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Synopsis
We consider nonlinear singular Volterra integral equations of the second kind. We generalise the
transformation method introduced in Part I of this paper [6] to cope with both the nonlinearity and
slightly more general singular kernels. We also consider a particular class of nonlinear equation for
which the solution behaviour is known. Using this a priori knowledge, we propose a modification of
the transformation technique which results in a numerical method with good asymptotic stability
properties. Applying the general theory of Part I of this paper, we prove convergence of this scheme.

1. Introduction

In this paper we are concerned with the application of numerical methods to the
solution of weakly singular Volterra equations of the form

y(t)=g(t)+£%@ds, (1.1)

where 0 < & < 1. The application of the usual polynomial spline collocation leads
to poorly convergent numerical schemes [2], and so we introduce a variable mesh
to overcome this difficulty [5], [6].

In Section 2 we define a wide class of nonlinear equations of the form (1.1) for
which the solution exists for all ¢« Using this knowledge, we tailor our
transformations, which eliminate the singularity and introduce the variable mesh,
to allow for the behaviour of the solution at infinity. Under certain assumptions
on the behaviour of the numerical approximation, which are borne out in
practice, we prove convergence of the scheme in Section 3. In Section 4 we
discuss the large time behaviour of our numerical approximation.

In Section 5 we return to the general equation (1.1) and discuss the appropriate
transformations necessary to reduce the equation to a regular form. We believe
that the method discussed has a fairly wide range of application in the study of
numerical methods for weakly singular integral equations. It relies on being able
to spot the appropriate transformations which reduce weakly singular equations
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into a regular form. Using the error bounds of Part I of this paper, convergence
of the numerical schemes based on this transformation approach can then be
proved.

2. A particular class of nonlinear equations

We are interested in finding y(¢), for £ =0, where y () satisfies

ﬂo=1—£a—gﬁK@@»¢ for t=0. 2.1)

We assume that K(y) satisfies K(8)=0 and K,(y)>0 and also that K(y)e
C?[B, 1]. In the Appendix we prove a number of results regarding the behaviour
of the solution to equation (2.1), including its existence and uniqueness. We now
describe these results.

Initially both y(#) and K(y(¢)) decrease from their starting values of 1 and
K(1), respectively. At the origin the derivative y’(¢) = O(¢™?) as t— 0 and so the
initial decrease is fairly rapid. Thereafter the solution behaviour is regular and
y(¢) tends to a limiting value of f as t— . For finite values of ¢, y(f) may be
shown to satisfy B<y(f)=1 and computations indicate that, in fact, y()
decreases monotonically from y(0) =1 to y(«) = .

The class of equation (1.1) was first studied in the particular case

K(y)=1-(B/y)" 2.2)

which arises from an industrial problem involving coupled parabolic partial

differential equations [7]. It was in this context that Norbury [5] introduced the

transformation technique subsequently generalised in both parts of this paper.
As in Part I of this paper [6], we introduce a transformation

s=tsin’ ¢ (2.3)

under which equation (2.1) becomes
/2
ﬂ0=1—f 2Vt sin ¢pK(t sin® ¢)) do. (2.4)
0

For the linear equation in [6] we introduced a transformation ¢ = 67 at this stage
to remove the singularity of the solution at the origin. This and transformation
(2.3) are appropriate for all non-linear equations of the form (1.1) with & =3 for
which the solution may not exist for all time. However, for the particular case
defined by equation (2.1), the solution is known to exist for all time and so we
may make the transformation

t=tan® 0, (2.5)
which maps the infinite range of ¢ onto a finite range of 6. On defining
u(8)=y(t), equation (2.4) becomes

/2

u(@)=1- 2tan 6. sin ¢K(u(¢*)) do (2.6)

0
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for 0= 0 = /2, where
tan ¢* = tan 0 sin ¢. 2.7)

As for the linear case detailed in [6], these two transformations have
regularised the behaviour of the solution (for 0= 6 < /2) and hence we are in a
position to apply standard product integration techniques to solve equation (2.6).
Defining & = w/2(N + 1), we divide the interval 0= 6 =x/2 into N + 1 equal
subintervals by the N + 2 equally-spaced points 6; =ih for i=0,..., N+ 1. We
next divide the interval 0= ¢ = x/2 into i unequal subintervals defined by the
(i + 1) unequally spaced points ¢,; for j =0, . . ., i defined by

sin ¢; = tan ¢;/tan 6,. (2.8)

