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The Mathematics of Porous Medium Combustion

A. M. STUART

Abstract. Two partial differential equations arising from the theory of por-
ous medium combustion are examined. While both equations possess a
trivial steady solution, the form of the reaction rate, which is discontinuous
as a function of the dependent variable, precludes bifurcation of non-trivial
steady solutions from the branch of trivial solutions. A constructive ap-
proach to the existence theory for non-trivial global solution branches is
developed. The method relies on finding an appropriate set of solution
dependent transformations which render the problems in a form to which
local bifurcation theory is directly applicable. Specifically, by taking a sin-
gular limit of the (solution dependent) transformation, an artificial trivial
solution (or set of solutions) of the transformed problem is created. The
(solution dependent) mapping is not invertible when evaluated at the trivial
solution(s) of the transformed problem; however, for non-trivial solutions
which exist arbitrarily close to the artificial trivial solution, the mapping is
invertible. By applying local bifurcation theory to the transformed prob-
lem and mapping back to the original problem, a series expansion for the
non-trivial solution branch is obtained.

1. Introduction.

In this paper we analyze two time-dependent partial differential equa-
tion problems arising from the theory of porous medium combustion [3].
The first problem, (P1), defined in section 2, represents a simplified one-
dimensional model of porous medium combustion when the depletion of
oxygen during the reaction is insignificant. The model comprises a pair of
reaction-diffusion equations coupled to a hyperbolic equation. The second
problem, (P2), defined in section 3, is a single reaction-diffusion equation;
it may be derived from (P1) as the first term in an asymptotic expansion
of the governing equations in terms of two small parameters and as such it
represents the evolution of temperature in highly exothermic combustion
problems before the depletion of reactants becomes significant.

The novel mathematical aspect of the two problems is that the reaction
rates are discontinuous as a function of the independent variables. This fact
is reflected in the appearance of Heaviside step functions in the reaction
terms. We present a unified approach to the existence theory for steady
solutions of problems (P1) and (P2).

For problem (P1) we pose the equations on the whole real line and seek

steady travelling wave solutions whereas for (P2) we examine steady so-

lutions on a bounded interval. Both problems possess a trivial constant
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solution corresponding to an ambient state of no chemical reaction. How-
ever, the form of the reaction term in both (P1) and (P2) precludes the
possibility of bifurcating non-trivial solutions in the neighborhood of the
trivial solutions. Thus it is important to develop a constructive approach
to the existence problem for both (P1) and (P2) in order that a starting
point may be found for numerical studies of the two problems.

In sections 2 and 3 we define the two problems (P1) and (P2), respec-
tively. In section 4 we describe an approach to the existence theory for (P1)

and in section 5 we analyze this approach in more detail in the context of
problem (P2).

2. Problem (P1).

The simplified model of porous medium combustion described here is
derived in [3]. The unknowns o, v and w represent the solid heat capac-
ity and the solid and gas tempreatures respectively. The concentration of
combustible solid may be determined as a linear function of the solid heat
capacity. The governing equations are

do

(21) E = —AT,

(2.2) Ua—u = 32_1/, +w—u+

. 3 = g2 TWoutT

dw dw

2.3 it el e

(2.3) and&at +uaz u — w,

where

(2.4) F = ,uI/ZH(u —uc)H (o — 1) f(w).

Here H(X) is the Heaviside unit step function defined by

1-X >0
g X <0.

H(X) = {

f(w) is a strictly-positive C?(ug, 00) function where u, is defined by (2.5).
We take z € R and impose the boundary conditions that

(2.5) lim u(+z,t) = lim w(—2,t) = u,,

Z2— 00 Z2— 00
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where u, < uc.

We assume that the discontinuity induced by the reaction rate r in equa-
tion (2.2) is taken up entirely by the second spatial derivative of u so that
u(z,t) is a piecewise C? function of z and a C! function of time. Equa-
tion (2.1) implies that o(z,t) is a piecewise C! function of both z and ¢.

Taken together with initial conditions, equations (2.1-2.5) define the
time-dependent problem (P1). We make no attempt to prove global ex-
istence of solutions for all time; we observe, however, that sharp rises in
either of the temperatures v and w are naturally limited by the function o
which is non-increasing in time. Further aspects of the time-dependent

behavior of problem (P1) are discussed in Norbury and Stuart [6].

