riemannian metric.

Following [31] (see also [83, Sec. 4.3]) we further consider the Sobolev spaces H k(M) of functions defined on M as follows: Let
A={M;¥, };V: . be an atlas for M and let {x;} be a partition of unity of M, subordinate to M;. Then given functions u : M — R
we define the Sobolev norms and the associated Sobolev spaces H*(M) as

N 1/2
HY M) t= (s M= R ull oy <o, Nl gsug 2= <Z llz; @I .S(Ej)> :
j=1
where the maps z; are defined as

K (T ), ifyeW;(M)),
m(f) 1=
0 otherwise,

and the sets &; are given by

R if ‘I’j is an interior chart,
E; = {(x]s....x) ER¥|x; >0} if ¥; is a boundary chart,
{Cxpsesxp) € IRklxl >0,...,x, 20} if‘l’j is a corner chart.

Put simply, the Sobolev spaces H*(M) are functions on M that, locally after the flattening of the manifold belong to the standard
Sobolev spaces H*. With these notions at hand we then recall the following result of [31], which was proven by those authors for
smooth embedded manifolds without boundary or corners. However, a brief investigation of the proof of that result reveals that it can
immediately be generalized to our setting with manifolds with corners. In fact, the idea of the proof is to use the atlas to locally flatten
the manifold and apply classic sampling theorems such as [2, Thm. 4.1] on each patch. The only difference in the case of manifolds
with corners is that the patches do not only map to R¥ but rather to the subspaces & ; depending on whether the corresponding chart
is an interior, boundary, or corner chart.

Proposition A.1 ([31, Lem. 10]). Suppose M C R? is a smooth, compact, Riemannian manifold with corners, of dimension k and let
s>k/2 and r € N satisfy 0 <r < [s] — 1. Let X C M be a discrete set with mesh norm h , defined as

hy, = sup inf pM(x,x').
x’EMXGX

Then there is a constant hy > 0 depending only on M such that if h,, < hy and if u € H*(M) satisfies u| y =0 then

Nl frroagy < CRY Nall s pny -
Here C > 0 is a constant independent of h,, and u.
Appendix B. Bounds on fill distances
This section collects a result from [71] for bounding the fill-in distance for randomly distributed points on a manifold.
Assume (M, p) is a metric space, and u is a finite positive Borel measure supported on M. Let X = {x,,...,xy} be a set of N

points, independently and randomly drawn from x. Define the fill-in distance
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hy= sup inf p(x,x"). (B.1)
xeMXEX
Then, [71, Thm. 2.1] implies the following:
Proposition B.1. Suppose ® is a continuous non-negative strictly increasing function on (0, 00) satisfying ®(r) - 0 as r — O*. If there exists

a positive number r, such that u(B(x,r)) > ®(r) holds for all x € M and every r < r, then there exist positive constants ¢, c,,c3 and a

such that for any a > a,, we have

alog N
N

P < ¢, N1, (B.2)

hM 2 Cl q)_l <
We use this proposition to prove Proposition 3.14.

Proof of Proposition 3.14. We apply Proposition B.1. For the bounded domain Q c R, we know that there exists a constant C
such that ®(r) = Cr? will satisfy the assumption in Proposition B.1. Moreover, we choose a such that ¢, M, ;2_C3a < 6. This implies that
1 : __c
o> m lOg(C2MQ/5). Pick a = —03 Tog Mg,
probability at least 1 — 6,
1/d
alog Mg <" log(Mg/6) / ’
Mg

log(c,M,/6) for some C’ > 1 such that a > ay. Then Proposition B.1 shows that with

hg <c; @7} <
Q

where C” is a constant independent of M, and §. The bound on h,, can be proved similarly by choosing ®(r) = Cr¢=1. []

Appendix C. The choice of nugget terms

For numerical stability, we add a diagonal adaptive nugget term to the kernel matrix in our computation such that

' B i P ) |
wWH(x) = K(x, oK (P, ¢') + ndiag(K (@', ¢'))] ™! (((gf_ ’:lf + B,((uuf)z;)) o )

lss

Typically # = 10710, This nugget term is similar to the adaptive nugget term proposed in [12]. It is much more effective than the naive
choice of K(¢, ') +n1, since the conditioning of the interior block and the boundary block in the kernel matrix differs dramatically.
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