Hence equation (2.6) may be written as

i
1—u@)=3 " 2tan 6,sin pK(U($*)) dop. (2.9)
j=1 ;1
By virtue of the non-uniform subdivision of the range of integration ¢, the
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unknown in the integrand, u(¢*), assumes values u(6;) at the end of each range
of integration. We now introduce a trapezium approximation to the kernel K of
equation (2.9): defining u; to be our numerical approximation to the true solution
u(6;), we obtain

i bij e K(u._) + — i K(u:
= W, = z 2 tan 91‘ sin ¢ [(4’1} d)) (u] 1) ((P ¢} 1) (uj)] P (2 10)
J=1¢i;i1 (d)ij = ¢i]’—1)
Finally, we can perform the integrations exactly to obtain
1—u;=2tan 6, >, a;K(u;_,) + b;K(w), (2.11)
j=1

where a; and by are defined in terms of ¢, by equations (3.9) and (3.10) in [6].
The resulting non-linear algebraic equation (2.11) is solved for u; by Newton
iteration, using u;_, as the initial guess. In practice it is found that one Newton
iteration is sufficient to achieve the accuracy of the scheme. Figure 1 shows typical
solution profiles, for the case defined by equation (2.2), in both the natural
independent variable ¢ and the transformed variable 6.

3. Convergence

TueoREM 3.1. Suppose that the function K in equation (2.1) satisfies K(f)=0
and K,(y) >0 and also that K € C*[B, 1]. Suppose further that the exact solution u;
of the nonlinear algebraic equation (2.11) satisfies f=u;=1 for i=1,...,N.
Then the exact solution u; to the discrete equation (2.11) is convergent to the
solution u(6;) (6;= 6 <x/2) of the continuous equation (2.6) with order hi~¢,
where ¢ is an arbitrarily small positive number.

Note on Theorem. The convergence result requires that u; should satisfy
B=u;=1 for each i=1,..., N. As mentioned in Section 2, the true solution
does satisfy f =u(6;) =1 and in practice we have found that the solution scheme
proposed in Section 2 does generate solutions u; which satisfy g =u, = 1.

The proof of Theorem 3.1 requires the following four results which we now
prove (Lemmas 3.1-3.4). Since the d;’s defined by (3.4) are proportional to the
d;’s defined by (3.21) of [6] and since the definition of the ¢;’s in this paper is a
functional generalisation of those defined in [6] (compare (2.8) of this paper with
(3.5) of [6]) the proofs of these lemmas are analagous to those in [6] and hence
the details are omitted.

Throughout the following four lemmas d,; is as defined in (3.4) and its iterates
dy” and the function f*(s, 1) are as defined by [6, (2.7-2.9)].

Lemma 3.1. The variable h Y21 dY is bounded above independently of h.

Proof. Since 1 — hd; =1 and since 2 tan 6, is independent of A, it is sufficient to
show that

=
= ; (¢ij+1 - ¢ij—1)

is bounded independently of A. In a manner analogous to that employed in [6,
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Lemma 3.1], we can show that
%1 2sec’(6+h)do
o, [tan®6, —tan®(8 +h)]} ™ i
Hence, noting that hd;;_; is O(h%), the result follows.

S=

Lemma 3.2. The second iterated kernel d’ generates a function f®((j + 1)h, ih)

(@] of®)
which satisfies the conditions that f®(t, t) exists, % (s, £)=0 and (J;S (s, ) 20.

Proof. As in [6, Lemma 3.2] we see that it suffices to consider the sum
i—1
S= 2 (Pier1— Pie—1)(Pg+1— Pej—1)s
e=j+1
for an upper bound on S will define f®(s, ¢) up to a multiplicative constant. By

use of the results in [6, Lemma 3.2] we can show that

4h sec? 6,
tan 6,_;

S=

K(1—1/c?),
where ¢ =tan 6;_,/tan 6, ,
Again following [6, Lemma 3.2], we define
F®(s, t) = MK(1 — tan® s/tan’ t), (3.1)

where [ is a complete elliptic integral of the second kind (see [1] p. 596, p. 590)
and where M is independent of 4. By using the documented properties of K (see
the graph in [1] p. 592) namely that K(0) = 7/2 and K'(x) =0, we see that the
conditions of the lemma are satisfied.

LemMa 3.3. The function f@(s, t) defined in (3.1) is integrable with respect to s,
over the range 0 =s =t, and the result is bounded independently of h.

Throughout this lemma KK is as defined in the proof of Lemma 3.2.
Proof. Define J = L : f@(s, t) dt.
By substituting tan s = v tan f and noting that sec*s = 1, we obtain
JéMtantJ:K(l—vz)dv.