3. Problem (P2).

Consider the partial differential equations (2.1-2.3). The reaction rate (2.4)

may be rewritten as
(3.1) r = uY2dH (u — u)H(o — 7) f(w)

where we have extracted a factor d from the function f(w) and redefined the

reaction rate accordingly. We now analyze the partial differential equations
defined by (2.1-2.3) and (3.1) in the distinguished limit g — 0, A/p/? —

1/2 1/2

constant, § /pu'/? — constant, and du'/? — 1. If we expand the solution in

the form

g =g I O(/I’l/z),
(3.2) u = ug + O(u'/?)
and w = wo + O(,ul/z)

then, to first order in p!/? equations (2.1) and (2.3) give us

do
— =0 and wo = uo.

ot

Assuming that initially oo(z,0) = const > r equation (2.2) gives, to first
order

(33) Buo 2. 82’11,0

+ H(uo — uc) f(uo)-

Uo—at_ 922
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We consider this equation posed on a finite domain and the appropriate

boundary conditions are
(3.4) #pldal) = 9.

Rescaling the variables by setting

P = UL_——U—C—L—, t = s2007 and y = 2/s,
Ue — Uq
equations (3.3) and (3.4) may be reformulated, for some appropriately de-
fined g(v), as the Dirichlet problem
dv 0%

(3.5) 'a"’;: a—y2+H(’U—1)g(‘U),

with boundary conditions
(3.6). v(£1,t) = 0.

Together with initial conditions, equations (3.5) and (3.6) form prob-
lem (P2). As for problem (P1) we make no attempt to prove global ex-
istence of solutions of (P2). Indeed for certain classes of function g(v)
(which are likely to arise in practice) finite or infinite time blow-up can
occur. These cases are of particular interest since they determine the tem-
poral and spatial scales on which the expansion procedure defined by (3.2)
becomes invalid. These and other time-dependent questions are addressed
in Norbury and Stuart [4].

4. Existence Theory for (P1).

We seek travelling wave solutions of the time-dependent problem defined
by equations (2.1-2.5). We will assume that § = 0. However, this is merely
done to clarify the exposition; the Theorems in section 4 are easily modified
to cope with the case § > 0. Defining

z=z—ct, Q(z)=co(zt), U(z)=u(z1t) and W(z) = w(z,1)
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we obtain
dQ
: — = A
(4.1) e r
U dU
(4.2) w-%QE—FW—U—Fr_O
dW
where
(4.4) r=p?H{U — u,)H(Q — cr) f(W).

Here 0 < 7 < 1. Conditions (2.5) transform to

(4.5) lim Ulte) = lim W(=g} =1,

z—0o0 ZT—rCO
Assuming that no chemical reaction has taken place at z = +0o0 we deduce
that o will be determined by its initial concentration there, so that

lim ofz,t] = 1.

Z2— 00

Hence the appropriate boundary condition for @ is

(4.6) m Qlz) = e.

Z—0C0

The system of equations (4.1-4.6) forms a nonlinear eigenvalue problem
for the four-dimensional vector-valued function (Q,U,U’,W) and the pa-
rameter c. Henceforth we denote this eigenvalue problem by (EVP). If we
define the space PC™ to be the set of functions which are piecewise C™ on
the whole real line, then we seek solutions (Q,U,W,¢) of (EVP) which lie
in the space PC! x PC% x PC! x R.

It is clear that (EVP) possesses the family of trivial solutions

Q=cand U =W = u,, for any ¢ € R.

It may be demonstrated that all other solutions satisfy ||U|,, > u. >
u,. Consequently local bifurcation theory is not directly applicable to the

problem since non-trivial solution branches do not exist arbitrarily close

to the trivial solution branches. In this section we develop a constructive
approach to the existence theory for nontrivial solution branches of (EVP).
The first theorem, however, is a non-existence result.
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THEOREM 4.1. Solutions of (EVP) can exist only for0 < A < (uc—ua) ™!,

PROOF: Integrating equation (4.2) with respect to = over the whole real
line and employing equation (4.3) we obtain

“+o0 “+o0
/ @ do+ [ rdz=o,

since bounded travelling wave solutions have w(oo) = u,. Integrating by
parts and applying the boundary conditions (4.5) and (4.6) gives us

Ua [Q(+00) — Q(—o0)] + /m <r - 5‘QU> dz = 0.

Lk dz

However, combining this with equation (4.1) implies that

+o0o
/ i .~ Ol = @

— 00

Since r is strictly positive on some non-zero interval of z, and since u. <

U < oo on this interval, we deduce that
(4.8) 0< A< (u—us)" L

This completes the proof.