We use the results of Lemma 3.3 in [6], and obtain

M tant

b G K3(1/V?2).

Thus we have the desired result.
LemMA 3.4. The consistency error, ce;, satisfies

ce; =6 = Myhi~e,
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Throughout this lemma, M,, K=1, 2, 3 represent numbers bounded above
independently of A.

Proof. Similarly to [6, Lemma 3.4], we can show that
i bij d2 .
ce;=2, | tan 6o (K@(@"))er—n($ = @4-2)(9 — ;) sin ¢ dg.
J=179i

Because of the smoothness of the solution u(6) to equation (2.6) [4] and because
K € C?[B, 1], we obtain

ce; =M, 2_:1 (¢ — ¢ij—1)2(COS ¢ij—1 — cos ¢;)

as in [6, Lemma 3.4]. Redefining x = tan 6/tan 6; and y = tan (6 — h)/tan 6, the
analysis proceeds as in [6, Lemma 3.4]. Noting that (x —y) = M,h/tan 6;, we

obtain the final result
ce; = Mshi=.

Proof of Theorem 3.1. Defining ¢; = (u; — u(6;)) to be the approximation error
at each mesh point, subtraction of equation (2.10) from (2.9) and application of
the Mean Value Theorem gives us

&=06— 2, 2tan 0,(a;K,(§_1)&-1 + b;K, (E)g), (3.2)
j=1

J

where 6 is an upper bound on the consistency error, defined in Lemma 3.4 and
where &; lies between ; and u(6;). Since u; and u(6;) are both greater than S, so
is &;. Hence K,(§;) is bounded above independently of 4 and so we may re-write
(3.2) as

el = (1+ b;K,(5) |&]| = 6 +21)e,~,~ &l (3.3)
where -
€,0=2 M tan 6,a,,
and

e; =2M tan 0,(ay.,+by), j=1,...,i—1,

and M is positive and independent of 4. As in [6], we can show, by use of the
Mean Value Theorem, that

e; =2M tan 60,(¢;i1 — Pii_1). (3.4)
Hence, since we may assume that £, =0, we have
el =6 +h 3, dylgl,
j=1

where hd;=2M tan 0,(¢;;.1 — ¢;-1), for j=1,...,i—1 and hd; =0. This is in
the form of [6, inequality (2.5)] and so we attempt to apply [6, Theorem 2.2]
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Since hd; =0, condition (i) of this theorem is trivially satisfied. Lemmas 3.1, 3.2
and 3.3 show us, respectively, that conditions (ii), (iii) and (iv) of the theorem are
satisfied. Hence we deduce from (3.3) that

g=0C0,
where C, is independent of 4. By Lemma 3.4 we obtain the final result
&= Ch (3.5)

where C, is also independent of A.

4. The large time behaviour of the numerical method

For equations of the form (2.1) we have described a transformation of
independent variables which both eliminates the singularity present in the
solution of equation (2.1) and which maps the infinite range of the independent
variables onto a finite range. We then propose a solution technique for the
transformed equations which corresponds to application of the product trapezium
rule followed by use of Newton iteration to solve the resulting nonlinear algebraic
equations. In Section 3 we have proved convergence of this method and Table 1
presents figures which demonstrate this.

TABLE 1
Numerical values for u(0.706858 = tan™! \/t—) indicating con-
vergence as N — oo,

N (B) 0.1 0.5 0.9
80 0.371314 0.770255 0.962498
160 0.372020 0.770476 0.962532
320 0.372290 0.770558 0.962545
640 0.372390 0.770588 0.962550

However, further to this property of convergence, we notice that in practice the
method performs well in approximating the solution to equation (2.1) for
arbitrarily large t. More precisely, we notice that as we repeatedly halve
h(=m/2(N + 1)), the division of the range 0= 6 = /2, our approximation uy, to
the true solution u(hn) remains accurate; not only does it continue to satisfy
uy = but it also appears that uy—f as N— o (with h—0 and Nh— 7/2).
Since u(w/2)=p (see Appendix) this property indicates that the proposed
solution technique remains stable for arbitrarily large values of ¢ (that is for 6
arbitrarily close to 7/2).

In other words it appears that in transforming and numerically approximating
equation (2.1) in the manner described in Section 2, we have preserved the
strongly attractive properties of the limiting solution S.