1§

We now aim to determine where solution branches exist within the al-
lowable parameter regime defined by Theorem 4.1; in particular we shall
attempt to determine the ends of solution branches. Since the reaction rate
is zero outside a finite interval of z-space the equations defining (EVP)
may be integrated explicitly in these regions. By so doing it is possible to
convert (EVP) into a two-point free boundary problem posed on a finite
domain. There are two distinct cases to consider dependent upon whether
the reaction rate r, defined by (4.4), becomes zero at its left-hand end be-
cause U attains its critical value u., or because Q attains its critical value
7c. We make the folldwing definitions.

DEFINITION 4.2. We define the reaction zone for EVP to be the region
of z-space (0, L) in which r # 0.

DEFINITION 4.3. We define a (U,U) switch solution to be a solution of
EVP which satisfies U(0) = U(L) = u..
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DEFINITION 4.4. We define a (Q,U) switch solution to be a solution of
EVP which satisfies Q(0) = 7¢ and U(L) = u..

There are two distinct free boundary problems governing the two dis-
tinct types of solutions defined above. The details of their derivation are
described in Norbury and Stuart [5]. We now treat the two cases separately.

Free Boundary Problem 1; (U,U) solutions.

We denote the following free boundary problem by (FBP1). Find
(Q,U,W,a,L) € C}(0,L) x C?(0,L) x C}(0,L) x R x R, where

aQ

dz A sz(W)

d*U

d2+Q F W U+ u M2 f(W) = 0
dw

and uy— =U — W,
dz
together with the initial conditions

- p— a— po
W=,
Ul0) = u,,

T0) = (ve — we)e
(ue — ua)

d W(0) = u,
an (0) u+1+#a

?
and matching conditions

Uil ==,
aUu
and E(L) + (e — ug)Q(L) — u[W (L) — u,] = 0.
THEOREM 4.5. Solutions of (FBP1) are in a one-to-one correspondence

with solutions of (EVP) iff the solutions of (FBP1) satisfy L > 0 and

(4.9) TQ(L) < Q(0) < p < Q(L).
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PROOF: See Norbury and Stuart [5].

The formulation of EVP as a free boundary problem on a finite domain
has a decided advantage: by rescaling the independent variable we derive
a problem to which local bifurcation theory is directly applicable. Under

the transformation s = z/L (FBP1) becomes

d
(4.10) d—f = A2 Lf(w),
d*U au
(4.11) -&‘3—2 1 LQE Sin Lz(W = U) + ul/szf(W) =1
(4.12)
aw

The initial conditions become

9
e
(4.13) Q(0) = e
daU
(4.14) U(0) = u. and —E(O) = (uc — us)alL
Ue — Ug
(4.15) and W(O) = Ugq + (m) 3
The matching conditions are
(4.16) U(1) = u,
(4.17)
daUu
and E(l) + L(ue — ug)Q(1) — pL[W(1) — u,] = 0.

We denote the problem defined by equations (4.10-4.17) by (FBP1*).

THEOREM 4.6. Solutions of (FBP1*) which satisfy L > 0 are in a one-

to-one correspondence with solutions of (FBP1).

PROOF: If L > 0O then the mapping between the two problems is a bijec-

tion.

Examination of (FBP1*) shows that it possesses the family of trivial

solutions

Lo o D ik
BB W gy, 4 TS
1+ pox 1+ pa

Q

and L =0,
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for all @ € R. None of these trivial solutions correspond to a true travelling
wave solutions since they do not satisfy L > 0 and (4.9). However, we may
now apply local bifurcation theory to determine the possible location of
bifurcation points from the family of trivial solutions. The most important

of these trivial solutions is the one corresponding to @ = 0, namely
(4.18) Q=p, U=W=u,, a=0and L=0,

since it is the only solution which, when perturbed by an arbitrarily small
amount, can satisfy (4.9).

THEOREM 4.7. Consider the trivial solution (4.18). Then a necessary

condition for bifurcation from this solution into non-trivial solutions of
(FBP1) is A = A = (uc —uq) L.

PROOF: Let ¢ = (¥,0, 9, {,n) represent the linearization of (Q,U,W, L, a)
about the trivial solution (4.18). We consider the solution and its lineariza-
tion as elements of the Banach space C*(0,1) x C%(0,1) x C*(0,1) x R x R.
Then 1 satisfies

il d20  dé
—— = £ 1/2 —_—— =
B T i ey = e

where the initial conditions are

¢(0) - _(1 o #2)77,

6(0) = %g(o) =0

and ¢(0) = —(uc — uqg)un.

The matching conditions are
6(1) =0
1
(4.19) and E/ [14 A(uq — uc)]u1/2f(uc) ds = 0.
0

Here we have replaced (4.17) by the equivalent condition [5]

L/o 1+ Aua — u(s))]p?/?f (w)ds

which may be derived by applying the method of proof employed in Theo-
rem 4.1 to (FBP1); see [5].
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This linear problem for ¢ defines the Frechet derivative of (FBP1*) with
respect to the trivial solution (4.18). In the case A # A, = (u. — ug)”! the
null-space of the Frechet derivative is one-dimensional and spanned by the
eigenfunction

(4.20) (¢¥,0,6,&,m) = (——(1 £ S ,uz),O, —(ue — uq)u, 0, 1) .

This eigenfunction corresponds to bifurcation into the trivial branch of
solutions parametrized by & However, in the case A = A, the null-space
of the Frechet derivative is two-dimensional and spanned by (4.20) and a
second eigenfunction

(,0,9,€,1) = (et % f(uc)s,0,0,1,0).

This extra eigenfunction derives from the non-invertibility of the expres-

sion (4.19) for € at A = A.. Consequently A = X, is the only point at which
bifurcation into non-trivial solutions can occur.

U

That bifurcation actually does occur at A = A, may be shown by con-

structing a series expansion for the solution of (FBP1) in powers of L < 1.

The details may be found in [5]. Thus the reformulation of (EVP) as a free

boundary problem and the rescaling technique employed subsequently has

led us to a constructive approach to the existence of non-trivial travelling 7

wave solutions.

Free Boundary Problem 2; (Q,U) solutions.

We denote the following free boundary problem by (FBP2). Find
(Q,U,W,up,a,L) € C*(0,L) x C%(0,L) x C'(0,L) x R x R x R where

dQ

(4.21) i A2 f(w)
d*U dU
(4.22) F+QE+W—U+u1/2f(W)=0
dw
(4.23) and u— =U — W,

dz
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together with initial conditions

_ p—o—po®
(4.24) ="
(4.25) U(0) = us and 5 (0) = (us — ua)e
(4.26) and W (0) = uq + (?;;) :
and matching conditions
(4.27) @(0) = +Q(L)
(4.28) U(L) =
(4.29) and %%(L) + (ue — ug)Q(L) — u[W (L) — ug] = 0.

THEOREM 4.8. Solutions of (FBP2) are in a one-to-one correspondence
with solutions of (EVP) iff the solutions satisfy a > 0, L > 0, Q(0) < p <
Q(L) and U(0) > u..

PROOF: See Norbury and Stuart [5].
O
As for (FBP1) the reformulation of (EVP) as a free boundary problem
has a number of analytical advantages. These are particularly clear in the

case 7 = 0. In this case the boundary conditions (4.27) and (4.24) reduce
to

(4.30) Q(0) =0
—1+ [1+4p?]1/2
(4.31) el s o
2p
respectively.

Solutions of the simplified version of (FBP2) defined by (4.21-4.23),
(4.25), (4.26), and (4.28-4.31) are characterized by a form of bifurcation
from infinity as © — 0. By this we mean there exists a branch of non-trivial
solutions of (FBP2) at least one component of which approaches infinity as
the critical value of the bifurcation parameter is approached. As a result
the eigenvalue problem determining the existence of the bifurcating branch
in the neighborhood of the bifurcation point is nonlinear in character. (A
similar example of bifurcation from infinity in the case where the value

of the bifurcation parameter at which bifurcation occurs is infinite may
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be found in [7]. In that case the leading order eigenvalue problem in the
neighborhood of the bifurcation point is also nonlinear.)

For p small a dimensional analysis shows that
Q ~ u*Qo, U~Us, W ~Wo, wup~UsandL~p Lo

where a subscript zero indicates an order one quantity. If we seek a series
expansion of the reduced version of (FBP2) with 7 = 0 in powers of pt/t <
1, then the leading order problem for (Qo,Uo, Wo,Uso, Lo) € C*(0, Lo) x
C?%(0,Lo) x C*(0,Lo) x R x RT is as follows:

dQo
) —— = Af(U,
(432) 20 = Af(U)
d?Ug dUy
: Ug) =0
(439 e+ Qo2+ 1(00)
(4.34) and Wo = U,

subject to the initial conditions

_dU

(4.35) Q0 =%

(0) = 0 and U, (0) = Uso

and the matching conditions

(436) Uo(Lo) = U¢
(4.37) and %(Lo) + (e — 24)Qo(Lo) =0.