5. The general case (0 <a <1)

We now return to the general equation (1.1) and describe the appropriate
transformations to reduce it to a regular form. These transformations are detailed
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in [4] and form the basis of the numerical method first introduced by Norbury [5].
As in Section 2, we transform s by defining

s =tan’ ¢ (5.1

under which equation (1.1) becomes

/2

y(t)=g(t)+ K(t, tsin® B, y(t sin® ¢)) . 2t~ * cos* 2® ¢ . sin ¢ d¢p. (5.2)
0

Assuming that « is a rational number, we write o =r/q where r and g are
co-prime. (In the unlikely event that an irrational « should occur some form of
rational approximation is necessary.) We now define 0, u(6) and h(6) by

=" (5.3)
u(0)=y()
and
h(6) =g(1).

Using transformation (5.3), equation (5.2) becomes

u(6)=h(6)+ LﬂlZZB""K(B", o*, u(¢*)) cos* 2 ¢ sin ¢ do, (5.4)

where
¢*=0sin”? ¢ (5.5)

and K(., 0,.)=K(., t,.). Whereas equation (1.1) possesses a derivative y'(t) =
0(t~ ) as t— 0, it may be shown [4] that the transformed equation (5.4) has a
solution u(6) e C™, where g(t) e C™, if we assume sufficient differentiability of K.
Hence we may apply standard product integration techniques to the solution of
equation (5.4). We note that since such approximations will involve some form of
interpolation of the kernel K, it is necessary that the integral I, defined by

I =J cos? 2% ¢ sin ¢ dop, (5.6)
o
exists in order that the resulting discrete equations are defined. This may be
shown to be so by using the substitution v = cos ¢, yielding

1952 .
" 2(1-a)

and since 0 < o < 1 the result is defined.

/4

6. Conclusions

We have presented an approach to the numerical solution of weakly singular
integral equations which relies on being able to spot the appropriate transforma-
tions which eliminate the singular behaviour of the solution. We have described
these transformations for the most general weakly singular Volterra integral
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equations of the second kind (equation (1.1)), and for a particular class of
equation (2.1) we have proved convergence of a numerical method based on
these transformations. We have also demonstrated that our particular choice of
discretisation results in desirable stability properties.

However, the rate of convergence of schemes based on these transformations
has not been determined for general @, nor for higher order product integration
rules than the trapezium rule which we consider in Section 3. As in [6] we believe
that the rate of convergence in these more general cases is best analysed by using
model linear problems.

Appendix
Consider the equation
t
Y@ =1 [ (=) KO(s)) ds (A1)
0
subject to the conditions
K(B)=0, (A2)
K,(y)>0, (A3)
and
K(y)eC*B, 1]. (A4)

The solution y(¢) of equation (Al) subject to conditions (A2), (A3) and (A4)
satisfies the following four propositions.

ProrosiTiON 1. The solution y(t) of equation (A1) satisfies B =y(t) = 1.

Proof. We prove that y(¢) = f8 for all . It then follows automatically from (A1)
that y(f)=1. Suppose, for the sake of contradiction, that y(f;) = f and that
y()<p for 0<t,<t=t,. Then (Al) gives

1—wao=£kn—nﬁkocnw

and
Lﬂw»=LYa—w*K@@»¢.

Subtracting these, we have
yuo—ym»=E%a—w%K@@»dm—gka—nﬁK@@»a
- [MG=9t - -9 K06 s

+f%h—n%K@@»¢.

Now, in 0=s =1, the first integrand is negative, since ¢, <t, and K(y(s))=0,
while in ¢, =s =, the second integrand is negative, since K(y(s))=0.
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Thus we have shown that y(#;) —y(£)<0. As y(#)=p this implies that
y(t,) > B, which contradicts our initial assumption. Thus y(¢) = g for all > 0.

PropPOSITION 2. There exists a unique solution y(t) to equation (A1) in 0=t <c.

Proof. The result follows from [3, Lemma 2]. The necessary a priori bounds
are provided in Proposition 1.

ProrosiTioNn 3. The derivative y'(t) of y(t), the solution of equation (A1),
satisfies y'(f) = —K(1)t "} +0(1) as t— 0.

Proof. The result follows from [4, Section 5]. Note that the expression for K;
should read

Ki=28(0, f(0)(v+1-p)...(1—p)/(2v+2—2p).
ProrosITION 4. The solution y(t) of equation (A1) satisfies y(t)— f3 as t— .

Proof. The result follows from [3, Theorem 3], with slight adjustment. (The
conditions of the theorem may be suitably relaxed using the a priori bound
B=y(t)=1 from Proposition 1.)
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