The existence of a solution of the free boundary problem defined by (4.32-
4.37) is a necessary condition for the existence of a branch of solutions
bifurcating from infinity as u — 0. The following theorem establishes this
result, for the case f(U) o« U? which occurs in practice.

THEOREM 4.8. For 0 < A < X. and f(U) « U? there exists an odd

number, greater than or equal to one, of solutions of the free boundary
problem defined by equations (4.32-4.37).

PROOF: The proof employs a shooting technique. The details may be
found in Stuart [8].

O
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5. Existence Theory for (P2).

In this section we discuss the existence theory for the steady solutions
of problem (P2). It may be shown that all steady solutions V (y) of (3.5)
and (3.6) are symmetric and so they satisfy

d*v

(5.1) G TV ~1g(V) =0
(5.2) and ‘2—‘;(0) =¥{1) =0,

where g(V) is a strictly positive C%(1,00). Note that we have redefined g by
placing a parameter A outside it. For the purposes of this section we assume
that g(1) # 0. The trivial solution V' = 0 satisfies (5.1) and (5.2). However,
by virtue of the Heaviside step function appearing in the forcing term, all
other solutions satisfy ||V||, > 1. Thus, as for the steady travelling wave
solutions of problem (P1), bifurcation from the trivial solution is precluded.
Hence we develop an analogous approach to that in section 4 and apply it
to the boundary value problem defined by equations (5.1) and (5.2).

If we seek solutions of (5.1) and (5.2) satisfying ||V||,, > 1 and define
y = s to be the unique point s € (0,1) such that V(s) = 1 then such
solutions may be shown to be in one-to-one correspondence with solutions
of the following free boundary problem: find (V(y),s) € C?*(0,s) x [0,1)
with V (y) > 1 for y € (0, s) such that

d*v
av av |
: i ly=u, V= ol ORI
(5.4) an % (0) =0, (s) =1and = (s) e

Rescaling the independent variable y and the parameter A by setting
(5.5) z=y/sand A = As

we obtain, from equations (5.3) and (5.4), the associated problem (FBP3),
for (V(z),s) € C%(0,1) x R, namely

dv dv S
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THEOREM 5.1. Solutions (V (2),s) of (FBP3) which satisfy s € (0,1) and
V(z2) > 1 for z € [0,1] are in a one-to-one correspondence with solutions
(V(y),s) of the original boundary value problem defined by (5.1) and (5.2).

PROOF: Provided that s € (0,1) the mappings between the two problems
are all bijections.
O
Thus we examine solutions of (FBP3). Clearly the trivial solution V = 1
and s = O satisfies (FBP3). This solution exists for all values of the param-
eter A, but does not correspond to a solution of equations (5.1) and (5.2)
since it does not satisfy s > 0. However, by applying local bifurcation the-
ory to (FBP3) we may determine the possible location of bifurcation points
for non-trivial branches of solutions which satisfy s > 0.

THEOREM 5.2. There exists a branch of non-trivial solutions to (FBP3)
bifurcating from the trivial solution V. =1 and s =0, at A = 1/g(1).

PROOF: We define the function W(z) by W(z) = V(z) — 1. We study
solutions of (FBP3) which have the property that s is bounded away from
unity by a finite amount. This will necessarily be the case for non-trivial
solutions which bifurcate from the trivial solution (W(z),s) = (0,0). In

this case (FBP3) may be written in the form

M(\,z) =Bz — XAz + N(X,z) =0

where
B = j? .
(;l_z|z=1 1
_ {8 =g(1)
o (T
As[g(W +1) — g(1)]
and N = -
3 ls—s
for

dw
z€ X ={W,s): W e C?o,1], E(O) =0,W(1) =0, and s € R}.
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M defines a nonlinear mapping between the Banach spaces R x X and Z,
where Z = {(W,§) : W € C[0,1] and § € R}. We equip R x X with the
norm

(W, 8)|| = X + Zz;;pl] W7 (2)] + ||

(where J denotes the j-th derivative with respect to z) and Z with the norm

|7.5)] = sup W(2)1+ 131
z€[0,1]

In order that we may apply the standard theorems of local bifurcation
theory [1] we require M to be C*(R x X, Z). However, in the neighborhood

of s = 1 this is not the case since the nonlinear operator N includes the
2

lis'

by modifying N for s > 1 — é§ where § is a small strictly positive number.

Thus, in practice, we define a C? extension of the operator N

term

However, since the theorem concerns the local behavior of solutions in the
neighborhood of the trivial solution (W (z),s) = (0,0) we do not spell out
the details of the extension. With the appropriate extension of N, M defines
a mapping € C%(R x X, Z).

Let y = (0,0), the trivial solution. Then N(X,y) = 0. Also

As (W +1) Xg(W +1) —g(1)]

D N(X, z) = ,
0 28—s

Thus D,N(A,y) = 0. Hence, by Theorem 5.3 in Chapter 5 of [1], we
deduce that if Ag is a simple eigenvalue of the pair (B, A) then (Ao,y) is a
bifurcation point of M (X, z) = 0. Thus we determine the location of simple
eigenvalues of the pair (B, A); if we denote the corresponding eigenvectors
by zo = (¢,n) then they satisfy

a2

(5.8) -5z T1A(1) =0,
d d
(5.9) and % =0, ¢(1)=0and d—f = —n.

Integration of the eigenvalue problem defined by (5.8-5.9) shows that (B —
AA)zo = 0 has a nontrivial solution

zo = (¢o,M0), where ¢o = 1%0(1 —2%), no € R\{0},
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if and only if
A=y = 1/g(1).

A necessary and sufficient condition for the eigenvalue Ag to be simple is
that the equation

(510) (B o AoA)I = A.’IJO

does not possess a solution. Defining z = (®,~) equation (5.10) may be

written as

d*®

(5.11) -2

+9=—g(1)n
together with boundary conditions

(5.12) 20 —0, a()=0ama BY__

Integration from z = 0 to z = 1 shows that equations (5.11-5.12) do not
possess a solution unless g(1) = 0. However this case is excluded at the
beginning of the section and thus we have proved that A\g is a simple eigen-
value of the pair (B, A). This completes the proof.
O
In the neighborhood of the bifurcation point we deduce from Theorem 5.3
in Chapter 5 of [1] that the solutions of (FBP3) satisfy

(513) % = 1/4(1) - 0(e),
(5.14) V() =1+ %(1—22) + 0(e?)
(5.15) and s = € + O(e?)

where € < 1 is a measure of proximity to the bifurcation point. The value
€ = 0 corresponds to the bifurcation point itself. Clearly for 0 < € < 1 we
will have 0 < s < 1 and hence, by Theorem 5.1, these solutions correspond
to genuine solutions of the original boundary value problem defined by
equations (5.1-5.2). By virtue of the transformation (5.5) we deduce from
(5.13) and (5.15) that in the neighborhood of the bifurcation point in the
original problem

A=1/eg(1) + O(1)
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and thus that since bifurcation corresponds to € — 0, it occurs from A = oco.
Furthermore, in terms of the original independent variable y, the solution
(5.14) corresponds to a solution

]
V(y):#_}.o(g?), for —1<y< —s
—€
V(y) :1"'%(1_1!2/52)-{-0(62), for —s<y<s
R0
and V(y) = 1—}—!: + O(e?), for s <y < 1.

Taking the limit € — 0, which corresponds to approaching the bifurcation
point at A = co, we obtain

lim V (y) = 2¢(y;0)

e—0
where g(y; z) is the Greens function for the problem, satisfying

d*g
d—y2‘+5(y—z):0

and
g(£1) =0.

The coefficient 2 appears so that the solution satisfies the condition that

lim V(0) =1.
A— 00
Similar results on the approach of solutions to Greens functions in certain

parameter limits have been found by Keady and Norbury [4].

6. Summary.

In this paper we have presented a constructive approach to the existence
theory for two steady state problems (P1) and (P2) to which local bifur-
cation theory is not directly applicable. Although both problems possess a
trivial solution the appearance of a Heaviside step function in the reaction

terms (which consequently have a switch-like behavior) prevents bifurcation

from the trivial solutions.
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However, for both (P1) and (P2), the equations are linear outside a finite
interval of unknown length, in which the reaction terms are non-zero. Thus,
by solving the equations explicitly outside this region the problems may
both be reformulated as two-point free boundary problems. A rescaling,
which is problem dependent, renders both problems in a form to which
local bifurcation theory is directly applicable. In particular we have proved
that for problem (P2) bifurcation occurs from a parameter value at infinity
and that the solution approaches a multiple of the Greens function for the
domain as that parameter approaches infinity.
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